WO2009099051A1 - Application device and application method - Google Patents

Application device and application method Download PDF

Info

Publication number
WO2009099051A1
WO2009099051A1 PCT/JP2009/051765 JP2009051765W WO2009099051A1 WO 2009099051 A1 WO2009099051 A1 WO 2009099051A1 JP 2009051765 W JP2009051765 W JP 2009051765W WO 2009099051 A1 WO2009099051 A1 WO 2009099051A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
head
color
color filter
scanning direction
Prior art date
Application number
PCT/JP2009/051765
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Iwade
Junichi Uehara
Shigeru Tohno
Satoshi Tomoeda
Original Assignee
Toray Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co., Ltd. filed Critical Toray Engineering Co., Ltd.
Priority to CN2009801037246A priority Critical patent/CN101932958B/en
Publication of WO2009099051A1 publication Critical patent/WO2009099051A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/28Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for printing downwardly on flat surfaces, e.g. of books, drawings, boxes, envelopes, e.g. flat-bed ink-jet printers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography

Definitions

  • the present invention relates to a coating apparatus and a coating method. Specifically, a coating apparatus and a coating that discharge a predetermined amount of ink from a plurality of inkjet nozzles at a predetermined position while relatively moving (scanning) the plurality of inkjet nozzles and a substrate to be coated facing each other.
  • the method is particularly suitable for application to a color filter manufacturing apparatus.
  • the color liquid crystal display is composed of a color filter, a TFT array substrate, and the like.
  • the color filter is formed by regularly dividing each pixel bordered by a grid-like black matrix on a glass substrate into three colors of R (red), G (green), and B (blue).
  • R red
  • G green
  • B blue
  • This color filter is usually 1) after forming a black photoresist material coating film on a glass substrate, and then processing the black coating film into a grid by photolithography (formation of a grid-like black matrix), 2) Once the R coating film is formed on the entire surface, the R coating film is left only on the R pixels between the lattices by photolithography (R pixel formation). After the coating films of G and G are formed on the entire surface, the B and G coating films are left only on the B and G pixels (B and G pixel formation). In forming the R, G, and B pixels by the above-described photolithography method, many processes such as R, G, and B whole surface coating film formation, exposure, and development are required.
  • Patent document 1 discloses specifications that are optimized for the properties of the inks of R, G, and B inks by inkjet.
  • Patent documents 2 and 3 disclose a color filter that uses an inkjet head. A manufacturing apparatus and a manufacturing method are disclosed.
  • an inkjet head having a plurality of inkjet nozzles, a holding stage that holds a substrate, and a moving unit that relatively moves the inkjet head and the holding stage
  • the color filter generally has a small pixel size of about 100 microns, it is necessary to increase the resolution (array density) of the inkjet head in the color filter manufacturing apparatus. In order to improve production efficiency, the time required for coating is preferably as short as possible.
  • Patent Document 4 as shown in FIG. 10, a plurality of (two in the figure) inkjet heads 510 are arranged in series in the scan direction X to configure the head 520 to increase the resolution (array density). Yes.
  • a plurality of heads 520 in parallel in the direction Y orthogonal to the scan direction X, the number of scans of the inkjet head 510 is reduced. As a result, the coating time required for coating all the portions to be coated of the substrate K is shortened.
  • the heads 520 are arranged in a staggered manner as shown in FIG. This is due to the following reason. That is, since the head 520 has a width of the casing 52A larger than the arrangement width W0 of the inkjet nozzles 540, there is a space T between the end portion 512 of the casing 52A and the end portion 511 of the nozzle group. For this reason, when scanning in the X direction with a plurality of head modules 520 arranged in a line in the Y direction, a nozzle non-passing region in which the ink jet nozzle 540 does not pass at all is formed due to the presence of the interval T. The width of the nozzle non-passing region is twice the width T. Therefore, the heads 520 are arranged in a staggered manner to cancel the nozzle non-passing area.
  • a liquid droplet discharge head in which nozzle rows are formed is linearly arranged to form a head row, and a plurality of head rows are connected in parallel so that the ends of the liquid droplet discharge heads are connected to each other.
  • the configuration of one nozzle row is not linear, and the end portions of the droplet discharge heads are arranged so as to overlap each other to form a head unit in which a plurality of the droplet discharge heads are combined to form ink. It is said that color unevenness and stripe unevenness are avoided by applying.
  • the positional accuracy by accurately ejecting ink onto display dots as filter elements is specified by specifying the nozzle pitch and the arrangement and movement amount between a plurality of heads.
  • the problem is solved.
  • the filter material (ink) is ejected by one head formed by a plurality of nozzles, the occurrence of characteristic variations (ejection distribution characteristics) in the ink ejection amount for each nozzle is detected. It is said that the problem has been solved by correcting the amount by optimizing the amount and overcoming the two problems of vertical streaks due to variations in light transmission in the main scanning direction of the filter element.
  • JP 2006-209140 A Japanese Patent No. 3925525 JP 2003-84125 A Japanese Patent Application No. 2006-134514
  • Patent Document 3 A method of applying ink to a color filter substrate by moving the head several times in the sub-scanning direction by repeatedly moving the head in the main scanning direction by applying the ink to the color filter substrate by moving the head in the main scanning direction.
  • the head scans the area of the color filter substrate where ink is applied and the head scans and applies ink after the next time. There is a difference in the time for applying the ink to the adjacent application region between the adjacent regions of the color filter substrate (see FIG. 25 of Patent Document 3).
  • the present inventors indicate that a difference occurs in the surface shape after drying of the ink applied to the pixel due to this time difference, and the color filter is used as an optical component in the ink application method to the pixel by the ink jet method.
  • the color filter is used as an optical component in the ink application method to the pixel by the ink jet method.
  • “streak unevenness” is visible and quality is reduced.
  • the ink When the ink is applied to the entire area of the effective pixels of the color filter by moving (scanning) the head divided multiple times in the direction orthogonal to the scanning direction and the dried ink surface is observed in cross section
  • the cross-sectional shape of the ink surface of the pixel applied in a divided manner is different from the cross-sectional shape of the ink surface of the pixel where the periphery of the other pixel is simultaneously applied with ink.
  • streaks generated vertically in the direction of movement of the inkjet head during coating can be confirmed.
  • This vertical streak causes the ink at the end of the applied region generated at the boundary between the coated region and the uncoated region to dry faster on the uncoated region side. Since the density of the ink on the non-applied region side becomes high, the cross-sectional shape after drying becomes thicker on the non-applied region side.
  • FIG. 14 is a diagram showing a case where the head 101 is applied by scanning twice with respect to the required application width W of the color filter substrate 100 (also referred to as a substrate). That is, ink is applied to a plurality of pixels arranged in the Y direction by ejecting ink from the head 101, and ink is sequentially applied to the plurality of pixels arranged in the X direction by scanning the head 101 in the X direction. Is applied. In this way, the head 101 performs the first scan to apply the left side of the necessary application width W (referred to as region A) (FIG. 14B), and then performs the second scan to perform the required application.
  • region A region A
  • the right side of width W (referred to as region B) is applied (FIG. 14C).
  • the color filter substrate 100 is a base material from which a product color filter is obtained by being finally cut, and a plurality of required application widths W from one color filter substrate 100 are obtained. A color filter can be obtained.
  • the region A As shown in FIG. 14, in the state (FIG. 14 (b)) in which the region A is applied by the first scanning of the head 101 from the color filter substrate 100 (FIG. 14 (a)) before application, the region The dry state is different between the pixel at the center of A and the pixel at the end of region A. That is, since the pixel in the central portion of the region A has pixels around which ink is applied, the amount of ink evaporation (drying speed) is constant throughout the area. Accordingly, the pixels in the central portion themselves are dried at a constant drying speed as a whole, and the dried ink thickness when the attention is paid to one pixel is dried in a uniform state.
  • the pixel at the end of the region A that is, the pixel adjacent to the boundary ⁇ between the region A and the region B is a pixel on the region B side, although there are pixels to which the ink is applied on the region A side.
  • the ink has not been applied yet. Therefore, the amount of ink evaporation by other pixels is large on the region A side of the pixel at the end of the region A, and there is no ink evaporation amount on the region B side.
  • a phenomenon occurs in which the drying speed is slow in a portion close to, and the drying speed is fast in a portion close to region B.
  • the pixel at the end of the area A after drying is dried in a state where the ink is thick on the area A side and the ink is thin on the area B side.
  • Such pixels are formed in a line along the vicinity of the boundary ⁇ .
  • pixels in which the ink is thin on the region A side and the ink is thick on the region B side are formed along the vicinity of the boundary ⁇ . Therefore, when used as a product color filter in such a state, due to the difference in the thickness of the ink, the rate of light transmission near the boundary ⁇ is larger than the other parts, and this is visually recognized as “streaks unevenness”. Problem arises.
  • the moving direction of the inkjet head 101 is prevented so that the above-described boundary portion does not occur. It is necessary to prepare nozzles having a necessary arrangement density over the entire width of the color filter in the direction orthogonal to the width of the color filter. That is, the ejection width of the head 101 is provided to extend to the required application width W of the color filter substrate 100 (see Patent Document 2, FIG. 2), and the application is completed by scanning the head 101 once with respect to the required application width W. Let As a result, it is possible to eliminate the cause of the boundary ⁇ becoming “streak unevenness”.
  • the color filter is composed of at least three colors of red (R), green (G), and blue (B), the total number of nozzles is tripled, and there is a problem that the number becomes enormous.
  • the present invention has been made in view of the above-described problems, and provides a coating apparatus and a coating method that do not cause unevenness at the boundary with a small number of nozzles.
  • the head modules are arranged with a length L at a predetermined pitch P in a direction orthogonal to the scan direction at a predetermined cycle by sequentially changing the colors of the N colors, and this length L and a color filter are formed.
  • the head module is provided at a predetermined pitch P in a direction orthogonal to the scan direction at a predetermined cycle by sequentially changing the colors of each of the N colors.
  • the same color or different color inks can be continuously applied in the direction orthogonal to the scanning direction. Therefore, when viewed with respect to one applied pixel, since the applied pixel exists in a position adjacent to the direction orthogonal to the scan direction in one scan, the dried state of the applied pixel is almost the same. It can be made uniform. That is, although the applied pixels are formed continuously in the scan direction as in the conventional case, the difference in drying speed is not applied to the pixels adjacent to the direction orthogonal to the scan direction until the next scan.
  • the head modules are provided with the N colors sequentially changed, it is not necessary to provide a single-color head module over the required coating width W as in the prior art, and the total number of head modules can be reduced.
  • the plurality of head modules are arranged in a staircase by arranging head modules arranged in a direction orthogonal to the scanning direction at a pitch P, and arranging these head modules adjacent to each other in the scanning direction.
  • a group of head modules arranged side by side may be formed, and the head module group may be repeatedly arranged in a direction orthogonal to the scanning direction on the head block.
  • the cost of the apparatus can be reduced.
  • the head module is provided with a plurality of ink jet nozzles for ejecting ink, and the head modules arranged in a direction orthogonal to the scan direction are arranged so that the ink ejection area of the ink jet nozzle is viewed from the scan direction. It is good also as a structure arrange
  • the ink discharge region can be continued continuously over the length L, the ink can be applied to the pixels without application unevenness over the required application width W.
  • the head module is arranged with a length L at a predetermined pitch P in a direction orthogonal to the scanning direction at a predetermined cycle by sequentially changing the colors of each of the N colors.
  • the dry state of the pixels can be made substantially uniform by having the scanning step. That is, when ink is ejected from the head module of the head block having the above relationship, pixels applied in a direction perpendicular to the scan direction and in a position adjacent to the scan direction exist in one scan. Applied. As a result, the same color or different color pixels exist in the same pattern around the applied pixel in one scan, and the amount of ink evaporation from the surrounding pixels becomes substantially the same.
  • the dried state of the applied pixels can be made substantially uniform. Therefore, compared to the conventional application method in which the pixel adjacent to the applied pixel is not applied until the next scan, the dry state can be made uniform over the color filter region, resulting in the dry state. The formation of “streaks” can be suppressed.
  • the pixels to which the ink of the specific color is applied in the previous scanning step are applied.
  • the adjacent pixels may be formed by applying the same color ink in the next scanning step so that the pixels to which the same color ink is applied extend in a direction perpendicular to the scan direction. According to this configuration, it is possible to form a color filter in which pixels applied with the same color ink extend in a direction orthogonal to the scan direction in a substantially uniform dry state.
  • the present invention provides a coating apparatus for manufacturing a color filter by applying a number of primary colors (N) with a plurality of inkjet heads (51).
  • One or more inkjet heads (51) for supplying ink of the same color constitute a head module (52), and at least both ends of the ink discharge width of the head module (52) are adjacent or overlap each other.
  • a coating apparatus which supplies ink by changing the color sequentially for each module (52), and L is the following formula with respect to the required coating width W of the color filter. [Formula 1] L ⁇ W + (N ⁇ 1) ⁇ P Also, every scan, the pitch P is shifted in the direction orthogonal to the scan direction, and scanning is performed N times.
  • the arrangement pitch P of the modules (52) is set to the following formula. [Formula 2] P ⁇ (1 / N) ⁇ W
  • the reference numerals in parentheses attached to each component in each column of “Claims” and “Means for Solving the Problems” indicate correspondence with specific means described in the embodiments described later. is there.
  • the transmitted light amount which is the main optical characteristic
  • the surface shape after the ink is dried is also flattened, and the color filter is achieved.
  • a coating apparatus and a coating method capable of manufacturing a high-quality color filter with a small-sized apparatus in which external light reflection on the surface of the filter is uniform over the entire surface and there is no partial uneven distribution of brightness and darkness.
  • the required number of nozzles for ejecting each color is (1 / N) or (1 / N + 1) with respect to the necessary application width “W”, where the number of inkjet nozzles 54 that eject ink of the number of colors to be applied is required. Therefore, it is sufficient to apply the width having the above value, so that the equipment cost as a coating apparatus can be suppressed.
  • FIG. 3 is a schematic plan view illustrating a part of an ink discharge unit. It is a plane schematic diagram of a head block. It is a top view of the glass substrate used as the formation object of a color filter. It is a flowchart which shows the operation
  • FIG. 1 It is the plane schematic diagram of the conventional head block.
  • Color filter manufacturing equipment 45 Second linear motor (head block shift means) 50 Head Block 51 Inkjet Head 52 Head Module 54 Inkjet Nozzle gs Pixel (Applicable Location) K glass substrate (substrate) X direction (scan direction) Y direction (scan orthogonal direction) W Required coating width A Color filter formation area
  • FIG. 1 is a perspective view illustrating a color filter manufacturing apparatus according to the present invention
  • FIG. 2 is a plan view illustrating a main part of the color filter manufacturing apparatus according to the present invention
  • FIG. 3 is a schematic plan view illustrating a part of an ink ejection unit.
  • FIG. 4 is a schematic plan view of the head block 50.
  • the three axes of the orthogonal coordinate system are X, Y, and Z
  • the XY plane is the horizontal plane
  • the Z-axis direction is the vertical direction
  • the rotation direction around the vertical axis is the ⁇ direction.
  • the operation from the upstream to the downstream in FIG. 1 is the forward movement
  • the operation from the downstream to the upstream is the backward movement.
  • the X direction of the orthogonal coordinate system is a direction in which an application gantry 4 (described later) travels (scan direction), and the Y direction orthogonal to the direction is the direction in which the ink discharge unit 5 travels (shift direction). .
  • a color filter manufacturing apparatus 1 (coating apparatus of the present invention) according to the present invention includes a machine base 2, an adsorption stage 3, a coating gantry 4, an ink discharge unit 5, a camera gantry 6, an alignment camera 7, A scan camera 8, a substrate transfer robot 9, and a control device 10 are provided.
  • the machine base 2 functions as a pedestal that movably supports the main components (the suction stage 3, the coating gantry 4, and the camera gantry 6) of the color filter manufacturing apparatus 1.
  • the suction stage 3 has a mounting surface 31 on which a glass substrate K (also simply referred to as a substrate K) to be coated with color ink can be mounted with sufficient flatness.
  • a plurality of vacuum suction holes 32 and a plurality of lift pin holes 33 are formed in the mounting surface 31.
  • the vacuum suction hole 32 is connected to a suction pump through a pipe and a three-way valve. From the lift pin hole 33, a lift pin 34 for supporting the glass substrate K can be projected and retracted.
  • the suction stage 3 can be driven to rotate in the ⁇ direction by a stage rotation driving means (not shown).
  • the color filter is formed on a part of the substrate K, and in this embodiment, one color filter is formed on one substrate K. At that time, ink is applied to a predetermined region of the substrate K on which the color filter is formed, that is, the color filter formation region R. In this embodiment, the Y-direction dimension of the color filter formation region R is set as the required application width W. (See FIGS. 2 and 15 to 17).
  • the coating gantry 4 has a portal shape that can span the suction stage 3.
  • the coating gantry 4 has at least two struts 41 that are erected with a width interval between the suction stages 3 and between the two struts 41. And an erected horizontal frame portion 42.
  • the pair of first linear motors 43 are supported on the machine base 2 so as to be able to travel in the X-axis direction while straddling the suction stage 3.
  • the pair of first linear motors 43 are attached to both sides in the Y-axis direction of the machine base 2 so as to be parallel to each other along the X-axis.
  • the horizontal frame portion 42 can be moved up and down in the Z direction by servo motor mechanisms 44 respectively provided on the two support column portions 41.
  • the servo motor mechanism 44 can be constituted by, for example, a linear motor provided along the Z-axis direction. Alternatively, a ball screw shaft disposed along the Z-axis direction, a rotation servo motor that drives the ball screw shaft to rotate forward and backward about its axis, and a ball screw shaft that is engaged with the ball screw shaft to move forward and backward in the Z-axis direction. You may comprise with a ball nut etc.
  • the horizontal frame portion 42 is provided with the ink discharge portion 5 so that the second linear motor 45 can travel in the Y-axis direction.
  • the second linear motor 45 is attached to the horizontal frame portion 42 along the longitudinal direction (Y direction).
  • the head module 52 mounted on the ink discharge unit 5 is arranged in the Y direction as shown in FIGS.
  • FIG. 3 shows only a part of the ink discharge unit 5, that is, the red head module 52.
  • the J inkjet nozzles 54 can discharge the same color. For example, red ink is ejected from the inkjet nozzles 54 corresponding to the red ink head module 52.
  • the head module (52) is arranged in the scanning direction at a pitch P so that at least both ends of the ink ejection width of the head module (52) are adjacent or overlap.
  • a head block (50) in which these head modules (52) are arranged in a length L continuously in a direction orthogonal to the scanning direction is configured, and the color is sequentially changed for each head module (52) of the head block (50). Supply ink.
  • the head block 50 is provided with a plurality of head modules 52.
  • all the head modules 52 are arranged side by side at a pitch P in the Y direction.
  • P in the Y direction.
  • three head modules 52 are arranged in a staircase pattern, and a plurality of structural units arranged in a staircase pattern are repeatedly arranged in the Y direction as a head module group. .
  • This head module group is configured as one head module 52 that ejects red (R), green (G), and blue (B) ink along the X direction. They are adjacent to each other in the X direction and arranged at a pitch P in the Y direction. In other words, the adjacent head modules 52 are arranged side by side in a stepped manner by being arranged apart in the X direction and the Y direction. By repeatedly arranging the head module group in the Y direction, when viewed in the Y direction, the head modules 52 are arranged in a predetermined cycle (in this embodiment, a three-color cycle) by sequentially changing the colors of the three colors. Note that 52 (R), 52 (G), and 52 (B) in FIG. 4 indicate the head modules 52 that discharge red, green, and blue inks, respectively.
  • the head module 52 includes a plurality of ink jet heads 51 that eject ink of a single color, and the head module 52 alone can apply a single color of ink. That is, the inkjet head 51 has a plurality of inkjet nozzles 54, and single color ink is ejected from the inkjet nozzles 54.
  • the inkjet nozzles 54 are arranged in the Y direction, and an area in the Y direction where ink can be ejected by the inkjet nozzle 54 is an ink ejection area.
  • the pitch P is set such that the ink ejection regions overlap when viewed from the X direction.
  • all the head modules 52 adjacent to each other in the Y direction are arranged in a state where the discharge regions overlap when viewed from the X direction. ing.
  • the head modules 52 adjacent in the Y direction are head modules 52 that are shifted by one in the Y direction. That is, for example, in FIG. 4, the head module 52 adjacent to the red head module 52 (upper left in the figure) is the green head module 52.
  • the plurality of head modules 52 are arranged with a length L at a pitch P in this embodiment.
  • coating width W of a color filter L is following Formula.
  • [Formula 1] L ⁇ W + (N ⁇ 1) ⁇ P (N 1, 2, 3,...)
  • the arrangement pitch P of the head modules (52) is given by the following equation.
  • [Formula 2] P ⁇ (1 / N) ⁇ W (N 1, 2, 3,%)
  • the required coating width in the direction orthogonal to the scanning direction of the head block 50 for coating when the color filter is mounted on the coating apparatus is as shown in FIG.
  • the number “N” of inks to be applied is 3, and the ink discharge widths of the respective colors are shifted by a pitch “P” so as to be adjacent or overlapped with each other.
  • the head block 50 is arranged by a length “L” that is equal to or greater than (W + 2P).
  • the overall Y-direction dimension of the plurality of head modules 52 provided in the head block 50 is set to be longer than the necessary coating width W by 2P.
  • the two head modules 52 is located outside the required coating width W in the Y direction.
  • the arrangement pitch “P” of the head modules 52 of each color is set to 1 / N of the required coating width “W”, that is, 1/3 or less, more preferably so that the number of inkjet nozzles 54 provided in the head block 50 is reduced.
  • the width is less than the width of the inkjet head.
  • the camera gantry 6 mounted on the machine base 2 has a portal shape with a size that can straddle the suction stage 3, and is provided with two at least spaced apart by the width of the suction stage 3. And a horizontal frame 62 constructed between the two support columns 61.
  • the pair of first linear motors 43 are supported on the machine base 2 so as to be able to travel in the X-axis direction while straddling the suction stage 3.
  • the horizontal frame 62 is provided with two alignment cameras 7 so that the third linear motor 63 can travel in the Y-axis direction.
  • the substrate transport robot 9 for loading and unloading the glass base material K on the machine base 2 includes a motor 91, an arm 92, and a movable support base 93.
  • the movable support base 93 has a fork shape on which the glass substrate K can be placed, and is configured to be movable in each direction of XYZ ⁇ through an arm 92 by driving a motor 91.
  • the control device 10 of this apparatus is configured to cause the color filter manufacturing apparatus 1 to perform a series of operations. Specifically, when the inkjet nozzle 54 of the head module 52 is positioned on a predetermined pixel gs of the substrate K, it can be appropriately controlled so that ink is ejected from the inkjet nozzle 54.
  • FIG. 5 is a plan view of a glass substrate on which a color filter is to be formed
  • FIG. 6 is a flowchart showing an outline of the operation of the color filter manufacturing apparatus according to the present invention
  • FIG. 7 is a flowchart showing in detail the application operation in FIG.
  • FIG. 9 is a diagram for explaining a scanning operation at the time of application
  • FIG. 9 is a diagram for explaining an ink application state to the pixel gs by one scanning operation.
  • a black matrix BM which is a color ink application section, and an alignment mark M1 are formed in advance on the surface of the glass substrate K to be formed with a color filter.
  • “R”, “G”, and “B” in the figure indicate the pixels gs corresponding to the respective target colors of red, green, and blue.
  • the color filter manufacturing apparatus 1 is in the following initial state. That is, the suction stage 3 is in a non-adsorption state, the coating gantry 4 is in the most upstream position, the ink ejection unit 5 is in a non-ejection state, and the camera gantry 6 is in the most downstream position.
  • a glass substrate K is placed on the movable support base 93 in the substrate transport robot 9.
  • the substrate transfer robot 9 drives and controls the movable support base 93 so that the glass substrate K is located directly above the suction stage 3. Subsequently, the lift pin 34 protrudes from the lift pin hole 33 and is raised to the uppermost position as the glass receiving position. Subsequently, the substrate transfer robot 9 gradually lowers the movable support base 93 and places the glass substrate K on the tip of the lift pin 34. After placing the glass substrate K on the lift pins 34, the substrate transport robot 9 retracts the movable support base 93. Subsequently, the suction stage 3 lowers the lift pins 34 that support the glass substrate K. When the glass substrate K descends and reaches the placement surface 31, the suction stage 3 generates a vacuum pressure in the vacuum suction holes 32 and holds the glass substrate K on the placement surface 31 by vacuum suction.
  • the first linear motor 43 drives and controls the camera gantry 6 so that the alignment camera 7 is positioned above the alignment mark M1. Subsequently, the alignment camera 7 images the alignment mark M1, and sends the obtained image data to the control device 10.
  • the control device 10 calculates the amount of deviation of the glass substrate K from a predetermined position by performing appropriate image processing on the sent image data.
  • the glass substrate K is positioned by driving and controlling the stage rotation driving means based on the deviation amount.
  • step S3 the first linear motor 43 drives and controls the application gantry 4 so that the ink discharge unit 5 comes to the upstream application start position on the glass substrate K. Subsequently, the servo motor mechanism 44 lowers the ink ejection unit 5 so that the gap between the ejection port of the inkjet nozzle 54 and the surface of the glass substrate K is a minute distance of about 0.5 mm to 1.0 mm.
  • step S4 A series of operations for applying the target color ink to all the pixels gs on the glass substrate K of the color filter manufacturing apparatus 1 according to the present invention is performed by moving (scanning) the application gantry 4 indicated by the arrow X as shown in FIG.
  • the ink is ejected from the inkjet head 51 onto the glass substrate K by three times of application and two lateral movements of the ink application part 5 indicated by the Y arrow at a predetermined pitch, and the application operation is completed. This will be described in more detail below.
  • the scanning process is started. Specifically, the first linear motor 43 moves the application gantry 4 forward. As a result, the ink application unit 5 moves forward in a state where the discharge port of the inkjet nozzle 54 and the surface of the glass substrate K face each other with a slight distance therebetween, as indicated by an arrow X1 in FIG.
  • the control apparatus 10 sends a command to the ink ejection unit 5 so that the target color gs is ejected to the target color gs. As a result, the ink ejection unit 5 that is moving forward ejects a predetermined amount of ink at a predetermined timing.
  • an ink liquid of a target color is applied to each pixel gs in the black matrix BM of the glass substrate K (see steps S42 and S43 in FIG. 7).
  • 9 and 15 show a case where the coating is performed for three pixels gs by one head module 52 for convenience.
  • the head module 52 In a state where the application is started, that is, in a state where the head block 50 and the substrate K face each other, the head module 52 is disposed so as to protrude beyond the color filter formation region R by 2 pitches P in the Y direction. That is, the overall length L of the plurality of head modules 52 in this embodiment is set to be longer than the required coating width W by two pitches of the head module 52.
  • the arrangement of the pixels gs to which ink has been applied by the ejection of ink from the ink jet nozzle 54 of the ink jet head 51 according to a command from the control device 10 is as shown in FIG.
  • the width is adjacent or overlapped by the distance in the Y direction.
  • the pixels gs that are sequentially colored in three colors are applied in a state of being arranged in positions adjacent to each other in the Y direction (direction orthogonal to the scanning direction) and the X direction (scanning direction).
  • three pixels gs of the same color are applied in the Y direction, and pixels gs of different colors are separated in the X direction and the Y direction (three pixels apart in the Y direction, and X (Position shifted by one pixel in the direction). That is, the different color pixels gs are applied so as to extend in the Y direction while being shifted by one step in the X direction, and are applied in a substantially staircase shape. Such an application state is formed over the required application width W.
  • the pixel gs of the same color is at least one side in the pixel gs adjacent to the scan direction or the direction orthogonal to the scan direction.
  • the diagonally horizontal pixel gs is filled with ink of other colors.
  • pixels to which ink has been applied by ejecting ink from the inkjet nozzle 54 of the inkjet head 51 by a single scan in response to a command from the control device 10 of the head block 50 are applied once with the distance to the other pixel gs filled with the adjacent ink being at most the distance to the diagonally horizontal pixel gs.
  • the color filter applied in the first scan is applied once between the RGB colors as shown in FIG. 9 or FIG. 13 depending on the direction of the pixel gs at the time of application. Since the regions are close to each other, the pixel gs in which the ink of another color (for example, green G or blue B) is applied around the pixel gs to which the ink of a certain color (for example, red R) is applied is applied. As a result, there is an application area of another color around the edge of the application area of one color at a time.
  • the ink of another color for example, green G or blue B
  • the pixels gs of the same color or different color are always present in the same pattern, so that the ink from the surrounding pixels gs is present.
  • the amount of evaporation is almost the same.
  • drying progresses uniformly in any pixel gs after application. Since the head modules 52 are arranged in the head block 50 with the length L at the equal pitch P, the application state is constant over the required application width W. Therefore, drying of all the applied pixels gs proceeds uniformly over the necessary application width W in the color filter forming region R.
  • the pixels gs of different colors adjacent in the Y direction are shifted by one step in the X direction.
  • the direction orthogonal to the scanning direction and the position adjacent to the scanning direction is a position adjacent to the Y direction and shifted by one step in the X direction.
  • the first linear motor 43 stops the forward movement of the application gantry 4. Thereby, the ink application part 5 stops (refer to the dashed-dotted line in FIG. 8). Then, the shift process is started. That is, the second linear motor 45 shifts the width 5 for ejecting ink by a predetermined pitch P in the Y direction as shown by an arrow Y1 in FIG. 8 (see the two-dot chain line in FIG. 8).
  • the predetermined pitch amount may be the same as the effective application width (discharge area) of one head module 52 or a value smaller by several nozzles than that (see step S45).
  • the first linear motor 43 moves the application gantry 4 backward through the scanning process again (step S41).
  • the ink discharge section 5 moves backward as indicated by an arrow X2 in FIG.
  • the control apparatus 10 sends a command to the ink ejection unit 5 so that the target color gs is ejected to the target color gs.
  • the ink discharge unit 5 that is moving backward applies a predetermined amount of ink to each pixel gs in the black matrix BM of the glass substrate K by discharging a predetermined amount of ink at a predetermined timing. (See steps S42 and S43 in FIG. 7).
  • the pixels gs that are sequentially colored in three colors are arranged in the Y direction (direction perpendicular to the scanning direction) and the X direction (scanning direction), as in the previous scanning process.
  • the pixels gs applied in this scanning process are shown in a dark color.
  • Three pixels gs of the same color are applied in the Y direction, and pixels gs of different colors are applied at positions separated in the X direction and the Y direction (positions separated in the combined direction of the X direction and the Y direction). . That is, the different color pixels gs are applied so as to extend in the Y direction while being shifted by one step in the X direction, and are applied in a substantially staircase shape.
  • any pixel gs applied in this scanning step always has the same color or different color pixels gs in the same pattern, and the amount of ink evaporated from the surrounding pixels gs. Are almost the same. Thereby, drying progresses uniformly in any pixel gs after application.
  • the first linear motor 43 stops the application gantry 4 from traveling in the backward movement direction. Thereby, the ink application part 5 stops.
  • the second linear motor 45 shifts the ink ejection part 5 by a predetermined pitch P in the Y direction as indicated by an arrow Y2 in FIG. 8 (shift process). This pitch amount is the same predetermined pitch P as that at the end of the forward movement. (See step S45).
  • the first forward movement (see arrow X1 in FIG. 8), the first backward movement (see arrow X2 in FIG. 8), and the second forward movement (see arrow X3 in FIG. 8)
  • the application process of the target color ink is completed.
  • the shape of the applied ink surface after drying is equivalently formed, and the cross-sectional shape of the surface becomes similar.
  • the entire area of the effective pixels gs is obtained.
  • a high-quality color in which the amount of transmitted light, which is the main optical characteristic, is averaged, and the external light reflection on the surface of the color filter is made uniform over the entire surface, and there is no partial uneven distribution of light and darkness in the external light reflected light. It becomes a filter.
  • the ink droplets applied as a test pattern are imaged while the scan camera 8 moves in the XY directions by driving the camera gantry 6 and the third linear motor in accordance with the ink application operation.
  • Data is sent to the control device 10.
  • the control device 10 evaluates the landing state of the ink by appropriate image processing based on the sent image data. If the defective portion is remarkable, the glass substrate K is excluded as a defective product in a subsequent process.
  • Step S5 First, the servo motor mechanism 44 raises the ink discharge portion 5 by driving the horizontal frame portion 42 upward. Thereby, the discharge port of the inkjet nozzle 54 and the surface of the glass substrate K are separated. Subsequently, the first linear motor 43 controls the application gantry 4 to move backward to retract the ink discharge unit 5 to the upstream end (origin) of the suction stage 3.
  • the suction stage 3 breaks the vacuum pressure generated in the vacuum suction hole 32.
  • the lift pins 34 protrude from the lift pin holes 33 and ascend to the uppermost position while supporting the glass substrate K.
  • the substrate transfer robot 9 receives the glass substrate K on which ink has been applied by the movable support base 93 and delivers it to the next step, for example, a reduced pressure drying step.
  • the color filter manufacturing apparatus 1 of the present invention by applying to a color filter that is an application target of ink as a coating material, averaging the amount of transmitted light that is a main optical characteristic over the entire effective area, and The surface shape of the ink after drying is flat and averaged, and the reflection of external light on the surface of the color filter is made uniform over the entire surface, so that a high-quality color filter free from partial unevenness of light and dark can be realized.
  • FIG. 11A shows the measurement results when applied by another method.
  • the graph of the measurement result of the cross section of the color filter according to the present invention, FIG. 11A has an average shape, and is clearly different from the graph of FIG. 11B of the measurement result of the cross-sectional shape of another method.
  • a color filter for a liquid crystal color TV having a 37-inch size will be described as an example.
  • the screen size of this 37-inch video device has an aspect ratio of 16: 9
  • the screen is 820 mm wide and 460 mm long.
  • the required application width “W” of the color filter is 460 mm.
  • the head block 50 has a red (R), green (G), and blue (B) “N” where the “N” is 3, the effective application width of the ink jet head 51 is “P”, and the length is 36 mm. Then, 15 inkjet modules are arranged for the required application width “W” of the color filter.
  • the head block 50 is moved by a pitch of 36 mm in the Y direction before the second and subsequent coating operations following the first forward movement (movement in the X1 arrow direction) of the head block 50.
  • FIG. 12 shows the total width of the pixel gs and the arrangement of the head blocks 50 of each color (in this example, red (R), green (G), blue (B), and yellow (Y)) in this case.
  • each color is applied to the color filter by scanning the pitch P of yellow (Y) increased by one color in addition to the application of three colors of red (R), green (G), and blue (B).
  • the effective length gs of the color filter is increased by the operation of the coating apparatus in which the length L of the head block increases in the direction and the shift process in the direction orthogonal to the scanning direction increases once to complement the increased one color. Application to can be completed.
  • the increased yellow (Y) arrangement can be arranged in the middle of other colors, and the head module 1 can be changed without changing the size of the apparatus in the scanning direction. There is an advantage that only the width of each piece needs to be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Filters (AREA)
  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Provided are an application device and application method which use a small number of nozzles and do not produce irregularities at borders. An application device for manufacturing colour filters by applying a number (N) of primary colour inks using a plurality of inkjet heads (51) is characterized in that head modules (52) consist of one or more inkjet heads (51) for supplying ink of the same colour, said head modules (52) being arranged with a pitch P in the scanning direction such that at least the two ends of the head modules (52) in the ink ejection width direction are adjacent or located one on top of the other. The head modules (52) of the head block (50) are arranged in continuous rows of length L at a right angle to the scanning direction, ink of different colours is supplied successively to the head modules (52) of said head block (50), and L is the following equation with respect to the application width W which is necessary for the colour filter. [Equation] L ≥ W + (N - 1) x P (N = 1, 2, 3..)

Description

塗布装置および塗布方法Coating apparatus and coating method
 本発明は塗布装置及び塗布方法に関する。詳しくは、複数のインクジェットノズルと塗布対象となる基板とを対向近接させた状態で相対的に移動(スキャン)させながら、所定位置で所定量のインクを複数のインクジェットノズルから吐出する塗布装置及び塗布方法に関し、特にカラーフィルタ製造装置への適用に好適である。 The present invention relates to a coating apparatus and a coating method. Specifically, a coating apparatus and a coating that discharge a predetermined amount of ink from a plurality of inkjet nozzles at a predetermined position while relatively moving (scanning) the plurality of inkjet nozzles and a substrate to be coated facing each other. The method is particularly suitable for application to a color filter manufacturing apparatus.
 カラー液晶用ディスプレイは、カラーフィルタ、TFT用アレイ基板などにより構成されている。この中でカラーフィルタは、ガラス基板上に格子状のブラックマトリックスで縁取られる各画素を、一般的にはR(赤色)、G(緑色)、B(青色)3色に分けて規則正しく形成したもので、カラー液晶用ディスプレイの色形成の中枢をなす部材である。 The color liquid crystal display is composed of a color filter, a TFT array substrate, and the like. Among them, the color filter is formed by regularly dividing each pixel bordered by a grid-like black matrix on a glass substrate into three colors of R (red), G (green), and B (blue). Thus, it is a member that forms the center of color formation of a color liquid crystal display.
 このカラーフィルタは通常は、1)ガラス基板上に黒色のフォトレジスト材の塗布膜を形成してから、フォトリソ法により黒色塗布膜を格子状に加工し(格子状ブラックマトリックスの形成)、2)一旦Rの塗布膜を全面に形成してから、フォトリソ法により格子間のR画素にのみR塗布膜を残し(R画素形成)、3)G、BについてもRと同様の手法により、一旦B、G各々の塗布膜を全面に形成後、B、G画素にのみB、G塗布膜を残す(B、G画素形成)、ことで製造される。上記のフォトリソ法によるR、G、B画素形成では、R、G、Bの全面塗布膜形成、露光、現像、といった多くの工程が必要となる。 This color filter is usually 1) after forming a black photoresist material coating film on a glass substrate, and then processing the black coating film into a grid by photolithography (formation of a grid-like black matrix), 2) Once the R coating film is formed on the entire surface, the R coating film is left only on the R pixels between the lattices by photolithography (R pixel formation). After the coating films of G and G are formed on the entire surface, the B and G coating films are left only on the B and G pixels (B and G pixel formation). In forming the R, G, and B pixels by the above-described photolithography method, many processes such as R, G, and B whole surface coating film formation, exposure, and development are required.
 近年、これを簡素化するために、ブラックマトリックスの格子で形成される画素部にのみ、R、G、Bの各インクを直接インクジェットヘッドにより塗布してR、G、Bの色画素を形成する手法が、工業的に行われるようになってきている(例えば特許文献1参照)。このインクジェットヘッドによるR、G、B画素形成方法は、露光、現像といった工程が不要で、色画素形成に必要な量のインクのみを使用するので、カラーフィルタ製造の大幅なコストダウンを可能とする(特許文献1、2、3、4参照)。 In recent years, in order to simplify this, only R, G, and B inks are directly applied to the pixel portion formed by a black matrix lattice by an inkjet head to form R, G, and B color pixels. The technique has come to be industrially performed (for example, refer to Patent Document 1). This method of forming R, G, and B pixels using an inkjet head does not require steps such as exposure and development, and uses only an amount of ink necessary for color pixel formation, thereby enabling significant cost reduction in color filter manufacturing. (See Patent Documents 1, 2, 3, and 4).
 この特許文献1では、インクジェットによるR,G,Bの各インクの液そのものの性質についての最適とされる仕様を開示し、特許文献2、及び特許文献3では、インクジェットヘッドを用いたカラーフィルタの製造装置や製造方法について開示している。 This patent document 1 discloses specifications that are optimized for the properties of the inks of R, G, and B inks by inkjet. Patent documents 2 and 3 disclose a color filter that uses an inkjet head. A manufacturing apparatus and a manufacturing method are disclosed.
 インクジェットヘッドを用いたカラーフィルタ製造装置の主要な構成要素の一例として、複数のインクジェットノズルを有するインクジェットヘッドと、基板を保持する保持ステージと、インクジェットヘッドと保持ステージとを相対的に移動させる移動手段とを有するものがある。この装置は、複数のインクジェットノズルと基板とを対向近接させた状態で水平方向Xに相対的に移動(スキャン)させながら所定タイミングで所定量のインクを複数のインクジェットノズルから吐出することで、基板にカラーフイルタを形成している。 As an example of main components of a color filter manufacturing apparatus using an inkjet head, an inkjet head having a plurality of inkjet nozzles, a holding stage that holds a substrate, and a moving unit that relatively moves the inkjet head and the holding stage Some have This apparatus discharges a predetermined amount of ink from a plurality of inkjet nozzles at a predetermined timing while relatively moving (scanning) in the horizontal direction X in a state where the plurality of inkjet nozzles and the substrate are opposed to each other. A color filter is formed.
 カラーフフィルタは、一般に画素の寸法が100ミクロン程度と小さいため、上記カラーフィルタ製造装置では、インクジェットヘッドの解像度(配列密度)を高くする必要がある。また、生産効率を向上させるため、塗布に要する時間はできるだけ短いことが好ましい。 Since the color filter generally has a small pixel size of about 100 microns, it is necessary to increase the resolution (array density) of the inkjet head in the color filter manufacturing apparatus. In order to improve production efficiency, the time required for coating is preferably as short as possible.
 そこで特許文献4では、図10に示すように、インクジェットヘッド510をスキャン方向Xに直列に複数(図では2個)配置することでヘッド520を構成することにより、解像度(配列密度)を高めている。また、スキャン方向Xに直交する方向Yに複数のヘッド520を並列に配置することで、インクジェットヘッド510のスキャン回数を少なくしている。これにより、基板Kの被塗布箇所全てに塗布するのに要する塗布時間の短縮化を図っている。 Therefore, in Patent Document 4, as shown in FIG. 10, a plurality of (two in the figure) inkjet heads 510 are arranged in series in the scan direction X to configure the head 520 to increase the resolution (array density). Yes. In addition, by arranging a plurality of heads 520 in parallel in the direction Y orthogonal to the scan direction X, the number of scans of the inkjet head 510 is reduced. As a result, the coating time required for coating all the portions to be coated of the substrate K is shortened.
 このカラーフィルタ製造装置のヘッド配列では、図10のように、ヘッド520を千鳥状に配置していた。これは次の理由による。即ち、ヘッド520は、インクジェットノズル540の配列幅W0よりも筐体52Aの幅が大きいため、筐体52Aの端部512とノズル群の端部511との間に間隔Tが存在する。このため、複数のヘッドモジュール520をY方向に一列状に配置した状態でX方向にスキャンすると、間隔Tの存在によりインクジェットノズル540が全く通過しないノズル非通過領域ができる。ノズル非通過領域の幅は間隔Tの2倍の幅となる。そこで、ヘッド520を千鳥状に配置し、ノズル非通過領域をキャンセルさせている。 In the head arrangement of the color filter manufacturing apparatus, the heads 520 are arranged in a staggered manner as shown in FIG. This is due to the following reason. That is, since the head 520 has a width of the casing 52A larger than the arrangement width W0 of the inkjet nozzles 540, there is a space T between the end portion 512 of the casing 52A and the end portion 511 of the nozzle group. For this reason, when scanning in the X direction with a plurality of head modules 520 arranged in a line in the Y direction, a nozzle non-passing region in which the ink jet nozzle 540 does not pass at all is formed due to the presence of the interval T. The width of the nozzle non-passing region is twice the width T. Therefore, the heads 520 are arranged in a staggered manner to cancel the nozzle non-passing area.
 液晶ディスプレイなどの映像機器においては常に、映像の高精細化、高品位化の要求がある一方で、映像機器の大型化も進んでおり、大きなサイズの映像機器用のカラーフィルタを製造するための、カラーフィルタの有効画素全域に対してインクを微細な画素に精度良く塗布することができる信頼性の高い、かつ低価格な装置に対する要求が高まっている。 In video equipment such as liquid crystal displays, there is always a demand for high-definition and high-definition video. On the other hand, the size of video equipment is also increasing, and it is necessary to manufacture color filters for large-size video equipment. Therefore, there is an increasing demand for a reliable and low-cost apparatus that can accurately apply ink to fine pixels over the entire effective pixels of the color filter.
 そこで、特許文献2では、ノズル列を形成した液滴吐出ヘッドを直線的に並べてヘッド列を構成し、複数のヘッド列を前記液滴吐出ヘッドの端部を繋ぎ部分が互いに重ならないように並列に配置する、或いは1つのノズル列の構成を直線的ではなく、液滴吐出ヘッドの端部を互いに重なるように配置して前記液滴吐出ヘッドが複数組み合わされたヘッドユニットを構成してインクを塗布することで、色ムラ、筋ムラを回避しているとしている。 Therefore, in Patent Document 2, a liquid droplet discharge head in which nozzle rows are formed is linearly arranged to form a head row, and a plurality of head rows are connected in parallel so that the ends of the liquid droplet discharge heads are connected to each other. Or the configuration of one nozzle row is not linear, and the end portions of the droplet discharge heads are arranged so as to overlap each other to form a head unit in which a plurality of the droplet discharge heads are combined to form ink. It is said that color unevenness and stripe unevenness are avoided by applying.
 一方、特許文献3のカラーフィルタ製造方法・装置では、ノズルのピッチと複数のヘッド間の配置及び移動量について規定することによって、フィルタエレメントとしての表示ドットにインクを正確に吐出することによる位置精度の問題を解消している。また、複数のノズルで形成した1つヘッドによってフィルタ材料(インク)を吐出した場合におけるノズルごとのインク吐出量にある特徴的なバラツキ(吐出分布特性)の発生を、個々のノズルからのインク吐出量の適正化によって補正して解消し、フィルタエレメントの主走査方向に光透過性のバラツキによる縦のスジが出る問題、という2つの問題を克服したとしている。 On the other hand, in the color filter manufacturing method and apparatus of Patent Document 3, the positional accuracy by accurately ejecting ink onto display dots as filter elements is specified by specifying the nozzle pitch and the arrangement and movement amount between a plurality of heads. The problem is solved. In addition, when the filter material (ink) is ejected by one head formed by a plurality of nozzles, the occurrence of characteristic variations (ejection distribution characteristics) in the ink ejection amount for each nozzle is detected. It is said that the problem has been solved by correcting the amount by optimizing the amount and overcoming the two problems of vertical streaks due to variations in light transmission in the main scanning direction of the filter element.
特開2006-209140号公報JP 2006-209140 A 特許第3925525号公報Japanese Patent No. 3925525 特開2003-84125号公報JP 2003-84125 A 特願2006-134514号Japanese Patent Application No. 2006-134514
 しかし特許文献3のように、
ヘッドの主走査方向の移動によるカラーフィルタ基材へのインクの塗布を、副走査方向にヘッドを数回シフトさせ、繰り返しヘッドを主走査方向に移動してカラーフィルタ基材へインクを塗布する方法で前述のような大型の映像機器向けのカラーフィルタ等を生産する場合では、ヘッドが1回走査してインクが塗布されたカラーフィルタ基材の領域と、次回以降にヘッドが走査しインクを塗布したカラーフィルタ基材の隣接する領域との間で、こうした隣接する塗布領域にインクを塗布する時間に差が生じる(特許文献3 図25参照)。
However, as in Patent Document 3,
A method of applying ink to a color filter substrate by moving the head several times in the sub-scanning direction by repeatedly moving the head in the main scanning direction by applying the ink to the color filter substrate by moving the head in the main scanning direction. When producing color filters for large video equipment as described above, the head scans the area of the color filter substrate where ink is applied and the head scans and applies ink after the next time. There is a difference in the time for applying the ink to the adjacent application region between the adjacent regions of the color filter substrate (see FIG. 25 of Patent Document 3).
 本発明者等は、この時間差によって画素に塗布されたインクの乾燥後の表面形状に差が発現するということが、インクジェット方式による画素へのインク塗布方法においてカラーフィルタが光学部品として使用される、特に高精細な映像機器向けに使用されることにおいては視認可能な「スジむら」となり品質を低下させていることを見出した。 The present inventors indicate that a difference occurs in the surface shape after drying of the ink applied to the pixel due to this time difference, and the color filter is used as an optical component in the ink application method to the pixel by the ink jet method. In particular, when used for high-definition video equipment, it has been found that “streak unevenness” is visible and quality is reduced.
 それは、走査方向に直交する方向に複数回で分割したヘッドの移動(スキャン)によりカラーフィルタの有効画素全域にインクを塗布し、その乾燥した後の画素の塗布されたインク表面を断面で観察すると、その分割して塗布された周辺の画素において、その画素のインク表面の断面形状が、他のその画素の周辺が同時にインクが塗布された画素のインク表面の断面形状と異なっており、外光反射光で観察すると塗布時のインクジェットヘッドの移動方向に連続した縦に生じるスジが確認できる。 When the ink is applied to the entire area of the effective pixels of the color filter by moving (scanning) the head divided multiple times in the direction orthogonal to the scanning direction and the dried ink surface is observed in cross section The cross-sectional shape of the ink surface of the pixel applied in a divided manner is different from the cross-sectional shape of the ink surface of the pixel where the periphery of the other pixel is simultaneously applied with ink. When observed with reflected light, streaks generated vertically in the direction of movement of the inkjet head during coating can be confirmed.
 この縦スジは、前記したように塗布した領域と塗布していない領域の境界部に生じる塗布した領域の端部のインクが、塗布していない領域側において乾燥が速くなり、そのため、前記塗布していない領域側のインクの濃度が高くなるため、乾燥後の断面形状が塗布していない領域側が厚くなることで発生するものである。 This vertical streak causes the ink at the end of the applied region generated at the boundary between the coated region and the uncoated region to dry faster on the uncoated region side. Since the density of the ink on the non-applied region side becomes high, the cross-sectional shape after drying becomes thicker on the non-applied region side.
 さらに、図14を用いて詳細に説明する。ここで、図14は、カラーフィルタ基材100(基板ともいう)の必要塗布幅Wに対し、ヘッド101を2回走査させて塗布する場合を示す図である。すなわち、ヘッド101からインクが吐出されることによりY方向に配列された複数の画素にインクが塗布され、このヘッド101がX方向に走査することによりX方向に配列された複数の画素に順次インクが塗布される。このようにして、ヘッド101が1回目の走査を行うことにより必要塗布幅Wの左側(領域Aという)が塗布され(図14(b))、その後、2回目の走査を行うことにより必要塗布幅Wの右側(領域Bという)が塗布される(図14(c))。なお、カラーフィルタ基材100とは、最終的に切断されることにより製品のカラーフィルタが取得される母材のことであり、1枚のカラーフィルタ基材100から複数枚の必要塗布幅Wのカラーフィルタを取得することができる。 Furthermore, it demonstrates in detail using FIG. Here, FIG. 14 is a diagram showing a case where the head 101 is applied by scanning twice with respect to the required application width W of the color filter substrate 100 (also referred to as a substrate). That is, ink is applied to a plurality of pixels arranged in the Y direction by ejecting ink from the head 101, and ink is sequentially applied to the plurality of pixels arranged in the X direction by scanning the head 101 in the X direction. Is applied. In this way, the head 101 performs the first scan to apply the left side of the necessary application width W (referred to as region A) (FIG. 14B), and then performs the second scan to perform the required application. The right side of width W (referred to as region B) is applied (FIG. 14C). The color filter substrate 100 is a base material from which a product color filter is obtained by being finally cut, and a plurality of required application widths W from one color filter substrate 100 are obtained. A color filter can be obtained.
 この図14に示すように、塗布前のカラーフィルタ基材100(図14(a))から1回目のヘッド101の走査により領域Aに塗布を行った状態(図14(b))では、領域Aの中央部分の画素と、領域Aの端部の画素とでは、乾燥状態が異なる。すなわち、領域Aの中央部分の画素は、その周囲にインクが塗布された画素が存在しているため、インクの蒸発量(乾燥速度)がその周囲一帯で一定となっている。したがって、中央部分の画素自体は、全体的に一定の乾燥速度で乾燥し、一画素に注目したときの乾燥後のインクの厚みは均一な状態で乾燥される。 As shown in FIG. 14, in the state (FIG. 14 (b)) in which the region A is applied by the first scanning of the head 101 from the color filter substrate 100 (FIG. 14 (a)) before application, the region The dry state is different between the pixel at the center of A and the pixel at the end of region A. That is, since the pixel in the central portion of the region A has pixels around which ink is applied, the amount of ink evaporation (drying speed) is constant throughout the area. Accordingly, the pixels in the central portion themselves are dried at a constant drying speed as a whole, and the dried ink thickness when the attention is paid to one pixel is dried in a uniform state.
 ところが、領域Aの端部の画素、すなわち、領域Aと領域Bとの境界αに隣接する画素は、領域A側にはインクが塗布された画素が存在しているものの、領域B側の画素には未だインクが塗布されていない。そのため、領域Aの端部の画素の領域A側では他の画素によるインクの蒸発量が多く、領域B側ではインクの蒸発量がないという状態となり、領域Aの端部の画素は、領域Aに近い部分で乾燥速度が遅く、領域Bに近い部分で乾燥速度が速くなるという現象が生じる。したがって、乾燥後の領域Aの端部の画素は、領域A側でインクが厚く、領域B側でインクが薄くなった状態で乾燥してしまうことになる。そして、このような画素が境界α付近に沿って一列に形成される。同様に領域Bについても、領域A側でインクが薄く領域B側でインクが厚いという画素が境界α付近に沿って形成される。
したがって、このような状態で製品のカラーフィルタとして使用すると、インクの厚みの違いから、境界α付近の光の透過する割合が他の部分と比べて大きくなり、これが「スジむら」として視認されてしまうという問題が生じる。
However, the pixel at the end of the region A, that is, the pixel adjacent to the boundary α between the region A and the region B is a pixel on the region B side, although there are pixels to which the ink is applied on the region A side. The ink has not been applied yet. Therefore, the amount of ink evaporation by other pixels is large on the region A side of the pixel at the end of the region A, and there is no ink evaporation amount on the region B side. A phenomenon occurs in which the drying speed is slow in a portion close to, and the drying speed is fast in a portion close to region B. Therefore, the pixel at the end of the area A after drying is dried in a state where the ink is thick on the area A side and the ink is thin on the area B side. Such pixels are formed in a line along the vicinity of the boundary α. Similarly, in the region B, pixels in which the ink is thin on the region A side and the ink is thick on the region B side are formed along the vicinity of the boundary α.
Therefore, when used as a product color filter in such a state, due to the difference in the thickness of the ink, the rate of light transmission near the boundary α is larger than the other parts, and this is visually recognized as “streaks unevenness”. Problem arises.
 一方、特許文献2の装置の構成では、こうした透過光量の差、或いは外光反射の差による縦スジがでないようにするには、前述の境界部が生じないように、インクジェットヘッド101の移動方向と直交する方向にカラーフィルタの幅以上の幅に、その幅全域で必要な配列密度のノズルを用意する必要がある。すなわち、ヘッド101の吐出幅をカラーフィルタ基材100の必要塗布幅Wまで延伸して設け(特許文献2 図2参照)、必要塗布幅Wに対して1回のヘッド101の走査で塗布を完了させる。これにより、境界αが「スジむら」となる原因を解消することができる。しかし、このような構成では、ヘッド101の長尺化に伴って、高価な吐出ノズルが大量に必要となるため、装置全体が高価になるという問題がある。さらに、少なくとも赤(R)緑(G)青(B)3色の各色でカラーフィルタは構成されているのでノズルの総数が3倍となり、その数が莫大なものになるという問題がある。 On the other hand, in the configuration of the apparatus of Patent Document 2, in order to prevent such vertical streaks due to the difference in transmitted light amount or the difference in external light reflection, the moving direction of the inkjet head 101 is prevented so that the above-described boundary portion does not occur. It is necessary to prepare nozzles having a necessary arrangement density over the entire width of the color filter in the direction orthogonal to the width of the color filter. That is, the ejection width of the head 101 is provided to extend to the required application width W of the color filter substrate 100 (see Patent Document 2, FIG. 2), and the application is completed by scanning the head 101 once with respect to the required application width W. Let As a result, it is possible to eliminate the cause of the boundary α becoming “streak unevenness”. However, in such a configuration, as the head 101 becomes longer, a large amount of expensive discharge nozzles are required, and thus there is a problem that the entire apparatus becomes expensive. Further, since the color filter is composed of at least three colors of red (R), green (G), and blue (B), the total number of nozzles is tripled, and there is a problem that the number becomes enormous.
 本発明は、上記した問題に鑑みてなされたものであって、少ないノズル数で、境界部にムラを生じない塗布装置および塗布方法を提供するものである。 The present invention has been made in view of the above-described problems, and provides a coating apparatus and a coating method that do not cause unevenness at the boundary with a small number of nozzles.
 上記課題を解決するために、本発明に係る塗布装置は、単一色のインクを吐出するヘッドモジュールを複数設けてN色(N=1,2,3・・)のインクを塗布できるヘッドブロックを備えており、このヘッドブロックと基板とをスキャン方向に相対的に移動させつつ、前記ヘッドブロックからN色のインクを吐出させることによりカラーフィルタを製造する塗布装置であって、前記ヘッドブロックには、前記ヘッドモジュールが、N色それぞれ順次色を変えて所定周期でスキャン方向と直交する方向に、所定のピッチPで長さLだけ配列されており、この長さLと、カラーフィルタを形成するカラーフィルタ形成領域におけるスキャン方向と直交する方向の必要塗布幅Wとの関係が
 L≧W+(N-1)×P  (N=1,2,3・・)
を満たすことを特徴としている。
In order to solve the above-described problems, a coating apparatus according to the present invention includes a head block that is provided with a plurality of head modules that eject ink of a single color and can apply N-color (N = 1, 2, 3,...) Ink. A coating apparatus for producing a color filter by ejecting N color ink from the head block while relatively moving the head block and the substrate in a scanning direction. The head modules are arranged with a length L at a predetermined pitch P in a direction orthogonal to the scan direction at a predetermined cycle by sequentially changing the colors of the N colors, and this length L and a color filter are formed. The relationship with the required coating width W in the direction orthogonal to the scanning direction in the color filter forming region is L ≧ W + (N−1) × P (N = 1, 2, 3,...)
It is characterized by satisfying.
 この構成によれば、ヘッドモジュールが、N色それぞれ順次色を変えて所定周期でスキャン方向と直交する方向に、所定のピッチPで設けられているため、基板上の画素に対して、1回のスキャンで、スキャン方向と直交する方向に連続的に同色又は異色のインクを塗布することができる。したがって、塗布された1画素について見た場合、1回のスキャンで、スキャン方向と直交する方向に隣り合う位置に塗布された画素が存在する状態になるため、塗布された画素の乾燥状態をほぼ均一にすることができる。すなわち、従来のように、塗布された画素がスキャン方向に連続して形成されるものの、スキャン方向と直交する方向に隣り合う画素には、次のスキャンまで塗布されない状態では、乾燥速度の差が生じて乾燥状態を均一にするのが困難であったが、本発明では、1回のスキャンで、塗布された画素の周囲に同色、又は、異色の画素がほぼ同じパターンで存在していることにより、その周囲の画素からのインクの蒸発量がほぼ同じになり、塗布された1画素の乾燥速度がほぼ一定となる。これにより、塗布された画素の乾燥状態をほぼ均一にすることができる。そして、ヘッドモジュールが必要塗布幅Wよりも(N-1)ピッチ以上、長く設けられているため、必要塗布幅Wに亘って乾燥状態をほぼ均一にすることができる。したがって、乾燥状態が起因する「スジむら」が形成されるのを抑えることできる。 According to this configuration, the head module is provided at a predetermined pitch P in a direction orthogonal to the scan direction at a predetermined cycle by sequentially changing the colors of each of the N colors. In this scanning, the same color or different color inks can be continuously applied in the direction orthogonal to the scanning direction. Therefore, when viewed with respect to one applied pixel, since the applied pixel exists in a position adjacent to the direction orthogonal to the scan direction in one scan, the dried state of the applied pixel is almost the same. It can be made uniform. That is, although the applied pixels are formed continuously in the scan direction as in the conventional case, the difference in drying speed is not applied to the pixels adjacent to the direction orthogonal to the scan direction until the next scan. It was difficult to make the dried state uniform, but in the present invention, pixels of the same color or different colors exist in almost the same pattern around the applied pixels in one scan. As a result, the amount of ink evaporated from the surrounding pixels becomes substantially the same, and the drying speed of one applied pixel becomes substantially constant. Thereby, the dried state of the applied pixels can be made substantially uniform. Since the head module is provided longer than the required coating width W by (N−1) pitches or more, the dry state can be made substantially uniform over the required coating width W. Therefore, it is possible to suppress the formation of “streaks” due to the dry state.
 また、ヘッドモジュールがN色順次色を変えて設けられているため、従来のように単色のヘッドモジュールを必要塗布幅Wに亘って設ける必要がなく、ヘッドモジュールの全体数を減らすことができる。
 また、複数の前記ヘッドモジュールは、スキャン方向と直交する方向に配列されるヘッドモジュール同士がピッチPで配列され、かつ、これらのヘッドモジュール同士がスキャン方向に隣接して配置されることにより、階段状に並べて配置されたヘッドモジュール群を形成し、前記ヘッドブロックには、前記ヘッドモジュール群がスキャン方向と直交する方向に繰り返し配列されている構成としてもよい。
Further, since the head modules are provided with the N colors sequentially changed, it is not necessary to provide a single-color head module over the required coating width W as in the prior art, and the total number of head modules can be reduced.
Further, the plurality of head modules are arranged in a staircase by arranging head modules arranged in a direction orthogonal to the scanning direction at a pitch P, and arranging these head modules adjacent to each other in the scanning direction. A group of head modules arranged side by side may be formed, and the head module group may be repeatedly arranged in a direction orthogonal to the scanning direction on the head block.
 この構成によれば、ヘッドモジュールをスキャン方向と直交する方向に一列に連続的に配列される場合に比べて、ヘッドモジュールの数を減らすことができるため、装置を低コスト化することができる。 According to this configuration, since the number of head modules can be reduced as compared with the case where the head modules are continuously arranged in a line in a direction orthogonal to the scanning direction, the cost of the apparatus can be reduced.
 さらに、前記ヘッドモジュールには、インクを吐出するインクジェットノズルが複数設けられており、スキャン方向と直交する方向に配列されるヘッドモジュール同士は、前記インクジェットノズルのインクの吐出領域がスキャン方向から見て重複する状態で配置されている構成としてもよい。 Further, the head module is provided with a plurality of ink jet nozzles for ejecting ink, and the head modules arranged in a direction orthogonal to the scan direction are arranged so that the ink ejection area of the ink jet nozzle is viewed from the scan direction. It is good also as a structure arrange | positioned in the overlapping state.
 この構成によれば、長さLに亘って切れ目なく、インクの吐出領域を連続させることできるため、必要塗布幅Wに亘って塗布ムラなく画素にインクを塗布することができる。 According to this configuration, since the ink discharge region can be continued continuously over the length L, the ink can be applied to the pixels without application unevenness over the required application width W.
 また、上記課題を解決するために、本発明に係る塗布方法は、単一色のインクを吐出するヘッドモジュールを複数設けてN色(N=1,2,3・・)のインクを塗布できるヘッドブロックを備えており、このヘッドブロックと基板とをスキャン方向に相対的に移動させつつ、前記ヘッドブロックからN色のインクを吐出させることによりカラーフィルタを製造する塗布方法であって、前記ヘッドブロックには、前記ヘッドモジュールが、N色それぞれ順次色を変えて所定周期でスキャン方向と直交する方向に、所定のピッチPで長さLだけ配列されており、この長さLと、カラーフィルタを形成するカラーフィルタ形成領域におけるスキャン方向と直交する方向の必要塗布幅Wとの関係が
 L≧W+(N-1)×P  (N=1,2,3・・)
を満たすように形成されており、ヘッドブロックと基板とをスキャン方向に相対的に移動させつつ前記ヘッドモジュールからインクを吐出させることにより、異色のインクで塗布された画素同士が、スキャン方向と直交する方向、かつ、スキャン方向に隣り合う位置に、必要塗布幅Wに亘って、N色順次色を変えて配置されるように塗布されるスキャン工程を有することを特徴としている。
In order to solve the above problems, the coating method according to the present invention provides a head capable of applying N color (N = 1, 2, 3,...) Ink by providing a plurality of head modules that eject single color ink. A coating method for manufacturing a color filter by ejecting N color ink from the head block while relatively moving the head block and the substrate in a scanning direction. The head module is arranged with a length L at a predetermined pitch P in a direction orthogonal to the scanning direction at a predetermined cycle by sequentially changing the colors of each of the N colors. The relationship between the required coating width W in the direction orthogonal to the scanning direction in the color filter forming region to be formed is L ≧ W + (N−1) × P (N = 1, 2, 3,...)
By ejecting ink from the head module while moving the head block and the substrate relative to each other in the scanning direction, pixels coated with different color inks are orthogonal to the scanning direction. And a scanning process in which coating is performed so that N colors are sequentially changed over the necessary coating width W at positions adjacent to each other in the scanning direction.
 この構成によれば、上記スキャン工程を有していることにより、画素の乾燥状態をほぼ均一にすることができる。すなわち、上記関係を有するヘッドブロックのヘッドモジュールからインクが吐出されると、1回のスキャンで、スキャン方向と直交する方向、かつ、スキャン方向に隣り合う位置に塗布された画素が存在する状態に塗布される。これにより、1回のスキャンで、塗布された画素の周囲に同色、又は、異色の画素がほぼ同じパターンで存在していることにより、その周囲の画素からのインクの蒸発量がほぼ同じになり、塗布された画素の乾燥状態をほぼ均一にすることができる。したがって、塗布された画素と隣り合う画素に、次のスキャンまで塗布されない状態となる従来の塗布方法に比べて、カラーフィルタ領域に亘って乾燥状態を均一にすることができ、乾燥状態が起因する「スジむら」が形成されるのを抑えることできる。 According to this configuration, the dry state of the pixels can be made substantially uniform by having the scanning step. That is, when ink is ejected from the head module of the head block having the above relationship, pixels applied in a direction perpendicular to the scan direction and in a position adjacent to the scan direction exist in one scan. Applied. As a result, the same color or different color pixels exist in the same pattern around the applied pixel in one scan, and the amount of ink evaporation from the surrounding pixels becomes substantially the same. The dried state of the applied pixels can be made substantially uniform. Therefore, compared to the conventional application method in which the pixel adjacent to the applied pixel is not applied until the next scan, the dry state can be made uniform over the color filter region, resulting in the dry state. The formation of “streaks” can be suppressed.
 また、前記スキャン工程と、前記ヘッドブロックをスキャン方向と直交する方向に移動させるシフト工程と、再度前記スキャン工程とを順次繰り返すことにより、先のスキャン工程で特定色のインクが塗布された画素に隣接する画素が、次のスキャン工程で同色のインクが塗布されることにより、同色のインクが塗布された画素がスキャン方向と直交する方向に延びて形成される構成としてもよい。
 この構成によれば、乾燥状態をほぼ均一にした状態で、同色のインクで塗布された画素がスキャン方向と直交する方向に延びて形成されたカラーフィルタを形成することができる。
In addition, by sequentially repeating the scanning step, the shifting step of moving the head block in the direction orthogonal to the scanning direction, and the scanning step again, the pixels to which the ink of the specific color is applied in the previous scanning step are applied. The adjacent pixels may be formed by applying the same color ink in the next scanning step so that the pixels to which the same color ink is applied extend in a direction perpendicular to the scan direction.
According to this configuration, it is possible to form a color filter in which pixels applied with the same color ink extend in a direction orthogonal to the scan direction in a substantially uniform dry state.
 また、上記目的を達成するために、本発明は
複数のインクジェットヘッド(51)で、原色数(N)のインクを塗布してカラーフィルタを製造する塗布装置において、
同じ色のインクを供給する1つ以上のインクジェットヘッド(51)でヘッドモジュール(52)を構成し、該ヘッドモジュール(52)を少なくともヘッドモジュール(52)のインク吐出幅の両端が隣接あるいは重なり合うようにピッチPでスキャン方向に配列し、これらのヘッドモジュール(52)をスキャン方向と直交方向に連続して長さLだけ配列したヘッドブロック(50)を構成し、該ヘッドブロック(50)のヘッドモジュール(52)毎に順次色を変えてインクを供給し、かつ
カラーフィルタの必要塗布幅Wに対して、Lが次式であることを特徴とする塗布装置。
〔式1〕 L≧W+(N-1)×P
 また、スキャン毎にピッチPだけスキャン方向と直交方向にシフトし、N回スキャンする。
In order to achieve the above object, the present invention provides a coating apparatus for manufacturing a color filter by applying a number of primary colors (N) with a plurality of inkjet heads (51).
One or more inkjet heads (51) for supplying ink of the same color constitute a head module (52), and at least both ends of the ink discharge width of the head module (52) are adjacent or overlap each other. Are arranged in the scanning direction at a pitch P, and a head block (50) in which these head modules (52) are continuously arranged in the direction orthogonal to the scanning direction by a length L is formed, and the head of the head block (50) A coating apparatus which supplies ink by changing the color sequentially for each module (52), and L is the following formula with respect to the required coating width W of the color filter.
[Formula 1] L ≧ W + (N−1) × P
Also, every scan, the pitch P is shifted in the direction orthogonal to the scan direction, and scanning is performed N times.
 さらに、モジュール(52)の配列ピッチPを次式である構成とする。
〔式2〕 P≦(1/N)×W
 なお「請求の範囲」及び「課題を解決するための手段」の各欄において各構成要素に付した括弧書きの符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
Further, the arrangement pitch P of the modules (52) is set to the following formula.
[Formula 2] P ≦ (1 / N) × W
In addition, the reference numerals in parentheses attached to each component in each column of “Claims” and “Means for Solving the Problems” indicate correspondence with specific means described in the embodiments described later. is there.
 本発明によると、塗布対象物であるカラーフィルタにおいてその有効画素全域にわたり、主要な光学特性である透過光量の平均化、及びインクの乾燥後の表面形状も平坦で平均化が達成されて、カラーフィルタ表面の外光反射が全面で均一化され明暗の部分的な偏在の無い、高品位なカラーフィルタを、小型の装置で製造できる塗布装置及び塗布方法が提供される。 According to the present invention, in the color filter that is the object to be coated, the transmitted light amount, which is the main optical characteristic, is averaged over the entire effective pixel, and the surface shape after the ink is dried is also flattened, and the color filter is achieved. Provided are a coating apparatus and a coating method capable of manufacturing a high-quality color filter with a small-sized apparatus in which external light reflection on the surface of the filter is uniform over the entire surface and there is no partial uneven distribution of brightness and darkness.
 また、塗布する色の数のインクを吐出するインクジェットノズル54の数が必要塗布幅「W」に対して、各色を吐出するノズルの必要ノズル数が、(1/N)或いは(1/N+1)の値となる幅を塗布する数で足りるので、塗布装置としての設備コストを抑えることができる。
 
Further, the required number of nozzles for ejecting each color is (1 / N) or (1 / N + 1) with respect to the necessary application width “W”, where the number of inkjet nozzles 54 that eject ink of the number of colors to be applied is required. Therefore, it is sufficient to apply the width having the above value, so that the equipment cost as a coating apparatus can be suppressed.
本発明に係るカラーフィルタ製造装置を示す斜視図である。It is a perspective view which shows the color filter manufacturing apparatus which concerns on this invention. 本発明に係るカラーフィルタ製造装置の要部を示す平面図である。It is a top view which shows the principal part of the color filter manufacturing apparatus which concerns on this invention. インク吐出部の一部を示す平面概略図である。FIG. 3 is a schematic plan view illustrating a part of an ink discharge unit. ヘッドブロックの平面概略図である。It is a plane schematic diagram of a head block. カラーフィルタの形成対象となるガラス基板の平面図である。It is a top view of the glass substrate used as the formation object of a color filter. 本発明に係るカラーフィルタ製造装置の動作概要を示すフローチャートである。It is a flowchart which shows the operation | movement outline | summary of the color filter manufacturing apparatus which concerns on this invention. 図6における塗布動作を詳しく示すフローチャートである。It is a flowchart which shows the application | coating operation | movement in FIG. 6 in detail. 塗布時におけるスキャン動作を説明するための図である。It is a figure for demonstrating the scanning operation | movement at the time of application | coating. 1回のスキャンによる画素へのインク塗布状態を説明するための図。The figure for demonstrating the ink application state to the pixel by one scan. 従来のヘッドブロックの平面概略図である。It is the plane schematic diagram of the conventional head block. 画素に塗布されたインク表面の触針式高さ計の計測データを示す図The figure which shows the measurement data of the stylus type height meter of the ink surface which is applied to the pixel 4色のインクによる製造装置のヘッドモジュール配置を示す図The figure which shows head module arrangement | positioning of the manufacturing apparatus by the ink of four colors 図9と別の方向での画素へのインク塗布状態を説明するための図。The figure for demonstrating the ink application state to the pixel in a direction different from FIG. 従来の塗布方法を示す概略図である。It is the schematic which shows the conventional coating method. 1回目のスキャン工程が終了したときの塗布状態を示す図である。It is a figure which shows the application state when the 1st scanning process is complete | finished. 2回目のスキャン工程が終了したときの塗布状態を示す図である。It is a figure which shows the application state when the 2nd scanning process is complete | finished. 3回目のスキャン工程が終了したときの塗布状態を示す図である。It is a figure which shows the application state when the 3rd scanning process is complete | finished.
符号の説明Explanation of symbols
 1 カラーフィルタ製造装置(塗布装置)
 45 第2リニアモータ(ヘッドブロックシフト手段)
 50 ヘッドブロック
 51 インクジェットヘッド
 52 ヘッドモジュール
 54 インクジェットノズル
 gs 画素(被塗布箇所)
 K ガラス基板(基板)
 X 方向(スキャン方向)
 Y 方向(スキャン直交方向)
 W 必要塗布幅
 A カラーフィルタ形成領域
1 Color filter manufacturing equipment (coating equipment)
45 Second linear motor (head block shift means)
50 Head Block 51 Inkjet Head 52 Head Module 54 Inkjet Nozzle gs Pixel (Applicable Location)
K glass substrate (substrate)
X direction (scan direction)
Y direction (scan orthogonal direction)
W Required coating width A Color filter formation area
 以下、添付図面を参照しながら、本発明の実施形態について赤(R)緑(G)青(B)3色のインクを用いたカラーフィルタを生産する装置及び、方法を説明する。
図1は本発明に係るカラーフィルタ製造装置を示す斜視図、図2は本発明に係るカラーフィルタ製造装置の要部を示す平面図、図3はインク吐出部の一部を示す平面概略図、図4はヘッドブロック50の平面概略図である。これら各図において、直交座標系の3軸をX,Y,Zとし、XY平面を水平面、Z軸方向を鉛直方向、鉛直軸周りの回転方向をθ方向とする。また、図1の上流から下流に向かう動作を往動、下流から上流に向かう動作を復動とする。
Hereinafter, an apparatus and a method for producing a color filter using three colors of red (R) green (G) blue (B) ink will be described with reference to the accompanying drawings.
FIG. 1 is a perspective view illustrating a color filter manufacturing apparatus according to the present invention, FIG. 2 is a plan view illustrating a main part of the color filter manufacturing apparatus according to the present invention, and FIG. 3 is a schematic plan view illustrating a part of an ink ejection unit. FIG. 4 is a schematic plan view of the head block 50. In each of these drawings, the three axes of the orthogonal coordinate system are X, Y, and Z, the XY plane is the horizontal plane, the Z-axis direction is the vertical direction, and the rotation direction around the vertical axis is the θ direction. Further, the operation from the upstream to the downstream in FIG. 1 is the forward movement, and the operation from the downstream to the upstream is the backward movement.
 なお、本実施形態では、直交座標系のX方向を後述の塗布ガントリー4が走行する方向(スキャン方向)とし、これと直交するY方向をインク吐出部5が走行する方向(シフト方向)とする。 In the present embodiment, the X direction of the orthogonal coordinate system is a direction in which an application gantry 4 (described later) travels (scan direction), and the Y direction orthogonal to the direction is the direction in which the ink discharge unit 5 travels (shift direction). .
 図1に示すように、本発明に係るカラーフィルタ製造装置1(本発明の塗布装置)は、機台2、吸着ステージ3、塗布ガントリー4、インク吐出部5、カメラガントリー6、アラインメントカメラ7、スキャンカメラ8、基板搬送ロボット9及び制御装置10を備える。 As shown in FIG. 1, a color filter manufacturing apparatus 1 (coating apparatus of the present invention) according to the present invention includes a machine base 2, an adsorption stage 3, a coating gantry 4, an ink discharge unit 5, a camera gantry 6, an alignment camera 7, A scan camera 8, a substrate transfer robot 9, and a control device 10 are provided.
 機台2は、カラーフィルタ製造装置1の主構成部(吸着ステージ3、塗布ガントリー4、カメラガントリー6)を可動に支持する台座として機能する。 The machine base 2 functions as a pedestal that movably supports the main components (the suction stage 3, the coating gantry 4, and the camera gantry 6) of the color filter manufacturing apparatus 1.
 吸着ステージ3は、図2に示すように、カラーインクの塗布対象となるガラス基板K(単に基板Kともいう)を、十分な平面度を確保して載置可能な載置面31を有する。その載置面31には、複数の真空吸着孔32と複数のリフトピン孔33とが穿設される。真空吸着孔32は、配管及び三方バルブを介して吸引ポンプに接続される。リフトピン孔33からは、ガラス基板Kを支承するためのリフトピン34が出没可能とされる。吸着ステージ3は、図示しないステージ回転駆動手段によりθ方向に回動駆動可能とされる。 As shown in FIG. 2, the suction stage 3 has a mounting surface 31 on which a glass substrate K (also simply referred to as a substrate K) to be coated with color ink can be mounted with sufficient flatness. A plurality of vacuum suction holes 32 and a plurality of lift pin holes 33 are formed in the mounting surface 31. The vacuum suction hole 32 is connected to a suction pump through a pipe and a three-way valve. From the lift pin hole 33, a lift pin 34 for supporting the glass substrate K can be projected and retracted. The suction stage 3 can be driven to rotate in the θ direction by a stage rotation driving means (not shown).
 なお、カラーフィルタは、基板Kの一部に形成されるものであり、本実施形態では基板K1枚に対して1個のカラーフィルタが形成される場合を示している。その際、カラーフィルタが形成される基板Kの所定領域、すなわち、カラーフィルタ形成領域Rにインクを塗布するが、本実施形態では、このカラーフィルタ形成領域RのY方向寸法を必要塗布幅Wとしている(図2、図15~図17参照)。 Note that the color filter is formed on a part of the substrate K, and in this embodiment, one color filter is formed on one substrate K. At that time, ink is applied to a predetermined region of the substrate K on which the color filter is formed, that is, the color filter formation region R. In this embodiment, the Y-direction dimension of the color filter formation region R is set as the required application width W. (See FIGS. 2 and 15 to 17).
 塗布ガントリー4は、吸着ステージ3を跨ぐことのできるサイズの門型形状とされ、少なくとも吸着ステージ3の幅間隔を隔てて立設した2本の支柱部41と、2本の支柱部41間に架設した水平枠部42とを備える。そして、吸着ステージ3を跨いだ状態で、一対の第1リニアモータ43によりX軸方向に走行可能となるように、機台2上に支持される。一対の第1リニアモータ43は、機台2におけるY軸方向両サイドにX軸に沿って互いに平行となるように取り付けられる。 The coating gantry 4 has a portal shape that can span the suction stage 3. The coating gantry 4 has at least two struts 41 that are erected with a width interval between the suction stages 3 and between the two struts 41. And an erected horizontal frame portion 42. The pair of first linear motors 43 are supported on the machine base 2 so as to be able to travel in the X-axis direction while straddling the suction stage 3. The pair of first linear motors 43 are attached to both sides in the Y-axis direction of the machine base 2 so as to be parallel to each other along the X-axis.
 上記水平枠部42は、2本の支柱部41にそれぞれ設けられたサーボモータ機構44によりZ方向に昇降可能とされる。サーボモータ機構44は、例えば、Z軸方向に沿って設けられたリニアモータで構成することができる。或いは、Z軸方向に沿って配設されたボールネジ軸、ボールネジ軸をその軸線回りに正逆回転駆動する回転サーボモータ、及びボールネジ軸に螺合しボールネジ軸の回転によりZ軸方向に進退移動するボールナットなどで構成してもよい。水平枠部42には、インク吐出部5が第2リニアモータ45によりY軸方向に走行可能となるように設けられる。第2リニアモータ45は、水平枠部42にその長手方向(Y方向)に沿って取り付けられる。 The horizontal frame portion 42 can be moved up and down in the Z direction by servo motor mechanisms 44 respectively provided on the two support column portions 41. The servo motor mechanism 44 can be constituted by, for example, a linear motor provided along the Z-axis direction. Alternatively, a ball screw shaft disposed along the Z-axis direction, a rotation servo motor that drives the ball screw shaft to rotate forward and backward about its axis, and a ball screw shaft that is engaged with the ball screw shaft to move forward and backward in the Z-axis direction. You may comprise with a ball nut etc. The horizontal frame portion 42 is provided with the ink discharge portion 5 so that the second linear motor 45 can travel in the Y-axis direction. The second linear motor 45 is attached to the horizontal frame portion 42 along the longitudinal direction (Y direction).
 インク吐出部5に搭載されたヘッドモジュール52は、図3及び図4に示すように、Y方向に配置される。各ヘッドモジュール52は、図3のようにそれぞれX方向にD段配置(本図ではD=5)したインクジェットヘッド51を備える。なお、図3は、インク吐出部5の一部、すなわち、赤色のヘッドモジュール52のみを示している。 The head module 52 mounted on the ink discharge unit 5 is arranged in the Y direction as shown in FIGS. Each head module 52 includes an inkjet head 51 that is arranged in D stages (D = 5 in this figure) in the X direction as shown in FIG. FIG. 3 shows only a part of the ink discharge unit 5, that is, the red head module 52.
 各インクジェットヘッド51は、それぞれY方向に等間隔で配列されたJ個(本図ではJ=10)のインクジェットノズル54からなり、そのインク吐出幅はHである。J個のインクジェットノズル54は、同一色を吐出可能とされる。例えば、赤色インクのヘッドモジュール52に対応するインクジェットノズル54からは、全て赤色インクが吐出される。 Each inkjet head 51 is composed of J (J = 10 in this figure) inkjet nozzles 54 arranged at equal intervals in the Y direction, and the ink discharge width is H. The J inkjet nozzles 54 can discharge the same color. For example, red ink is ejected from the inkjet nozzles 54 corresponding to the red ink head module 52.
 そのヘッドモジュール(52)を少なくともヘッドモジュール(52)のインク吐出幅の両端が隣接あるいは重なり合うようにピッチPでスキャン方向に配列してある。これらのヘッドモジュール(52)をスキャン方向と直交方向に連続して長さLだけ配列したヘッドブロック(50)を構成し、該ヘッドブロック(50)のヘッドモジュール(52)毎に順次色を変えてインクを供給する。 The head module (52) is arranged in the scanning direction at a pitch P so that at least both ends of the ink ejection width of the head module (52) are adjacent or overlap. A head block (50) in which these head modules (52) are arranged in a length L continuously in a direction orthogonal to the scanning direction is configured, and the color is sequentially changed for each head module (52) of the head block (50). Supply ink.
 さらに詳細に説明すると、ヘッドブロック50には、複数のヘッドモジュール52が設けられており、本実施形態では、図4に示すように、すべてのヘッドモジュール52がY方向にピッチPで並んで配列されている。具体的には、X方向に沿って、3つのヘッドモジュール52が階段状に配列されており、この階段状に配列された一構成単位をヘッドモジュール群として、繰り返しY方向に複数配列されている。 More specifically, the head block 50 is provided with a plurality of head modules 52. In the present embodiment, as shown in FIG. 4, all the head modules 52 are arranged side by side at a pitch P in the Y direction. Has been. Specifically, along the X direction, three head modules 52 are arranged in a staircase pattern, and a plurality of structural units arranged in a staircase pattern are repeatedly arranged in the Y direction as a head module group. .
 このヘッドモジュール群は、X方向に沿って、赤色(R)、緑色(G)、青色(B)のインクを吐出するヘッドモジュール52を一つとして構成されており、これらのヘッドモジュール52が、それぞれX方向に隣接し、かつ、Y方向にピッチPで配列されている。換言すれば、隣り合うヘッドモジュール52同士が、X方向、かつ、Y方向に離れて配置されることにより、階段状に並んで配列されている。このヘッドモジュール群がY方向に繰り返し配列されることにより、Y方向について見ると、ヘッドモジュール52が3色それぞれ順次色を変えて所定周期(本実施形態では3色周期)で配列されている。なお、図4における52(R)、52(G)、52(B)は、それぞれ赤色、緑色、青色のインクを吐出するヘッドモジュール52を示している。 This head module group is configured as one head module 52 that ejects red (R), green (G), and blue (B) ink along the X direction. They are adjacent to each other in the X direction and arranged at a pitch P in the Y direction. In other words, the adjacent head modules 52 are arranged side by side in a stepped manner by being arranged apart in the X direction and the Y direction. By repeatedly arranging the head module group in the Y direction, when viewed in the Y direction, the head modules 52 are arranged in a predetermined cycle (in this embodiment, a three-color cycle) by sequentially changing the colors of the three colors. Note that 52 (R), 52 (G), and 52 (B) in FIG. 4 indicate the head modules 52 that discharge red, green, and blue inks, respectively.
 ヘッドモジュール52は、単一色のインクを吐出するインクジェットヘッド51を複数備えており、ヘッドモジュール52単体では、単一色のインクを塗布することができる。すなわち、インクジェットヘッド51は、複数のインクジェットノズル54を有しており、このインクジェットノズル54から単一色のインクが吐出されるようになっている。このインクジェットノズル54はY方向に配列されており、このインクジェットノズル54によりインクを吐出できるY方向の領域がインクの吐出領域である。本実施形態では、ピッチPは、このインクの吐出領域がX方向から見て重複するように設定されている。これにより、Y方向に隣り合うすべてのヘッドモジュール52(例えば、赤色インクを吐出するヘッドモジュール52と緑色インクを吐出するヘッドモジュール52)は、吐出領域がX方向から見て重複する状態で配置されている。なお、Y方向に隣り合うヘッドモジュール52とは、Y方向に1つずれたヘッドモジュール52同士をいう。すなわち、例えば、図4において、赤色のヘッドモジュール52(図中左上)と隣り合うヘッドモジュール52は、緑色のヘッドモジュール52である。 The head module 52 includes a plurality of ink jet heads 51 that eject ink of a single color, and the head module 52 alone can apply a single color of ink. That is, the inkjet head 51 has a plurality of inkjet nozzles 54, and single color ink is ejected from the inkjet nozzles 54. The inkjet nozzles 54 are arranged in the Y direction, and an area in the Y direction where ink can be ejected by the inkjet nozzle 54 is an ink ejection area. In the present embodiment, the pitch P is set such that the ink ejection regions overlap when viewed from the X direction. As a result, all the head modules 52 adjacent to each other in the Y direction (for example, the head module 52 that discharges red ink and the head module 52 that discharges green ink) are arranged in a state where the discharge regions overlap when viewed from the X direction. ing. The head modules 52 adjacent in the Y direction are head modules 52 that are shifted by one in the Y direction. That is, for example, in FIG. 4, the head module 52 adjacent to the red head module 52 (upper left in the figure) is the green head module 52.
 ここで、複数のヘッドモジュール52は、図4に示すように、本実施形態ではピッチPで長さLだけ配列されている。
そして、カラーフィルタの必要塗布幅Wに対して、Lは次式である。
〔式1〕 L≧W+(N-1)×P (N=1,2,3・・)
また、ヘッドモジュール(52)の配列ピッチPは次式である。
〔式2〕 P≦(1/N)×W (N=1,2,3・・)
Here, as shown in FIG. 4, the plurality of head modules 52 are arranged with a length L at a pitch P in this embodiment.
And with respect to the required application | coating width W of a color filter, L is following Formula.
[Formula 1] L ≧ W + (N−1) × P (N = 1, 2, 3,...)
The arrangement pitch P of the head modules (52) is given by the following equation.
[Formula 2] P ≦ (1 / N) × W (N = 1, 2, 3,...)
 即ち、ある縦・横の大きさであるカラーフィルタに対し、塗布装置にそのカラーフィルタを載せた時の塗布する為のヘッドブロック50のスキャン方向と直交する方向の必要塗布幅が図5のように「W」である場合、塗布するインクの数「N」が3であり、各色のインク吐出幅が隣接或いは重なり合う様にそれぞれにピッチ「P」でずらしてスキャン方向に直交する方向に連続して(W+2P)以上の長さ「L」だけ配列したヘッドブロック50とする。 That is, for a color filter having a certain vertical and horizontal size, the required coating width in the direction orthogonal to the scanning direction of the head block 50 for coating when the color filter is mounted on the coating apparatus is as shown in FIG. In the case of “W”, the number “N” of inks to be applied is 3, and the ink discharge widths of the respective colors are shifted by a pitch “P” so as to be adjacent or overlapped with each other. The head block 50 is arranged by a length “L” that is equal to or greater than (W + 2P).
 すなわち、ヘッドブロック50に設けられた複数のヘッドモジュール52全体のY方向寸法は、必要塗布幅Wよりも2Pだけ長く設定され、ヘッドブロック50と基板Kとが対面した状態では、2つのヘッドモジュール52が必要塗布幅WのY方向外側に位置する状態となる。 That is, the overall Y-direction dimension of the plurality of head modules 52 provided in the head block 50 is set to be longer than the necessary coating width W by 2P. When the head block 50 and the substrate K face each other, the two head modules 52 is located outside the required coating width W in the Y direction.
 また、ヘッドブロック50に備えるインクジェットノズル54の数が少なくなるように各色のヘッドモジュール52の配列ピッチ「P」を必要塗布幅「W」の1/N、つまり1/3以下とし、さらに好ましくはインクジェットヘッドの幅以下とする。ピッチPをインクジェットヘッドの幅と同じとした場合ヘッドモジュールの幅はインクジェットヘッド1つの幅となり、ヘッドブロックに搭載されるインクジェットヘッドは最小の数となる。 Further, the arrangement pitch “P” of the head modules 52 of each color is set to 1 / N of the required coating width “W”, that is, 1/3 or less, more preferably so that the number of inkjet nozzles 54 provided in the head block 50 is reduced. The width is less than the width of the inkjet head. When the pitch P is the same as the width of the ink-jet head, the width of the head module is one ink-jet head, and the number of ink-jet heads mounted on the head block is the minimum.
 機台2に搭載されたカメラガントリー6は、塗布ガントリー4と同様に、吸着ステージ3を跨ぐことのできるサイズの門型形状とされ、少なくとも吸着ステージ3の幅間隔を隔てて立設した2本の支柱部61と、2本の支柱部61間に架設した水平枠部62とを備える。そして、吸着ステージ3を跨いだ状態で、一対の第1リニアモータ43によりX軸方向に走行可能となるように、機台2上に支持される。 Similarly to the coating gantry 4, the camera gantry 6 mounted on the machine base 2 has a portal shape with a size that can straddle the suction stage 3, and is provided with two at least spaced apart by the width of the suction stage 3. And a horizontal frame 62 constructed between the two support columns 61. The pair of first linear motors 43 are supported on the machine base 2 so as to be able to travel in the X-axis direction while straddling the suction stage 3.
 上記水平枠部62には、2台のアラインメントカメラ7が第3リニアモータ63によりY軸方向に走行可能となるように設けられる。 機台2にガラス基材Kを装填・取り出しする基板搬送ロボット9は、モータ91、アーム92及び可動支持台93を備える。可動支持台93は、ガラス基板Kを載置可能なフォーク形状とされ、モータ91の駆動によりアーム92を介してXYZθ各方向に移動自在に構成される。 The horizontal frame 62 is provided with two alignment cameras 7 so that the third linear motor 63 can travel in the Y-axis direction. The substrate transport robot 9 for loading and unloading the glass base material K on the machine base 2 includes a motor 91, an arm 92, and a movable support base 93. The movable support base 93 has a fork shape on which the glass substrate K can be placed, and is configured to be movable in each direction of XYZθ through an arm 92 by driving a motor 91.
 この装置の制御装置10は、カラーフィルタ製造装置1に一連の動作を行わせるように構成される。具体的には、基板Kの所定画素gs上にヘッドモジュール52のインクジェットノズル54が位置した場合に、そのインクジェットノズル54からインクを吐出するように適切に制御できるようになっている。 The control device 10 of this apparatus is configured to cause the color filter manufacturing apparatus 1 to perform a series of operations. Specifically, when the inkjet nozzle 54 of the head module 52 is positioned on a predetermined pixel gs of the substrate K, it can be appropriately controlled so that ink is ejected from the inkjet nozzle 54.
 次に、図5から図9も参照して、上記のように構成されたカラーフィルタ製造装置1の動作を説明する。図5はカラーフィルタの形成対象となるガラス基板の平面図、図6は本発明に係るカラーフィルタ製造装置の動作概要を示すフローチャート、図7は図6における塗布動作を詳しく示すフローチャート、図8は塗布時におけるスキャン動作を説明するための図、図9は1回のスキャン動作による画素gsへのインク塗布状態を説明するための図である。 Next, the operation of the color filter manufacturing apparatus 1 configured as described above will be described with reference to FIGS. FIG. 5 is a plan view of a glass substrate on which a color filter is to be formed, FIG. 6 is a flowchart showing an outline of the operation of the color filter manufacturing apparatus according to the present invention, FIG. 7 is a flowchart showing in detail the application operation in FIG. FIG. 9 is a diagram for explaining a scanning operation at the time of application, and FIG. 9 is a diagram for explaining an ink application state to the pixel gs by one scanning operation.
 カラーフィルタの形成対象となるガラス基板Kの表面には、図5に示すように、カラーインクの塗布区画であるブラックマトリクスBM、及びアラインメントマークM1が予め形成されている。図中の「R」「G」「B」は赤、緑、青色のそれぞれの目的色に対応する画素gsであることを示す。また、カラーフィルタ製造装置1は次の初期状態であるとする。即ち、吸着ステージ3は非吸着状態、塗布ガントリー4は最上流位置、インク吐出部5は非吐出状態、カメラガントリー6は最下流位置である。基板搬送ロボット9における可動支持台93上には、ガラス基板Kが載置されている。 As shown in FIG. 5, a black matrix BM, which is a color ink application section, and an alignment mark M1 are formed in advance on the surface of the glass substrate K to be formed with a color filter. “R”, “G”, and “B” in the figure indicate the pixels gs corresponding to the respective target colors of red, green, and blue. The color filter manufacturing apparatus 1 is in the following initial state. That is, the suction stage 3 is in a non-adsorption state, the coating gantry 4 is in the most upstream position, the ink ejection unit 5 is in a non-ejection state, and the camera gantry 6 is in the most downstream position. A glass substrate K is placed on the movable support base 93 in the substrate transport robot 9.
 〔ガラス基板搬入(ステップS1)〕
まず基板搬送ロボット9は、ガラス基板Kが吸着ステージ3の真上に来るように、可動支持台93を駆動制御する。続いて、リフトピン孔33からリフトピン34を突出させて、ガラス受取位置である最上位置まで上昇させる。続いて、基板搬送ロボット9は、可動支持台93を徐々に降下させ、ガラス基板Kをリフトピン34の先端部に載せる。ガラス基板Kをリフトピン34に載せた後、基板搬送ロボット9は、可動支持台93を待避させる。続いて、吸着ステージ3は、ガラス基板Kを支承したリフトピン34を降下させる。ガラス基板Kが降下して載置面31に到達したときに、吸着ステージ3は、真空吸着孔32に真空圧を発生させ、ガラス基板Kを載置面31上に真空吸着保持する。
[Glass substrate loading (step S1)]
First, the substrate transfer robot 9 drives and controls the movable support base 93 so that the glass substrate K is located directly above the suction stage 3. Subsequently, the lift pin 34 protrudes from the lift pin hole 33 and is raised to the uppermost position as the glass receiving position. Subsequently, the substrate transfer robot 9 gradually lowers the movable support base 93 and places the glass substrate K on the tip of the lift pin 34. After placing the glass substrate K on the lift pins 34, the substrate transport robot 9 retracts the movable support base 93. Subsequently, the suction stage 3 lowers the lift pins 34 that support the glass substrate K. When the glass substrate K descends and reaches the placement surface 31, the suction stage 3 generates a vacuum pressure in the vacuum suction holes 32 and holds the glass substrate K on the placement surface 31 by vacuum suction.
 〔ガラス基板位置決め(ステップS2)〕
まず第1リニアモータ43は、アラインメントカメラ7がアラインメントマークM1の上方に来るように、カメラガントリー6を駆動制御する。続いて、アラインメントカメラ7はアラインメントマークM1を撮像し、得られた画像データを制御装置10に送る。制御装置10では、送られた画像データに適当な画像処理を施すことにより、所定位置からのガラス基板Kのズレ量を算出する。このズレ量に基づきステージ回転駆動手段を駆動制御することにより、ガラス基板Kの位置決めを行う。
[Glass substrate positioning (step S2)]
First, the first linear motor 43 drives and controls the camera gantry 6 so that the alignment camera 7 is positioned above the alignment mark M1. Subsequently, the alignment camera 7 images the alignment mark M1, and sends the obtained image data to the control device 10. The control device 10 calculates the amount of deviation of the glass substrate K from a predetermined position by performing appropriate image processing on the sent image data. The glass substrate K is positioned by driving and controlling the stage rotation driving means based on the deviation amount.
 〔塗布前準備(ステップS3)〕
まず第1リニアモータ43は、ガラス基板Kにおける上流側の塗布開始位置にインク吐出部5が来るように、塗布ガントリー4を駆動制御する。続いて、サーボモータ機構44は、インクジェットノズル54の吐出口とガラス基板Kの表面との隙間が0.5mm~1.0mm程度の微少距離となるように、インク吐出部5を降下させる。
[Preparation before application (step S3)]
First, the first linear motor 43 drives and controls the application gantry 4 so that the ink discharge unit 5 comes to the upstream application start position on the glass substrate K. Subsequently, the servo motor mechanism 44 lowers the ink ejection unit 5 so that the gap between the ejection port of the inkjet nozzle 54 and the surface of the glass substrate K is a minute distance of about 0.5 mm to 1.0 mm.
 次に、こうした塗布動作を含め装置の動作を詳細に説明する。
 〔インク塗布(ステップS4)〕
 本発明に係るカラーフィルタ製造装置1のガラス基板Kにおける全画素gsに対して、目的色のインクを塗布する一連の動作は、図8のようにX矢印に示す塗布ガントリー4の移動(スキャン)よる3回の塗布と、Y矢印に示すインク塗布部5の所定ピッチの2回の横移動によりインクジェットヘッド51からインクをガラス基板Kに吐出して塗布動作を終了する。以下にさらに詳しく説明する。
Next, the operation of the apparatus including such a coating operation will be described in detail.
[Ink application (step S4)]
A series of operations for applying the target color ink to all the pixels gs on the glass substrate K of the color filter manufacturing apparatus 1 according to the present invention is performed by moving (scanning) the application gantry 4 indicated by the arrow X as shown in FIG. Thus, the ink is ejected from the inkjet head 51 onto the glass substrate K by three times of application and two lateral movements of the ink application part 5 indicated by the Y arrow at a predetermined pitch, and the application operation is completed. This will be described in more detail below.
〔1回目の往動による塗布〕
まず、スキャン工程が開始される。具体的には、第1リニアモータ43は、塗布ガントリー4を往動させる。これによりインク塗布部5は、図8の矢印X1に示すように、インクジェットノズル54の吐出口とガラス基板Kの表面とが微少距離を隔てて対向近接した状態で往動する。制御装置10は、塗布目的とする画素gsに、目的とする色のインクを吐出するように、インク吐出部5に指令を送る。これにより、往動中のインク吐出部5は、所定タイミングで所定量のインクを吐出する。そして、ガラス基板KのブラックマトリクスBMにおける各画素gsに、目的とする色のインク液を塗布していく(図7のステップS42,S43参照)。なお、図9、図15には、便宜上、1つのヘッドモジュール52により、3画素gs分に塗布される場合を表している。そして、塗布を開始する状態、すなわち、ヘッドブロック50と基板Kとが対向した状態では、カラーフィルタ形成領域Rよりもヘッドモジュール52が2ピッチPだけY方向にはみ出た状態で配置される。すなわち、本実施形態における複数のヘッドモジュール52全体の長さLは、必要塗布幅Wよりもヘッドモジュール52の2ピッチ分長く設定されている。
[Application by the first forward movement]
First, the scanning process is started. Specifically, the first linear motor 43 moves the application gantry 4 forward. As a result, the ink application unit 5 moves forward in a state where the discharge port of the inkjet nozzle 54 and the surface of the glass substrate K face each other with a slight distance therebetween, as indicated by an arrow X1 in FIG. The control apparatus 10 sends a command to the ink ejection unit 5 so that the target color gs is ejected to the target color gs. As a result, the ink ejection unit 5 that is moving forward ejects a predetermined amount of ink at a predetermined timing. Then, an ink liquid of a target color is applied to each pixel gs in the black matrix BM of the glass substrate K (see steps S42 and S43 in FIG. 7). 9 and 15 show a case where the coating is performed for three pixels gs by one head module 52 for convenience. In a state where the application is started, that is, in a state where the head block 50 and the substrate K face each other, the head module 52 is disposed so as to protrude beyond the color filter formation region R by 2 pitches P in the Y direction. That is, the overall length L of the plurality of head modules 52 in this embodiment is set to be longer than the required coating width W by two pitches of the head module 52.
 この1回目の往動中の塗布では、制御装置10の指令によってインクジェットヘッド51のインクジェットノズル54からのインクの吐出によりインクが塗布された画素gsの配置は、図9のように各色のインク塗布幅がY方向の距離で隣接、或いは重なり合うものとなっている。言い換えると、3色順次着色された画素gsは、Y方向(スキャン方向と直交する方向)、かつ、X方向(スキャン方向)に隣り合う位置に配列された状態で塗布されている。図9、図15に示す例では、同色の画素gsはY方向に3つ塗布されており、異色の画素gsはX方向及びY方向に離れた位置(Y方向に3画素離れ、かつ、X方向に1画素ずれた位置)に塗布されている。すなわち、異色の画素gsは、X方向に1段ずつずれた状態で、Y方向に延びるように塗布されており、ほぼ階段形状に塗布されている。そして、このような塗布状態が必要塗布幅Wに亘って形成されている。 In this first application during forward movement, the arrangement of the pixels gs to which ink has been applied by the ejection of ink from the ink jet nozzle 54 of the ink jet head 51 according to a command from the control device 10 is as shown in FIG. The width is adjacent or overlapped by the distance in the Y direction. In other words, the pixels gs that are sequentially colored in three colors are applied in a state of being arranged in positions adjacent to each other in the Y direction (direction orthogonal to the scanning direction) and the X direction (scanning direction). In the example shown in FIGS. 9 and 15, three pixels gs of the same color are applied in the Y direction, and pixels gs of different colors are separated in the X direction and the Y direction (three pixels apart in the Y direction, and X (Position shifted by one pixel in the direction). That is, the different color pixels gs are applied so as to extend in the Y direction while being shifted by one step in the X direction, and are applied in a substantially staircase shape. Such an application state is formed over the required application width W.
 したがって、ガラス基板Kのカラーフィルターのインクが塗布された画素gsの周囲の画素gsについて見ると、同じ色の画素gsはスキャン方向、或いはスキャン方向に直交する方向に隣接する画素gsにおいて、少なくとも片側にはインクが同じように充填されており、また、塗布された領域の端にある画素gsについては、斜め横の画素gsに他の色のインクが充填されている。 Therefore, when the pixel gs around the pixel gs to which the color filter ink of the glass substrate K is applied is seen, the pixel gs of the same color is at least one side in the pixel gs adjacent to the scan direction or the direction orthogonal to the scan direction. Are filled with ink in the same manner, and with respect to the pixel gs at the edge of the applied region, the diagonally horizontal pixel gs is filled with ink of other colors.
 つまり、カラーフィルタとしての有効画素gsの端部を除き、ヘッドブロック50の制御装置10からの指令による1回のスキャンによってインクジェットヘッド51のインクジェットノズル54からのインクの吐出によりインクが塗布された画素gsについて、隣接するインクが充填された他の画素gsまでの距離を最大でも斜め横の画素gsまでの距離として1回のインクの塗布が行なわれる。 In other words, except for the end portion of the effective pixel gs as a color filter, pixels to which ink has been applied by ejecting ink from the inkjet nozzle 54 of the inkjet head 51 by a single scan in response to a command from the control device 10 of the head block 50. With regard to gs, the ink is applied once with the distance to the other pixel gs filled with the adjacent ink being at most the distance to the diagonally horizontal pixel gs.
 これによって、インクが塗布された画素gsにおけるインク表面の乾燥の進行が、ガラス基材Kのカラーフィルタ形成部分の有効画素gs領域のインクを塗布された画素gs全てにおいてほぼ同等になる。 Thereby, the progress of drying of the ink surface in the pixel gs applied with ink becomes substantially the same in all the pixels gs applied with ink in the effective pixel gs region of the color filter forming portion of the glass substrate K.
 これは、以下の理由による。
図4のヘッドモジュールの配置で判るように、1回目のスキャンで塗布されたカラーフィルタは塗布する際の画素gsの方向により図9、または図13に示すようにRGB各色間の1回の塗布領域が近接しているために、塗布したある色(例えば赤R)のインクが塗布された画素gsの周辺に、他の色(例えば緑Gや、青B)のインクが塗布された画素gsがあることで、1回のある色の塗布領域の端の周囲に他の色の塗布領域が存在することになる。
This is due to the following reason.
As can be seen from the arrangement of the head module in FIG. 4, the color filter applied in the first scan is applied once between the RGB colors as shown in FIG. 9 or FIG. 13 depending on the direction of the pixel gs at the time of application. Since the regions are close to each other, the pixel gs in which the ink of another color (for example, green G or blue B) is applied around the pixel gs to which the ink of a certain color (for example, red R) is applied is applied. As a result, there is an application area of another color around the edge of the application area of one color at a time.
 それによって、その塗布したある色(例えば赤R)のインクが塗布された画素gsのそのインクの乾燥の進行が抑制され、これは、ある色のインクが連続する画素gsの隣接画素gsにインクが存在して乾燥が同じ雰囲気で進行することと同様である。 Thereby, the progress of drying of the ink of the pixel gs to which the applied ink of a certain color (for example, red R) is applied is suppressed. This is because the ink of a certain color is applied to the adjacent pixel gs of the pixel gs. This is the same as when the drying proceeds in the same atmosphere.
 すなわち、1回のスキャン工程により、塗布された画素gsどれをとっても、その周囲に同色、又は、異色の画素gsがほぼ同じパターンで必ず存在していることにより、その周囲の画素gsからのインクの蒸発量がほぼ同じになる。これにより、塗布後におけるいずれの画素gsも乾燥が均一に進行する。そして、ヘッドブロック50に、ヘッドモジュール52が等ピッチPで長さLだけ配列されているため、必要塗布幅Wに亘って塗布状態が一定となっている。したがって、カラーフィルタ形成領域Rにおける必要塗布幅Wに亘って、塗布されたいずれの画素gsも乾燥が均一に進行することになる。なお、Y方向に隣り合う異色の画素gs同士については、X方向に1段ずれているが、1画素gsの大きさが100μm程度であるため、隣り合う画素gsが1スキャン遅れて塗布される場合に比べて、このX方向のずれの影響は小さいため、無視することができ、乾燥は均一に進行するとみなすことができる。なお、本発明において、スキャン方向と直交する方向、かつ、スキャン方向に隣り合う位置とは、Y方向に隣り合う位置であってX方向に1段ずれている位置のことである。 That is, in any one of the applied pixels gs by a single scanning process, the pixels gs of the same color or different color are always present in the same pattern, so that the ink from the surrounding pixels gs is present. The amount of evaporation is almost the same. Thereby, drying progresses uniformly in any pixel gs after application. Since the head modules 52 are arranged in the head block 50 with the length L at the equal pitch P, the application state is constant over the required application width W. Therefore, drying of all the applied pixels gs proceeds uniformly over the necessary application width W in the color filter forming region R. In addition, the pixels gs of different colors adjacent in the Y direction are shifted by one step in the X direction. However, since the size of one pixel gs is about 100 μm, the adjacent pixels gs are applied with a delay of one scan. Compared to the case, since the influence of the deviation in the X direction is small, it can be ignored and the drying can be considered to proceed uniformly. In the present invention, the direction orthogonal to the scanning direction and the position adjacent to the scanning direction is a position adjacent to the Y direction and shifted by one step in the X direction.
 インク吐出部5がガラス基板Kにおける下流側の塗布終了位置に到達したら(ステップS44でイエス)、第1リニアモータ43は、塗布ガントリー4の往動を停止させる。これによりインク塗布部5は停止する(図8の一点鎖線参照)。そして、シフト工程が開始される。すなわち、第2リニアモータ45は、図8の矢印Y1に示すように、インクを吐出する幅5をY方向に所定ピッチPだけシフトさせる(図8の二点鎖線参照)。この所定のピッチ量は、1つのヘッドモジュール52の有効塗布幅(吐出領域)と同じ、或いはそれより数ノズル分少ない値であれば良い(ステップS45参照)。 When the ink ejection unit 5 reaches the downstream application end position on the glass substrate K (Yes in step S44), the first linear motor 43 stops the forward movement of the application gantry 4. Thereby, the ink application part 5 stops (refer to the dashed-dotted line in FIG. 8). Then, the shift process is started. That is, the second linear motor 45 shifts the width 5 for ejecting ink by a predetermined pitch P in the Y direction as shown by an arrow Y1 in FIG. 8 (see the two-dot chain line in FIG. 8). The predetermined pitch amount may be the same as the effective application width (discharge area) of one head module 52 or a value smaller by several nozzles than that (see step S45).
 〔1回目の復動による塗布〕
次に、再度のスキャン工程により、第1リニアモータ43は、塗布ガントリー4を復動させる(ステップS41)。これによりインク吐出部5は、図8の矢印X2に示すように復動する。制御装置10は、塗布目的とする画素gsに、目的とする色のインクを吐出するように、インク吐出部5に指令を送る。これにより、復動中のインク吐出部5は、所定のタイミングで所定の量のインクを吐出することで、ガラス基板KのブラックマトリクスBMにおける各画素gsに、目的とする色のインク液を塗布していく(図7のステップS42,S43参照)。
[Application by first rebound]
Next, the first linear motor 43 moves the application gantry 4 backward through the scanning process again (step S41). As a result, the ink discharge section 5 moves backward as indicated by an arrow X2 in FIG. The control apparatus 10 sends a command to the ink ejection unit 5 so that the target color gs is ejected to the target color gs. As a result, the ink discharge unit 5 that is moving backward applies a predetermined amount of ink to each pixel gs in the black matrix BM of the glass substrate K by discharging a predetermined amount of ink at a predetermined timing. (See steps S42 and S43 in FIG. 7).
 このスキャン工程においても、図16に示すように、先のスキャン工程と同様、3色順次着色された画素gsが、Y方向(スキャン方向と直交する方向)、かつ、X方向(スキャン方向)に配列された状態に塗布されている(このスキャン工程で塗布された画素gsは濃い色で示している。)。そして、同色の画素gsはY方向に3つ塗布されており、異色の画素gsはX方向及びY方向に離れた位置(X方向とY方向の合成方向に離れた位置)に塗布されている。すなわち、異色の画素gsは、X方向に1段ずつずれた状態で、Y方向に延びるように塗布されており、ほぼ階段形状に塗布されている。そして、このような塗布状態が必要塗布幅Wに亘って形成されている。したがって、このスキャン工程で塗布された画素gsどれをとっても、その周囲に同色、又は、異色の画素gsがほぼ同じパターンで必ず存在していることにより、その周囲の画素gsからのインクの蒸発量がほぼ同じになる。これにより、塗布後におけるいずれの画素gsも乾燥が均一に進行する。 Also in this scanning process, as shown in FIG. 16, the pixels gs that are sequentially colored in three colors are arranged in the Y direction (direction perpendicular to the scanning direction) and the X direction (scanning direction), as in the previous scanning process. The pixels gs applied in this scanning process are shown in a dark color. Three pixels gs of the same color are applied in the Y direction, and pixels gs of different colors are applied at positions separated in the X direction and the Y direction (positions separated in the combined direction of the X direction and the Y direction). . That is, the different color pixels gs are applied so as to extend in the Y direction while being shifted by one step in the X direction, and are applied in a substantially staircase shape. Such an application state is formed over the required application width W. Therefore, any pixel gs applied in this scanning step always has the same color or different color pixels gs in the same pattern, and the amount of ink evaporated from the surrounding pixels gs. Are almost the same. Thereby, drying progresses uniformly in any pixel gs after application.
 インク吐出部5がガラス基板Kにおける上流側の塗布終了位置に到達したら(ステップS44でイエス)、第1リニアモータ43は、復動方向への塗布ガントリー4の走行を停止させる。これによりインク塗布部5は停止する。第2リニアモータ45は、図8の矢印Y2に示すように、インク吐出部5をY方向に所定ピッチPだけシフトさせる(シフト工程)。このピッチ量は、上記の往動終了時と同じ所定のピッチPである。(ステップS45参照)。 When the ink discharge unit 5 reaches the upstream application end position on the glass substrate K (Yes in step S44), the first linear motor 43 stops the application gantry 4 from traveling in the backward movement direction. Thereby, the ink application part 5 stops. The second linear motor 45 shifts the ink ejection part 5 by a predetermined pitch P in the Y direction as indicated by an arrow Y2 in FIG. 8 (shift process). This pitch amount is the same predetermined pitch P as that at the end of the forward movement. (See step S45).
 〔2回目の往動による塗布〕
1回目の往動による塗布動作と同様に、再びスキャン工程が開始され、図8の矢印X3に示すようにインク塗布部5を往動させながら塗布する。塗布後の状態を図17に示す。図17に示すように、このスキャン工程により、カラーフィルタ形成領域Rの画素gsすべてにインクが塗布される。すなわち、ヘッドモジュール52が必要塗布幅Wよりも2ピッチ分長く設けられているため、2回のシフト工程によりインク吐出部5がY方向に2ピッチ移動しても、カラーフィルタ形成領域Rの全ての画素gsに対して過不足なくインクが塗布される。なお、カラーフィルタ形成領域R以外の領域の画素(図15~図17の左側)については、ヘッドモジュール52に対しインクの吐出を停止させることで塗布しないようにすることもできる。
[Application by the second forward movement]
Similar to the application operation by the first forward movement, the scanning process is started again, and the ink application portion 5 is applied while moving forward as indicated by an arrow X3 in FIG. The state after application is shown in FIG. As shown in FIG. 17, ink is applied to all the pixels gs in the color filter forming region R by this scanning process. In other words, since the head module 52 is provided by two pitches longer than the required coating width W, even if the ink discharge portion 5 moves two pitches in the Y direction by two shift steps, the entire color filter forming region R Ink is applied to the pixel gs without any excess or deficiency. It should be noted that the pixels other than the color filter forming region R (the left side in FIGS. 15 to 17) can be prevented from being applied by stopping the ink ejection to the head module 52.
 以上のように、1回目の往動(図8の矢印X1参照)、1回目の復動(図8の矢印X2参照)、2回目の往動(図8の矢印X3参照)というように合計3回のスキャンを行うことで、目的とする色のインクを塗布工程が完了する。 As described above, the first forward movement (see arrow X1 in FIG. 8), the first backward movement (see arrow X2 in FIG. 8), and the second forward movement (see arrow X3 in FIG. 8) By performing the scan three times, the application process of the target color ink is completed.
 こうして、数回の塗布ガントリーの移動によるヘッドブロック50のガラス基材Kに形成されるカラーフィルタ上をスキャンすることにより有効画素gsの全域にインクを塗布したカラーフィルタにおいて、全ての画素gsに充填されたインクの乾燥後の表面の断面形状を同等とすることができる。 In this way, all the pixels gs are filled in the color filter in which ink is applied to the entire area of the effective pixels gs by scanning the color filter formed on the glass substrate K of the head block 50 by the movement of the coating gantry several times. The cross-sectional shape of the surface of the ink after drying can be made equivalent.
 つまり、カラーフィルタ全面で外光反射を見ても塗布されたインク表面の乾燥後の形状が同等に形成されて表面の断面形状が相似形となり、こうして生産されたカラーフィルタでは有効画素gsの全域にわたり、主要な光学特性である透過光量の平均化され、そしてカラーフィルタ表面での外光反射が全面で均一化されて、外光反射光に明暗の部分的な偏在の無い、高品位なカラーフィルタとなる。 That is, even if the reflection of external light is observed on the entire surface of the color filter, the shape of the applied ink surface after drying is equivalently formed, and the cross-sectional shape of the surface becomes similar. In the color filter thus produced, the entire area of the effective pixels gs is obtained. A high-quality color in which the amount of transmitted light, which is the main optical characteristic, is averaged, and the external light reflection on the surface of the color filter is made uniform over the entire surface, and there is no partial uneven distribution of light and darkness in the external light reflected light. It becomes a filter.
 なお、上記各塗布動作中は、インクの塗布動作に伴い、カメラガントリー6及び第3リニアモータの駆動によりスキャンカメラ8がXY方向に移動しながら、テストパターンとして塗布した液滴を撮像し、画像データを制御装置10に送る。制御装置10は、送られた画像データに基づき、適当な画像処理により、インクの着弾状態を評価する。不良箇所が著しい場合は、このガラス基板Kは後段工程において不良品として排除される。 In addition, during each of the above-described application operations, the ink droplets applied as a test pattern are imaged while the scan camera 8 moves in the XY directions by driving the camera gantry 6 and the third linear motor in accordance with the ink application operation. Data is sent to the control device 10. The control device 10 evaluates the landing state of the ink by appropriate image processing based on the sent image data. If the defective portion is remarkable, the glass substrate K is excluded as a defective product in a subsequent process.
 〔塗布後処置(ステップS5)〕
まずサーボモータ機構44は、水平枠部42を上昇駆動することにより、インク吐出部5を上昇させる。これにより、インクジェットノズル54の吐出口とガラス基板Kの表面とを離隔させる。続いて第1リニアモータ43は、塗布ガントリー4を復動制御し、インク吐出部5を吸着ステージ3の上流端(原点)へ退避させる。
[Post-treatment (Step S5)]
First, the servo motor mechanism 44 raises the ink discharge portion 5 by driving the horizontal frame portion 42 upward. Thereby, the discharge port of the inkjet nozzle 54 and the surface of the glass substrate K are separated. Subsequently, the first linear motor 43 controls the application gantry 4 to move backward to retract the ink discharge unit 5 to the upstream end (origin) of the suction stage 3.
 〔基板搬出(ステップS6)〕
吸着ステージ3は真空吸着孔32に生じていた真空圧を破壊する。リフトピン34がリフトピン孔33から突出し、ガラス基板Kを支承した状態で最上位置まで上昇する。基板搬送ロボット9はインク塗布済みのガラス基板Kを可動支持台93により受取り、次工程である例えば減圧乾燥工程へと引き渡す。
[Substrate unloading (step S6)]
The suction stage 3 breaks the vacuum pressure generated in the vacuum suction hole 32. The lift pins 34 protrude from the lift pin holes 33 and ascend to the uppermost position while supporting the glass substrate K. The substrate transfer robot 9 receives the glass substrate K on which ink has been applied by the movable support base 93 and delivers it to the next step, for example, a reduced pressure drying step.
 本発明のカラーフィルタ製造装置1によると、塗布材料としてのインクの塗布対象物であるカラーフィルタに適用することによって、その有効領域の全域にわたり、主要な光学特性である透過光量の平均化、及びインクの乾燥後の表面形状も平坦で平均化が達成されて、カラーフィルタ表面の外光反射が全面で均一化され明暗の部分的な偏在の無い、高品位なカラーフィルタを実現できる。 According to the color filter manufacturing apparatus 1 of the present invention, by applying to a color filter that is an application target of ink as a coating material, averaging the amount of transmitted light that is a main optical characteristic over the entire effective area, and The surface shape of the ink after drying is flat and averaged, and the reflection of external light on the surface of the color filter is made uniform over the entire surface, so that a high-quality color filter free from partial unevenness of light and dark can be realized.
 カラーフィルタとしてインクを塗布した画素gs断面形状の安定性を示すものとして、この装置による、インクの塗布をしたカラーフィルタの画素gs表面の凹凸を触針式の表面粗さ計で測定した測定結果を図11Aに、他の方法で塗布した場合の計測結果を図11Bに示した。本発明によるカラーフィルタの断面の計測結果のグラフ図11Aは形状が平均化されていて、他の方式の断面形状の計測結果のグラフ図11Bと明らかな優位差がある。 Measurement results obtained by measuring the unevenness of the surface of the pixel gs of the color filter coated with ink with a stylus type surface roughness meter using this apparatus as an indication of the stability of the cross-sectional shape of the pixel gs coated with ink as a color filter. FIG. 11A shows the measurement results when applied by another method. The graph of the measurement result of the cross section of the color filter according to the present invention, FIG. 11A, has an average shape, and is clearly different from the graph of FIG. 11B of the measurement result of the cross-sectional shape of another method.
 以上、本発明の実施の形態について説明を行ったが、上に開示した実施の形態は、あくまで例示であって、本発明の範囲はこの実施の形態に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、更に特許請求の範囲と均等の意味及び範囲内でのすべての変更を含むことが意図される。 As mentioned above, although embodiment of this invention was described, embodiment disclosed above is an illustration to the last, Comprising: The scope of the present invention is not limited to this embodiment. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明の実施例として、37インチサイズの液晶カラーTV用カラーフィルタを一例として説明する。
この37インチサイズの映像機器の画面サイズは縦横比16:9のものでは、横820mmで縦460mmとなり、この場合カラーフィルタの必要塗布幅「W」として、この縦の長さ460mmとする。
As an embodiment of the present invention, a color filter for a liquid crystal color TV having a 37-inch size will be described as an example.
When the screen size of this 37-inch video device has an aspect ratio of 16: 9, the screen is 820 mm wide and 460 mm long. In this case, the required application width “W” of the color filter is 460 mm.
 ヘッドブロック50には、赤(R),緑(G)、青(B)の「N」が3である3色のインクジェットヘッド51の有効塗布幅を「P」として、その長さを36mmとするとカラーフィルタの必要塗布幅「W」に対して15個のインクジェットモジュールを配列する。ヘッドブロック50の1回目の往動(X1矢方向移動)に続く2回目以降の塗布動作前にはヘッドブロック50のY方向にピッチ36mm移動させる。 The head block 50 has a red (R), green (G), and blue (B) “N” where the “N” is 3, the effective application width of the ink jet head 51 is “P”, and the length is 36 mm. Then, 15 inkjet modules are arranged for the required application width “W” of the color filter. The head block 50 is moved by a pitch of 36 mm in the Y direction before the second and subsequent coating operations following the first forward movement (movement in the X1 arrow direction) of the head block 50.
カラーフィルタの原色については最近の色再現性等の多様な要求からレッド、グリーン、ブルーの3色に加え、シアン、マゼンタ、イエローの3色計6色を使用したフィルターも現れているが、ここでは、他の実施例の一つとして「N」を4とする4色によるカラーフィルタを製造するヘッドブロック50について説明する。 With regard to the primary colors of color filters, filters that use three colors, cyan, magenta, and yellow, in addition to the three colors of red, green, and blue are also appearing due to various demands such as recent color reproducibility. Now, a head block 50 for manufacturing a color filter with four colors in which “N” is 4 will be described as another embodiment.
 図12により、この場合の、画素gsの全幅と各色(この例では赤(R)、緑(G)、青(B)、黄(Y))のヘッドブロック50の配置を示す。カラーフィルタへの各色の塗布は、図12のように、赤(R)、緑(G)、青(B)の3色の塗布に加え、1色増えた黄(Y)のピッチP分スキャン方向にヘッドブロックの長さLが増え、またその増えた1つの色の補完の為にスキャン方向と直交方向へのシフトの工程が1回増やす塗布装置の動作で、カラーフィルタの有効画素gs全域への塗布が完了できる。 FIG. 12 shows the total width of the pixel gs and the arrangement of the head blocks 50 of each color (in this example, red (R), green (G), blue (B), and yellow (Y)) in this case. As shown in FIG. 12, each color is applied to the color filter by scanning the pitch P of yellow (Y) increased by one color in addition to the application of three colors of red (R), green (G), and blue (B). The effective length gs of the color filter is increased by the operation of the coating apparatus in which the length L of the head block increases in the direction and the shift process in the direction orthogonal to the scanning direction increases once to complement the increased one color. Application to can be completed.
 この4ヘッド構成においては、図12から判るように増えた黄(Y)の配置を他の色の中間に配置することができ、スキャン方向への装置の大きさを変えることなく、ヘッドモジュール1個分の幅が大きくするだけで済む長所がある。
 
In this four-head configuration, as can be seen from FIG. 12, the increased yellow (Y) arrangement can be arranged in the middle of other colors, and the head module 1 can be changed without changing the size of the apparatus in the scanning direction. There is an advantage that only the width of each piece needs to be increased.

Claims (9)

  1.  単一色のインクを吐出するヘッドモジュールを複数設けてN色(N=1,2,3・・)のインクを塗布できるヘッドブロックを備えており、このヘッドブロックと基板とをスキャン方向に相対的に移動させつつ、前記ヘッドブロックからN色のインクを吐出させることによりカラーフィルタを製造する塗布装置であって、
     前記ヘッドブロックには、前記ヘッドモジュールが、N色それぞれ順次色を変えて所定周期でスキャン方向と直交する方向に、所定のピッチPで長さLだけ配列されており、
     この長さLと、カラーフィルタを形成するカラーフィルタ形成領域におけるスキャン方向と直交する方向の必要塗布幅Wとの関係が
     L≧W+(N-1)×P  (N=1,2,3・・)
    を満たすことを特徴とする塗布装置。
    A plurality of head modules that eject ink of a single color are provided, and a head block that can apply N-color (N = 1, 2, 3,...) Ink is provided. The head block and the substrate are relative to each other in the scanning direction. A coating device for manufacturing a color filter by ejecting N color ink from the head block,
    In the head block, the head modules are arranged by a length L at a predetermined pitch P in a direction orthogonal to the scan direction at predetermined intervals by sequentially changing the colors of each of the N colors.
    The relationship between this length L and the required coating width W in the direction perpendicular to the scanning direction in the color filter forming region for forming the color filter is L ≧ W + (N−1) × P (N = 1, 2, 3,.・)
    A coating apparatus characterized by satisfying
  2.  複数の前記ヘッドモジュールは、スキャン方向と直交する方向に配列されるヘッドモジュール同士がピッチPで配列され、かつ、これらのヘッドモジュール同士がスキャン方向に隣接して配置されることにより、階段状に並べて配置されたヘッドモジュール群を形成し、前記ヘッドブロックには、前記ヘッドモジュール群がスキャン方向と直交する方向に繰り返し配列されていることを特徴とする請求の範囲1に記載の塗布装置。 The plurality of head modules are arranged stepwise by arranging head modules arranged in a direction orthogonal to the scanning direction at a pitch P and arranging these head modules adjacent to each other in the scanning direction. 2. The coating apparatus according to claim 1, wherein a head module group arranged side by side is formed, and the head module group is repeatedly arranged in the direction orthogonal to the scanning direction on the head block.
  3.  前記ヘッドモジュールには、インクを吐出するインクジェットノズルが複数設けられており、スキャン方向と直交する方向に配列されるヘッドモジュール同士は、前記インクジェットノズルのインクの吐出領域がスキャン方向から見て重複する状態で配置されていることを特徴とする請求の範囲1又は2に記載の塗布装置。 The head module is provided with a plurality of ink jet nozzles for ejecting ink. In the head modules arranged in a direction perpendicular to the scanning direction, the ink ejection areas of the ink jet nozzles overlap when viewed from the scanning direction. The coating apparatus according to claim 1 or 2, wherein the coating apparatus is arranged in a state.
  4.  単一色のインクを吐出するヘッドモジュールを複数設けてN色(N=1,2,3・・)のインクを塗布できるヘッドブロックを備えており、このヘッドブロックと基板とをスキャン方向に相対的に移動させつつ、前記ヘッドブロックからN色のインクを吐出させることによりカラーフィルタを製造する塗布方法であって、
     前記ヘッドブロックには、前記ヘッドモジュールが、N色それぞれ順次色を変えて所定周期でスキャン方向と直交する方向に、所定のピッチPで長さLだけ配列されており、
     この長さLと、カラーフィルタを形成するカラーフィルタ形成領域におけるスキャン方向と直交する方向の必要塗布幅Wとの関係が
     L≧W+(N-1)×P  (N=1,2,3・・)
    を満たすように形成されており、
     ヘッドブロックと基板とをスキャン方向に相対的に移動させつつ前記ヘッドモジュールからインクを吐出させることにより、異色のインクで塗布された画素同士が、スキャン方向と直交する方向、かつ、スキャン方向に隣り合う位置に、必要塗布幅Wに亘って、N色順次色を変えて配置されるように塗布されるスキャン工程を有することを特徴とする塗布方法。
    A plurality of head modules that eject ink of a single color are provided, and a head block that can apply N-color (N = 1, 2, 3,...) Ink is provided. The head block and the substrate are relative to each other in the scanning direction. An application method for producing a color filter by ejecting N color ink from the head block,
    In the head block, the head modules are arranged by a length L at a predetermined pitch P in a direction orthogonal to the scan direction at predetermined intervals by sequentially changing the colors of each of the N colors.
    The relationship between this length L and the required coating width W in the direction perpendicular to the scanning direction in the color filter forming region for forming the color filter is L ≧ W + (N−1) × P (N = 1, 2, 3,.・)
    Is formed to satisfy
    By ejecting ink from the head module while relatively moving the head block and the substrate in the scanning direction, pixels coated with different color inks are adjacent to each other in the direction orthogonal to the scanning direction and in the scanning direction. A coating method comprising: a scanning step of coating so that N colors are sequentially changed over a necessary coating width W at a matching position.
  5.  前記スキャン工程と、前記ヘッドブロックをスキャン方向と直交する方向に移動させるシフト工程と、再度前記スキャン工程とを順次繰り返すことにより、先のスキャン工程で特定色のインクが塗布された画素に隣接する画素が、次のスキャン工程で同色のインクが塗布されることにより、同色のインクが塗布された画素がスキャン方向と直交する方向に延びて形成されることを特徴とする請求の範囲4に記載の塗布方法。 By sequentially repeating the scan process, the shift process for moving the head block in a direction perpendicular to the scan direction, and the scan process again, the pixel is adjacent to the pixel to which the ink of the specific color is applied in the previous scan process. 5. The pixel according to claim 4, wherein the pixel is formed by applying the same color ink in the next scanning step so that the pixel to which the same color ink is applied extends in a direction perpendicular to the scanning direction. Application method.
  6. 複数のインクジェットヘッド(51)で、原色数(N)のインクを塗布してカラーフィルタを製造する塗布装置において、
    同じ色のインクを供給する1つ以上のインクジェットヘッド(51)でヘッドモジュール(52)を構成し、該ヘッドモジュール(52)を少なくともヘッドモジュール(52)のインク吐出幅の両端が隣接あるいは重なり合うようにピッチPでスキャン方向に配列し、これらのヘッドモジュール(52)をスキャン方向と直交方向に連続して長さLだけ配列したヘッドブロック(50)を構成し、該ヘッドブロック(50)のヘッドモジュール(52)毎に順次色を変えてインクを供給し、かつ
    カラーフィルタの必要塗布幅Wに対して、Lが次式であることを特徴とする塗布装置。
    〔式1〕
    L≧W+(N-1)×P (N=1,2,3・・)
    In a coating apparatus for manufacturing a color filter by applying a number of primary colors (N) with a plurality of inkjet heads (51),
    One or more inkjet heads (51) for supplying ink of the same color constitute a head module (52), and at least both ends of the ink discharge width of the head module (52) are adjacent or overlap each other. Are arranged in the scanning direction at a pitch P, and a head block (50) in which these head modules (52) are continuously arranged in the direction orthogonal to the scanning direction by a length L is formed, and the head of the head block (50) A coating apparatus which supplies ink by changing the color sequentially for each module (52), and L is the following formula with respect to the required coating width W of the color filter.
    [Formula 1]
    L ≧ W + (N−1) × P (N = 1, 2, 3,...)
  7. ヘッドモジュール(52)の配列ピッチPが次式であることを特徴とする請求の範囲6に記載の塗布装置。
    〔式2〕
    P≦(1/N)×W (N=1,2,3・・)
    The coating apparatus according to claim 6, wherein the arrangement pitch P of the head modules (52) is:
    [Formula 2]
    P ≦ (1 / N) × W (N = 1, 2, 3,...)
  8. 複数のインクジェットヘッド(51)で、原色数(N)のインクを塗布してカラーフィルタを製造する塗布装置において、
    同じ色のインクを供給する1つ以上のインクジェットヘッド(51)でヘッドモジュール(52)を構成し、該ヘッドモジュール(52)を少なくともヘッドモジュール(52)のインク吐出幅の両端が隣接あるいは重なり合うようにピッチPでスキャン方向に配列し、これらのヘッドモジュール(52)をスキャン方向と直交方向に連続して長さLだけ配列したヘッドブロック(50)を構成し、該ヘッドブロック(50)のヘッドモジュール(52)毎に順次色を変えてインクを供給し、かつ
    カラーフィルタの必要塗布幅Wに対して、Lが次式とし
    〔式1〕
    L≧W+(N-1)×P (N=1,2,3・・)
    スキャン毎にピッチPだけスキャン方向と直交方向にシフトし、N回スキャンすることを特徴とする塗布方法。
    In a coating apparatus for manufacturing a color filter by applying a number of primary colors (N) with a plurality of inkjet heads (51),
    One or more inkjet heads (51) for supplying ink of the same color constitute a head module (52), and at least both ends of the ink discharge width of the head module (52) are adjacent or overlap each other. Are arranged in the scanning direction at a pitch P, and a head block (50) in which these head modules (52) are continuously arranged in the direction orthogonal to the scanning direction by a length L is formed, and the head of the head block (50) For each module (52), the color is sequentially changed and ink is supplied, and for the required application width W of the color filter, L is the following equation [Equation 1]
    L ≧ W + (N−1) × P (N = 1, 2, 3,...)
    A coating method characterized by shifting by a pitch P in a direction orthogonal to the scanning direction for each scan and scanning N times.
  9. ヘッドモジュール(52)の配列ピッチPが次式であることを特徴とする請求の範囲8に記載の塗布方法。
    〔式2〕
    P≦(1/N)×W (N=1,2,3・・)
     
    The coating method according to claim 8, wherein the arrangement pitch P of the head modules (52) is:
    [Formula 2]
    P ≦ (1 / N) × W (N = 1, 2, 3,...)
PCT/JP2009/051765 2008-02-04 2009-02-03 Application device and application method WO2009099051A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801037246A CN101932958B (en) 2008-02-04 2009-02-03 Application device and application method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-024412 2008-02-04
JP2008024412 2008-02-04

Publications (1)

Publication Number Publication Date
WO2009099051A1 true WO2009099051A1 (en) 2009-08-13

Family

ID=40952126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051765 WO2009099051A1 (en) 2008-02-04 2009-02-03 Application device and application method

Country Status (5)

Country Link
JP (1) JP2009211058A (en)
KR (1) KR20100119857A (en)
CN (1) CN101932958B (en)
TW (1) TW200950889A (en)
WO (1) WO2009099051A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH701535A1 (en) * 2009-07-17 2011-01-31 Landqart Device for applying color effect pigments.
JP2012000553A (en) * 2010-06-15 2012-01-05 Hitachi Plant Technologies Ltd Apparatus and method for inkjet coating
CN103435267B (en) * 2013-08-27 2015-11-25 深圳市华星光电技术有限公司 A kind of form color filter substrate method and corresponding spray equipment
WO2017077696A1 (en) * 2015-11-06 2017-05-11 三洋電機株式会社 Method for manufacturing electrode plate for power storage apparatuses, and coating apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255335A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Method and apparatus for discharging liquid substance, manufacture method for color filter and color filter, liquid crystal display device, manufacture method for electroluminescence device, electroluminescence device, manufacture method for plasma display panel, plasma display panel, and electronic equipment
JP2006102580A (en) * 2004-10-01 2006-04-20 Seiko Epson Corp Droplet discharge apparatus, method for manufacturing panel, image display device and electronic equipment
JP2006346575A (en) * 2005-06-16 2006-12-28 Seiko Epson Corp Carriage, droplet discharge apparatus, droplet discharge method, production method of electro-optic apparatus, electro-optic apparatus and electronic equipment
WO2007132727A1 (en) * 2006-05-15 2007-11-22 Toray Engineering Co., Ltd. Method and apparatus for manufacturing color filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075883B2 (en) * 2004-05-12 2008-04-16 セイコーエプソン株式会社 Droplet ejection device, electro-optical device manufacturing method, and electro-optical device
JP3925526B2 (en) * 2004-10-01 2007-06-06 セイコーエプソン株式会社 Droplet ejection device, panel manufacturing method, image display device, and electronic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255335A (en) * 2003-02-27 2004-09-16 Seiko Epson Corp Method and apparatus for discharging liquid substance, manufacture method for color filter and color filter, liquid crystal display device, manufacture method for electroluminescence device, electroluminescence device, manufacture method for plasma display panel, plasma display panel, and electronic equipment
JP2006102580A (en) * 2004-10-01 2006-04-20 Seiko Epson Corp Droplet discharge apparatus, method for manufacturing panel, image display device and electronic equipment
JP2006346575A (en) * 2005-06-16 2006-12-28 Seiko Epson Corp Carriage, droplet discharge apparatus, droplet discharge method, production method of electro-optic apparatus, electro-optic apparatus and electronic equipment
WO2007132727A1 (en) * 2006-05-15 2007-11-22 Toray Engineering Co., Ltd. Method and apparatus for manufacturing color filter

Also Published As

Publication number Publication date
CN101932958B (en) 2012-08-29
CN101932958A (en) 2010-12-29
KR20100119857A (en) 2010-11-11
JP2009211058A (en) 2009-09-17
TW200950889A (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US20060093751A1 (en) System and methods for inkjet printing for flat panel displays
EP1949975A1 (en) Ink jetting device and ink jetting method
US8186803B2 (en) Method for inspecting droplet discharge head, device for inspecting droplet discharge head, and droplet discharge device
JP2007298961A (en) Method and apparatus for inkjet printing using multiple sets of print heads
JPWO2007132726A1 (en) Color filter manufacturing method and apparatus
WO2009099051A1 (en) Application device and application method
JP5400372B2 (en) Coating apparatus and coating method
JP2004141758A (en) Method of correcting dot position of droplet discharge device, alignment mask, droplet discharge method, electro-optical device and its production method, and an electronic equipment
JP2010017683A (en) Droplet coating apparatus and droplet coating method
TW201334982A (en) Ink-jet printing apparatus and ink-jet printing method
JP5475957B2 (en) Coating device
JP2010026181A (en) Droplet applying device and droplet applying method
JP2009175168A (en) Application equipment and application method
US8182066B2 (en) Liquid body discharge device and method for discharging liquid body
JP2001286812A (en) Application method of coloring agent
KR101214352B1 (en) Method and apparatus for manufacturing color filter
JP2009109799A (en) Coating device and coating method
CN107850710A (en) The manufacture method of colour filter and colour filter
JP2010266636A (en) Method for producing color filter substrate, method for producing color filter, and color filter substrate
JP2011067765A (en) Coating method
TW200914141A (en) Ink jet head bar and application apparatus using the same
JP5384816B2 (en) Droplet coating apparatus and droplet coating method
JP2007263990A (en) Method of manufacturing color filter
JP2010243802A (en) Droplet discharge apparatus, method of manufacturing the same and method of manufacturing color filter
JP2010204186A (en) Apparatus, and method for manufacturing color filter, coating device and coating method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103724.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09708639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107013362

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09708639

Country of ref document: EP

Kind code of ref document: A1