WO2009101352A1 - Dispositif de generation de haute tension - Google Patents

Dispositif de generation de haute tension Download PDF

Info

Publication number
WO2009101352A1
WO2009101352A1 PCT/FR2009/050206 FR2009050206W WO2009101352A1 WO 2009101352 A1 WO2009101352 A1 WO 2009101352A1 FR 2009050206 W FR2009050206 W FR 2009050206W WO 2009101352 A1 WO2009101352 A1 WO 2009101352A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
switching transistor
trans
pulse train
high voltage
Prior art date
Application number
PCT/FR2009/050206
Other languages
English (en)
Inventor
Paulo Barroso
Clement Nouvel
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Priority to BRPI0907741-3A priority Critical patent/BRPI0907741A2/pt
Priority to US12/866,592 priority patent/US8387597B2/en
Priority to MX2010008172A priority patent/MX2010008172A/es
Priority to JP2010545540A priority patent/JP5643114B2/ja
Priority to CN200980104169.9A priority patent/CN101939903B/zh
Priority to RU2010137120/07A priority patent/RU2488016C2/ru
Priority to EP09710502A priority patent/EP2238677A1/fr
Publication of WO2009101352A1 publication Critical patent/WO2009101352A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/523Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit
    • H02M7/5233Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with LC-resonance circuit in the main circuit the commutation elements being in a push-pull arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves

Definitions

  • the invention relates to devices for generating high voltage, and more particularly to reducing the output voltage of the switching transistor included in such devices.
  • the invention is advantageously but not exclusively applicable to the generation of plasma in a gas, using such high voltage generation devices, and in particular the generation of plasma by the electrodes of a spark plug, used for the controlled ignition of an internal combustion engine.
  • the principle of the resonant candle resides in the use of a resonant coil-capacitor assembly, the latter consisting of two electrodes (one of which has the base) separated by a dielectric material, such as ceramic.
  • This high frequency resonator is generally called “coil-candle”.
  • This resonator is powered by a voltage generator capable of delivering a voltage pulse train to the resonator in response to a high frequency control pulse train received on the control electrode of the switching transistor of the voltage pulse generator.
  • this pulse generator comprises, in addition to the switching transistor controlled by the high frequency control pulse train, a coil-capacitor assembly connected in parallel and supplied with a medium voltage.
  • This pulse voltage generator and the series capacitive inductive resonator constitutes a high-voltage generation device and is commonly called by the person skilled in the art “pseudo-class E amplifier”.
  • control of the switching transistor is effected by a high frequency voltage (control pulse train) applied to the gate of the transistor.
  • a high frequency voltage control pulse train
  • the transistor When the transistor is on, a current flows in the coil while when the transistor is off, the current charges on the one hand the capacitor and on the other hand feeds the coil of the series resonator.
  • the drain potential of the transistor is raised.
  • This high voltage periodically supplies the series resonator (coil-spark plug) which, thanks to an important quality factor, creates the high voltage able to trigger the sparks.
  • Such generators are described in patent applications FR 03-10766, FR 03-10767 and FR 03-10768.
  • Pseudo class E amplifiers can also be applied to ultrasonic injection devices.
  • the ultrasonic excitation of the piezoelectric injectors requires the generation of a high voltage between 200 and 1800V peak to peak and modulated between 25 and 50 kHz.
  • a pseudo class E amplifier requires a control transistor that can support the required power and voltage levels, greatly reducing the diversity of available components.
  • An object of the invention is to propose a solution that makes it possible to reduce the voltage delivered at the output of the power transistor while maintaining a sufficient voltage across the series resonator.
  • a high voltage generating device comprising a capacitive inductive resonator capable of amplifying a high voltage, means for generating a high frequency control pulse train, a voltage source.
  • a capacitor and a voltage generator comprising a switching transistor whose control electrode is connected to the output of the generating means of the high frequency control pulse train, the source of the switching transistor being connected to a ground, the drain of the switching transistor being adapted to supply a voltage pulse train to the capacitive inductive resonator in response to the train of control pulses received on the control electrode of the switching transistor.
  • the drain of the switching transistor is connected to the capacitive inductive resonator via an isolation transformer, the isolation transformer being connected in parallel with a capacitor, the isolation transformer being further connected to the source of the capacitor. voltage.
  • the primary winding of the isolation transformer may be connected by a terminal to the drain of the control transistor and by another terminal to the voltage source, the primary winding of the isolation transformer being connected in parallel with the capacitor.
  • the secondary winding of the isolation transformer can be connected by a terminal to the capacitive inductive resonator and by another terminal to a ground, said ground also being connected to the capacitive inductive resonator.
  • the high voltage generating device may comprise a galvanic isolation isolating the primary winding and the secondary winding, the components and mass connected to one winding being isolated from the components and ground connected to the other winding by said galvanic isolation.
  • the mass present in the circuit connected to the secondary winding can be distinct and isolated from the mass present in the circuit connected to the primary winding.
  • the generating means of the control pulse train may comprise a fixed frequency oscillator.
  • the voltage pulse generator GENI comprises a transformer and capacitor transformer set C l connected in parallel, and a switching transistor M l, here formed of an N-channel power MOSFET transistor, controlled on its gate G by a train of control pulses generated here by a fixed frequency oscillator OSC.
  • This frequency is a high frequency, typically of the order of a few MHz and greater than 1 MHz.
  • the TRANS transformer comprises a primary winding with N l turns and a secondary winding with N2 turns.
  • a terminal of the secondary winding is connected to a first terminal of the capacitive inductive resonator RS2 modeled by a resistance R2, inductance L2 and capacitance C2.
  • the other terminal of the RS2 series resonator is connected on the one hand to a ground, on the other hand to a resistor R3 connected to the other terminal of the secondary winding.
  • the resistor R1 can be either modeling the resistive behavior of the wiring connecting the second terminal of the secondary winding to the ground, or a physical component whose role is to measure the current flowing in the RS2 series resonator. In the latter case, the resistive value of this component will be chosen very low compared to the value of R2, in the resonator RS2, so as not to degrade the performance (overvoltage factor) of the resonator
  • a galvanic isolation IG separates the two windings of the TRANS transformer.
  • the galvanic isolation IG also separates on one side the components connected to the primary winding and on the other side the components connected to the secondary winding.
  • the RS2 series resonator also called capacitive inductive resonator, can be included in a plasma generation plug or in a piezoelectric or ultrasonic injector.
  • the natural frequency of the series resonator formed by the inductance L2 and capacitance C2 also has a high resonance frequency, for example greater than 1 MHz, with an overvoltage factor of, for example, between 40 and 200.
  • the GENI pulse generator is powered by a DC voltage source DCT delivering a medium voltage, typically less than 1000 volts.
  • this voltage source VMT preferably has a limited power so that the energy applied between the electrodes of the spark plug is also limited, for example to 300 mJ by ignition and for safety reasons.
  • a 12 volt to Y volt Y converter can be used, which is the voltage supplied by the VMT power supply. It is thus possible to generate the desired DC voltage level from a battery voltage.
  • the stability of the DC voltage generated is not a priori a decisive criterion, we can for example provide to use a switching power supply to supply the generator GENI, for its qualities of robustness and simplicity.
  • This high voltage typically of the order of several hundred volts periodically supplies the RS2 series resonator, which thanks to a large overvoltage factor, creates the high voltage HT capable of triggering sparks.
  • the winding is preferably made with shielded coaxial wire with ground braid to limit high frequency interference.
  • the manufacturing constraints can be reduced to take into account the lower frequencies involved.
  • the Use of a transformer with respect to an inductor generates several notable advantages.
  • the use of a transformer makes it possible to economize a series capacitor situated between the output of the pseudo class E amplifier and the charge of the multi spark spark plug (BME), as well as the common mode filter of the Balun type.
  • BME multi spark spark plug
  • the use of an isolation transformer removes the DC component of the input signal of the RS2 series resonator, thereby reducing the maximum voltage applied to the cable while maintaining the amplitude of the signal. It follows that the constraints on the insulation of the cable are less stringent than in the case of a pseudo class E amplifier without transformer. The range of usable cables is then greater.
  • a pseudo class E amplifier with transformer isolates the capacitance C l and the power supply of the connection cables to the RS2 series resonator.
  • a short circuit at these cables or between one of these cables and the ground can not create an electric shock.
  • connection cables comprise a ground braid and a shielding molded into the sheath. For increased isolation, one end or both ends of the ground braid may be connected, the return of current through R3 being provided by another conductor.

Abstract

Dispositif de génération de haute tension, comprenant un résonateur inductif capacitif (RS2) apte à produire une haute tension, des moyens de génération d'un train d'impulsions de commande haute fréquence, une source de tension (VMT), un condensateur (C1) et un générateur de tension (GENI) comprenant un transistor de commutation (M1) dont l' électrode de commande (G) est reliée à la sortie des moyens de génération du train d'impulsions de commande haute fréquence, la source (S) du transistor de commutation (M1) étant reliée à une masse, le drain (D) du transistor de commutation (M1) étant apte à délivrer un train d'impulsions de tension au résonateur inductif capacitif (RS2) en réponse au train d'impulsions de commande reçues sur l' électrode de commande (G) du transistor de commutation (M1). Le drain (D) du transistor de commutation (M1) est relié au résonateur inductif capacitif (RS2) par l'intermédiaire d'un transformateur d'isolation (TRANS), le transformateur d'isolement (TRANS) étant relié en parallèle avec un condensateur (C1), le transformateur d'isolement (TRANS) étant par ailleurs relié à la source de tension (VMT).

Description

Dispositif de génération de haute tension.
L 'invention concerne les dispositifs de génération de haute tension, et plus particulièrement la réduction de la tension en sortie du transistor de commutation compris dans de tels dispositifs.
L 'invention s ' applique avantageusement mais non limitativement à la génération de plasma dans un gaz, utilisant de tels dispositif de génération de haute tension, et notamment la génération de plasma par les électrodes d'une bougie, utilisée pour l' allumage commandé d'un moteur à combustion interne.
Le principe de la bougie résonante réside dans l'utilisation d'un ensemble résonant bobine-condensateur, ce dernier étant constitué par deux électrodes (dont l'une comporte le culot) séparées par un matériau diélectrique, tel que de la céramique. Ce résonateur haute fréquence est appelé généralement « bobine-bougie ». Ce résonateur est alimenté par un générateur de tension apte à délivrer un train d'impulsions de tension au résonateur en réponse à un train d'impulsions de commandes haute fréquence reçu sur l' électrode de commande du transistor de commutation du générateur impulsionnel de tension.
Plus précisément, ce générateur impulsionnel comprend, outre le transistor de commutation commandé par le train haute fréquence d'impulsions de commande, un ensemble bobine-condensateur reliés en parallèle et alimentés par une moyenne tension. La combinaison de ce générateur de tension impulsionnelle et du résonateur inductif capacitif série (« bobine-bougie ») constitue un dispositif de génération de haute tension et est couramment appelée par l'homme du métier « amplificateur pseudo classe E ».
Comme indiqué ci-avant, la commande du transistor de commutation s' effectue par une tension haute fréquence (train d'impulsions de commande) appliquée sur la grille du transistor. Lorsque le transistor est passant, un courant circule dans la bobine tandis que lorsque le transistor est bloqué, le courant charge d'une part le condensateur et d' autre part alimente la bobine du résonateur série. Le potentiel de drain du transistor s' élève. Cette tension élevée alimente périodiquement le résonateur série (bobine-bougie) qui, grâce à un facteur de qualité important, crée la haute tension capable de déclencher les étincelles. De tels générateurs sont décrits dans les demandes de brevet FR 03- 10766, FR 03- 10767 et FR 03- 10768. Les amplificateurs pseudo classe E peuvent être également appliqués aux dispositifs à injection ultrasonore. L ' excitation ultrasonore des injecteurs piézo-électriques requiert la génération d'une haute tension comprise entre 200 et 1800V crête à crête et modulée entre 25 et 50 kHz. Quelle que soit l' application visée, un amplificateur pseudo classe E nécessite un transistor de commande pouvant supporter les niveaux de puissance et de tension requis, réduisant considérablement la diversité des composants disponibles.
Un but de l'invention est de proposer une solution qui permettent de réduire la tension délivrée en sortie du transistor de puissance tout en maintenant une tension suffisante aux bornes du résonateur série.
Selon un aspect de l'invention, on définit un dispositif de génération de haute tension, comprenant un résonateur inductif capacitif apte à amplifier une haute tension, des moyens de génération d'un train d'impulsions de commande haute fréquence, une source de tension, un condensateur et un générateur de tension comprenant un transistor de commutation dont l'électrode de commande est reliée à la sortie des moyens de génération du train d'impulsions de commande haute fréquence, la source du transistor de commutation étant reliée à une masse, le drain du transistor de commutation étant apte à délivrer un train d'impulsions de tension au résonateur inductif capacitif en réponse au train d'impulsions de commande reçues sur l' électrode de commande du transistor de commutation. Le drain du transistor de commutation est relié au résonateur inductif capacitif par l' intermédiaire d'un transformateur d'isolation, le transformateur d'isolement étant relié en parallèle avec un condensateur, le transformateur d'isolement étant par ailleurs relié à la source de tension. L ' enroulement primaire du transformateur d'isolation peut être connecté par une borne au drain du transistor de commande et par une autre borne à la source de tension, l' enroulement primaire du transformateur d'isolement étant relié en parallèle avec le condensateur.
L ' enroulement secondaire du transformateur d'isolement peut être relié par une borne au résonateur inductif capacitif et par une autre borne à une masse, ladite masse étant également reliée au résonateur inductif capacitif. Le dispositif de génération de haute tension peut comprendre une isolation galvanique isolant l' enroulement primaire et l' enroulement secondaire, les composants et masse reliés à un enroulement étant isolés des composants et masse reliés à l' autre enroulement par ladite isolation galvanique. La masse présente dans le circuit relié à l' enroulement secondaire peut être distincte et isolée de la masse présente dans le circuit relié à l' enroulement primaire.
Les moyens de génération du train d'impulsions de commande peuvent comprendre un oscillateur à fréquence fixe. D ' autres avantages et caractéristiques de l'invention apparaîtront à l' examen de la description détaillée de modes de réalisation, nullement limitatifs, et des dessins annexés sur lesquels la figure unique illustre un exemple de réalisation électronique d'un dispositif selon l'invention. Comme illustré sur la figure unique, le générateur impulsionnel de tension GENI comporte un ensemble transformateur TRANS et condensateur C l reliés en parallèle, ainsi qu'un transistor de commutation M l , formé ici d'un transistor MOSFET de puissance à canal N, commandé sur sa grille G par un train d'impulsions de commande générées ici par un oscillateur à fréquence fixe OSC. Cette fréquence est une haute fréquence, typiquement de l'ordre de quelques MHz et supérieure à 1 MHz. Le transformateur TRANS comprend un enroulement primaire à N l spires et un enroulement secondaire à N2 spires. Une borne de l'enroulement secondaire est reliée à une première borne du résonateur inductif capacitif RS2 modélisé par une résistance R2, une inductance L2 et une capacité C2. L ' autre borne du résonateur série RS2 est reliée d'une part à une masse, d' autre part à une résistance R3 reliée à l' autre borne de l' enroulement secondaire. La résistance Rl peut être soit la modélisation du comportement résistif du câblage reliant la seconde borne de l' enroulement secondaire à la masse, soit un composant physique dont le rôle consiste à mesurer le courant circulant dans le résonateur série RS2. Dans ce dernier cas, la valeur résistive de ce composant sera choisie très faible devant la valeur de R2, dans le résonateur RS2, afin de ne pas dégrader les performances (facteur de surtension) du résonateur
RS2 et de ne pas occasionner un échauffement excessif du composant. Une isolation galvanique IG sépare les deux enroulements du transformateur TRANS . L 'isolation galvanique IG sépare également d'un coté les composants reliés à l' enroulement primaire et d'un autre coté les composants reliés à l' enroulement secondaire. Le résonateur série RS2, également appelé résonateur inductif capacitif peut être compris dans une bougie de génération de plasma ou dans un inj ecteur piézoélectrique ou ultrasonique.
La fréquence propre du résonateur série formé par l'inductance L2 et la capacité C2 présente également une fréquence de résonance élevée, par exemple supérieure à I MHz, avec un facteur de surtension compris par exemple entre 40 et 200.
Le générateur impulsionnel GENI est alimenté par une source de tension continue VMT délivrant une moyenne tension, typiquement inférieure à 1 000 volts.
Par ailleurs, cette source de tension VMT présente de préférence une puissance limitée de façon à ce que l' énergie appliquée entre les électrodes de la bougie soit également limitée, par exemple à 300 mJ par allumage et pour des raisons de sécurité. Pour générer des tensions continues supérieures à 12 volt dans une application automobile, on peut utiliser un convertisseur 12 volt vers Y volt Y étant la tension fournie par l' alimentation VMT. On peut ainsi générer le niveau de tension continue souhaitée à partir d'une tension de batterie. La stabilité de la tension continue générée n' étant a priori pas un critère déterminant, on peut à titre d' exemple, prévoir d'utiliser une alimentation à découpage pour alimenter le générateur GENI, pour ses qualités de robustesse et de simplicité. Lorsque le transistor M l est passant, un courant circule dans la bobine L l . Lorsque le transistor M l est bloqué le courant charge d'une part le condensateur C l et alimente la bobine L2.
Le potentiel de drain D du transistor M l s 'élève.
Cette tension élevée, typiquement de l'ordre de plusieurs centaines de volts alimente périodiquement le résonateur série RS2, qui grâce à un facteur de surtension important, crée la haute tension HT capable de déclencher les étincelles.
Grâce à la présence du transformateur, la tension au bornes de l' enroulement primaire, et donc à la sortie du transistor de puissance peut être réduite. En effet, le rapport de transformation M est égal au rapport du nombre de spire des enroulements primaire Ni et secondaire N2, lui-même égal au rapport des tensions des enroulements primaire Ui et secondaire U2 : - = — U2 -
Figure imgf000007_0001
Ainsi, si on désire obtenir une tension Ui aux bornes du résonateur série RS2, c'est-à-dire aux bornes de l 'enroulement secondaire N2, il suffit d'obtenir une tension U2 aux bornes de l' enroulement primaire Ni égale :
2 M La construction et les technologies employées pour réaliser le transformateur sont également deux aspects essentiels pour le bon fonctionnement de l' amplificateur pseudo classe E.
L'utilisation d'un transformateur à air est préférable vu les fréquences mises en jeu. Des solutions alternatives peuvent être utilisées, mais le rendement de conversion peut alors être plus faible.
Le bobinage est réalisé de préférence avec du fil coaxial blindé avec tresse de masse afin de limiter les perturbations haute fréquence. Dans le cas de l'utilisation de l'amplificateur pseudo classe E pour l'injection ultrasonique, les contraintes de fabrication peuvent être réduites à fin de tenir compte des fréquences plus basses mises en jeu. Par ailleurs, il est à noter que l'utilisation d'un transformateur par rapport à une inductance génère plusieurs avantages notables.
Par rapport aux applications à l' allumage radiofréquence tel que décrit dans les brevets français FR03- 10766, FR03- 10767, FR03- 10768, l'utilisation d'un transformateur permet de faire l' économie d'un condensateur série situé entre la sortie de l' amplificateur pseudo classe E et la charge de la bougie multi-étincelles (BME), ainsi que du filtre en mode commun de type Balun. De plus, il est possible d'intégrer une mesure du courant d'ionisation, par exemple au niveau de la résistance R3. D ' autre part, l'utilisation d'un transformateur à isolement permet de supprimer la composante continue du signal en entrée du résonateur série RS2, réduisant ainsi la tension maximale appliquée sur le câble tout en conservant l' amplitude du signal. Il en découle que les contraintes pesant sur l'isolation du câble sont moins strictes que dans le cas d'un amplificateur pseudo classe E sans transformateur. La gamme de câbles utilisables est alors plus grande.
En terme de sécurité de fonctionnement, un amplificateur pseudo classe E avec transformateur permet d'isoler la capacité C l et l' alimentation des câbles de connexion au résonateur série RS2. Ainsi, un court-circuit au niveau de ces câbles ou entre un de ces câbles et la masse ne pourra pas créer de choc électrique.
Enfin, l'utilisation d'un transformateur permet de réduire les perturbations électromagnétiques émises, notamment en courant de mode commun. En effet, la masse du résonateur série RS2 étant découplée de la masse du transistor M l , les perturbations électromagnétiques émises lors de la génération de l' étincelle d'allumage ou lors de la génération ultrasonore ne peuvent être guidées vers le transistor M l et l' électronique de commande par l' intermédiaire d'une masse commune. Cela est d' autant plus vrai que les câbles de connexion comprennent une tresse de masse et un blindage moulé dans la gaine. Pour un isolement accru, une extrémité ou les deux extrémités de la tresse de masse peuvent être connectées, le retour du courant à travers R3 étant assuré par un autre conducteur.

Claims

REVENDICATIONS
1. Dispositif de génération de haute tension, comprenant un résonateur inductif capacitif (RS2) apte à amplifier une haute tension, des moyens de génération d'un train d'impulsions de commande haute fréquence, une source de tension (VMT), un condensateur (C l ) et un générateur de tension (GENI) comprenant un transistor de commutation (M l ) dont l' électrode de commande (G) est reliée à la sortie des moyens de génération du train d'impulsions de commande haute fréquence, la source (S) du transistor de commutation (M l ) étant reliée à une masse, le drain (D) du transistor de commutation (M l ) étant apte à délivrer un train d'impulsions de tension au résonateur inductif capacitif (RS2) en réponse au train d'impulsions de commande reçues sur l'électrode de commande (G) du transistor de commutation (M l ), caractérisé par le fait que le drain (D) du transistor de commutation (M l ) est relié au résonateur inductif capacitif (RS2) par l' intermédiaire d'un transformateur d'isolation (TRANS), le transformateur d'isolement (TRANS) étant relié en parallèle avec un condensateur (C l ), le transformateur d'isolement (TRANS) étant par ailleurs relié à la source de tension (VMT).
2. Dispositif de génération de haute tension selon la revendication 1 , dans lequel l' enroulement primaire (N l ) du transformateur d'isolation (TRANS) est connecté par une borne au drain (D) du transistor de commande (M l ) et par une autre borne à la source de tension (VMT), l' enroulement primaire (N l ) du transformateur d'isolement (TRANS) étant relié en parallèle avec le condensateur (C l ).
3. Dispositif de génération de haute tension selon l'une des revendications précédentes, dans lequel l'enroulement secondaire (N2) du transformateur d'isolement (TRANS) est relié par une borne au résonateur inductif capacitif (RS2) et par une autre borne à une masse, ladite masse étant également reliée au résonateur inductif capacitif
(RS2).
4. Dispositif de génération de haute tension selon l'une des revendications précédentes, comprenant une isolation galvanique (IG) isolant l' enroulement primaire (N l ) et l'enroulement secondaire (N2), les composants et masse reliés à un enroulement étant isolés des composants et masse reliés à l' autre enroulement par ladite isolation galvanique (IG).
5. Dispositif de génération de haute tension selon la revendication 4, dans lequel la masse présente dans le circuit relié à l' enroulement secondaire (N2) est distincte et isolée de la masse présente dans le circuit relié à l' enroulement primaire (N l ).
6. Dispositif selon l'une des revendications précédentes, dans lequel les moyens de génération du train d'impulsions de commande comprennent un oscillateur à fréquence fixe (OSC).
7. Utilisation d'un dispositif de génération de haute tension selon l'une des revendications 1 à 6, pour l' allumage commandé dans un moteur à combustion interne.
PCT/FR2009/050206 2008-02-07 2009-02-09 Dispositif de generation de haute tension WO2009101352A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0907741-3A BRPI0907741A2 (pt) 2008-02-07 2009-02-09 dispositivos gerador de alta voltagem, e, uso do mesmo
US12/866,592 US8387597B2 (en) 2008-02-07 2009-02-09 High-voltage generator device
MX2010008172A MX2010008172A (es) 2008-02-07 2009-02-09 Dispositivo generador de alto voltaje.
JP2010545540A JP5643114B2 (ja) 2008-02-07 2009-02-09 高電圧発生装置及びその使用
CN200980104169.9A CN101939903B (zh) 2008-02-07 2009-02-09 用于产生高电压的设备
RU2010137120/07A RU2488016C2 (ru) 2008-02-07 2009-02-09 Устройство генерирования высокого напряжения
EP09710502A EP2238677A1 (fr) 2008-02-07 2009-02-09 Dispositif de generation de haute tension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0850786 2008-02-07
FR0850786A FR2927482B1 (fr) 2008-02-07 2008-02-07 Dispositif de generation de haute tension.

Publications (1)

Publication Number Publication Date
WO2009101352A1 true WO2009101352A1 (fr) 2009-08-20

Family

ID=39941826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/050206 WO2009101352A1 (fr) 2008-02-07 2009-02-09 Dispositif de generation de haute tension

Country Status (10)

Country Link
US (1) US8387597B2 (fr)
EP (1) EP2238677A1 (fr)
JP (1) JP5643114B2 (fr)
KR (1) KR101576550B1 (fr)
CN (1) CN101939903B (fr)
BR (1) BRPI0907741A2 (fr)
FR (1) FR2927482B1 (fr)
MX (1) MX2010008172A (fr)
RU (1) RU2488016C2 (fr)
WO (1) WO2009101352A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563038C2 (ru) * 2013-12-30 2015-09-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Устройство управления инжектором
CN103683981B (zh) * 2014-01-02 2016-01-20 中国工程物理研究院流体物理研究所 单极性低温等离子体电源
BR112017008801A2 (pt) * 2014-10-30 2017-12-26 Univ Northwest sistema de ignição para um motor de combustão interna e método de controle do mesmo
KR102469808B1 (ko) * 2016-02-12 2022-11-23 에스케이하이닉스 주식회사 불휘발성 메모리셀의 전압공급장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022933A2 (fr) * 1996-10-16 2000-07-26 Jump Technologies Limited Générateur de plasma
DE19924682A1 (de) * 1999-05-29 2000-12-07 Daimler Chrysler Ag Zündkerze als Meßsonde zur Ionenstrommessung
JP2003125586A (ja) * 2001-10-15 2003-04-25 Amada Eng Center Co Ltd プラズマ発生用電源装置
WO2007060362A1 (fr) * 2005-11-28 2007-05-31 Renault S.A.S Dispositif de generation de plasma avec suppression des surtensions aux bornes du transistor du generateur haute tension pseudo classe e

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU128169A1 (ru) * 1959-04-22 1959-11-30 П.В. Новицкий Интегрирующее устройство
US3623466A (en) * 1969-08-06 1971-11-30 William F Palmer Current transfer electrical system
JPS4938124A (fr) * 1972-08-18 1974-04-09
DE2606890C2 (de) * 1976-02-20 1985-11-07 Robert Bosch Gmbh, 7000 Stuttgart Hochleistungszündanlage für Brennkraftmaschinen
FR2532293A1 (fr) * 1982-08-31 1984-03-02 Rhone Poulenc Spec Chim Procede continu de preparation de silane
JPS614862A (ja) * 1984-06-19 1986-01-10 Nippon Soken Inc 圧電素子を有する火花点火装置
DE3928726A1 (de) * 1989-08-30 1991-03-07 Vogt Electronic Ag Zuendsystem mit stromkontrollierter halbleiterschaltung
US4996967A (en) * 1989-11-21 1991-03-05 Cummins Engine Company, Inc. Apparatus and method for generating a highly conductive channel for the flow of plasma current
RU2056523C1 (ru) * 1993-01-20 1996-03-20 Государственный центральный научно-исследовательский радиотехнический институт Способ установки угла опережения зажигания для бензинового двигателя внутреннего сгорания и устройство для его осуществления
US5587630A (en) * 1993-10-28 1996-12-24 Pratt & Whitney Canada Inc. Continuous plasma ignition system
RU2094646C1 (ru) * 1994-02-10 1997-10-27 Научно-исследовательский институт машиностроения Главного управления ракетно-космической техники Комитета РФ по оборонным отраслям промышленности Высокочастотная электроразрядная система воспламенения
JPH0956175A (ja) * 1995-08-21 1997-02-25 Taiyo Yuden Co Ltd 圧電トランスを含む電源回路装置
JP3059084B2 (ja) * 1995-09-29 2000-07-04 株式会社ミツバ 内燃機関点火制御装置
WO1997048902A2 (fr) * 1996-06-21 1997-12-24 Outboard Marine Corporation Systeme d'allumage a decharge capacitive par etincelles multiples pour moteur a combustion interne
JPH1022538A (ja) * 1996-06-29 1998-01-23 Mitsui Petrochem Ind Ltd 高電圧装置
JP2001126891A (ja) * 1999-10-28 2001-05-11 Murata Mfg Co Ltd 圧電トランスインバータ
DE10003109A1 (de) * 2000-01-26 2001-08-02 Bosch Gmbh Robert Verfahren zur Erzeugung einer Folge von Hochspannungszündfunken und Hochspannungszündvorrichtung
JP2003324946A (ja) * 2002-05-08 2003-11-14 Matsushita Electric Ind Co Ltd 圧電トランス駆動回路
JP2005168167A (ja) * 2003-12-02 2005-06-23 Honda Motor Co Ltd Dc−dcコンバータ
US7368880B2 (en) * 2004-07-19 2008-05-06 Intersil Americas Inc. Phase shift modulation-based control of amplitude of AC voltage output produced by double-ended DC-AC converter circuitry for powering high voltage load such as cold cathode fluorescent lamp
JP4497027B2 (ja) * 2004-07-30 2010-07-07 株式会社デンソー エンジン点火装置
FR2895169B1 (fr) * 2005-12-15 2008-08-01 Renault Sas Optimisation de la frequence d'excitation d'un resonateur
JP4736942B2 (ja) * 2006-05-17 2011-07-27 株式会社デンソー 多重放電点火装置
JP4803008B2 (ja) * 2006-12-05 2011-10-26 株式会社デンソー 内燃機関の点火制御装置
CN101060739A (zh) * 2007-04-05 2007-10-24 深圳市麦格米特电气技术有限公司 一种荧光灯驱动电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022933A2 (fr) * 1996-10-16 2000-07-26 Jump Technologies Limited Générateur de plasma
DE19924682A1 (de) * 1999-05-29 2000-12-07 Daimler Chrysler Ag Zündkerze als Meßsonde zur Ionenstrommessung
JP2003125586A (ja) * 2001-10-15 2003-04-25 Amada Eng Center Co Ltd プラズマ発生用電源装置
WO2007060362A1 (fr) * 2005-11-28 2007-05-31 Renault S.A.S Dispositif de generation de plasma avec suppression des surtensions aux bornes du transistor du generateur haute tension pseudo classe e

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2238677A1 *

Also Published As

Publication number Publication date
JP2011511617A (ja) 2011-04-07
BRPI0907741A2 (pt) 2020-08-18
JP5643114B2 (ja) 2014-12-17
RU2488016C2 (ru) 2013-07-20
KR20100119544A (ko) 2010-11-09
EP2238677A1 (fr) 2010-10-13
MX2010008172A (es) 2010-08-11
US8387597B2 (en) 2013-03-05
CN101939903A (zh) 2011-01-05
FR2927482A1 (fr) 2009-08-14
FR2927482B1 (fr) 2010-03-05
CN101939903B (zh) 2014-04-30
RU2010137120A (ru) 2012-03-20
US20110073058A1 (en) 2011-03-31
KR101576550B1 (ko) 2015-12-10

Similar Documents

Publication Publication Date Title
EP2273632B1 (fr) Bougie de génération de plasma à inductance intégrée
EP1515594A2 (fr) Système de génération de plasma
EP2080254B1 (fr) Dispositif de generation de plasma radiofrequence
FR2859831A1 (fr) Bougie de generation de plasma.
EP2153056B1 (fr) Dispositif de mesure dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
US20170167464A1 (en) Repetitive ignition system for enhanced combustion
US20030067284A1 (en) Exciter circuit with ferro-resonant transformer network for an ignition system of a turbine engine
WO2009101352A1 (fr) Dispositif de generation de haute tension
EP2321524B1 (fr) Dispositif de mesure du courant d'ionisation dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
TW201734303A (zh) 燃燒室中點燃空氣-燃料混合物的點燃裝置
JP2019511670A (ja) 燃焼室内の空気/燃料の混合物に点火を行う点火装置
EP1955433B1 (fr) Dispositif de generation de plasma avec suppression des surtensions aux bornes du transistor du generateur haute tension pseudo classe e
EP1887217A2 (fr) Systeme d'allumage pour moteur a combustion interne
WO2012160317A1 (fr) Alimentation pour allumage radiofrequence avec amplificateur a double etage
FR2838572A1 (fr) Systeme de charge d'un dispositif de stockage d'energie electrique, tel qu'un super-condensateur a partir d'une batterie et notamment d'un vehicule automobile, et procede d'utilisation de ce systeme
WO2010136727A1 (fr) Procéde de détection du type d'étincelle générée par une bobine-bougie d'allumage radiofrequence, et dispositif correpondant
FR2779288A1 (fr) Module d'alimentation d'une lampe a decharge, notamment de projecteur de vehicule automobile
FR2776887A1 (fr) Dispositif pour l'alimentation d'une lampe a decharge de projecteur de vehicule automobile
FR2988233A1 (fr) Allumage radiofrequence de moteur de vehicule automobile
WO2020109083A1 (fr) Ensemble électromagnétique pour convertisseur résonant
FR3001601A1 (fr) Dispositif de generation de plasma avec reduction de la surtension aux bornes du transistor de commutation, et procede de commande correspondant
FR2821499A1 (fr) Convertisseur de tension a decoupage
FR2893788A1 (fr) Alimentation electrique haute tension et reacteur a plasma
FR2920613A1 (fr) Dispositif de commande d'un transistor haute tension
FR2516719A1 (fr) Generateur d'arc electrique a decharge commandee

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980104169.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09710502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009710502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5146/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/008172

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20107017415

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010545540

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010137120

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12866592

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0907741

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100806