WO2007132727A1 - Method and apparatus for manufacturing color filter - Google Patents

Method and apparatus for manufacturing color filter Download PDF

Info

Publication number
WO2007132727A1
WO2007132727A1 PCT/JP2007/059653 JP2007059653W WO2007132727A1 WO 2007132727 A1 WO2007132727 A1 WO 2007132727A1 JP 2007059653 W JP2007059653 W JP 2007059653W WO 2007132727 A1 WO2007132727 A1 WO 2007132727A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
inkjet
color filter
pixel
color material
Prior art date
Application number
PCT/JP2007/059653
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Higashino
Toshio Yasuda
Shinya Izumida
Junichi Uehara
Takashi Iwade
Original Assignee
Toray Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co., Ltd. filed Critical Toray Engineering Co., Ltd.
Priority to CN2007800179560A priority Critical patent/CN101449186B/en
Priority to JP2008515510A priority patent/JP5243954B2/en
Publication of WO2007132727A1 publication Critical patent/WO2007132727A1/en
Priority to KR1020087030392A priority patent/KR101214352B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/09Ink jet technology used for manufacturing optical filters

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a color filter on a glass substrate using an ink jet nozzle.
  • Patent Document 1 a method for producing a color filter on a glass substrate using an ink jet nozzle has been proposed.
  • a transparent colorant-receiving layer is provided on a transparent substrate, and regions that should be between pixels of different colors are made non-colored regions having color repellent properties and should have the same color.
  • the color filter is manufactured by coloring the plurality of pixel portions that should have the same color, including the inter-pixel region, by adding a coloring material without any breaks.
  • an inkjet head is driven in a first direction by a first moving mechanism, and a color filter substrate is placed by a second moving mechanism.
  • the mounting table is moved in a second direction different from the first direction, and the first moving mechanism is moved along the column of nozzle force S filter elements so that the ink droplets discharged from the nozzles are discharged.
  • Patent Document 1 JP-A-9 68611
  • Patent Document 2 Japanese Patent Laid-Open No. 10-260307
  • the entire screen is drawn by performing main scanning in a straight line in parallel so that the pixel portions to be colored in the same color are arranged in the same direction as the main scanning direction. Since the pixel arrangement is designed in this way, when the color filter and the glass substrate are enlarged, the color material discharged from the inkjet nozzle is applied to the center of the pixel area over the entire main scanning range. It is difficult to position, and in fact, the desired color material is not applied to some pixel areas, resulting in a high possibility of producing defective products. There is.
  • the present invention has been made in view of the above-described problems, and a color material discharged from an inkjet nozzle is disposed at the center of a pixel region regardless of the size of a glass substrate regardless of the screen size. It is an object of the present invention to provide a color filter manufacturing method and apparatus capable of being applied to the surface.
  • the ink jet head bar in which a plurality of ink jet heads each having a plurality of ink jet nozzles are arranged and the glass substrate on which the black matrix is formed are relatively moved.
  • a direction parallel to the longitudinal direction of the inkjet head bar is set to the longitudinal direction of the pixels, and the color material for each inkjet nozzle
  • ejection / non-ejection is set in advance, and ejection of the color material of the inkjet nozzle is controlled based on the relative position information of the glass substrate with respect to the ink jet nozzle and the setting information.
  • the ink-jet head bar in which a plurality of ink-jet heads each having a plurality of ink-jet nozzles are arranged and the glass substrate on which the black matrix is formed are relatively moved.
  • the direction parallel to the longitudinal direction of the inkjet head bar is set as the arrangement direction of pixels of the same color, and the color for each inkjet nozzle is set.
  • Material discharge Z is a method in which non-discharge Z is set in advance, and discharge of the color material of the ink jet nozzle is controlled based on the relative position information of the glass substrate with respect to the ink jet nozzle and the setting information.
  • the color filter manufacturing method according to claim 3 is a method in which the discharge / non-discharge setting is performed based on coordinates in the relative movement direction of the glass substrate.
  • the number N of inkjet nozzles facing one pixel is N.
  • the number of excess nozzles n, the amount Q per droplet of ink jet nozzle, Q, the number of ejections M within the pixel in the relative movement direction, and the amount V of color material applied to each pixel V It is the method which has.
  • the color filter manufacturing method according to claim 5 is a method in which the setting of ejection / non-ejection is performed based on coordinates in a longitudinal direction of the pixel of the glass substrate.
  • the color filter manufacturing method according to claim 6 is a method of moving the ink jet head bar (5) in the longitudinal direction every time the relative movement is finished, and the amount of movement in the longitudinal direction is the longitudinal direction. This is a value obtained by adding the amount of movement in which the color material application areas before and after the movement of each other do not overlap each other and the longitudinal pitch of the pixels.
  • the color filter manufacturing method according to claim 7 is a method of changing the discharge / non-discharge setting of the color material for each ink jet nozzle (52) for each relative movement.
  • the color filter manufacturing apparatus is a glass substrate having a support member for supporting an ink jet head bar in which a plurality of ink jet heads each having a plurality of ink jet nozzles are arranged, and a black matrix formed on the surface.
  • a suction table for sucking and holding, a first moving means for relatively moving the ink jet head bar and the glass substrate while maintaining a predetermined gap, and the inkjet head bar and the glass substrate.
  • a color filter manufacturing apparatus comprising: a second moving means for moving in a direction perpendicular to the moving direction by the moving means; and a first storage means for storing the dimension data by inputting the dimensions of the glass substrate and the ink jet nozzle.
  • the apparatus includes a detection unit that detects a relative position between the glass substrate and the inkjet bar, and a discharge control unit that controls the discharge of the color material for each inkjet nozzle based on the detected relative position.
  • the coating region of the inkjet head bar in the direction orthogonal to the moving direction by the first moving means is orthogonal to the moving direction of the glass substrate by the first moving means. It is set larger than the coating area in the direction.
  • the color filter manufacturing apparatus wherein the glass substrate pixel in the relative movement direction and the positional information of the inkjet nozzle are input, and the movement direction of the glass substrate and the inkjet head bar by the first moving means.
  • the first calculation means for calculating / judging the discharge / non-discharge of the color material of each inkjet nozzle for each relative position in the first calculation means It further includes second storage means for storing the calculation / judgment result.
  • the color filter manufacturing apparatus is orthogonal to the movement direction of each inkjet nozzle by the first moving means, based on the input glass substrate pixel and the inkjet nozzle position information in the relative movement direction.
  • the image processing apparatus further includes second calculation means for calculating / determining discharge / non-discharge of the color material in the direction and third storage means for storing a calculation / determination result by the second calculation means.
  • the color material discharged from the ink jet nozzle can be applied to a portion to be applied in a predetermined pixel region. In other words, it is possible to prevent the color material from being applied to the pixel to which other color material is to be applied and the black matrix around the pixel.
  • the color material discharged from the ink jet nozzle can be applied to a place where a predetermined pixel region is to be applied. In other words, it is possible to prevent the color material from being applied to the pixel to which other color material is to be applied and the black matrix around the pixel.
  • the color material discharged from the ink jet nozzle is substantially the center of the pixel width in the application direction of the predetermined pixel region in the relative movement direction of the ink jet head bar and the glass substrate. Can be applied.
  • the ink jet nozzles to be ejected can be selected and combined, and the coating unevenness can be dispersed.
  • the color material discharged from the inkjet nozzle is applied to a predetermined position in a direction orthogonal to the relative movement between the inkjet head bar and the glass substrate in the pixel region. be able to. In other words, it is possible to prevent the color material from being applied to the boundary between adjacent pixel regions of the same color, that is, the black matrix.
  • the color filter manufacturing method according to claim 6 can achieve uniform application of the color material in the pixel region by changing the application position of the color material by the inkjet nozzle over the pixel region. Yes, and by changing the combination of the pixel area and the nose hole, Color unevenness due to variations in ejection from the nozzle holes can be suppressed.
  • the relative position between the ink jet head bar and the glass substrate is changed for each relative movement, and the color material is applied to a desired position in the pixel region. it can.
  • the color filter manufacturing apparatus can apply the color material discharged from the ink jet nozzle to the central portion of the pixel region regardless of the size of the glass substrate regardless of the screen size.
  • the color filter manufacturing apparatus applies the color material to all the pixel regions even when the inkjet head bar is moved in a direction orthogonal to the relative movement with the glass substrate. Can do.
  • the color filter manufacturing apparatus can apply the color material only to a predetermined pixel region in the application direction regardless of the size of the glass substrate regardless of the size of the glass substrate.
  • the color filter manufacturing apparatus avoids a predetermined non-application area in a direction orthogonal to the application direction, regardless of the size of the glass substrate, regardless of the screen size, and only the predetermined pixel area.
  • a color material can be applied to the surface.
  • FIG. 1 is a perspective view showing an embodiment of a color filter manufacturing apparatus of the present invention.
  • This color filter manufacturing apparatus supports a suction table 3, a coating gantry 4, a camera gantry 6 and the like on a machine base 1.
  • the suction table 3 holds the glass substrate 2 by suction.
  • the suction table 3 is rotationally driven in the ⁇ direction by a drive mechanism and a guide mechanism (not shown). Driven in the Y direction.
  • the application gantry 4 holds the inkjet head bar 5, and is driven in the X direction by a drive mechanism and a guide mechanism (not shown) in order to apply a color material to the glass substrate 2.
  • the head bar 5 is driven in the Z direction and the Y direction by a drive mechanism and a guide mechanism (not shown).
  • the camera gantry 6 holds an alignment camera 7, 8 for alignment of the glass substrate 2 and a scan camera 9 for detecting the impact mark of the color material in the pixel region of the glass substrate 2. For alignment and pixel detection, it is driven in the X direction by a drive mechanism and guide mechanism (not shown). Further, the alignment cameras 7 and 8 and the scan camera 9 are driven in the Y direction by a drive mechanism and a guide mechanism (not shown).
  • the alignment cameras 7 and 8 detect marks (not shown) on the glass substrate 2, rotate the suction table 3 based on the mark detection results by the alignment cameras 7 and 8, and the Z or Y direction. It is possible to achieve the alignment S of the glass substrate 2 by moving it to the position S.
  • X and Y represent directions orthogonal to each other set to define a plane parallel to the upper surface of the glass substrate 2 held by suction by the suction table 3, and Z is defined by X and Y. This represents the direction perpendicular to the flat surface.
  • FIG. 2 is a schematic view showing the configuration of the inkjet head bar 5.
  • the inkjet head bar 5 is formed by aligning a plurality of inkjet heads 51, and each inkjet head 51 is formed by aligning a plurality of inkjet nozzles 52.
  • the alignment of the plurality of inkjet heads 51 is set such that the intervals in the X direction and the Y direction of all the ink jet nozzles 52 are predetermined intervals.
  • the inkjet nozzles 52 are arranged in an oblique direction with a predetermined number as a unit, the inkjet nozzles 52 are sequentially operated while the coating gantry 4 is driven in the X direction, whereby the inkjet nozzle 52 is moved in the Y direction. Color material can be applied in a linear alignment.
  • the inkjet head bar 5 shown in FIG. 2 is for applying one of red (R), green (G), and blue (B) color materials, and is not particularly shown. Inkjet head bars are also provided for applying other color materials.
  • the inkjet head bar 5 for red (R), green (G), and blue (B) color materials May be lined up.
  • an inkjet head bar that discharges one color material is provided.
  • FIG. 8 is a view showing an example of the arrangement of the inkjet nozzles 52.
  • Fig. 8 shows an ink jet nodule determined by the nozzle lj and the nozzle number, where P is the ink jet nozzle pitch in the Y direction, and L1 to L5 are the ink jet nose row application direction intervals.
  • FIG. 6 is a flowchart for explaining the color filter manufacturing process.
  • step SP1 After the glass substrate 2 is loaded onto the suction table 3 by a loading robot (not shown) in step SP1, the rough positioning of the glass substrate 2 is achieved by the outer shape regulating means (not shown) in step SP2. To do.
  • step SP3 the glass substrate 2 is sucked by the suction table 3, and then the camera gantry 6 is moved forward in step SP4.
  • step SP5 the alignment mark of the glass substrate 2 is detected by the alignment cameras 7 and 8. Alignment of the glass substrate 2 is achieved by positioning in the Y direction and ⁇ direction, and the camera gantry 6 is moved back in step SP6.
  • step SP7 the application gantry 4 is moved forward / backward, and the X coordinate value is output.
  • step SP8 it is determined whether or not the application has been performed to the end based on the X coordinate value. To do.
  • step SP16 the position information (coordinate values) of the holes of the ink jet nozzle 52 is input, and in step SP17, the position information (coordinate values) of all the pixels on the glass substrate 2 is input.
  • step SP18 input other parameters (for example, offset values determined in consideration of the discharge speed of the color material, relative movement speed, control system delay, etc.).
  • step SP19 the data table is calculated, and in step SP20, the calculation result is stored in the discharge data table.
  • FIG. 7 is a diagram showing an example of a discharge data table, in which the number of application strokes, application direction pixel numbers, application direction pixel positions, nozzle rows, application gantry X coordinate values, and discharge patterns for all nozzles are set.
  • X0 is the initial movement amount
  • Pg is the pixel pitch in the Y direction
  • L :! To Ln are intervals in the nose row application direction
  • m is a pixel number in the application direction.
  • the initial movement amount X 0 and the pixel pitch Pg are shown in FIG. Figure 3 shows a state where only the red (R) color material is applied, and the distance to the first pixel in the X direction is the initial movement amount X0, and the red (R) color in the X direction.
  • the interval between the pixels to which the material is applied is the pixel pitch Pg.
  • step SP8 If it is determined in step SP8 that the application has not been performed to the end, in step SP13, the X coordinate output value of the application gantry 4 is compared with the discharge data table, and step SP14 In step S15, it is determined whether or not the X coordinate value matches the ejection data. If they match, in step SP15, the ink jet nozzle 52 is operated to eject ink.
  • FIG. 5 is a schematic diagram for explaining the above processing.
  • the pixel area to be applied can be reduced.
  • Apply ink Specifically, the color material is applied while moving the inkjet nozzle 52 relative to the glass substrate 2, so the discharge speed of the color material, relative movement speed, control system delay, etc. are taken into consideration.
  • the inkjet nozzle 52 for discharging is controlled in consideration of the offset value determined in this way.
  • FIG. 4 is a schematic diagram illustrating control of the inkjet nozzle 52 in the Y direction. This process is not shown in the flowchart, but is shown in FIG. At least a part of force is applied to the Y coordinate range that represents the width of the black matrix extending in the X direction on the glass substrate 2.
  • the inkjet nozzle 52 that does not operate is not operated, and the entire Y coordinate range of the pixel area to be coated is Ink is applied to the pixel area to be applied by operating the ink jet nozzle 52 to enter for ejection.
  • step SP 14 If it is determined in step SP 14 that the X coordinate value and the discharge data do not match, or if the process of step SP15 is performed, the process of step SP7 is performed again.
  • step SP8 If it is determined in step SP8 that the application has been performed to the end, it is determined in step SP9 whether or not a predetermined number of times of application has been performed.
  • step SP9 If it is determined in step SP9 that the number of coatings has not reached the predetermined number, the inkjet head bar 5 is moved in the Y direction, and the process of step SP7 is performed again.
  • the movement distance in the ⁇ ⁇ direction may be a distance determined by the number of droplets of color material applied to one pixel region, for example, but the pixel pitch in the ⁇ direction is relative to this distance. It may be a distance obtained by adding an integer multiple. In the latter case, since the ink jet nozzles eject ink to different pixels, even if there is a variation in the size of the landing marks for each inkjet nozzle, it can be averaged as a whole.
  • the application area of the ink jet head bar 5 is set to be larger than the application area of the glass substrate 2, even if the inkjet head bar 5 is moved as in the latter case, all the pixels are aligned without any problem. Material can be applied.
  • step SP9 If it is determined in step SP9 that the coating has been performed a predetermined number of times, the coating process is terminated in step SP10, and in step SP11, the glass substrate 2 is unloaded by an unillustrated unloading outlet bot or the like. Then, the series of processing ends.
  • the camera gantry 6 is moved forward to detect the mark on the glass substrate 2, and the suction table 3 is operated in accordance with the detection result. Achieve alignment of 2. Then move camera gantry 6 back.
  • the coating gantry 4 is moved forward to perform the first outbound coating.
  • the coating gantry 4 is moved backward in a slightly moving direction to perform the first return coating, and during this time, the camera gantry 6 is moved forward to scan the camera.
  • the second outward coating is performed by moving the coating gantry 4 in a state of being slightly moved in the heel direction.
  • the second return coating is performed by moving the coating gantry 4 backward in a state of being slightly moved in the heel direction.
  • the color material adheres at an interval equal to the interval between the ink jet nozzles 52, so that the color material is not continuously applied.
  • the operation timing of the inkjet nozzle 52 may be controlled while the inkjet head bar 5 is relatively moved, so that the black matrix 21 formed on the glass substrate 2 can be controlled.
  • a color material can be reliably applied in the corresponding pixel region 22.
  • the pitch of inkjet nozzle 52 is 80 ⁇ m
  • the pixel size is 70 to: 100 ⁇ m X 200 to 300 ⁇ m
  • the width of the black matrix is 30 ⁇ m
  • the inkjet nozzle When applying a color material at a pitch of 300 ⁇ m ⁇ (70 ⁇ m + 30 zm) X 3 ⁇ when the discharge cycle of 52 is 10 kHz or higher, the relative scanning speed should be 210 mm / s. All ink-jet nozzles 52 can be driven at 10 kHz to apply color material. Also, if the pixel size changes, it can be easily dealt with by adjusting the scan speed.
  • the pixel size in the direction orthogonal to the relative movement direction of the inkjet head bar 5 is 200 to 300 ⁇ m, ensuring a sufficiently large margin for the droplets of color material ejected from the inkjet nozzle 52. can do.
  • the pixel size in the relative movement direction of the inkjet head bar 5 is 70 to 100 ⁇ m, and the inkjet nozzle 52 operates with a force that reduces the margin for the color material droplets ejected from the ink jet nozzle 52.
  • the timing to be controlled is accurately controlled. As a result, the color material can be reliably applied in the corresponding pixel region 22 of the black matrix 21 formed on the glass substrate 2.
  • the application gantry 4 is moved in the X direction with respect to the suction table 2.
  • the application gantry 4 can be fixed and the suction table 3 can be moved.
  • one side of the suction table 3 is larger than the longer side of the glass substrate 2. Regardless of the state in which the glass substrate 2 is loaded, the glass substrate 2 is securely attached to the suction table 3. Can be made.
  • the number N of inkjet nozzles 52 facing one pixel, the number n of surplus nozzles, the amount Q per droplet of the inkjet nozzle 52, and the inside of the pixel in the relative movement direction It is preferable that the number M of ejections and the amount V of color material applied to one pixel have the relationship of number 1.
  • FIG. 9 schematically shows the relationship between the pixel region and the droplet.
  • the inner dimensions of the pixel are represented by a and b
  • the application area within the pixel is represented by c and d
  • the number of droplets in the relative movement direction is represented by M.
  • the number of ink jet nozzles 52 facing one pixel is represented by N.
  • the application unevenness in the application direction can be dispersed,
  • the coating unevenness can be conspicuous.
  • the surplus nozzle number n satisfying the in-pixel coating amount is expressed by substituting a specific numerical value for Equation 1.
  • the number of IJ nozzles n is 4 or less.
  • the number i of combinations of inkjet nozzles 52 is 495.
  • the coating unevenness is dispersed by applying the color material (selecting the discharge state) using the ink jet nozzle 52 of 495 or less combinations (for example, 50 combinations). It was possible to make the coating unevenness conspicuous.
  • FIG. 1 is a perspective view showing an embodiment of a color filter manufacturing apparatus according to the present invention.
  • FIG. 2 is a schematic view showing a configuration of an inkjet head bar.
  • FIG. 3 is a schematic view showing a state where a color material is applied to an R pixel region.
  • FIG. 4 is a schematic diagram for explaining control of an inkjet nozzle in the Y direction.
  • FIG. 5 is a schematic diagram for explaining control of inkjet nozzles in the heel direction.
  • FIG. 6 is a flowchart illustrating a color filter manufacturing process.
  • FIG. 7 is a diagram showing an example of a discharge data table.
  • FIG. 8 is a diagram showing an example of an inkjet nozzle arrangement.
  • FIG. 9 is a diagram schematically showing a relationship between a pixel region and a droplet.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optical Filters (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Ink Jet (AREA)

Abstract

[PROBLEMS] To apply a color material discharged from an ink jet nozzle on the center portion of a pixel region, irrespective of the screen sizes and size increase of a glass substrate. [MEANS FOR SOLVING PROBLEMS] A direction parallel to the longitudinal direction of an ink jet head bar (5) is set in the longitudinal direction of a pixel, and a relative moving direction of the inkjet head bar (5) is set in a direction orthogonally intersecting with the longitudinal direction of the pixel.

Description

明 細 書  Specification
カラーフィルタ製造方法およびその装置  Color filter manufacturing method and apparatus
技術分野  Technical field
[0001] 本発明は、インクジェットノズルを用いてガラス基板上にカラーフィルタを製造する 方法およびその装置に関する。  The present invention relates to a method and an apparatus for manufacturing a color filter on a glass substrate using an ink jet nozzle.
背景技術  Background art
[0002] 従来から、インクジェットノズルを用いてガラス基板上にカラーフィルタを製造する方 法が提案されてレ、る(特許文献 1参照)。  Conventionally, a method for producing a color filter on a glass substrate using an ink jet nozzle has been proposed (see Patent Document 1).
[0003] 具体的には、透明基板上に透明な着色材受容層を少なくとも設け、異なった色の 画素間となるべき領域を撥着色材性を持った非着色領域とし、同一色となるべき画 素同士が隣り合う箇所では、該同一色となるべき複数の画素部分を画素間領域も含 めて切れ目なく着色材付与することで着色してカラーフィルタを製造するようにしてレヽ る。  [0003] Specifically, at least a transparent colorant-receiving layer is provided on a transparent substrate, and regions that should be between pixels of different colors are made non-colored regions having color repellent properties and should have the same color. In a place where pixels are adjacent to each other, the color filter is manufactured by coloring the plurality of pixel portions that should have the same color, including the inter-pixel region, by adding a coloring material without any breaks.
[0004] また、全画面を直線状に平行に主走査して描画する方法を採用し、同一色に着色 すべき画素部が主走查方向と同一の方向に並ぶように画素配列を設計することによ つて、画素列に沿った直線状の主走査で全面描画を達成するようにしている。  [0004] In addition, a method of drawing the whole screen by linearly scanning in parallel is adopted, and the pixel arrangement is designed so that the pixel portions to be colored in the same color are aligned in the same direction as the main runner direction. Thus, full-surface drawing is achieved by linear main scanning along the pixel column.
[0005] また、インクジェットノズルを用いてガラス基板上にカラーフィルタを製造するために 、第 1移動機構によりインクジェットヘッドを第 1の方向に駆動し、第 2移動機構により カラーフィルタ用基板載置用の載置台を、第 1の方向と異なる第 2の方向に移動させ 、しかも、ノズル力 Sフィルタエレメントの縦列に沿うように第 1移動機構を移動させ、か つノズルから吐出されるインク滴がフィルタエレメント内で重なり合うような吐出周期お よびインクジェットヘッドの移動速度で、吐出周期および第 1移動機構および第 2移 動機構を制御する方法が提案されてレ、る(特許文献 2参照)。 In addition, in order to manufacture a color filter on a glass substrate using an inkjet nozzle, an inkjet head is driven in a first direction by a first moving mechanism, and a color filter substrate is placed by a second moving mechanism. In addition, the mounting table is moved in a second direction different from the first direction, and the first moving mechanism is moved along the column of nozzle force S filter elements so that the ink droplets discharged from the nozzles are discharged. There has been proposed a method for controlling the ejection cycle and the first moving mechanism and the second moving mechanism with the ejection cycle and the moving speed of the inkjet head that overlap in the filter element (see Patent Document 2).
特許文献 1 :特開平 9 68611号公報  Patent Document 1: JP-A-9 68611
特許文献 2:特開平 10— 260307号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-260307
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] 特許文献 1の方法を採用した場合であって、異なる画面サイズのそれぞれに対処 する場合には、画面サイズ毎にピッチが異なるため、インクジェットノズルと画素の中 央部とが一致する確率が低くなり、この結果、インクジェットヘッドによるスキャン回数 が多くなり、全体としての塗布所要時間が長くなつてしまうという問題がある。 Problems to be solved by the invention [0006] When the method of Patent Document 1 is adopted and each of the different screen sizes is dealt with, since the pitch is different for each screen size, the probability that the inkjet nozzle and the center of the pixel coincide with each other As a result, there is a problem that the number of scans by the ink jet head increases, and the time required for coating as a whole becomes long.
[0007] このような問題を解消させるために、インクジェットヘッドを回転させることによってィ ンクジェットノズノレのピッチを変更することが考えられる力 段取り換えに多くの時間が 力、かるという問題がある。  [0007] In order to solve such a problem, there is a problem that it takes a lot of time to change the force that can be considered to change the pitch of the ink jet nozzle by rotating the inkjet head.
[0008] また、近年の傾向としてカラーフィルタの大型化、カラーフィルタが形成されるガラス 基板の大型化があり、このようにカラーフィルタ、ガラス基板が大型化した場合におい て、特許文献 1のように全画面を直線状に平行に主走査して描画する方法を採用し 、同一色に着色すべき画素部が主走查方向と同一の方向に並ぶように画素配列を 設計した場合には、主走査の全範囲にわたって、インクジェットノズルから吐出される カラー材料が画素領域の中央部に塗布されるように位置決めすることは困難であり、 実際には、一部の画素領域に対しては所望のカラー材料が塗布されず、結果的に 不良品を製造してしまう可能性が高くなつてしまうという問題もある。  [0008] In addition, as a recent trend, there is an increase in the size of the color filter and an increase in the size of the glass substrate on which the color filter is formed. If the pixel arrangement is designed so that the pixel parts to be colored in the same color are aligned in the same direction as the main running direction, the whole screen is drawn in parallel by main scanning. It is difficult to position the color material discharged from the ink jet nozzle so that it is applied to the center of the pixel area over the entire main scanning range. There is also a problem that the color material is not applied, and as a result, there is a high possibility of producing a defective product.
[0009] 特許文献 2の方法を採用した場合には、異なる画面サイズのそれぞれに対処する ためには、画面サイズ毎にピッチが異なるため、インクジェットノズノレと画素の中央部 とが一致する確率が低くなり、この結果、インクジェットヘッドによるスキャン回数が多く なり、全体としての塗布所要時間が長くなつてしまうという問題がある。  [0009] When the method of Patent Document 2 is adopted, in order to deal with each of different screen sizes, since the pitch is different for each screen size, there is a probability that the inkjet nozzle and the central portion of the pixel match. As a result, the number of scans by the ink jet head increases, resulting in a problem that the time required for coating as a whole becomes longer.
[0010] また、特許文献 2の図 4に示すように、全画面を直線状に平行に主走査して描画し 、同一色に着色すべき画素部が主走査方向と同一の方向に並ぶように画素配列を 設計しているので、カラーフィルタ、ガラス基板が大型化した場合に、主走査の全範 囲にわたって、インクジェットノズルから吐出されるカラー材料が画素領域の中央部に 塗布されるように位置決めすることは困難であり、実際には、一部の画素領域に対し ては所望のカラー材料が塗布されず、結果的に不良品を製造してしまう可能性が高 くなつてしまうという問題がある。  In addition, as shown in FIG. 4 of Patent Document 2, the entire screen is drawn by performing main scanning in a straight line in parallel so that the pixel portions to be colored in the same color are arranged in the same direction as the main scanning direction. Since the pixel arrangement is designed in this way, when the color filter and the glass substrate are enlarged, the color material discharged from the inkjet nozzle is applied to the center of the pixel area over the entire main scanning range. It is difficult to position, and in fact, the desired color material is not applied to some pixel areas, resulting in a high possibility of producing defective products. There is.
[0011] さらに、両移動機構に高い精度が必要になるので、全体としてコストアップを招いて しまう。 [0012] 本発明は、上記の問題点に鑑みてなされたものであり、画面サイズに拘わらず、ガ ラス基板の大型化に拘わらず、インクジェットノズルから吐出されるカラー材料を画素 領域の中央部に塗布することができるカラーフィルタ製造方法およびその装置を提 供することを目的としている。 [0011] Further, since both moving mechanisms require high accuracy, the cost increases as a whole. [0012] The present invention has been made in view of the above-described problems, and a color material discharged from an inkjet nozzle is disposed at the center of a pixel region regardless of the size of a glass substrate regardless of the screen size. It is an object of the present invention to provide a color filter manufacturing method and apparatus capable of being applied to the surface.
課題を解決するための手段  Means for solving the problem
[0013] 請求項 1のカラーフィルタ製造方法は、複数個のインクジェットノズルを備えたインク ジェットヘッドを複数個配列したインクジェットヘッドバーとブラックマトリックスを表面 に形成したガラス基板とを相対的に移動させながら、前記インクジェットノズルで前記 ブラックマトリックスの画素にカラー材料を塗布するカラーフィルタ製造方法において 、インクジェットヘッドバーの長手方向と平行な方向を前記画素の長手方向に設定し 、インクジェットノズノレ毎のカラー材料の吐出/非吐出を予め設定しておき、インクジ エツトノズルに対するガラス基板の相対的位置情報と前記設定情報を基にインクジェ ットノズノレのカラー材料の吐出を制御する方法である。  [0013] In the color filter manufacturing method according to claim 1, the ink jet head bar in which a plurality of ink jet heads each having a plurality of ink jet nozzles are arranged and the glass substrate on which the black matrix is formed are relatively moved. In the color filter manufacturing method in which a color material is applied to the pixels of the black matrix by the inkjet nozzle, a direction parallel to the longitudinal direction of the inkjet head bar is set to the longitudinal direction of the pixels, and the color material for each inkjet nozzle In this method, ejection / non-ejection is set in advance, and ejection of the color material of the inkjet nozzle is controlled based on the relative position information of the glass substrate with respect to the ink jet nozzle and the setting information.
[0014] 請求項 2のカラーフィルタ製造方法は、複数個のインクジェットノズルを備えたインク ジェットヘッドを複数個配列したインクジェットヘッドバーとブラックマトリックスを表面 に形成したガラス基板とを相対的に移動させながら、前記インクジェットノズルで前記 ブラックマトリックスの画素にカラー材料を塗布するカラーフィルタ製造方法において 、インクジェットヘッドバーの長手方向と平行な方向を同一色の画素の配列方向に設 定し、インクジェットノズル毎のカラー材料の吐出 Z非吐出を予め設定しておき、イン クジェットノズルに対するガラス基板の相対的位置情報と前記設定情報を基にインク ジェットノズルのカラー材料の吐出を制御する方法である。  [0014] In the color filter manufacturing method of claim 2, the ink-jet head bar in which a plurality of ink-jet heads each having a plurality of ink-jet nozzles are arranged and the glass substrate on which the black matrix is formed are relatively moved. In the color filter manufacturing method in which a color material is applied to the pixels of the black matrix with the inkjet nozzles, the direction parallel to the longitudinal direction of the inkjet head bar is set as the arrangement direction of pixels of the same color, and the color for each inkjet nozzle is set. Material discharge Z is a method in which non-discharge Z is set in advance, and discharge of the color material of the ink jet nozzle is controlled based on the relative position information of the glass substrate with respect to the ink jet nozzle and the setting information.
[0015] 請求項 3のカラーフィルタ製造方法は、前記吐出/非吐出の設定を、ガラス基板の 前記相対的な移動方向における座標に基づいて行う方法である。 The color filter manufacturing method according to claim 3 is a method in which the discharge / non-discharge setting is performed based on coordinates in the relative movement direction of the glass substrate.
[0016] 請求項 4のカラーフィルタ製造方法は、 1画素に対向するインクジェットノズノレの数 N[0016] In the color filter manufacturing method according to claim 4, the number N of inkjet nozzles facing one pixel is N.
、余剰ノズル数 n、インクジェットノズノレの液滴 1滴当たりの量 Q、前記相対的な移動 方向での画素内吐出回数 M、および 1画素に塗布するカラー材料の量 Vが数 1の関 係を有する方法である。 The number of excess nozzles n, the amount Q per droplet of ink jet nozzle, Q, the number of ejections M within the pixel in the relative movement direction, and the amount V of color material applied to each pixel V It is the method which has.
[0017] [数 1] V≤M - (N - n ) - Q ( nは 1以上の整数) [0017] [Equation 1] V≤M-(N-n)-Q (where n is an integer greater than 1)
[0018] 請求項 5のカラーフィルタ製造方法は、前記吐出/非吐出の設定を、ガラス基板の 前記画素の長手方向における座標に基づいて行う方法である。 The color filter manufacturing method according to claim 5 is a method in which the setting of ejection / non-ejection is performed based on coordinates in a longitudinal direction of the pixel of the glass substrate.
[0019] 請求項 6のカラーフィルタ製造方法は、前記相対的な移動が終了する毎にインクジ エツトヘッドバー(5)を長手方向に移動させる方法であり、該長手方向の移動量は、 長手方向の移動の前後におけるカラー材料の塗布領域が互いに重ならない移動量 と画素の長手方向ピッチとを加算した値である。  [0019] The color filter manufacturing method according to claim 6 is a method of moving the ink jet head bar (5) in the longitudinal direction every time the relative movement is finished, and the amount of movement in the longitudinal direction is the longitudinal direction. This is a value obtained by adding the amount of movement in which the color material application areas before and after the movement of each other do not overlap each other and the longitudinal pitch of the pixels.
[0020] 請求項 7のカラーフィルタ製造方法は、前記相対的な移動毎に、インクジェットノズ ル(52)毎のカラー材料の吐出/非吐出の設定を変更する方法である。  [0020] The color filter manufacturing method according to claim 7 is a method of changing the discharge / non-discharge setting of the color material for each ink jet nozzle (52) for each relative movement.
[0021] 請求項 8のカラーフィルタ製造装置は、複数個のインクジェットノズルを備えたインク ジェットヘッドを複数個配列したインクジェットヘッドバーを支持する支持部材と、ブラ ックマトリックスを表面に形成したガラス基板を吸着保持する吸着テーブルと、インク ジェットヘッドバーとガラス基板とを、所定の間隙を保持した状態で相対的に移動さ せる第 1移動手段と、インクジェットヘッドバーとガラス基板とを、前記第 1移動手段に よる移動方向と直交する方向に移動させる第 2移動手段と、ガラス基板およびインク ジェットノズルのディメンジョンを入力してディメンジョンデータを記憶する第 1記憶手 段を含むカラーフィルタ製造装置において、  [0021] The color filter manufacturing apparatus according to claim 8 is a glass substrate having a support member for supporting an ink jet head bar in which a plurality of ink jet heads each having a plurality of ink jet nozzles are arranged, and a black matrix formed on the surface. A suction table for sucking and holding, a first moving means for relatively moving the ink jet head bar and the glass substrate while maintaining a predetermined gap, and the inkjet head bar and the glass substrate. In a color filter manufacturing apparatus comprising: a second moving means for moving in a direction perpendicular to the moving direction by the moving means; and a first storage means for storing the dimension data by inputting the dimensions of the glass substrate and the ink jet nozzle.
前記ガラス基板とインクジェットバーの相対位置を検出する検出手段と、検出した相 対位置に基づきインクジェットノズル毎のカラー材料の吐出を制御する吐出制御手段 とを含むものである。  The apparatus includes a detection unit that detects a relative position between the glass substrate and the inkjet bar, and a discharge control unit that controls the discharge of the color material for each inkjet nozzle based on the detected relative position.
[0022] 請求項 9のカラーフィルタ製造装置は、インクジェットヘッドバーの、前記第 1移動手 段による移動方向と直交する方向における塗布領域を、ガラス基板の前記第 1移動 手段による移動方向と直交する方向における塗布領域よりも大きく設定したものであ る。  [0022] In the color filter manufacturing apparatus according to claim 9, the coating region of the inkjet head bar in the direction orthogonal to the moving direction by the first moving means is orthogonal to the moving direction of the glass substrate by the first moving means. It is set larger than the coating area in the direction.
[0023] 請求項 10のカラーフィルタ製造装置は、入力された相対的移動方向のガラス基板 画素およびインクジェットノズノレの位置情報から、ガラス基板とインクジェットヘッドバ 一の、前記第 1移動手段による移動方向における相対位置毎の各インクジェットノズ ルのカラー材料の吐出/非吐出を演算/判断する第 1演算手段と、第 1演算手段に よる演算/判断結果を記憶する第 2記憶手段をさらに含むものである。 [0023] The color filter manufacturing apparatus according to claim 10, wherein the glass substrate pixel in the relative movement direction and the positional information of the inkjet nozzle are input, and the movement direction of the glass substrate and the inkjet head bar by the first moving means. The first calculation means for calculating / judging the discharge / non-discharge of the color material of each inkjet nozzle for each relative position in the first calculation means It further includes second storage means for storing the calculation / judgment result.
[0024] 請求項 11のカラーフィルタ製造装置は、入力された相対的移動方向のガラス基板 画素およびインクジェットノズノレの位置情報から、各インクジェットノズノレの前記第 1移 動手段による移動方向と直交する方向におけるカラー材料の吐出/非吐出を演算 /判断する第 2演算手段と、第 2演算手段による演算/判断結果を記憶する第 3記 憶手段をさらに含むものである。 [0024] The color filter manufacturing apparatus according to claim 11 is orthogonal to the movement direction of each inkjet nozzle by the first moving means, based on the input glass substrate pixel and the inkjet nozzle position information in the relative movement direction. The image processing apparatus further includes second calculation means for calculating / determining discharge / non-discharge of the color material in the direction and third storage means for storing a calculation / determination result by the second calculation means.
発明の効果  The invention's effect
[0025] 請求項 1のカラーフィルタ製造方法は、インクジェットノズルから吐出されるカラー材 料を所定の画素領域の塗布すべき箇所に塗布することができる。換言すれば、他の カラー材料を塗布すべき画素、画素の周囲のブラックマトリックスにカラー材料を塗布 してしまうことを防止できる。  [0025] In the color filter manufacturing method according to claim 1, the color material discharged from the ink jet nozzle can be applied to a portion to be applied in a predetermined pixel region. In other words, it is possible to prevent the color material from being applied to the pixel to which other color material is to be applied and the black matrix around the pixel.
[0026] 請求項 2のカラーフィルタ製造方法は、インクジェットノズルから吐出されるカラー材 料を所定の画素領域の塗布すべき箇所に塗布することができる。換言すれば、他の カラー材料を塗布すべき画素、画素の周囲のブラックマトリックスにカラー材料を塗布 してしまうことを防止できる。  [0026] In the color filter manufacturing method according to claim 2, the color material discharged from the ink jet nozzle can be applied to a place where a predetermined pixel region is to be applied. In other words, it is possible to prevent the color material from being applied to the pixel to which other color material is to be applied and the black matrix around the pixel.
[0027] 請求項 3のカラーフィルタ製造方法は、インクジェットノズルから吐出されるカラー材 料を、インクジェットヘッドバーとガラス基板との相対的移動方向における所定の画素 領域の塗布方向画素幅のほぼ中央部に塗布することができる。  [0027] In the color filter manufacturing method according to claim 3, the color material discharged from the ink jet nozzle is substantially the center of the pixel width in the application direction of the predetermined pixel region in the relative movement direction of the ink jet head bar and the glass substrate. Can be applied.
[0028] 請求項 4のカラーフィルタ製造方法は、吐出するインクジェットノズルの選択組み合 わせを可能にすることができ、塗布むらを分散させることができる。  [0028] According to the color filter manufacturing method of claim 4, the ink jet nozzles to be ejected can be selected and combined, and the coating unevenness can be dispersed.
[0029] 請求項 5のカラーフィルタ製造方法は、インクジェットノズルから吐出されるカラー材 料を、画素領域のうち、インクジェットヘッドバーとガラス基板との相対的移動と直交 する方向における所定位置に塗布することができる。換言すれば、隣り合う同一色の 画素領域同士の境界、すなわち、ブラックマトリックスにカラー材料を塗布してしまうこ とを防止できる。  [0029] In the color filter manufacturing method according to claim 5, the color material discharged from the inkjet nozzle is applied to a predetermined position in a direction orthogonal to the relative movement between the inkjet head bar and the glass substrate in the pixel region. be able to. In other words, it is possible to prevent the color material from being applied to the boundary between adjacent pixel regions of the same color, that is, the black matrix.
[0030] 請求項 6のカラーフィルタ製造方法は、インクジェットノズノレによるカラー材料の塗布 位置を、画素領域を超えて変化させることにより、画素領域内への均一なカラー材料 の塗布を達成することができ、しかも、画素領域とノズノレ孔との組み合わせを変えて、 ノズノレ孔からの吐出ばらつきによる色むらを抑制することができる。 [0030] The color filter manufacturing method according to claim 6 can achieve uniform application of the color material in the pixel region by changing the application position of the color material by the inkjet nozzle over the pixel region. Yes, and by changing the combination of the pixel area and the nose hole, Color unevenness due to variations in ejection from the nozzle holes can be suppressed.
[0031] 請求項 7のカラーフィルタ製造方法は、相対的な移動毎にインクジェットヘッドバー とガラス基板との相対的位置を変化させて、カラー材料を画素領域の所望の箇所に 塗布すること力 Sできる。  [0031] In the color filter manufacturing method according to claim 7, the relative position between the ink jet head bar and the glass substrate is changed for each relative movement, and the color material is applied to a desired position in the pixel region. it can.
[0032] 請求項 8のカラーフィルタ製造装置は、画面サイズに拘わらず、ガラス基板の大型 化に拘わらず、インクジェットノズルから吐出されるカラー材料を画素領域の中央部 に塗布することができる。  [0032] The color filter manufacturing apparatus according to claim 8 can apply the color material discharged from the ink jet nozzle to the central portion of the pixel region regardless of the size of the glass substrate regardless of the screen size.
[0033] 請求項 9のカラーフィルタ製造装置は、インクジェットヘッドバーをガラス基板との相 対的移動と直交する方向に移動させる場合であっても、全ての画素領域にカラー材 料を塗布することができる。 [0033] The color filter manufacturing apparatus according to claim 9 applies the color material to all the pixel regions even when the inkjet head bar is moved in a direction orthogonal to the relative movement with the glass substrate. Can do.
[0034] 請求項 10のカラーフィルタ製造装置は、画面サイズに拘わらず、ガラス基板の大型 化に拘わらず、塗布方向の所定の画素領域のみにカラー材料を塗布することができ る。 [0034] The color filter manufacturing apparatus according to claim 10 can apply the color material only to a predetermined pixel region in the application direction regardless of the size of the glass substrate regardless of the size of the glass substrate.
[0035] 請求項 11のカラーフィルタ製造装置は、画面サイズに拘わらず、ガラス基板の大型 化に拘わらず、塗布方向と直交する方向の所定の非塗布領域を避けて、所定の画 素領域のみにカラー材料を塗布することができる。  [0035] The color filter manufacturing apparatus according to claim 11 avoids a predetermined non-application area in a direction orthogonal to the application direction, regardless of the size of the glass substrate, regardless of the screen size, and only the predetermined pixel area. A color material can be applied to the surface.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 以下、添付図面を参照して、本願発明のカラーフィルタ製造方法およびその装置 の実施の形態を詳細に説明する。 Hereinafter, embodiments of a color filter manufacturing method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
[0037] 図 1は本願発明のカラーフィルタ製造装置の一実施形態を示す斜視図である。 FIG. 1 is a perspective view showing an embodiment of a color filter manufacturing apparatus of the present invention.
[0038] このカラーフィルタ製造装置は、機台 1上に吸着テーブル 3、塗布ガントリー 4、カメ ラガントリー 6などを支承してレ、る。 [0038] This color filter manufacturing apparatus supports a suction table 3, a coating gantry 4, a camera gantry 6 and the like on a machine base 1.
[0039] 吸着テーブル 3は、ガラス基板 2を吸着保持するものであり、このガラス基板 2の位 置決めを達成するために、図示しない駆動機構、ガイド機構によって、 Θ方向に回転 駆動されるとともに、 Y方向に駆動される。 [0039] The suction table 3 holds the glass substrate 2 by suction. In order to achieve the positioning of the glass substrate 2, the suction table 3 is rotationally driven in the Θ direction by a drive mechanism and a guide mechanism (not shown). Driven in the Y direction.
[0040] 塗布ガントリー 4は、インクジェットヘッドバー 5を保持するものであり、ガラス基板 2に カラー材料を塗布するために、図示しない駆動機構、ガイド機構によって、 X方向に 駆動される。また、ガラス基板 2に対する相対位置を調整するために、インクジェット ヘッドバー 5は、図示しない駆動機構、ガイド機構によって、 Z方向、 Y方向に駆動さ れる。 [0040] The application gantry 4 holds the inkjet head bar 5, and is driven in the X direction by a drive mechanism and a guide mechanism (not shown) in order to apply a color material to the glass substrate 2. In addition, in order to adjust the relative position with respect to the glass substrate 2, The head bar 5 is driven in the Z direction and the Y direction by a drive mechanism and a guide mechanism (not shown).
[0041] カメラガントリー 6は、ガラス基板 2のアラインメントのためのアラインメントカメラ 7、 8、 およびガラス基板 2の画素領域内のカラー材料の着弾痕を検出するためのスキャン カメラ 9を保持するものであり、アラインメント、画素検出のために、図示しない駆動機 構、ガイド機構によって、 X方向に駆動される。また、図示しない駆動機構、ガイド機 構によって、アラインメントカメラ 7、 8、スキャンカメラ 9を Y方向に駆動する。  [0041] The camera gantry 6 holds an alignment camera 7, 8 for alignment of the glass substrate 2 and a scan camera 9 for detecting the impact mark of the color material in the pixel region of the glass substrate 2. For alignment and pixel detection, it is driven in the X direction by a drive mechanism and guide mechanism (not shown). Further, the alignment cameras 7 and 8 and the scan camera 9 are driven in the Y direction by a drive mechanism and a guide mechanism (not shown).
[0042] アラインメントカメラ 7、 8はガラス基板 2のマーク(図示せず)を検出するものであり、 アラインメントカメラ 7、 8によるマーク検出結果に基づいて吸着テーブル 3を回転させ 、および Zまたは Y方向に移動させることにより、ガラス基板 2のアラインメントを達成 すること力 Sできる。  [0042] The alignment cameras 7 and 8 detect marks (not shown) on the glass substrate 2, rotate the suction table 3 based on the mark detection results by the alignment cameras 7 and 8, and the Z or Y direction. It is possible to achieve the alignment S of the glass substrate 2 by moving it to the position S.
[0043] なお、 X、 Yは、吸着テーブル 3により吸着保持されたガラス基板 2の上面と平行な 平面を規定すべく設定された互いに直交する方向を表し、 Zは、 X、 Yにより規定され た平面と直交する方向を表してレ、る。  [0043] X and Y represent directions orthogonal to each other set to define a plane parallel to the upper surface of the glass substrate 2 held by suction by the suction table 3, and Z is defined by X and Y. This represents the direction perpendicular to the flat surface.
[0044] 図 2はインクジェットヘッドバー 5の構成を示す概略図である。  FIG. 2 is a schematic view showing the configuration of the inkjet head bar 5.
[0045] このインクジェットヘッドバー 5は、複数個のインクジェットヘッド 51を整列させてなる ものであり、各インクジェットヘッド 51は、複数個のインクジェットノズノレ 52を整列させ てなるものである。そして、複数個のインクジェットヘッド 51の整列は、全てのインクジ エツトノズル 52の X方向の間隔、 Y方向の間隔がそれぞれ所定の間隔となるように設 定されている。  The inkjet head bar 5 is formed by aligning a plurality of inkjet heads 51, and each inkjet head 51 is formed by aligning a plurality of inkjet nozzles 52. The alignment of the plurality of inkjet heads 51 is set such that the intervals in the X direction and the Y direction of all the ink jet nozzles 52 are predetermined intervals.
[0046] なお、インクジェットノズノレ 52は、所定個数を単位として斜め方向に配列されている ので、塗布ガントリー 4を X方向に駆動しながら、インクジェットノズル 52を順次動作さ せることによって、 Y方向に直線的に整列させた状態でカラー材料を塗布することが できる。  [0046] Since the inkjet nozzles 52 are arranged in an oblique direction with a predetermined number as a unit, the inkjet nozzles 52 are sequentially operated while the coating gantry 4 is driven in the X direction, whereby the inkjet nozzle 52 is moved in the Y direction. Color material can be applied in a linear alignment.
[0047] 図 2に示すインクジェットヘッドバー 5は、赤(R)、緑(G)、青(B)のカラー材料のい ずれかを塗布するためのものであり、特には図示していないが、他のカラー材料を塗 布するためのインクジェットヘッドバーも設けられている。  [0047] The inkjet head bar 5 shown in FIG. 2 is for applying one of red (R), green (G), and blue (B) color materials, and is not particularly shown. Inkjet head bars are also provided for applying other color materials.
[0048] ただし、赤 (R)、緑 (G)、青(B)のカラー材料用のインクジェットヘッドバー 5がー体 的に並べられていてもよい。もちろん、 1色のカラー材料を吐出するインクジェットへッ ドバーのみが設けられてレ、てもよレ、。 [0048] However, the inkjet head bar 5 for red (R), green (G), and blue (B) color materials May be lined up. Of course, only an inkjet head bar that discharges one color material is provided.
[0049] 図 8はインクジェットノズル 52の配列の一例を示す図である。  FIG. 8 is a view showing an example of the arrangement of the inkjet nozzles 52.
[0050] 図 8には、ノズノレ歹 lj、ノズノレ番号により定まるインクジェットノズノレを示しており、 Pは Y 方向のインクジェットノズノレピッチ、 L1〜L5はインクジェットノズノレ列塗布方向間隔で ある。  [0050] Fig. 8 shows an ink jet nodule determined by the nozzle lj and the nozzle number, where P is the ink jet nozzle pitch in the Y direction, and L1 to L5 are the ink jet nose row application direction intervals.
[0051] 次いで、上記の構成のカラーフィルタ製造装置の作用を説明する。  [0051] Next, the operation of the color filter manufacturing apparatus having the above configuration will be described.
[0052] 図 6はカラーフィルタ製造処理を説明するフローチャートである。 FIG. 6 is a flowchart for explaining the color filter manufacturing process.
[0053] ステップ SP1において、図示しない搬入ロボットなどによる吸着テーブル 3へのガラ ス基板 2の搬入が行われた後に、ステップ SP2において、図示しない外形規制手段 によって、ガラス基板 2の概略の位置決めを達成する。そして、ステップ SP3において 、吸着テーブル 3によりガラス基板 2を吸着し、その後、ステップ SP4において、カメラ ガントリー 6を往動させ、ステップ SP5において、アラインメントカメラ 7、 8によりガラス 基板 2のアラインメントマークを検出し、 Y方向、 Θ方向の位置決めを行うことによって 、ガラス基板 2のアラインメントを達成し、ステップ SP6において、カメラガントリー 6を 復動させる。 [0053] After the glass substrate 2 is loaded onto the suction table 3 by a loading robot (not shown) in step SP1, the rough positioning of the glass substrate 2 is achieved by the outer shape regulating means (not shown) in step SP2. To do. In step SP3, the glass substrate 2 is sucked by the suction table 3, and then the camera gantry 6 is moved forward in step SP4. In step SP5, the alignment mark of the glass substrate 2 is detected by the alignment cameras 7 and 8. Alignment of the glass substrate 2 is achieved by positioning in the Y direction and Θ direction, and the camera gantry 6 is moved back in step SP6.
[0054] 次いで、ステップ SP7において、塗布ガントリー 4を往動/復動させるとともに、 X座 標値を出力し、ステップ SP8において、 X座標値に基づいて塗布が終端まで行われ たか否力を判定する。  [0054] Next, in step SP7, the application gantry 4 is moved forward / backward, and the X coordinate value is output. In step SP8, it is determined whether or not the application has been performed to the end based on the X coordinate value. To do.
[0055] また、この処理とは別に、ステップ SP16において、インクジェットノズル 52の孔の位 置情報 (座標値)を入力し、ステップ SP17において、ガラス基板 2上の全画素の位置 情報 (座標値)を入力し、ステップ SP18において、その他のパラメータ(例えば、カラ 一材料の吐出速度、相対的移動速度、制御系の遅れなどを考慮して定められるオフ セット値)を入力する。そして、ステップ SP19において、データテーブルの演算を行 レ、、ステップ SP20において、演算結果を吐出データテーブルに記憶しておく。  [0055] Separately from this process, in step SP16, the position information (coordinate values) of the holes of the ink jet nozzle 52 is input, and in step SP17, the position information (coordinate values) of all the pixels on the glass substrate 2 is input. In step SP18, input other parameters (for example, offset values determined in consideration of the discharge speed of the color material, relative movement speed, control system delay, etc.). In step SP19, the data table is calculated, and in step SP20, the calculation result is stored in the discharge data table.
[0056] 図 7は吐出データテーブルの一例を示す図であり、塗布走查回数、塗布方向画素 番号、塗布方向画素位置、ノズル列、塗布ガントリー X座標値、全ノズルの吐出パタ ーンが設定されている。なお、 X0は初期移動量、 Pgは Y方向における画素ピッチ、 L :!〜 Lnはノズノレ列塗布方向間隔、 mは塗布方向の画素の番号である。初期移動量 X 0、画素ピッチ Pgは、図 3に示されている。図 3は、赤 (R)のカラー材料のみが塗布さ れた状態を示しており、 X方向の 1番目の画素までの距離が初期移動量 X0であり、 X 方向における赤 (R)のカラー材料が塗布された画素の間隔が画素ピッチ Pgである。 FIG. 7 is a diagram showing an example of a discharge data table, in which the number of application strokes, application direction pixel numbers, application direction pixel positions, nozzle rows, application gantry X coordinate values, and discharge patterns for all nozzles are set. Has been. X0 is the initial movement amount, Pg is the pixel pitch in the Y direction, and L :! To Ln are intervals in the nose row application direction, and m is a pixel number in the application direction. The initial movement amount X 0 and the pixel pitch Pg are shown in FIG. Figure 3 shows a state where only the red (R) color material is applied, and the distance to the first pixel in the X direction is the initial movement amount X0, and the red (R) color in the X direction. The interval between the pixels to which the material is applied is the pixel pitch Pg.
[0057] そして、ステップ SP8において塗布が終端までは行われていないと判定された場合 には、ステップ SP 13において、塗布ガントリー 4の X座標出力値と吐出データテープ ルとを比較し、ステップ SP14において、 X座標値と吐出データとがー致しているか否 かを判定し、一致していれば、ステップ SP15において、インクジェットノズノレ 52を動 作させてインクを吐出する。  [0057] If it is determined in step SP8 that the application has not been performed to the end, in step SP13, the X coordinate output value of the application gantry 4 is compared with the discharge data table, and step SP14 In step S15, it is determined whether or not the X coordinate value matches the ejection data. If they match, in step SP15, the ink jet nozzle 52 is operated to eject ink.
[0058] 図 5は上記の処理を説明する概略図である。  FIG. 5 is a schematic diagram for explaining the above processing.
[0059] 塗布対象となる画素領域と X座標値が合致するインクジェットノズル 52を吐出のた めに動作させ、他のインクジェットノズル 52を動作させないようにすることによって、塗 布対象となる画素領域にインクを塗布する。具体的には、インクジェットノズノレ 52をガ ラス基板 2に対して相対的に移動させながらカラー材料を塗布しているので、カラー 材料の吐出速度、相対的移動速度、制御系の遅れなどを考慮して定められるオフセ ット値を考慮して、吐出のためのインクジェットノズル 52を制御する。  [0059] By operating the inkjet nozzle 52 whose X-coordinate value matches the pixel area to be applied for ejection and not operating the other inkjet nozzles 52, the pixel area to be applied can be reduced. Apply ink. Specifically, the color material is applied while moving the inkjet nozzle 52 relative to the glass substrate 2, so the discharge speed of the color material, relative movement speed, control system delay, etc. are taken into consideration. The inkjet nozzle 52 for discharging is controlled in consideration of the offset value determined in this way.
[0060] また、図 4は Y方向におけるインクジェットノズル 52の制御を説明する概略図である 。なお、この処理はフローチャートには示されていなレ、が、図 7に示されている。 ガラス基板 2における X方向に延びるブラックマトリックスの幅を表す Y座標範囲に少 なくとも一部力 Sかかるインクジェットノズル 52を動作させないようにするとともに、塗布 対象となる画素領域の Y座標範囲に全体が入るインクジェットノズル 52を吐出のため に動作させることによって、塗布対象となる画素領域にインクを塗布する。  FIG. 4 is a schematic diagram illustrating control of the inkjet nozzle 52 in the Y direction. This process is not shown in the flowchart, but is shown in FIG. At least a part of force is applied to the Y coordinate range that represents the width of the black matrix extending in the X direction on the glass substrate 2.The inkjet nozzle 52 that does not operate is not operated, and the entire Y coordinate range of the pixel area to be coated is Ink is applied to the pixel area to be applied by operating the ink jet nozzle 52 to enter for ejection.
[0061] そして、ステップ SP 14において X座標値と吐出データとがー致していないと判定さ れた場合、またはステップ SP15の処理が行われた場合には、再びステップ SP7の処 理を行う。  If it is determined in step SP 14 that the X coordinate value and the discharge data do not match, or if the process of step SP15 is performed, the process of step SP7 is performed again.
[0062] また、ステップ SP8において塗布が終端まで行われたと判定された場合には、ステ ップ SP9において、所定回数の塗布が行われたか否かを判定する。  [0062] If it is determined in step SP8 that the application has been performed to the end, it is determined in step SP9 whether or not a predetermined number of times of application has been performed.
[0063] ステップ SP9において塗布回数が所定回数に達していないと判定された場合には 、ステップ 12において、インクジェットヘッドバー 5を Y方向に移動させ、再びステップ SP7の処理を行う。なお、 Υ方向の移動距離は、例えば、 1つの画素領域に塗布した レ、カラー材料の液滴の数により定まる距離であってもよいが、この距離に対して、 Υ方 向の画素ピッチの整数倍を加算した距離であってもよい。後者の場合には、インクジ ヱットノズルが異なる画素にインクを吐出することになるので、インクジェットノズノレ毎に 着弾痕のサイズのばらつきがあっても、全体として平均化することができる。ここで、ィ ンクジェットヘッドバー 5の塗布領域をガラス基板 2の塗布領域よりも大きく設定してお けば、後者のようにインクジェットヘッドバー 5を移動させても、問題なく全画素にカラ 一材料を塗布することができる。 [0063] If it is determined in step SP9 that the number of coatings has not reached the predetermined number, In step 12, the inkjet head bar 5 is moved in the Y direction, and the process of step SP7 is performed again. Note that the movement distance in the よ い direction may be a distance determined by the number of droplets of color material applied to one pixel region, for example, but the pixel pitch in the Υ direction is relative to this distance. It may be a distance obtained by adding an integer multiple. In the latter case, since the ink jet nozzles eject ink to different pixels, even if there is a variation in the size of the landing marks for each inkjet nozzle, it can be averaged as a whole. Here, if the application area of the ink jet head bar 5 is set to be larger than the application area of the glass substrate 2, even if the inkjet head bar 5 is moved as in the latter case, all the pixels are aligned without any problem. Material can be applied.
[0064] また、ステップ SP9において所定回数の塗布が行われたと判定された場合には、ス テツプ SP10において、塗布処理を終了し、ステップ SP11において、図示しない搬 出口ボットなどによりガラス基板 2を搬出し、そのまま一連の処理を終了する。  [0064] If it is determined in step SP9 that the coating has been performed a predetermined number of times, the coating process is terminated in step SP10, and in step SP11, the glass substrate 2 is unloaded by an unillustrated unloading outlet bot or the like. Then, the series of processing ends.
[0065] 以上を要約すれば、  [0065] In summary,
吸着テーブル 3へのガラス基板 2の搬入が行われた後に、カメラガントリー 6を往動さ せてガラス基板 2のマークを検出し、検出結果に応じて吸着テーブル 3を動作させる ことによって、ガラス基板 2のアラインメントを達成する。その後、カメラガントリー 6を復 動させる。  After the glass substrate 2 is carried into the suction table 3, the camera gantry 6 is moved forward to detect the mark on the glass substrate 2, and the suction table 3 is operated in accordance with the detection result. Achieve alignment of 2. Then move camera gantry 6 back.
[0066] 次いで、塗布ガントリー 4を往動させて 1回目の往路塗布を行う。  [0066] Next, the coating gantry 4 is moved forward to perform the first outbound coating.
[0067] その後、塗布ガントリー 4を Υ方向に僅かに移動させた状態で復動させることによつ て 1回目の復路塗布を行レ、、この間に、カメラガントリー 6を往動させてスキャンカメラ [0067] After that, the coating gantry 4 is moved backward in a slightly moving direction to perform the first return coating, and during this time, the camera gantry 6 is moved forward to scan the camera.
9によりガラス基板 2の画素領域内のカラー材料の着弾痕の検査を行い、その後、力 メラガントリー 6を復動させる。 9. Check the landing mark of the color material in the pixel area of the glass substrate 2 by 9 and then move the force mergantry 6 backward.
[0068] その後、塗布ガントリー 4を Υ方向に僅かに移動させた状態で往動させることによつ て、 2回目の往路塗布を行う。 [0068] Thereafter, the second outward coating is performed by moving the coating gantry 4 in a state of being slightly moved in the heel direction.
[0069] その後、塗布ガントリー 4を Υ方向に僅かに移動させた状態で復動させることによつ て 2回目の復路塗布を行う。 [0069] Thereafter, the second return coating is performed by moving the coating gantry 4 backward in a state of being slightly moved in the heel direction.
[0070] その後、ガラス基板 2の吸着保持を停止し、吸着テーブル 3から搬出する。その後、 上記の一連の処理を反復的に行うことによって、所望枚数のカラーフィルタを製造す ること力 Sできる。 Thereafter, the suction holding of the glass substrate 2 is stopped, and the glass substrate 2 is unloaded from the suction table 3. Thereafter, the above-described series of processing is repeatedly performed to manufacture a desired number of color filters. Ability to do S.
[0071] すなわち、一度のカラー材料の塗布を行った場合には、インクジェットノズル 52同 土の間隔と等しい間隔でカラー材料が付着するので、カラー材料を連続的に塗布し た状態にはならない。  That is, when the color material is applied once, the color material adheres at an interval equal to the interval between the ink jet nozzles 52, so that the color material is not continuously applied.
[0072] しかし、上記の一連の処理を行った場合には、 Y方向の位置を僅かに変化させて 塗布を行うのであるから、最終的に、図 3に示すように、ガラス基板 2上に形成された ブラックマトリックス 21の該当する画素領域 22内にカラー材料 23を連続的に塗布す ること力 Sできる。  However, in the case where the above-described series of processing is performed, since the coating is performed by slightly changing the position in the Y direction, finally, as shown in FIG. 3, on the glass substrate 2 The color S can be applied continuously in the corresponding pixel region 22 of the formed black matrix 21.
[0073] 以上の説明から分かるように、インクジェットヘッドバー 5の相対的な移動を行わせ ながら、インクジェットノズル 52の動作タイミングを制御すればよいので、ガラス基板 2 上に形成されたブラックマトリックス 21の該当する画素領域 22内にカラー材料を確実 に塗布することができる。  [0073] As can be seen from the above description, the operation timing of the inkjet nozzle 52 may be controlled while the inkjet head bar 5 is relatively moved, so that the black matrix 21 formed on the glass substrate 2 can be controlled. A color material can be reliably applied in the corresponding pixel region 22.
[0074] 例えば、インクジェットノズノレ 52のピッチが 80 μ mであり、画素サイズが 70〜: 100 μ m X 200〜300 μ mであり、ブラックマトリックスの幅が 30 μ mであり、インクジェットノ ズノレ 52の吐出サイクルが 10kHz以上である場合において、 300 μ m{ (70 μ m + 30 z m) X 3}ピッチでカラー材料を塗布する場合には、相対的スキャン速度を 210mm /sとすることによって、全てのインクジェットノズノレ 52を 10kHzで駆動してカラー材料 の塗布を行うことができる。また、画素サイズが変わった場合には、スキャン速度を調 整することによって容易に対処することができる。  [0074] For example, the pitch of inkjet nozzle 52 is 80 μm, the pixel size is 70 to: 100 μm X 200 to 300 μm, the width of the black matrix is 30 μm, and the inkjet nozzle When applying a color material at a pitch of 300 μm {(70 μm + 30 zm) X 3} when the discharge cycle of 52 is 10 kHz or higher, the relative scanning speed should be 210 mm / s. All ink-jet nozzles 52 can be driven at 10 kHz to apply color material. Also, if the pixel size changes, it can be easily dealt with by adjusting the scan speed.
さらに、インクジェットヘッドバー 5の相対的な移動方向と直交する方向における画素 サイズは 200〜300 μ mであり、インクジェットノズノレ 52から吐出されるカラー材料の 液滴に対して十分に大きいマージンを確保することができる。また、インクジェットへッ ドバー 5の相対的な移動方向における画素サイズは 70〜100 μ mであり、インクジヱ ットノズル 52から吐出されるカラー材料の液滴に対するマージンが小さくなる力、イン クジェットノズル 52を動作させるタイミングを精度よく制御する。この結果、ガラス基板 2上に形成されたブラックマトリックス 21の該当する画素領域 22内にカラー材料を確 実に塗布することができる。  Furthermore, the pixel size in the direction orthogonal to the relative movement direction of the inkjet head bar 5 is 200 to 300 μm, ensuring a sufficiently large margin for the droplets of color material ejected from the inkjet nozzle 52. can do. In addition, the pixel size in the relative movement direction of the inkjet head bar 5 is 70 to 100 μm, and the inkjet nozzle 52 operates with a force that reduces the margin for the color material droplets ejected from the ink jet nozzle 52. The timing to be controlled is accurately controlled. As a result, the color material can be reliably applied in the corresponding pixel region 22 of the black matrix 21 formed on the glass substrate 2.
[0075] 以上には、塗布ガントリー 4を吸着テーブル 2に対して X方向に移動させるようにし た実施形態を説明したが、塗布ガントリー 4を固定し、吸着テーブル 3を移動させるよ うに構成することが可能である。 [0075] In the above, the application gantry 4 is moved in the X direction with respect to the suction table 2. However, the application gantry 4 can be fixed and the suction table 3 can be moved.
[0076] また、吸着テーブル 3の一辺をガラス基板 2の長辺よりも大きく設定しておくことが好 ましぐガラス基板 2の搬入状態に拘わらず、ガラス基板 2を確実に吸着テーブル 3に 吸着させることができる。 [0076] It is preferable to set one side of the suction table 3 to be larger than the longer side of the glass substrate 2. Regardless of the state in which the glass substrate 2 is loaded, the glass substrate 2 is securely attached to the suction table 3. Can be made.
[0077] 上記の実施形態において、 1画素に対向するインクジェットノズル 52の数 N、余剰ノ ズル数 n、インクジェットノズル 52の液滴 1滴当たりの量 Q、前記相対的な移動方向で の画素内吐出回数 M、および 1画素に塗布するカラー材料の量 Vが数 1の関係を有 することが好ましい。 [0077] In the above embodiment, the number N of inkjet nozzles 52 facing one pixel, the number n of surplus nozzles, the amount Q per droplet of the inkjet nozzle 52, and the inside of the pixel in the relative movement direction It is preferable that the number M of ejections and the amount V of color material applied to one pixel have the relationship of number 1.
[0078] さらに説明する。 [0078] Further description will be made.
[0079] 図 9に画素領域と液滴との関係を概略的に示す。  FIG. 9 schematically shows the relationship between the pixel region and the droplet.
[0080] 図において、画素内寸が a、 bで表され、画素内塗布領域が c、 dで表され、相対的 移動方向の液滴数 (相対移動方向液滴数)が Mで表され、 1画素に対向するインクジ ヱットノズル 52の数(対向ノズノレ数、または対向ノズノレ液滴数)が Nで表されている。 また、 1画素に対応するインクジェットノズル 52の総数は前記数 Nよりも 1以上多い数 であり、この総数と前記数 Nとの差が余剰ノズル数 nである。したがって、 1画素にカラ 一材料を塗布するためのインクジェットノズル 52の組み合わせの数 iは、 i= C と [0080] In the figure, the inner dimensions of the pixel are represented by a and b, the application area within the pixel is represented by c and d, and the number of droplets in the relative movement direction (number of droplets in the relative movement direction) is represented by M. The number of ink jet nozzles 52 facing one pixel (the number of opposing nozzles or the number of opposing nozzle droplets) is represented by N. Further, the total number of inkjet nozzles 52 corresponding to one pixel is a number one or more larger than the number N, and the difference between the total number and the number N is the number of surplus nozzles n. Therefore, the number i of the combination of inkjet nozzles 52 for applying a color material to one pixel is i = C.
N N-n なる。  N N-n
[0081] そして、カラー材料を画素に塗布するために使用される(吐出状態が選択される)ィ ンクジェットノズル 52の組み合わせを変化させることによって、塗布方向の塗布むらを 分散させることができ、塗布むらを目立ちに《することができる。  [0081] Then, by changing the combination of the ink jet nozzles 52 used to apply the color material to the pixels (the discharge state is selected), the application unevenness in the application direction can be dispersed, The coating unevenness can be conspicuous.
実施例  Example
ノズノレの幅力 25400 μ πι、ノズノレ角军像度力 S l440dpi、ノズノレピッチ P力 25400/1 440 = 17. 6 x m、画素サイズ力 a = 300 μ m、 b = 100 1 m,塗布領域サイズ力 SC = 220 z m, ά = 20 μ ηι 対向ノス、ノレ数力 N = c/P = 220/ l 7. 6 = 12,ネ目対移動方 向液滴数 Mが 1、画素内塗布量(画素内の充填量) Vが 300pl、液滴 1滴当たりの量 Qが 40plの条件で塗布テストを実施した。 Nozunore width force 25400 μ πι, Nozunore angle 军 image power S l440dpi, Nozunore pitch P force 25400/1 440 = 17.6 xm, pixel size force a = 300 μm, b = 100 1 m, coating area size force S C = 220 zm, ά = 20 μ ηι Opposite nose, Nore number force N = c / P = 220 / l 7. 6 = 12, number of droplets in the moving direction M is 1, the amount applied in the pixel (pixel The coating test was conducted under the conditions that V was 300 pl and the amount Q per droplet was 40 pl.
[0082] この条件下で、画素内塗布量を満足する余剰ノズル数 nは、数 1に具体的数値を代 入することにより求めることができ、余乗 IJノズル数 nは 4以下となる。 [0082] Under this condition, the surplus nozzle number n satisfying the in-pixel coating amount is expressed by substituting a specific numerical value for Equation 1. The number of IJ nozzles n is 4 or less.
[0083] この結果、インクジェットノズノレ 52の組み合わせの数 iは 495となる。 As a result, the number i of combinations of inkjet nozzles 52 is 495.
[0084] したがって、 495通り以下の組み合わせ(例えば、 50通りの組み合わせ)のインクジ エツトノズル 52を使用して(吐出状態を選択して)カラー材料の塗布を行うことによつ て、塗布むらを分散させることができ、塗布むらを目立ちに《することができた。 図面の簡単な説明 [0084] Therefore, the coating unevenness is dispersed by applying the color material (selecting the discharge state) using the ink jet nozzle 52 of 495 or less combinations (for example, 50 combinations). It was possible to make the coating unevenness conspicuous. Brief Description of Drawings
[0085] [図 1]本願発明のカラーフィルタ製造装置の一実施形態を示す斜視図である。  FIG. 1 is a perspective view showing an embodiment of a color filter manufacturing apparatus according to the present invention.
[図 2]インクジェットヘッドバーの構成を示す概略図である。  FIG. 2 is a schematic view showing a configuration of an inkjet head bar.
[図 3]R画素領域にカラー材料が塗布された状態を示す概略図である。  FIG. 3 is a schematic view showing a state where a color material is applied to an R pixel region.
[図 4]Y方向におけるインクジェットノズルの制御を説明する概略図である。  FIG. 4 is a schematic diagram for explaining control of an inkjet nozzle in the Y direction.
[図 5]Χ方向におけるインクジェットノズノレの制御を説明する概略図である。  FIG. 5 is a schematic diagram for explaining control of inkjet nozzles in the heel direction.
[図 6]カラーフィルタ製造処理を説明するフローチャートである。  FIG. 6 is a flowchart illustrating a color filter manufacturing process.
[図 7]吐出データテーブルの一例を示す図である。  FIG. 7 is a diagram showing an example of a discharge data table.
[図 8]インクジェットノズノレの配列の一例を示す図である。  FIG. 8 is a diagram showing an example of an inkjet nozzle arrangement.
[図 9]画素領域と液滴との関係を概略的に示す図である。  FIG. 9 is a diagram schematically showing a relationship between a pixel region and a droplet.
符号の説明  Explanation of symbols
[0086] 2 ガラス基板 [0086] 2 Glass substrate
3 吸着テーブル  3 Suction table
5 インクシェットヘッド/一  5 Ink shed head / one
51 インクシェットヘッド  51 ink shed head
52 インクジェットノズノレ  52 Inkjet Nozure

Claims

請求の範囲 The scope of the claims
[1] 複数個のインクジェットノズノレ(52)を備えたインクジェットヘッド(51)を複数個配列し たインクジェットヘッドバー(5)とブラックマトリックスを表面に形成したガラス基板(2) とを相対的に移動させながら、前記インクジェットノズル(52)で前記ブラックマトリック スの画素にカラー材料を塗布するカラーフィルタ製造方法において、  [1] An inkjet head bar (5) in which a plurality of inkjet heads (51) having a plurality of inkjet nozzles (52) are arranged and a glass substrate (2) having a black matrix formed on the surface are relatively positioned. In the color filter manufacturing method in which a color material is applied to the black matrix pixels by the inkjet nozzle (52) while being moved.
インクジェットヘッドバー(5)の長手方向と平行な方向を前記画素の長手方向に設定 し、インクジェットノズル(52)毎のカラー材料の吐出/非吐出を予め設定しておき、ィ ンクジェットノズノレ(52)に対するガラス基板(2)の相対的位置情報と前記設定情報を 基にインクジェットノズノレ(52)のカラー材料の吐出を制御することを特徴とするカラー フィルタ製造方法。  A direction parallel to the longitudinal direction of the inkjet head bar (5) is set as the longitudinal direction of the pixel, and discharge / non-discharge of the color material for each inkjet nozzle (52) is set in advance, and the ink jet nozzle ( 52. A method for producing a color filter, characterized in that the discharge of the color material of the inkjet nozzle (52) is controlled based on the relative position information of the glass substrate (2) with respect to 52) and the setting information.
[2] 複数個のインクジェットノズノレ(52)を備えたインクジェットヘッド(51)を複数個配列し たインクジェットヘッドバー(5)とブラックマトリックスを表面に形成したガラス基板(2) とを相対的に移動させながら、前記インクジェットノズル(52)で前記ブラックマトリック スの画素にカラー材料を塗布するカラーフィルタ製造方法において、  [2] An inkjet head bar (5) in which a plurality of inkjet heads (51) having a plurality of inkjet nozzles (52) are arranged and a glass substrate (2) having a black matrix formed on the surface are relatively positioned. In the color filter manufacturing method in which a color material is applied to the black matrix pixels by the inkjet nozzle (52) while being moved.
インクジェットヘッドバー(5)の長手方向と平行な方向を同一色の画素の配列方向に 設定し、インクジェットノズル(52)毎のカラー材料の吐出/非吐出を予め設定してお き、インクジェットノズル (52)に対するガラス基板(2)の相対的位置情報と前記設定 情報を基にインクジェットノズノレ(52)のカラー材料の吐出を制御することを特徴とす るカラーフィルタ製造方法。  Set the direction parallel to the longitudinal direction of the inkjet head bar (5) as the arrangement direction of pixels of the same color, and set ejection / non-ejection of color material for each inkjet nozzle (52) in advance. 52. A method for producing a color filter, characterized in that the discharge of the color material of the inkjet nozzle (52) is controlled based on the relative position information of the glass substrate (2) relative to 52) and the setting information.
[3] 前記吐出/非吐出の設定は、ガラス基板(2)の前記相対的な移動方向における座 標に基づいている請求項 1または請求項 2に記載のカラーフィルタ製造方法。  [3] The color filter manufacturing method according to claim 1 or 2, wherein the discharge / non-discharge setting is based on a coordinate in the relative movement direction of the glass substrate (2).
[4] 1画素に対向するインクジェットノズノレ(52)の数 N、余剰ノズル数 n、インクジェットノズ ノレ(52)の液滴 1滴当たりの量 Q、前記相対的な移動方向での画素内吐出回数 M、 および 1画素に塗布するカラー材料の量 Vが数 1の関係を有する請求項 1から請求 項 3の何れかに記載のカラーフィルタ製造方法。  [4] Number of inkjet nozzles (52) facing one pixel N, number of surplus nozzles n, amount of inkjet nozzle nozzle (52) droplets per droplet Q, intra-pixel ejection in the relative movement direction 4. The method for producing a color filter according to claim 1, wherein the number M of times and the amount V of the color material applied to one pixel have a relation of number 1.
[数 1] [Number 1]
V≤M - (N - n ) - Q ( nは 1以上の整数) V≤M-(N-n)-Q (where n is an integer greater than 1)
[5] 前記吐出/非吐出の設定は、ガラス基板(2)の前記画素の長手方向における座標 に基づいている請求項 1または請求項 2に記載のカラーフィルタ製造方法。 5. The color filter manufacturing method according to claim 1, wherein the ejection / non-ejection setting is based on a coordinate in a longitudinal direction of the pixel of the glass substrate (2).
[6] 前記相対的な移動が終了する毎にインクジェットヘッドバー(5)を長手方向に移動さ せ、該長手方向の移動量は、長手方向の移動の前後におけるカラー材料の塗布領 域が互いに重ならない移動量と画素の長手方向ピッチとを加算した値である請求項 1または請求項 2に記載のカラーフィルタ製造方法。  [6] Each time the relative movement is completed, the inkjet head bar (5) is moved in the longitudinal direction, and the amount of movement in the longitudinal direction is such that the application region of the color material before and after the movement in the longitudinal direction is mutually different. 3. The color filter manufacturing method according to claim 1, wherein the color filter manufacturing method is a value obtained by adding a movement amount that does not overlap and a longitudinal pitch of a pixel.
[7] 前記相対的な移動毎に、インクジェットノズル(52)毎のカラー材料の吐出 Z非吐出 の設定を変更する請求項 6に記載のカラーフィルタ製造方法。  [7] The color filter manufacturing method according to [6], wherein the setting of ejection of the color material and non-ejection of the color material for each inkjet nozzle (52) is changed for each relative movement.
[8] 複数個のインクジェットノズノレ(52)を備えたインクジェットヘッド(51)を複数個配列し たインクジェットヘッドバー(5)を支持する支持部材と、ブラックマトリックスを表面に形 成したガラス基板(2)を吸着保持する吸着テーブル(3)と、インクジェットヘッドバー( 5)とガラス基板(2)とを、所定の間隙を保持した状態で相対的に移動させる第 1移動 手段と、インクジェットヘッドバー(5)とガラス基板(2)とを、前記第 1移動手段による 移動方向と直交する方向に移動させる第 2移動手段と、ガラス基板(2)およびインク ジェットノズル (52)のディメンジョンを入力し、データを記憶する第 1記憶手段を含む カラーフィルタ製造装置にぉレ、て、  [8] A support member for supporting an ink jet head bar (5) in which a plurality of ink jet heads (51) each having a plurality of ink jet nozzles (52) are arranged, and a glass substrate having a black matrix formed on the surface ( A suction table (3) for sucking and holding 2), a first moving means for relatively moving the inkjet head bar (5) and the glass substrate (2) while maintaining a predetermined gap; and an inkjet head bar The second moving means for moving (5) and the glass substrate (2) in a direction orthogonal to the moving direction by the first moving means, and the dimensions of the glass substrate (2) and the ink jet nozzle (52) are input. The color filter manufacturing apparatus including the first storage means for storing data,
前記ガラス基板(2)とインクジェットバー (5)の相対位置を検出する検出手段と、検出 した相対位置に基づきインクジェットノズノレ(52)毎のカラー材料の吐出を制御する 吐出制御手段とを含むことを特徴とするカラーフィルタ製造装置。  Detection means for detecting a relative position between the glass substrate (2) and the ink jet bar (5), and a discharge control means for controlling discharge of the color material for each ink jet nozzle (52) based on the detected relative position. A color filter manufacturing apparatus.
[9] インクジェットヘッドバー(5)の、前記第 1移動手段による移動方向と直交する方向に おける塗布領域が、ガラス基板(2)の前記第 1移動手段による移動方向と直交する 方向における塗布領域よりも大きい請求項 8に記載のカラーフィルタ製造装置。  [9] The application region of the inkjet head bar (5) in the direction orthogonal to the direction of movement of the glass substrate (2) by the first movement unit is perpendicular to the direction of movement of the glass substrate (2) by the first movement unit The color filter manufacturing apparatus according to claim 8, wherein the color filter manufacturing apparatus is larger.
[10] 入力された相対的移動方向のガラス基板画素およびインクジェットノズノレ(52)の位 置情報から、ガラス基板(2)とインクジェットヘッドバー(5)の、前記第 1移動手段によ る移動方向における相対位置毎の各インクジェットノズル(52)のカラー材料の吐出 /非吐出を演算 Z判断する第 1演算手段と、第 1演算手段による演算/判断結果を 記憶する第 2記憶手段をさらに含む請求項 8に記載のカラーフィルタ製造装置。 入力された相対的移動方向のガラス基板画素およびインクジェットノズノレ(52)の位 置情報から、各インクジェットノズル(52)の前記第 1移動手段による移動方向と直交 する方向におけるカラー材料の吐出/非吐出を演算/判断する第 2演算手段と、第 2演算手段による演算/判断結果を記憶する第 3記憶手段をさらに含む請求項 8に 記載のカラーフィルタ製造装置。 [10] The movement of the glass substrate (2) and the inkjet head bar (5) by the first moving means based on the input positional information of the glass substrate pixel and the inkjet nozzle (52) in the relative movement direction. A first calculation means for calculating Z determination of the discharge / non-discharge of the color material of each inkjet nozzle (52) for each relative position in the direction, and a second storage means for storing the calculation / determination result by the first calculation means The color filter manufacturing apparatus according to claim 8. From the input positional information of the glass substrate pixel and the inkjet nozzle (52) in the relative movement direction, the discharge / non-discharge of the color material in the direction orthogonal to the movement direction by the first moving means of each inkjet nozzle (52). 9. The color filter manufacturing apparatus according to claim 8, further comprising second calculation means for calculating / determining discharge and third storage means for storing calculation / determination results by the second calculation means.
PCT/JP2007/059653 2006-05-15 2007-05-10 Method and apparatus for manufacturing color filter WO2007132727A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800179560A CN101449186B (en) 2006-05-15 2007-05-10 Method and apparatus for manufacturing color filter
JP2008515510A JP5243954B2 (en) 2006-05-15 2007-05-10 Color filter manufacturing method and apparatus
KR1020087030392A KR101214352B1 (en) 2006-05-15 2008-12-12 Method and apparatus for manufacturing color filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006135445 2006-05-15
JP2006-135445 2006-05-15

Publications (1)

Publication Number Publication Date
WO2007132727A1 true WO2007132727A1 (en) 2007-11-22

Family

ID=38693821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059653 WO2007132727A1 (en) 2006-05-15 2007-05-10 Method and apparatus for manufacturing color filter

Country Status (5)

Country Link
JP (1) JP5243954B2 (en)
KR (1) KR101214352B1 (en)
CN (1) CN101449186B (en)
TW (1) TWI398358B (en)
WO (1) WO2007132727A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099051A1 (en) * 2008-02-04 2009-08-13 Toray Engineering Co., Ltd. Application device and application method
JP2010152404A (en) * 2010-04-01 2010-07-08 Seiko Epson Corp Liquid object arrangement method, method for manufacturing color filter, method for manufacturing organic el display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337727A (en) * 2003-05-14 2004-12-02 Seiko Epson Corp Droplet discharging apparatus, electro-optical device production method, electro-optical device, electronic device, and substrate
JP2005131606A (en) * 2003-10-31 2005-05-26 Seiko Epson Corp Discharge device, manufacturing device of color filter substrate, manufacturing device of electroluminescence display unit, and discharge method
JP2005324130A (en) * 2004-05-14 2005-11-24 Seiko Epson Corp Droplet-discharging device, electro-optic device, method of fabricating electro-optic device and electronic equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3985559B2 (en) * 2002-03-19 2007-10-03 セイコーエプソン株式会社 Discharge device, liquid crystal display device manufacturing method, organic EL device manufacturing method, electron emission device manufacturing method, PDP device manufacturing method, electrophoretic display device manufacturing method, color filter manufacturing method, organic EL manufacturing method , Spacer forming method, metal wiring forming method, lens forming method, resist forming method, and light diffuser forming method
JP4341589B2 (en) * 2005-06-10 2009-10-07 セイコーエプソン株式会社 Droplet ejection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337727A (en) * 2003-05-14 2004-12-02 Seiko Epson Corp Droplet discharging apparatus, electro-optical device production method, electro-optical device, electronic device, and substrate
JP2005131606A (en) * 2003-10-31 2005-05-26 Seiko Epson Corp Discharge device, manufacturing device of color filter substrate, manufacturing device of electroluminescence display unit, and discharge method
JP2005324130A (en) * 2004-05-14 2005-11-24 Seiko Epson Corp Droplet-discharging device, electro-optic device, method of fabricating electro-optic device and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009099051A1 (en) * 2008-02-04 2009-08-13 Toray Engineering Co., Ltd. Application device and application method
JP2010152404A (en) * 2010-04-01 2010-07-08 Seiko Epson Corp Liquid object arrangement method, method for manufacturing color filter, method for manufacturing organic el display

Also Published As

Publication number Publication date
CN101449186A (en) 2009-06-03
KR101214352B1 (en) 2012-12-20
TWI398358B (en) 2013-06-11
JP5243954B2 (en) 2013-07-24
JPWO2007132727A1 (en) 2009-09-24
TW200906628A (en) 2009-02-16
KR20090021277A (en) 2009-03-02
CN101449186B (en) 2011-01-19

Similar Documents

Publication Publication Date Title
KR100873477B1 (en) Discharge pattern data correction method, discharge pattern data correction device, and droplet discharge device
JP5015264B2 (en) Droplet coating apparatus, droplet coating method, liquid crystal display panel manufacturing apparatus, and liquid crystal display panel manufacturing method
WO2007132726A1 (en) Method and apparatus for manufacturing color filter
WO2008032772A1 (en) Ink ejector and ink ejection control method
JP7285827B2 (en) Coating machine and coating method
JP4168728B2 (en) Method for correcting dot position of droplet discharge device, droplet discharge method, and electro-optical device manufacturing method
JP5400372B2 (en) Coating apparatus and coating method
JPWO2008093701A1 (en) Coating device
JP2004031070A (en) Organic el material application device, its application method, and organic el display device
JP4661840B2 (en) Alignment mask and dot position recognition method
WO2007132727A1 (en) Method and apparatus for manufacturing color filter
JP2009175168A (en) Application equipment and application method
KR100720348B1 (en) Orientation film forming device, orientation film forming method, drawing device, and drawing method
CN110385926B (en) Printing method, printing apparatus, EL, and method for manufacturing solar cell
JP5073301B2 (en) Coating device
JP3944638B2 (en) Display device manufacturing method, display device manufacturing apparatus, display device, device, and program
CN110091604B (en) Ink jet printing control method, ink jet printing control device and ink jet printing system
JP2009109799A (en) Coating device and coating method
JP4224314B2 (en) Solution coating apparatus and coating method
KR20090104661A (en) Coating machine and coating method
JP2006247500A (en) Pattern forming apparatus and pattern forming method
JP2010234170A (en) Coating apparatus
WO2022172762A1 (en) Droplet discharging device and droplet discharging method
KR101960273B1 (en) Printing Method
JP5384816B2 (en) Droplet coating apparatus and droplet coating method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780017956.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743088

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008515510

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087030392

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07743088

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)