WO2009099049A1 - 偏光板、光学部材および液晶表示装置 - Google Patents

偏光板、光学部材および液晶表示装置 Download PDF

Info

Publication number
WO2009099049A1
WO2009099049A1 PCT/JP2009/051760 JP2009051760W WO2009099049A1 WO 2009099049 A1 WO2009099049 A1 WO 2009099049A1 JP 2009051760 W JP2009051760 W JP 2009051760W WO 2009099049 A1 WO2009099049 A1 WO 2009099049A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
polarizing plate
compound
film
group
Prior art date
Application number
PCT/JP2009/051760
Other languages
English (en)
French (fr)
Inventor
Masashi Fujinaga
Ju-Yeul Jang
Ryu Takeko
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008059348A external-priority patent/JP2009216874A/ja
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to CN200980103972.0A priority Critical patent/CN101932960B/zh
Priority to KR1020157034197A priority patent/KR101668577B1/ko
Publication of WO2009099049A1 publication Critical patent/WO2009099049A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing plate having a protective layer on one side or both sides of a polarizing film.
  • the present invention also relates to an optical member and a liquid crystal display device using the polarizing plate.
  • the polarizing plate is useful as an optical component constituting a liquid crystal display device.
  • a polarizing plate has a configuration in which a protective layer made of a transparent resin film is laminated on one side or both sides of a polarizing film using an aqueous adhesive or the like.
  • a transparent resin film a triacetyl cellulose film (TAC film) is often used because of its excellent optical transparency and moisture permeability.
  • TAC film triacetyl cellulose film
  • the polarizing plate is bonded to the liquid crystal cell with an adhesive via another optical function layer as necessary, and is incorporated into the liquid crystal display device.
  • liquid crystal display devices in mobile devices such as notebook personal computers, mobile phones, car navigation systems, etc.
  • the polarizing plates that make up liquid crystal display devices are thinner and lighter and have higher durability (high mechanical strength).
  • liquid crystal display devices for mobile use are required to be usable under wet heat, and polarizing plates used therefor are also required to have high heat and humidity resistance.
  • the protective layer laminated on the polarizing film is required to improve the mechanical strength and the ability to suppress the contraction of the polarizing film (shrinkage suppressing force) as well as reducing the thickness and weight. .
  • Patent Document 1 a resin solution is applied to one or both sides of a polarizing film made of a hydrophilic polymer to form a transparent thin film layer Techniques to do this are disclosed.
  • Patent Document 2 discloses curing an energy beam curable composition containing an energy beam polymerizable compound having a dicyclopentanyl residue or a dicyclopentenyl residue. Discloses a technique for forming a protective film on a polarizing film.
  • Patent Document 3 discloses a polarizing plate having a protective film mainly composed of an epoxy resin on at least one surface of a polarizing film.
  • Patent Document 4 discloses that at least one surface of a polarizing film is protected with a cured product of an active energy ray-curable resin composition. JP 2000-199819 A JP 2003-185842 A JP 2004-245924 A JP 2005-92112 A
  • the polarizing plate of the present invention is a curable film containing a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film, and an active energy ray-curable compound formed on at least one surface of the polarizing film.
  • the polarizing plate of the present invention it is preferable that 10 to 70 parts by weight of the (meth) acrylic compound is contained in 100 parts by weight of the active energy ray-curable compound.
  • the (meth) acrylic compound is preferably such that a cured product composed only of the (meth) acrylic compound and a polymerization initiator gives an elastic modulus of 3000 MPa or more.
  • the (meth) acrylic compound contains at least one of the compounds represented by the following formulas (1) to (4).
  • Q 1 and Q 2 each independently represent a (meth) acryloyloxy group or a (meth) acryloyloxyalkyl group, wherein the alkyl has 1 to 10 carbon atoms.
  • R represents hydrogen or a hydrocarbon group having 1 to 10 carbon atoms;
  • T 1 , T 2 and T 3 are independently of each other (meth) Represents an acryloyloxy group;
  • T represents a hydroxyl group or a (meth) acryloyloxy group.
  • the curable resin composition further contains an oxetane compound.
  • the curable resin composition further contains fine particles.
  • the curable resin composition contains 5 to 250 parts by weight of fine particles with respect to 100 parts by weight of the active energy ray-curable compound.
  • the fine particles are preferably silica particles having a particle size of 100 nm or less.
  • the silica fine particles preferably have one or more functional groups selected from the group consisting of a hydroxyl group, an epoxy group, a (meth) acryloyloxy group, and a vinyl group on the surface thereof.
  • the thickness of the protective layer is preferably 1 to 35 ⁇ m.
  • the present invention also provides an optical member composed of a laminate of the above-described polarizing plate of the present invention and an optical functional layer.
  • the optical functional layer in the optical member of the present invention is preferably any of a retardation layer, a brightness enhancement film, and a surface treatment layer.
  • the present invention further provides a liquid crystal display device in which the polarizing plate of the present invention described above or the optical member of the present invention described above is disposed on one side or both sides of a liquid crystal cell.
  • the polarizing plate can be reduced in thickness and weight, and the adhesion between the polarizing film and the protective layer is also good. It is. Furthermore, since the hardness of the protective layer is improved, the mechanical strength of the polarizing plate can be improved, and even when the thickness of the protective layer is reduced compared to the conventional case, The shrinkage of the polarizing film can be effectively suppressed.
  • a polarizing plate of the present invention and an optical member using the same can be suitably applied to, for example, a liquid crystal display device for mobile use.
  • FIG. 1 (A) has shown the sample 1 before warm water immersion
  • FIG. 1 (B) has shown the sample 1 after warm water immersion. .
  • the polarizing plate of the present invention is a curable resin containing a polarizing film in which a dichroic dye is adsorbed and oriented on a polyvinyl alcohol-based resin film, and an active energy ray-curable compound formed on one side or both sides of the polarizing film.
  • the basic constitution is to provide a protective layer made of a cured product of the composition.
  • the active energy ray-curable compound used in the protective layer has a compound having at least one epoxy group in the molecule and at least one (meth) acryloyloxy group in the molecule.
  • (Meth) acrylic compound and the elastic modulus of the protective layer is 3300 to 10,000 MPa.
  • “elastic modulus” as used in this specification means a tensile elastic modulus at room temperature (about 23 ° C.) unless otherwise specified.
  • the polarizing plate of the present invention will be described in detail.
  • the polarizing film used in the present invention is made of a polyvinyl alcohol-based resin, and specifically, a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol-based resin film.
  • the polyvinyl alcohol resin constituting the polarizing film can be obtained by saponifying a polyvinyl acetate resin.
  • the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, unsaturated sulfonic acids, olefins, vinyl ethers, and the like.
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 to 100 mol%.
  • the polyvinyl alcohol-based resin may be further modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes may be used.
  • the degree of polymerization of the polyvinyl alcohol-based resin is usually about 1000 to 10,000, preferably about 1500 to 10,000.
  • a film obtained by forming such a polyvinyl alcohol resin is used as an original film of a polarizing film.
  • the method for forming the polyvinyl alcohol-based resin into a film is not particularly limited, and can be performed by a known method.
  • the film thickness of the raw film made of polyvinyl alcohol resin is not particularly limited, but is, for example, about 10 to 150 ⁇ m.
  • a polarizing film is usually a process of uniaxially stretching a raw film made of a polyvinyl alcohol resin as described above, a process of dyeing a polyvinyl alcohol resin film with a dichroic dye and adsorbing the dichroic dye, two colors It is manufactured through a step of treating a polyvinyl alcohol-based resin film adsorbed with a functional dye with an aqueous boric acid solution and a step of washing with water after the treatment with an aqueous boric acid solution.
  • the uniaxial stretching may be performed before dyeing with the dichroic dye, may be performed simultaneously with the dyeing, or may be performed after the dyeing.
  • the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment.
  • it is also possible to perform uniaxial stretching in these several steps.
  • uniaxial stretching it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll.
  • it may be a dry stretching method such as stretching in the air, or a wet stretching method in which stretching is performed in a state swollen with a solvent.
  • the draw ratio is usually about 4 to 8 times.
  • the polyvinyl alcohol resin film may be immersed in an aqueous solution containing the dichroic dye.
  • the dichroic dye iodine, a dichroic dye or the like is used.
  • the polyvinyl alcohol-type resin film performs the immersion process to water before a dyeing process.
  • iodine When iodine is used as the dichroic dye, a method of immersing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed as a dyeing method.
  • the content of iodine in this aqueous solution is usually about 0.01 to 0.5 parts by weight with respect to 100 parts by weight of water, and the content of potassium iodide is usually about 0.1 with respect to 100 parts by weight of water. About 5 to 10 parts by weight.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C., and the immersion time (dyeing time) in this aqueous solution is usually about 30 to 300 seconds.
  • a method of immersing a polyvinyl alcohol-based resin film in a dye aqueous solution containing a water-soluble dichroic dye is usually employed as a dyeing method.
  • the content of the dichroic dye in this dye aqueous solution is usually about 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 parts by weight with respect to 100 parts by weight of water.
  • the dye aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant.
  • the temperature of the aqueous dye solution is usually about 20 to 80 ° C., and the immersion time (dyeing time) in the aqueous dye solution is usually about 30 to 300 seconds.
  • the boric acid treatment after dyeing with the dichroic dye is performed by immersing the dyed polyvinyl alcohol-based resin film in a boric acid-containing aqueous solution.
  • the boric acid content in the boric acid-containing aqueous solution is usually about 2 to 15 parts by weight, preferably about 5 to 12 parts by weight with respect to 100 parts by weight of water.
  • the boric acid-containing aqueous solution preferably further contains potassium iodide.
  • the content of potassium iodide in the boric acid-containing aqueous solution is usually about 2 to 20 parts by weight, preferably about 5 to 15 parts by weight with respect to 100 parts by weight of water.
  • the immersion time in the boric acid-containing aqueous solution is usually about 100 to 1200 seconds, preferably about 150 to 600 seconds, and more preferably about 200 to 400 seconds.
  • the temperature of the boric acid-containing aqueous solution is usually 50 ° C. or higher, preferably 50 to 85 ° C.
  • the polyvinyl alcohol resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment is performed, for example, by immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of water in the washing treatment is usually about 5 to 40 ° C., and the immersion time is about 2 to 120 seconds.
  • a drying process is performed to obtain a polarizing film.
  • the drying treatment can be performed using a hot air dryer or a far infrared heater.
  • the drying temperature is usually about 40 to 100 ° C.
  • the drying process time is usually about 120 to 600 seconds.
  • a polarizing film in which a dichroic dye is adsorbed and oriented on a uniaxially stretched polyvinyl alcohol resin film can be produced.
  • the thickness of the polarizing film can be about 5 to 40 ⁇ m.
  • the protective layer which consists of hardened
  • the active energy ray-curable compound in the present invention includes a compound having at least one epoxy group in the molecule (hereinafter sometimes simply referred to as “epoxy compound”) and at least one (meth) acryloyl in the molecule.
  • epoxy compound a compound having at least one epoxy group in the molecule
  • (meth) acrylic compound” is contained.
  • the elastic modulus of the protective layer is 3300 to 10000 MPa, preferably 3500 to 8000 MPa.
  • the elastic modulus of the protective layer is less than 3300 MPa, the ability to suppress the shrinkage of the polarizing film under high temperature and high humidity is lowered, and as a result, the polarization characteristics are lowered.
  • the adhesiveness of a polarizing film and a protective layer worsens when the elasticity modulus of a protective layer exceeds 10,000 Mpa, problems, such as peeling of a protective layer, may arise.
  • the protective layer preferably has an elastic modulus at a high temperature of about 80 ° C. so as not to decrease so much in order to suppress the shrinkage of the polarizing film particularly under a high temperature condition.
  • the storage elastic modulus at 80 ° C. is preferably in the range of 1500 to 5500 MPa. Note that if it is attempted to obtain the tensile modulus at a high temperature of about 80 ° C., it is difficult to accurately measure the sample length particularly before and after the test. In terms of expressing, the storage elastic modulus, which is a concept close to the tensile elastic modulus, was adopted.
  • the “compound having one or more epoxy groups in the molecule” means having one or more epoxy groups in the molecule and active energy rays (for example, ultraviolet rays, visible light, electron beams). , X-ray, etc.) means a compound that can be cured by irradiation.
  • active energy ray-curable compound an epoxy compound, a (meth) acrylic compound, and an oxetane compound described later may be collectively referred to as an “active energy ray-curable compound”.
  • the epoxy compound is not particularly limited, but an epoxy compound that does not contain an aromatic ring in the molecule is preferable from the viewpoint of weather resistance, refractive index, cationic polymerization, and the like.
  • examples of such epoxy compounds that do not contain an aromatic ring in the molecule include hydrogenated epoxy compounds, aliphatic epoxy compounds, and alicyclic epoxy compounds.
  • the hydrogenated epoxy compound can be obtained by selectively hydrogenating an aromatic epoxy compound under pressure in the presence of a catalyst.
  • aromatic epoxy compounds include bisphenol-type epoxy resins such as bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, and bisphenol S diglycidyl ether; phenol novolac epoxy resins, cresol novolac epoxy resins, hydroxybenzaldehyde phenol
  • novolak-type epoxy resins such as novolak epoxy resins
  • polyfunctional epoxy resins such as glycidyl ether of tetrahydroxyphenylmethane, glycidyl ether of tetrahydroxybenzophenone, and epoxidized polyvinylphenol.
  • hydrogenated bisphenol A glycidyl ether is preferred as the hydrogenated epoxy compound.
  • Examples of the aliphatic epoxy compound include an aliphatic polyhydric alcohol or a polyglycidyl ether of an alkylene oxide adduct thereof. More specifically, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, propylene Polyglycidyl, a polyether polyol obtained by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to diglycidyl ether of glycol, aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin Examples include ether.
  • An alicyclic epoxy compound means an epoxy compound having at least one epoxy group bonded to an alicyclic ring.
  • the “epoxy group bonded to the alicyclic ring” has a structure in which one or more hydrogen atoms in (CH 2 ) m are removed from the following formula. In the formula, m is an integer of 2 to 5.
  • the alicyclic epoxy compound is a compound having at least one structure represented by the above formula in the molecule. More specifically, a compound represented by the above formula, or a compound in which one or more hydrogen groups in (CH 2 ) m in the above formula are bonded to a group having another chemical structure Can be an alicyclic epoxy compound. One or more hydrogen atoms in (CH 2 ) m may be appropriately substituted with a linear alkyl group such as a methyl group or an ethyl group.
  • the structure of the alicyclic epoxy compound preferably used in the present invention is specifically illustrated below, it is not limited to these compounds.
  • R 1 and R 2 each independently represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • (B) Epoxycyclohexanecarboxylates of alkanediol represented by the following formula (II):
  • R 5 and R 6 each independently represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms, and p represents an integer of 2 to 20).
  • (D) Epoxycyclohexyl methyl ethers of polyethylene glycol represented by the following formula (IV):
  • R 11 and R 12 each independently represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • R 13 and R 14 each independently represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • VIII Vinylcyclohexene diepoxides represented by the following formula (VIII):
  • R 15 represents a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • R 15 represents a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • R 16 and R 17 each independently represent a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • R 18 represents a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • R 18 represents a hydrogen atom or a linear alkyl group having 1 to 5 carbon atoms.
  • each epoxy compound may be used alone or in combination with one or more other compounds.
  • the epoxy compound is preferably contained in a proportion of 30 to 90 parts by weight, and in a proportion of 35 to 80 parts by weight, in 100 parts by weight of the active energy ray curable compound. More preferably, it is contained in a proportion of 40 to 70 parts by weight.
  • the content of the epoxy compound is less than 30 parts by weight, the adhesion between the polarizing film and the protective layer tends to decrease.
  • the content exceeds 90 parts by weight the yellowing of the protective layer, which is a cured product, tends to occur. As a result, the optical performance tends to deteriorate.
  • the curable resin composition may contain an oxetane compound in addition to the epoxy compound.
  • an oxetane compound By adding an oxetane compound, the viscosity of the curable resin composition can be lowered and the curing rate can be increased. Moreover, yellowing of the protective layer, which is a cured product, can be prevented and the optical performance can be improved.
  • An oxetane compound is a compound having at least one oxetane ring (four-membered ether) in the molecule, such as 3-ethyl-3-hydroxymethyloxetane, 1,4-bis [(3-ethyl-3 -Oxetanyl) methoxymethyl] benzene, 3-ethyl-3- (phenoxymethyl) oxetane, di [(3-ethyl-3-oxetanyl) methyl] ether, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane And phenol novolac oxetane.
  • These oxetane compounds can be easily obtained as commercial products.
  • oxetane compounds are “Aron Oxetane OXT-101”, “Aron Oxetane OXT-121”, and “Aron Oxetane OXT-211”. “Aron Oxetane OXT-221”, “Aron Oxetane OXT-212” (manufactured by Toagosei Co., Ltd.), and the like.
  • the amount of the oxetane compound is not particularly limited, but is usually 30 parts by weight or less, preferably 10 to 25 parts by weight, per 100 parts by weight of the active energy ray-curable compound.
  • the curable resin composition used in the present invention contains a cationic curable compound such as an epoxy compound or an oxetane compound
  • a photocationic polymerization initiator is blended in the curable resin composition.
  • a cationic photopolymerization initiator it becomes possible to form a protective layer at room temperature, so the need to consider the heat resistance of the polarizing film or distortion due to expansion is reduced, and the protective layer is placed on the polarizing film with good adhesion. Can be formed.
  • a photocationic polymerization initiator acts catalytically by light, it is excellent in storage stability and workability even when mixed with a curable resin composition.
  • the cationic photopolymerization initiator generates a cationic species or a Lewis acid upon irradiation with active energy rays such as visible light, ultraviolet light, X-rays, and electron beams, and initiates a polymerization reaction of an epoxy compound and / or an oxetane compound. It is.
  • any type of photocationic polymerization initiator may be used and is not particularly limited.
  • onium salts such as aromatic diazonium salts, aromatic iodonium salts, aromatic sulfonium salts, and iron-allene complexes And so on.
  • aromatic diazonium salt examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, benzenediazonium hexafluoroborate, and the like.
  • aromatic iodonium salt examples include diphenyliodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, di (4-nonylphenyl) iodonium hexafluorophosphate, and the like.
  • aromatic sulfonium salts include triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenylsulfonium tetrakis (pentafluorophenyl) borate, 4,4′-bis [diphenylsulfonio] diphenyl sulfide, bishexa.
  • Fluorophosphate 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide, bishexafluoroantimonate, 4,4'-bis [di ( ⁇ -hydroxyethoxy) phenylsulfonio] diphenyl sulfide, bis Hexafluorophosphate, 7- [di (p-toluyl) sulfonio] -2-isopropylthioxanthone Hexafluoroantimonate, 7- [di (p- Toluyl) sulfonio] -2-isopropylthioxanthone tetrakis (pentafluorophenyl) borate, 4-phenylcarbonyl-4'-diphenylsulfonio-diphenyl sulfide, hexafluorophosphate, 4- (p-tert-butylphen
  • iron-allene complex examples include xylene-cyclopentadienyl iron (II) hexafluoroantimonate, cumene-cyclopentadienyl iron (II) hexafluorophosphate, xylene-cyclopentadienyl iron (II). -Tris (trifluoromethylsulfonyl) methanide and the like.
  • photocationic polymerization initiators can be easily obtained from commercial products.
  • “Kayarad PCI-220” and “Kayarad PCI-620” Nippon Kayaku Co., Ltd. )
  • “UVI-6990” Union Carbide
  • “Adekaoptomer SP-150”, “Adekaoptomer SP-170” manufactured by ADEKA Corporation
  • “CI-5102”, “ CIT-1370, CIT-1682, CIP-1866S, CIP-2048S, CIP-2064S manufactured by Nippon Soda Co., Ltd.
  • Each of these photocationic polymerization initiators may be used alone or in combination with one or more other types.
  • aromatic sulfonium salts in particular, have ultraviolet absorption characteristics even in a wavelength region of 300 nm or more, and thus give a cured product having excellent curability and good mechanical strength and good adhesion to a polarizing film. Therefore, it is preferably used.
  • the amount of the cationic photopolymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 to 6 parts by weight, based on 100 parts by weight of the total amount of cationic curable compounds such as epoxy compounds and oxetane compounds. Part.
  • the amount of the cationic photopolymerization initiator is less than 0.5 parts by weight based on 100 parts by weight of the total amount of the epoxy compound and the oxetane compound, the curing becomes insufficient, and the mechanical strength, the protective layer and the polarizing film are reduced. There is a tendency for the adhesiveness to decrease.
  • the compounding quantity of a photocationic polymerization initiator exceeds 20 weight part with respect to 100 weight part of total amounts of a cationic curable compound, the ionic substance in hardened
  • the curable resin composition used for forming the protective layer has at least one (meth) in the molecule that is radically polymerizable with the above-described epoxy compound or with the above-described epoxy compound and oxetane-based compound.
  • a (meth) acrylic compound having an acryloyloxy group is contained. This is because by containing the (meth) acrylic compound, a protective layer having high hardness, excellent mechanical strength, and higher durability can be obtained. Furthermore, by containing the (meth) acrylic compound, it is easier to adjust the viscosity and curing rate of the curable resin composition, the surface curability of the resulting protective layer, and the adhesion to the polarizing film. Will be able to do.
  • a cured product composed only of the compound having the (meth) acryloyl group and a polymerization initiator gives an elastic modulus of 3000 MPa or more (preferably 3100 MPa or more). Is preferred.
  • a (meth) acrylic compound having a modulus of elasticity of less than 3000 MPa of a cured product composed only of the compound having a (meth) acryloyl group and a polymerization initiator is used, the mechanical strength as a protective film is insufficient, This is because shrinkage of the film cannot be suppressed.
  • (meth) acryloyloxy group means a methacryloyloxy group or an acryloyloxy group.
  • a (meth) acrylic compound having at least one (meth) acryloyloxy group in the molecule means that at least one methacryloyloxy group or acryloyloxy group is present in the molecule, and radical photopolymerization is initiated. It means a methacrylic acid ester derivative or an acrylic acid ester derivative that can be cured by irradiation with active energy rays (for example, ultraviolet rays, visible light, electron beams, X-rays, etc.) in the presence of an agent.
  • active energy rays for example, ultraviolet rays, visible light, electron beams, X-rays, etc.
  • (meth) acrylic compound having at least one (meth) acryloyloxy group in the molecule a (meth) acrylate monomer having at least one (meth) acryloyloxy group in the molecule (hereinafter referred to as “(meth) ) Acrylate monomer ”), and (meth) acryloyloxy group-containing (meth) acrylate oligomer (hereinafter referred to as“ (meth) acrylate oligomer ”) having at least two (meth) acryloyloxy groups in the molecule.
  • a compound can be mentioned. Each of these may be used alone or in combination with another one or more.
  • the “(meth) acrylate monomer” means an acrylate monomer or a methacrylate monomer
  • the “(meth) acrylate oligomer” means an acrylate oligomer or a methacrylate oligomer.
  • the (meth) acrylate monomer a (meth) acrylate monomer having one (meth) acryloyloxy group in the molecule (hereinafter referred to as “monofunctional (meth) acrylate monomer”), and two in the molecule A (meth) acrylate monomer having a (meth) acryloyloxy group (hereinafter referred to as “bifunctional (meth) acrylate monomer”) and a (meth) acrylate monomer having three or more (meth) acryloyloxy groups in the molecule ( Hereinafter, it is referred to as “polyfunctional (meth) acrylate monomer”. Only one type of (meth) acrylate monomer may be used, or two or more types may be used in combination.
  • monofunctional (meth) acrylate monomers include tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2- Hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclo Pentenyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, phenoxyethyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, di Chill aminoethyl (meth) acrylate, e
  • a carboxyl group-containing (meth) acrylate monomer may be used as the monofunctional (meth) acrylate monomer.
  • Monofunctional (meth) acrylate monomers containing carboxyl groups include 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, carboxyethyl (meth) acrylate, 2- (meth) Examples include acryloyloxyethyl succinic acid, N- (meth) acryloyloxy-N ′, N′-dicarboxy-p-phenylenediamine, and 4- (meth) acryloyloxyethyl trimellitic acid.
  • a (meth) acryloylamino group-containing monomer such as 4- (meth) acryloylamino-1-carboxymethylpiperidine can be used as the monofunctional (meth) acrylate monomer.
  • Examples of the bifunctional (meth) acrylate monomer include alkylene glycol di (meth) acrylates, polyoxyalkylene glycol di (meth) acrylates, halogen-substituted alkylene glycol di (meth) acrylates, and aliphatic polyol di (meth).
  • Di (meth) acrylates of acrylates, hydrogenated dicyclopentadiene or tricyclodecane dialkanol, di (meth) acrylates of dioxane glycol or dioxane dialkanol, di (meth) alkylene oxide adducts of bisphenol A or bisphenol F ) Acrylates, epoxy di (meth) acrylates of bisphenol A or bisphenol F, etc. are typical, but are not limited to these, and various ones can be used.
  • bifunctional (meth) acrylate monomer examples include ethylene glycol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6 -Hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol di (meth) acrylate, ditrimethylolpropane Di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol Cold di (meth) acrylate, polypropylene glycol di
  • the trifunctional or higher polyfunctional (meth) acrylate monomers include glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol.
  • tri- or higher functional aliphatic polyols such as tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc.
  • Poly (meth) acrylate is a typical one.
  • Examples of the (meth) acrylate oligomer include urethane (meth) acrylate oligomer, polyester (meth) acrylate oligomer, and epoxy (meth) acrylate oligomer. Only one type of (meth) acrylate oligomer may be used, or two or more types may be used in combination.
  • the urethane (meth) acrylate oligomer is a compound having a urethane bond (—NHCOO—) and at least two (meth) acryloyloxy groups in the molecule.
  • It may be a urethanation reaction product of a terminal isocyanate group-containing urethane compound obtained by reaction and a (meth) acrylate monomer each having at least one (meth) acryloyloxy group and at least one hydroxyl group in the molecule. .
  • Examples of the hydroxyl group-containing (meth) acrylate monomer used in the urethanization reaction include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxy.
  • Examples include propyl (meth) acrylate, glycerin di (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth) acrylate.
  • Examples of the polyisocyanate used in the urethanation reaction with the hydroxyl group-containing (meth) acrylate monomer include hexamethylene diisocyanate, lysine diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, and aromatic diamethylenes among these diisocyanates.
  • Diisocyanates obtained by hydrogenating isocyanates for example, diisocyanates such as hydrogenated tolylene diisocyanate and hydrogenated xylylene diisocyanate
  • triphenylmethane triisocyanate dimethylene triphenyl triisocyanate
  • dibenzylbenzene triisocyanate and the like Tri-isocyanate and diisocyanate are multimerized Such as polyisocyanate obtained Te, and the like.
  • examples of the polyols used to obtain a terminal isocyanate group-containing urethane compound by reaction with polyisocyanate include polyester polyols, polyether polyols, etc., in addition to aromatic, aliphatic and alicyclic polyols.
  • Aliphatic and alicyclic polyols include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, ditriol.
  • Examples include methylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptane, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, and hydrogenated bisphenol A.
  • the polyester polyol is obtained by a condensation reaction of the polyols with a polybasic carboxylic acid or an anhydride thereof.
  • Polybasic carboxylic acids or their anhydrides include (anhydrous) succinic acid, adipic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic acid, hexahydro (anhydrous) ) Phthalic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid and the like.
  • polyether polyol examples include polyalkylene glycol and polyoxyalkylene-modified polyol obtained by reaction of the above polyols or dihydroxybenzenes with alkylene oxide.
  • the polyester (meth) acrylate oligomer is a compound having an ester bond and at least two (meth) acryloyloxy groups in the molecule. Specifically, it can be obtained by a condensation reaction of (meth) acrylic acid, polybasic carboxylic acid or anhydride thereof, and polyol.
  • Polybasic carboxylic acids or their anhydrides used in the condensation reaction include (anhydrous) succinic acid, adipic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, (anhydrous) trimellitic acid, (anhydrous) pyromellitic Acid, hexahydro (anhydrous) phthalic acid, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, etc. are mentioned.
  • Examples of the polyol used in the condensation reaction include 1,4-butanediol, 1,6-hexanediol, ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, neopentyl glycol, trimethylolethane, trimethylolpropane, ditriol.
  • Examples include methylolpropane, pentaerythritol, dipentaerythritol, dimethylolheptane, dimethylolpropionic acid, dimethylolbutanoic acid, glycerin, and hydrogenated bisphenol A.
  • the epoxy (meth) acrylate oligomer can be obtained by an addition reaction of polyglycidyl ether and (meth) acrylic acid, and has at least two (meth) acryloyloxy groups in the molecule.
  • the polyglycidyl ether used in the addition reaction include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and bisphenol A diglycidyl ether.
  • At least one (meth) acrylic compound represented by the following formulas (1) to (4) is preferable because both adhesion and elastic modulus are excellent. It is preferable to use it.
  • Q 1 and Q 2 each independently represent a (meth) acryloyloxy group or a (meth) acryloyloxyalkyl group.
  • the alkyl may be linear or branched, and has 1 to 10 carbon atoms, generally about 1 to 6 carbon atoms. It is enough.
  • R is hydrogen or a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group may be linear or branched, and can typically be an alkyl group. In this case, the alkyl group generally has about 1 to 6 carbon atoms.
  • T 1 , T 2 and T 3 independently represent a (meth) acryloyloxy group
  • T represents a hydroxyl group or a (meth) acryloyloxy group.
  • the compound represented by the formula (1) is a di (meth) acrylate derivative of hydrogenated dicyclopentadiene or tricyclodecane dialkanol, and specific examples thereof are exemplified above.
  • the compound represented by the formula (3) is triacrylate or trimethacrylate of 1,3,5-tris (2-hydroxyethyl) isocyanurate, as exemplified above.
  • the compound represented by the formula (4) is pentaerythritol tri- or tetra- (meth) acrylate, and specific examples thereof have been exemplified above, but pentaerythritol tri (meth) acrylate and pentaerythritol. Contains tetra (meth) acrylate.
  • the (meth) acrylic compound is preferably 10 to 70 parts by weight, and preferably 20 to 65 parts by weight, in 100 parts by weight of the active energy ray-curable compound. More preferred is 30 to 60 parts by weight.
  • the content rate of a (meth) acrylic-type compound is less than 10 weight part, the shrinkage rate of a polarizing plate may become large.
  • the content rate of a (meth) acrylic-type compound exceeds 70 weight part, the adhesiveness of a polarizing film and a protective layer may not be enough.
  • this curable resin composition contains a radical polymerizable compound such as the above-mentioned (meth) acrylic compound
  • a radical photopolymerization initiator Any radical photopolymerization initiator may be used as long as it can initiate polymerization of a radical polymerizable compound such as a (meth) acrylic compound by irradiation with active energy rays, and a conventionally known one can be used.
  • the photo radical polymerization initiator examples include acetophenone, 3-methylacetophenone, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 2-methyl-1- [ Acetophenone initiators such as 4- (methylthio) phenyl-2-morpholinopropan-1-one and 2-hydroxy-2-methyl-1-phenylpropan-1-one; benzophenone, 4-chlorobenzophenone, 4, Benzophenone initiators such as 4′-diaminobenzophenone; Benzoin ether initiators such as benzoinpropyl ether and benzoin ethyl ether; Thioxanthone initiators such as 4-isopropylthioxanthone; Others, xanthone, fluorenone, Mosquito Including Fakinon, benzaldehyde, anthraquinone and the like.
  • the blending amount of the photo radical polymerization initiator is usually 0.5 to 20 parts by weight, preferably 1 to 6 parts by weight with respect to 100 parts by weight of the radical polymerizable compound such as a (meth) acrylic compound.
  • the blending amount of the radical photopolymerization initiator is less than 0.5 parts by weight with respect to 100 parts by weight of the radical polymerizable compound, curing becomes insufficient, and mechanical strength and adhesion between the protective layer and the polarizing film are reduced. It tends to decrease.
  • the compounding quantity of radical photopolymerization initiator exceeds 20 weight part with respect to 100 weight part of (meth) acrylic-type compounds, the durability performance of the polarizing plate obtained may fall.
  • the curable resin composition used in the present invention may further contain fine particles.
  • the curable resin composition contains fine particles, the hardness and mechanical strength of the obtained protective layer can be further improved. Thereby, the capability to suppress shrinkage
  • the fine particles include inorganic fine particles, organic fine particles, and inorganic / organic hybrid fine particles. Since the protective layer is preferably optically transparent, it is preferable to use fine particles that do not inhibit the optical transparency of the protective layer, such as not causing light scattering.
  • the inorganic fine particles are not particularly limited, and for example, metal oxide fine particles such as silica fine particles, alumina fine particles, tin oxide fine particles, antimony oxide fine particles, indium oxide fine particles; tin oxide-antimony composite oxide fine particles, indium oxide-tin composite Examples thereof include composite oxide fine particles such as oxide fine particles.
  • metal oxide fine particles such as silica fine particles, alumina fine particles, tin oxide fine particles, antimony oxide fine particles, indium oxide fine particles; tin oxide-antimony composite oxide fine particles, indium oxide-tin composite
  • composite oxide fine particles such as oxide fine particles.
  • silica fine particles are preferably used because the material itself has a low refractive index and high strength.
  • the silica fine particles may have a hydroxyl group on the surface.
  • the organic fine particles include fine particles made of polystyrene resin, acrylic resin, organic silicone resin, polycarbonate resin, and the like.
  • Examples of the inorganic / organic hybrid fine particles include silica fine particles having a functional group such as an epoxy group, a (meth) acryloyloxy group, and a vinyl group on the surface.
  • Silica fine particles having a reactive functional group such as a hydroxyl group, an epoxy group, a (meth) acryloyloxy group, or a vinyl group on the surface are preferably used from the viewpoint of reacting with an active energy ray-curable compound and crosslinking.
  • the particle diameter of the fine particles measured by the BET method or the dynamic light scattering method (DLS method) is preferably 100 nm or less, and more preferably 70 nm or less. When the particle diameter of the fine particles exceeds 100 nm, an optically transparent protective layer tends to be not obtained.
  • the particle size is usually 3 nm or more.
  • the inorganic fine particles may be added to the curable resin composition as solid fine particles, or may be added as a colloidal material dispersed in a solvent.
  • a solvent an organic solvent is preferably used because drying can be performed relatively easily.
  • examples of inorganic fine particles dispersed in an organic solvent preferably used in the present invention include colloidal silica.
  • the silica concentration in the colloidal silica is not particularly limited, and a commercially available product such as about 20 to 40% by weight can be used.
  • colloidal silica only 1 type may be used and 2 or more types may be used together.
  • colloidal silica examples include “methanol silica sol” (manufactured by Nissan Chemical Industries, Ltd., silica particle size 10 to 15 nm, solid content 30% by weight), “MA- “ST-M” (manufactured by Nissan Chemical Industries, Ltd., silica particle size 20 to 25 nm, solid content 40% by weight), “OSCAL 1132” (manufactured by Catalyst Chemical Industries, Ltd., silica particle size 10 to 20 nm, solid content 30 "OSCAL 1232” (catalyst chemical industry Co., Ltd., silica particle size 10-20 nm, solid content 30-31 wt%); organic solvent is n-propyl alcohol Some "OSCAL 1332” (manufactured by Catalytic Chemical Industry Co., Ltd., silica particle size 10-20 nm, solid content 30-31 wt%); organic solvent is isopropyl “IPA-ST” (manufactured by Nissan Chemical Industries, Ltd., silica
  • AEROSIL solid silica fine particles
  • solid silica fine particles for example, those sold by Nippon Aerosil Co., Ltd. as “AEROSIL” series such as “AEROSIL 50”, “AEROSIL 130”, “Nipsil E 150K”, Examples of “Nipsil” series such as “Nipsil E 200” include those sold by Nippon Silica Kogyo Co., Ltd., and these can also be used suitably.
  • the fine particles are preferably added in an amount of 5 to 250 parts by weight, more preferably 10 to 100 parts by weight, based on 100 parts by weight of the active energy ray-curable compound contained in the curable resin composition.
  • the addition amount of the fine particles is less than 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable compound, the improvement in the hardness of the protective layer due to the addition of the fine particles may not be sufficient.
  • the addition amount of fine particles exceeds 250 parts by weight with respect to 100 parts by weight of the active energy ray-curable compound, the adhesion between the polarizing film and the protective layer may be lowered.
  • the addition amount of microparticles exceeds 250 weight part the dispersion stability of the microparticles
  • the curable resin composition can further contain a photosensitizer as necessary.
  • a photosensitizer By using a photosensitizer, the reactivity of the active energy ray-curable compound in cationic polymerization and / or radical polymerization is improved, and the mechanical strength of the protective layer and the adhesion between the protective layer and the polarizing film are improved. be able to.
  • the photosensitizer include carbonyl compounds, organic sulfur compounds, persulfides, redox compounds, azo and diazo compounds, halogen compounds, and photoreductive dyes.
  • Specific photosensitizers include, for example, benzoin derivatives such as benzoin methyl ether, benzoin isopropyl ether, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone; benzophenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate Benzophenone derivatives such as 4,4′-bis (dimethylamino) benzophenone and 4,4′-bis (diethylamino) benzophenone; thioxanthone derivatives such as 2-chlorothioxanthone and 2-isopropylthioxanthone; 2-chloroanthraquinone, 2-methyl Anthraquinone derivatives such as anthraquinone; acridone derivatives such as N-methylacridone and N-butylacridone; other, ⁇ , ⁇ -diethoxyacetophenone, benzyl, fluorenone, xan
  • the curable resin composition may contain an antistatic agent for imparting antistatic performance to the polarizing plate.
  • the antistatic agent is not particularly limited, and a known antistatic agent can be used.
  • cationic surfactants such as acyloylamidopropyldimethylhydroxyethylammonium nitrate, acyloylamidopropyltrimethylammonium sulfate, cetylmorpholium methosulfate; linear alkyl phosphate potassium salt, polyoxyethylene alkyl phosphate Anionic surfactants such as potassium salts and alkane sulfonates; nonionic surfactants such as N, N-bis (hydroxyethyl) -N-alkylamines, their fatty acid ester derivatives, and polyhydric alcohol fatty acid partial esters An agent or the like can be used.
  • the blending ratio of these antistatic agents is appropriately determined according to the desired characteristics, but is usually about 0.1 to 20 parts by weight with respect to 100 parts
  • a known polymer additive usually used for a polymer material can be added.
  • examples include primary antioxidants such as phenols and amines, sulfur secondary antioxidants, hindered amine light stabilizers (HALS), benzophenone, benzotriazole, and benzoate UV absorbers. .
  • the curable resin composition can contain a leveling agent as required.
  • a leveling agent As the leveling agent, various compounds such as silicone-based, fluorine-based, polyether-based, acrylic acid copolymer-based and titanate-based compounds can be used. These leveling agents may be used alone or in combination of two or more.
  • the leveling agent is preferably added in an amount of 0.01 to 1 part by weight, more preferably 0.1 to 0.7 part by weight based on 100 parts by weight of the active energy ray-curable compound contained in the curable resin composition. Part by weight, more preferably 0.2 to 0.5 part by weight.
  • the leveling agent is added in an amount of less than 0.01 part by weight based on 100 parts by weight of the active energy ray-curable compound, improvement of wettability and surface property may not be sufficient.
  • the addition amount of a leveling agent exceeds 1 weight part with respect to 100 weight part of active energy ray hardening compounds, the adhesiveness of a polarizing film and a protective layer may fall.
  • the curable resin composition may contain a solvent as necessary.
  • the solvent is appropriately selected depending on the solubility of the components constituting the curable resin composition.
  • Commonly used solvents include aliphatic hydrocarbons such as n-hexane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, propanol, isopropanol and n-butanol; acetone and methyl ethyl ketone And ketones such as methyl isobutyl ketone and cyclohexanone; cellosolves such as methyl acetate, ethyl acetate and acetic acid; halogenated hydrocarbons such as methylene chloride and chloroform.
  • the blending ratio of the solvent is appropriately determined from the viewpoint of the viscosity of the desired active energy ray-curable resin composition in consideration of processability such as film formability.
  • Examples of the method for forming the protective layer on one or both sides of the polarizing film include the following methods. First, for example, the curable resin composition is applied onto a substrate such as a polyethylene terephthalate film (PET film). Next, after drying for removing the solvent as necessary, the substrate having the coating film made of the curable resin composition is bonded to the polarizing film so that the coating film side becomes the bonding surface. To do. Under the present circumstances, when laminating
  • a substrate such as a polyethylene terephthalate film (PET film).
  • PET film polyethylene terephthalate film
  • this laminated body is irradiated or heated with active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams to cure the coating film made of the curable resin composition to form a protective layer.
  • active energy rays such as visible light, ultraviolet rays, X-rays, and electron beams to cure the coating film made of the curable resin composition to form a protective layer.
  • the substrate is peeled off to obtain a polarizing plate having a protective layer on one side or both sides of the polarizing film.
  • the thickness of the protective layer is preferably as thin as possible in view of thinness and lightness. However, if the thickness is too thin, the polarizing film cannot be sufficiently protected, and handling properties are lacking. Therefore, the thickness of the protective layer is preferably about 1 to 35 ⁇ m.
  • the curable resin composition contains a solvent and is cured after a drying step.
  • the method described above is preferable from the viewpoint of preventing the polarizing film from being eroded by the solvent or shrinking at the drying temperature.
  • the content component of the curable resin composition for forming both protective layers may be the same, or may differ.
  • the light source used is not particularly limited, but has a light emission distribution at a wavelength of 400 nm or less, such as a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a chemical lamp, A black light lamp, a microwave excitation mercury lamp, a metal halide lamp, etc. can be used.
  • the light irradiation intensity to the curable resin composition may vary depending on the composition, but the irradiation intensity in the wavelength region effective for activating the photo radical polymerization initiator and / or the photo cationic polymerization initiator is 10 to 2500 mW / it is preferable that the cm 2.
  • the light irradiation intensity to the curable resin composition is less than 10 mW / cm 2 , the reaction time becomes too long, and when it exceeds 2500 mW / cm 2 , the heat radiated from the lamp and the polymerization of the curable resin composition This heat generation may cause yellowing of the curable resin composition and deterioration of the polarizing film.
  • the light irradiation time to the curable resin composition is controlled for each composition and is not particularly limited. However, the integrated light amount expressed as the product of the irradiation intensity and the irradiation time is 10 to 2500 mJ / It is preferably set to be cm 2 .
  • the integrated light quantity to the curable resin composition is less than 10 mJ / cm 2 , active species derived from the polymerization initiator are not sufficiently generated, and the resulting protective layer may be insufficiently cured.
  • the integrated light quantity exceeds 2500 mJ / cm 2 , the irradiation time becomes very long, which is disadvantageous for improving productivity.
  • irradiation of an active energy ray is performed in the range in which various performances, such as the polarization degree and transmittance
  • the optical member of the present invention comprises a laminate of the polarizing plate and the optical functional layer, and specifically has a structure in which an optical functional layer is provided on the protective layer of the polarizing plate.
  • the optical functional layer is not particularly limited, and a conventionally known layer can be used.
  • Specific examples of the optical functional layer include, for example, a reflective layer, a transflective reflective layer, a light diffusing layer, a retardation plate, a light collecting plate, and a brightness enhancement film.
  • the reflective layer can be formed, for example, by providing a foil or vapor deposition film made of a metal such as aluminum on the protective layer of the polarizing plate.
  • the transflective reflective layer can be formed by forming a reflective layer as a half mirror, or providing a reflective plate containing a pearl pigment or the like and exhibiting light transmittance on the protective layer.
  • the light diffusion layer can be formed by a method of performing a mat treatment on the protective layer, a method of applying a resin containing fine particles, a method of bonding a film containing fine particles, and the like.
  • the phase difference plate is used for the purpose of compensating for the phase difference by a liquid crystal cell.
  • a birefringent film made of a stretched film of various plastics, a film in which a discotic liquid crystal or a nematic liquid crystal is aligned and fixed. And those having the above-mentioned liquid crystal layer formed on a film substrate.
  • a cellulose-based film such as triacetyl cellulose is preferably used as the film substrate that supports the oriented liquid crystal layer.
  • the light collector is used for the purpose of optical path control and can be formed as a prism array sheet, a lens array sheet, or a dot-attached sheet.
  • the brightness enhancement film is used for the purpose of improving the brightness in a liquid crystal display device and the like.
  • a plurality of thin film films having different refractive index anisotropies are laminated to produce anisotropy in reflectance.
  • the optical functional layer may be used alone or in combination of two or more.
  • the optical functional layer may be bonded to the protective layer by directly bonding the two or an adhesive. Or it can also carry out using an adhesive.
  • An adhesive or a pressure-sensitive adhesive can also be used for bonding between the optical function layers.
  • the coating film As a method of directly bonding the protective layer and the optical functional layer, after coating the active energy ray-curable resin composition on one side of the optical functional layer and forming a coating film on the retardation plate, the coating film There can be mentioned a method in which a retardation plate is bonded to a polarizing film so that the film becomes a bonding surface, and then the coating film is cured by irradiation with active energy rays.
  • a polarizing plate in which the polarizing film, the protective layer, and the retardation plate are directly bonded without interposing other layers (for example, an adhesive layer or an adhesive layer).
  • the optical functional layer may be used as it is for the production of the optical member according to the present invention, but a corona discharge treatment or a plasma treatment may be performed on the bonding surface with the coating film forming the protective layer.
  • the polarizing plate or the optical member of the present invention can be suitably applied to a liquid crystal display device. Under the present circumstances, the polarizing plate or optical member of this invention is arrange
  • the polarizing plates or optical members provided on both sides of the liquid crystal cell may be the same or different.
  • Curable resin composition VI was prepared by mixing 73 parts of curable resin composition II and 30 parts (in terms of solid content) of colloidal silica (manufactured by Nissan Chemical Co., Ltd., MEK-ST, silica particle size 10 to 15 nm). Obtained.
  • the two PET films on which the coating film made of the curable resin composition was formed were applied to both sides of the polarizing film obtained in Production Example 1 so that the coating film side became the bonding surface. Bonding was carried out using LPA3301). Next, this laminated body was irradiated with ultraviolet rays with an integrated light quantity of 1500 mJ / cm 2 by a D bulb manufactured by Fusion UV Systems, and the coating films on both sides were cured. Finally, the PET films on both sides were peeled off to obtain a polarizing plate having protective layers on both sides of the polarizing film.
  • Examples 2 to 6 Comparative Examples 1 to 4> A polarizing plate was produced in the same manner as in Example 1 except that each of the curable resin compositions shown in Table 1 described later was used instead of the curable resin composition I.
  • Example 7 The curable resin composition V obtained in Production Example 6 was applied onto a polyethylene terephthalate (PET) film (Ester film E7002 manufactured by Toyobo Co., Ltd.) using a bar coater. Next, the solvent was removed by drying at 80 ° C. for 3 minutes. Subsequently, the two PET films on which the coating film made of the curable resin composition was formed were applied to both sides of the polarizing film obtained in Production Example 1 so that the coating film side became the bonding surface. Bonding was carried out using LPA3301).
  • PET polyethylene terephthalate
  • this laminated body was irradiated with ultraviolet rays with an integrated light quantity of 1500 mJ / cm 2 by a D bulb manufactured by Fusion UV Systems, and the coating films on both sides were cured. Finally, the PET films on both sides were peeled off to obtain a polarizing plate having protective layers on both sides of the polarizing film.
  • Example 8> The curable resin composition VI obtained in Production Example 7 was applied onto a polyethylene terephthalate (PET) film (Ester film E7002 manufactured by Toyobo Co., Ltd.) using a bar coater. Next, the solvent was removed by drying at 80 ° C. for 3 minutes. Subsequently, the two PET films on which the coating film made of the curable resin composition was formed were applied to both sides of the polarizing film obtained in Production Example 1 so that the coating film side became the bonding surface. Bonding was carried out using LPA3301).
  • PET polyethylene terephthalate
  • this laminated body was irradiated with ultraviolet rays with an integrated light quantity of 1500 mJ / cm 2 by a D bulb manufactured by Fusion UV Systems, and the coating films on both sides were cured. Finally, the PET films on both sides were peeled off to obtain a polarizing plate having protective layers on both sides of the polarizing film.
  • Polarizing plates TRW842A, TRW842A, each having a protective film made of triacetyl cellulose (abbreviated as “TAC” in Table 1) having a thickness of 80 ⁇ m on both surfaces of a polarizing film in which iodine is adsorbed and oriented on a polyvinyl alcohol film. Sumitomo Chemical Co., Ltd.) was used as Comparative Example 5.
  • TAC triacetyl cellulose
  • Table 1 shows the compositions of the compositions used in Examples 1 to 8 and Comparative Examples 1 to 5, the elastic modulus when cured, the (meth) acrylic compound and the radical polymerization initiator compounded therein.
  • the elastic modulus of the cured product consisting of only the above (denoted simply as “acrylic” in the column of “elastic modulus” in the table) and the storage elastic modulus at 80 ° C. of the cured product of each composition are shown.
  • the elastic modulus and the storage elastic modulus were determined as follows.
  • PET polyethylene terephthalate
  • the composition was applied, and the curable resin composition was cured by irradiating ultraviolet rays with an integrated light amount of 1500 mJ / cm 2 using a D bulb manufactured by Fusion UV Systems. Next, this cured product was cut into a 1 cm width ⁇ 8 cm length together with the PET film, and the PET film was peeled off to obtain a sample.
  • each curable resin composition was coated on a PET film and cured by ultraviolet irradiation. Next, this was cut into 5 mm ⁇ 30 mm, and the PET film was peeled off to obtain a single cured film of each curable resin composition.
  • DVA-220 manufactured by IT Measurement Control Co., Ltd.
  • CEL 2021P Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd., whose chemical name is 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate.
  • YX8000 Epicoat manufactured by Japan Epoxy Resin Co., Ltd. YX8000, chemical name is diglycidyl ether of nuclear hydrogenated bisphenol A.
  • OXT-221 Aron oxetane OXT-221 manufactured by Toagosei Co., Ltd., chemical name is bis (3-ethyl-3-oxetanylmethyl) ether.
  • OXT-101 Aron oxetane manufactured by Toagosei Co., Ltd.
  • OXT-101 chemical name is 3-ethyl-3-hydroxymethyloxetane.
  • OXT-121 Aron Oxetane OXT-121 manufactured by Toagosei Co., Ltd., chemical name 1,4-bis [ ⁇ (3-ethyl-3-oxetanyl) methoxy ⁇ methyl] benzene.
  • A-DCP A-DCP manufactured by Shin-Nakamura Chemical Co., Ltd., chemical name is tricyclodecane dimethanol diacrylate.
  • A-9300 A-9300 manufactured by Shin-Nakamura Chemical Co., Ltd., chemical name: 1,3,5-tris (2-hydroxyethyl) isocyanurate triacrylate.
  • A-TMMT manufactured by Shin-Nakamura Chemical Co., Ltd., chemical name is pentaerythritol tetraacrylate.
  • Aronix M-210 manufactured by Toagosei Co., Ltd., chemical name is ethylene oxide modified diacrylate of bisphenol A.
  • TMPTA Chemical name is trimethylolpropane triacrylate.
  • 702A 702A manufactured by Shin-Nakamura Chemical Co., Ltd., whose chemical name is 2-hydroxy-3-phenoxypropyl acrylate
  • Adhesion test (cross hatch test) Adhere to glass through a pressure-sensitive adhesive on one protective layer side of the polarizing plate, and cut 100 square 1 mm square grids on the surface of the protective layer opposite to the glass surface with a cellophane tape. A test of peeling after pasting was performed, and adhesion was evaluated by the number of grids remaining without being peeled out of 100 grids. When the number of remaining grids was 95-100 / 100, A was assigned, B was assigned 50-95 / 100, and C was assigned 0-49 / 100.
  • FIG. 1A shows Sample 1 before hot water immersion
  • FIG. 1B shows Sample 1 after hot water immersion. As shown in FIG.
  • one short side of the sample was gripped by the gripping part 5, and about 80% of the longitudinal direction was immersed in a water bath at 60 ° C. and held for 4 hours. Then, the sample 1 was taken out from the water tank, and the water
  • the polarizing film 4 constituting the polarizing plate contracts by immersion in hot water. That is, as shown in FIG. 1B, the polarizing film 4 located in the middle of the polarizing plate is contracted by immersion in warm water, whereby a region 2 where the polarizing film 4 does not exist is formed between the protective films. And the distance from the end 1a (end of the protective film) of the sample 1 at the center of the short side to the end of the polarizing film 4 contracted was defined as the contraction length. Moreover, iodine is eluted from the peripheral portion of the polarizing film 4 in contact with the hot water by hot water immersion, and a portion 3 in which the color is lost is generated at the peripheral portion of the sample 1.
  • the length of the portion where this color was missing was defined as the iodine missing length.
  • the total of these contraction length and iodine removal length was defined as the total erosion length X. That is, the total erosion length X is a distance from the end 1a (end of the protective film) of the sample 1 to the region where the color peculiar to the polarizing plate remains at the center of the short side of the sample 1. It can be determined that the smaller the total erosion length X, the higher the adhesion (water resistance) in the presence of water.
  • the case where the erosion distance was less than 1000 ⁇ m was evaluated as A, the case where the erosion distance was 1000 ⁇ m or more and less than 3000 ⁇ m was evaluated as B, and the case where the erosion distance was 3000 ⁇ m or more was evaluated as C.
  • the dimensions in the vertical direction (MD) and the horizontal direction (TD) were measured using a two-dimensional dimension measuring instrument (Nikon Corp., NEXIV VMR). -12072), and the dimensional change rate was calculated from the following equation.
  • Dimensional change rate (%) ⁇ (Dimension after test ⁇ Initial dimension) / Initial dimension ⁇ ⁇ 100
  • Table 2 shows the dimensional change rate in the MD direction (both of which have a minus sign, meaning that they are contracted). A when the rate of dimensional change is less than 0.7% in absolute value, B when 0.7% or more and less than 1.0%, C when 1.0% or more and less than 1.3%. % Or more was evaluated as D.
  • Optical durability test Each polarizing plate was dried at 85 ° C. or allowed to stand in an environment of 90% relative humidity at 60 ° C., and the change in optical performance over time was determined. That is, first, the polarizing plate was cut into a size of 3 cm ⁇ 3 cm and bonded to glass via a pressure-sensitive adhesive to obtain a measurement sample. The sample was autoclaved for 1 hour at a temperature of 50 ° C. and a pressure of 5 kg / cm 2 (490.3 kPa), and then left for 24 hours in an environment of a temperature of 23 ° C. and a relative humidity of 55%.
  • an optional accessory “film holder with polarizing film” is set in an ultraviolet-visible spectrophotometer (UV2450, manufactured by Shimadzu Corporation), and the transmission axis direction and absorption of the polarizing plate in the wavelength range of 380 to 700 nm.
  • UV2450 ultraviolet-visible spectrophotometer
  • the transmission spectrum in the axial direction is measured, and based on these, the degree of polarization Py (unit:%) and the unit transmittance Ty (unit:%) are obtained, and further, a unit b which is a unit hue according to JIS Z 8729 * (No unit) was calculated.
  • the optical performance in this state as the initial stage, the optical performance after drying for 120 hours at 85 ° C. or at 60 ° C. in an environment with a relative humidity of 90% is measured. ⁇ Ty and hue change ⁇ b * were calculated.
  • Table 2 shows the evaluation results of ⁇ Py and ⁇ b * when placed under drying at 85 ° C., and the evaluation results of ⁇ Py and ⁇ Ty when placed under an environment of 90% relative humidity at 60 ° C.
  • [4] Film thickness measurement A film thickness measuring device (ZC-101, manufactured by Nikon Corporation) was used to measure the film thickness of the entire produced polarizing plate (a laminate of upper and lower protective films and a polarizing film).
  • Table 2 shows that in the Examples, a thin film polarizing plate having a protective film excellent in adhesion to the polarizing film and excellent in water resistance, dimensional stability and optical durability is obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

 ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向された偏光フィルムと、当該偏光フィルムの少なくとも一方の面に形成された、活性エネルギー線硬化性化合物を含有する硬化性樹脂組成物の硬化物からなる保護層とを備え、前記活性エネルギー線硬化性化合物は、分子内に少なくとも1個のエポキシ基を有する化合物と、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物とを含有し、前記保護層の弾性率は、3300~10000MPaである偏光板、およびそれを用いた光学部材、液晶表示装置によって、偏光フィルムと保護層との良好な密着性を維持しつつ、薄型軽量化および保護層の硬度が改善された偏光板、、およびそれを用いた光学部材、液晶表示装置が提供される。

Description

偏光板、光学部材および液晶表示装置
 本発明は、偏光フィルムの片面または両面に保護層を有する偏光板に関する。また、本発明は、該偏光板を用いた光学部材および液晶表示装置に関する。
 偏光板は、液晶表示装置を構成する光学部品として有用である。従来、偏光板としては、偏光フィルムの片面または両面に、水系接着剤などを用いて、透明樹脂フィルムからなる保護層を積層した構成のものが用いられている。かかる透明樹脂フィルムとしては、光学的透明性や透湿性に優れることから、トリアセチルセルロースフィルム(TACフィルム)が多く用いられている。偏光板は、必要に応じて他の光学機能層を介して、液晶セルに粘着剤で貼り合わされ、液晶表示装置に組み込まれる。
 近年、液晶表示装置のノート型パーソナルコンピュータ、携帯電話、カーナビゲーションなどのモバイル機器への展開に伴い、液晶表示装置を構成する偏光板には、薄型軽量化および高耐久性(高い機械的強度)が求められるようになっている。また、モバイル用途の液晶表示装置では、湿熱下でも使用可能であることが要望され、これに使用される偏光板についても、高い耐湿熱性が要求されているが、従来、偏光板が高湿下、特に高温高湿下に長期間晒されると、偏光性能が低下したり、偏光フィルムが収縮するという問題があった。したがって、偏光フィルムに積層される保護層には、薄型軽量化とともに、硬度を高くして、機械的強度および偏光フィルムの収縮を抑制する能力(収縮抑制力)を向上させることが求められている。
 しかし、保護層としてTACフィルムを貼合した偏光板では、作業時の取扱い性や耐久性能の観点から、保護層の厚みを20μm以下とすることが困難であり、薄型軽量化に限界があった。
 上記問題を解決し得る技術として、たとえば特開2000-199819号公報(特許文献1)には、親水性高分子からなる偏光フィルムの片面または両面に樹脂溶液を塗工し、透明薄膜層を形成する技術が開示されている。また、特開2003-185842号公報(特許文献2)には、ジシクロペンタニル残基またはジシクロペンテニル残基などを有するエネルギー線重合性化合物を含有するエネルギー線硬化性組成物を硬化させることにより、偏光フィルム上に保護膜を形成する技術が開示されている。特開2004-245924号公報(特許文献3)には、偏光フィルムの少なくとも片面にエポキシ樹脂を主成分とする保護膜を有してなる偏光板が開示されている。また、特開2005-92112号公報(特許文献4)には、偏光フィルムの少なくとも片面を活性エネルギー線硬化性樹脂組成物の硬化物で保護することが開示されている。
特開2000-199819号公報 特開2003-185842号公報 特開2004-245924号公報 特開2005-92112号公報
 本発明の目的は、偏光フィルムと保護層との良好な密着性を維持しつつ、薄型軽量化および保護層の硬度が改善された偏光板を提供することである。また、本発明の他の目的は、かかる偏光板を用いた光学部材および液晶表示装置を提供することである。
 本発明の偏光板は、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向された偏光フィルムと、当該偏光フィルムの少なくとも一方の面に形成された、活性エネルギー線硬化性化合物を含有する硬化性樹脂組成物の硬化物からなる保護層とを備え、前記活性エネルギー線硬化性化合物は、分子内に少なくとも1個のエポキシ基を有する化合物と、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物とを含有し、前記保護層の弾性率が3300~10000MPaであることを特徴とする。
 本発明の偏光板において、前記活性エネルギー線硬化性化合物100重量部中、前記(メタ)アクリル系化合物が10~70重量部含有されることが、好ましい。
 本発明の偏光板において、前記(メタ)アクリル系化合物は、当該(メタ)アクリル系化合物および重合開始剤のみからなる硬化物が3000MPa以上の弾性率を与えるようなものであることが好ましい。
 本発明の偏光板において、前記(メタ)アクリル系化合物が、下式(1)~(4)で表わされる化合物の少なくとも1つを含有することが、好ましい。
Figure JPOXMLDOC01-appb-C000002
(上記式(1)および(2)中、Q1およびQ2は互いに独立して、(メタ)アクリロイルオキシ基または(メタ)アクリロイルオキシアルキル基を表し、ここでアルキルの炭素数は1~10であり;上記式(2)中、Rは水素または炭素数1~10の炭化水素基を表し;上記式(3)中、T1、T2およびT3は互いに独立して、(メタ)アクリロイルオキシ基を表し;上記式(4)中、Tは水酸基または(メタ)アクリロイルオキシ基を表す。)
 本発明の偏光板において、前記硬化性樹脂組成物がオキセタン系化合物をさらに含有することが、好ましい。
 また本発明の偏光板において、前記硬化性樹脂組成物が微粒子をさらに含有することが好ましい。この場合、硬化性樹脂組成物が、前記活性エネルギー線硬化性化合物100重量部に対して、5~250重量部の微粒子を含有することがより好ましい。
 また、本発明の偏光板において、前記微粒子は粒径100nm以下のシリカ粒子であることが好ましい。この場合、シリカ微粒子は、その表面に、水酸基、エポキシ基、(メタ)アクリロイルオキシ基およびビニル基からなる群より選択される1種以上の官能基を有することがより好ましい。
 本発明の偏光板において、保護層の厚みは1~35μmであることが好ましい。
 本発明はまた、上述した本発明の偏光板と光学機能層との積層体からなる光学部材にちても提供する。本発明の光学部材における光学機能層は、位相差層、輝度向上フィルム、表面処理層のいずれかであることが、好ましい。
 本発明はさらに、上述した本発明の偏光板、または、上述した本発明の光学部材が、液晶セルの片面または両面に配置されてなる液晶表示装置についても提供する。
 本発明によれば、保護層の厚みを、従来のTACフィルムなどと比較して低減できるため、偏光板の薄型軽量化を図ることができ、また、偏光フィルムと保護層との密着性も良好である。さらに、保護層の硬度が向上されているため、偏光板の機械的強度の向上を図ることができるとともに、保護層の厚みを従来と比較して小さくした場合であっても、高温高湿下における偏光フィルムの収縮を効果的に抑制し得る。かかる本発明の偏光板およびこれを用いた光学部材は、たとえばモバイル用途の液晶表示装置などに好適に適用することができる。
後述する実施例における耐水性の評価試験方法を模式的に示す図であって、図1(A)は温水浸漬前のサンプル1、図1(B)は温水浸漬後のサンプル1を示している。
符号の説明
 1 サンプル、2 保護フィルム間の偏光フィルムが存在しない領域、3 偏光板周縁部の色が抜けた部分、4 収縮した偏光フィルム、5 把持部。
 <偏光板>
 本発明の偏光板は、ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向された偏光フィルムと、当該偏光フィルムの片面または両面に形成された、活性エネルギー線硬化性化合物を含有する硬化性樹脂組成物の硬化物からなる保護層とを備えることを基本構成とする。本発明の偏光板において、この保護層に用いられる活性エネルギー線硬化性化合物は、分子内に少なくとも1個のエポキシ基を有する化合物と、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物とを含有し、かつ、保護層の弾性率が3300~10000MPaである。また、本明細書でいう「弾性率」は、特に断りのない限り、常温(約23℃)における引張弾性率を意味する。以下、本発明の偏光板について詳細に説明する。
 本発明において用いられる偏光フィルムは、ポリビニルアルコール系樹脂からなるものであり、具体的には、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向されたものである。
 偏光フィルムを構成するポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することにより得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと、これと共重合可能な他の単量体との共重合体などが例示される。酢酸ビニルと共重合可能な他の単量体としては、たとえば、不飽和カルボン酸類、不飽和スルホン酸類、オレフィン類、ビニルエーテル類などが挙げられる。ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度、好ましくは98~100モル%である。ポリビニルアルコール系樹脂はさらに変性されていてもよく、たとえば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールなども使用し得る。また、ポリビニルアルコール系樹脂の重合度は、通常1000~10000程度、好ましくは1500~10000程度である。
 かかるポリビニルアルコール系樹脂を製膜したものが、偏光フィルムの原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は特に限定されるものでなく、公知の方法で行うことができる。ポリビニルアルコール系樹脂からなる原反フィルムの膜厚は特に限定されないが、たとえば、10~150μm程度である。
 偏光フィルムは通常、上記したようなポリビニルアルコール系樹脂からなる原反フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色してその二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、および、ホウ酸水溶液による処理後に水洗する工程を経て製造される。
 一軸延伸は、二色性色素による染色の前に行なってもよいし、該染色と同時に行なってもよいし、該染色の後に行なってもよい。一軸延伸を二色性色素による染色の後で行なう場合には、この一軸延伸は、ホウ酸処理の前に行なってもよいし、ホウ酸処理中に行なってもよい。また、これらの複数の段階で一軸延伸を行なうことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また、大気中で延伸を行なうなどの乾式延伸法であってもよいし、溶剤にて膨潤させた状態で延伸を行なう湿式延伸法であってもよい。延伸倍率は、通常4~8倍程度である。
 ポリビニルアルコール系樹脂フィルムを二色性色素で染色するには、たとえば、ポリビニルアルコール系樹脂フィルムを、二色性色素を含有する水溶液に浸漬すればよい。二色性色素としては、ヨウ素、二色性染料などが用いられる。なお、ポリビニルアルコール系樹脂フィルムは、染色処理の前に水への浸漬処理を施しておくことが好ましい。
 二色性色素としてヨウ素を用いる場合、染色方法としては、通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法が採用される。この水溶液におけるヨウ素の含有量は、水100重量部に対し、通常0.01~0.5重量部程度であり、また、ヨウ化カリウムの含有量は、水100重量部に対し、通常0.5~10重量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度であり、また、この水溶液への浸漬時間(染色時間)は、通常30~300秒程度である。
 一方、二色性色素として二色性染料を用いる場合、染色方法としては、通常、水溶性二色性染料を含む染料水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法が採用される。この染料水溶液における二色性染料の含有量は、水100重量部に対し、通常1×10-3~1×10-2重量部程度である。染料水溶液は、硫酸ナトリウムなどの無機塩を染色助剤として含有していてもよい。染料水溶液の温度は、通常20~80℃程度であり、また、染料水溶液への浸漬時間(染色時間)は、通常30~300秒程度である。
 二色性色素による染色後のホウ酸処理は、染色されたポリビニルアルコール系樹脂フィルムをホウ酸含有水溶液に浸漬することにより行なわれる。ホウ酸含有水溶液におけるホウ酸の含有量は、水100重量部に対し、通常2~15重量部程度、好ましくは5~12重量部程度である。二色性色素としてヨウ素を用いる場合には、ホウ酸含有水溶液は、ヨウ化カリウムをさらに含有することが好ましい。ホウ酸含有水溶液におけるヨウ化カリウムの含有量は、通常、水100重量部に対し、2~20重量部程度、好ましくは5~15重量部程度である。ホウ酸含有水溶液への浸漬時間は、通常100~1200秒程度、好ましくは150~600秒程度、さらに好ましくは200~400秒程度である。ホウ酸含有水溶液の温度は、通常50℃以上であり、好ましくは50~85℃である。
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは、通常、水洗処理される。水洗処理は、たとえば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬することにより行なわれる。水洗処理における水の温度は、通常5~40℃程度であり、浸漬時間は、2~120秒程度である。水洗後は乾燥処理が施されて、偏光フィルムが得られる。乾燥処理は、熱風乾燥機や遠赤外線ヒーターを用いて行なうことができる。乾燥温度は、通常40~100℃程度である。乾燥処理の時間は、通常120~600秒程度である。
 以上のようにして、一軸延伸されたポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向された偏光フィルムを作製することができる。偏光フィルムの厚みは、5~40μm程度とすることができる。
 (保護層)
 本発明では、上記偏光フィルムの片面または両面に、活性エネルギー線硬化性化合物を含有する硬化性樹脂組成物の硬化物からなる保護層を積層させて偏光板とする。本発明における活性エネルギー線硬化性化合物は、分子内に少なくとも1個のエポキシ基を有する化合物(以下、単に「エポキシ化合物」と称することがある。)および分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物(以下、単に「(メタ)アクリル系化合物」と称することがある。)を含有する。
 ここで、保護層の弾性率は、3300~10000MPaであり、好ましくは、3500~8000MPaである。保護層の弾性率が3300MPa未満であると、高温高湿下における偏光フィルムの収縮を抑制する能力が低下し、結果、偏光特性が低下する。また、保護層の弾性率が10000MPaを超える場合、偏光フィルムと保護層との密着性が悪くなるため、保護層の剥れなどの問題が生じ得る。
 また前記保護層は、特に高温条件下での偏光フィルムの収縮を抑制するために、80℃前後の高温における弾性率もあまり低くならないようにするのが好ましい。具体的には、80℃における貯蔵弾性率が1500~5500MPaの範囲にあることが好ましい。なお、80℃前後の高温において引張弾性率を求めようとすると、特に試験前後のサンプル長さを正確に測定することが難しいため、ここでは、高温での測定が容易で、サンプルの剛直性を表すという意味では引張弾性率に近い概念である貯蔵弾性率を採用した。
 硬化性樹脂組成物にエポキシ化合物を含有させることにより、偏光フィルムおよび位相差フィルムに対して良好な密着性を示すとともに、透明性、機械的強度、熱安定性、水分遮断性などに優れる耐久性能の高い保護層を得ることができる。ここで、本発明において、「分子内に1個以上のエポキシ基を有する化合物」とは、分子内に1個以上のエポキシ基を有し、活性エネルギー線(たとえば、紫外線、可視光、電子線、X線など)の照射により硬化し得る化合物を意味する。また、エポキシ化合物、(メタ)アクリル系化合物および後述するオキセタン系化合物を総じて「活性エネルギー線硬化性化合物」と称することがある。
 上記エポキシ化合物としては、特に制限されないが、耐候性や屈折率、カチオン重合性などの観点から、分子内に芳香環を含まないエポキシ化合物が好ましい。このような分子内に芳香環を含まないエポキシ化合物として、水素化エポキシ化合物、脂肪族エポキシ化合物、脂環式エポキシ化合物などが例示できる。
 水素化エポキシ化合物は、芳香族エポキシ化合物を触媒の存在下、加圧下で選択的に水素化反応を行なうことにより得ることができる。芳香族エポキシ化合物としては、たとえば、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテルなどのビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂などのノボラック型のエポキシ樹脂;テトラヒドロキシフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテル、エポキシ化ポリビニルフェノールなどの多官能型のエポキシ樹脂などが挙げられる。なかでも、水素化エポキシ化合物として、水素化したビスフェノールAのグリシジルエーテルが好ましい。
 脂肪族エポキシ化合物としては、脂肪族多価アルコールまたはそのアルキレンオキサイド付加物のポリグリシジルエーテルを挙げることができる。より具体的には、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ポリエチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、エチレングリコールやプロピレングリコール、グリセリンなどの脂肪族多価アルコールに1種または2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテルなどが挙げられる。
 脂環式エポキシ化合物とは、脂環式環に結合したエポキシ基を少なくとも1個有するエポキシ化合物を意味する。「脂環式環に結合したエポキシ基」は、下記式から(CH2m中の1個または複数個の水素を取り除いた構造を有している。式中、mは2~5の整数である。
Figure JPOXMLDOC01-appb-C000003
 したがって、脂環式エポキシ化合物とは、上記式に示される構造を分子内に少なくとも1個有する化合物である。より具体的には、上記式で示される化合物、あるいは上記式における(CH2m中の1個または複数個の水素を取り除いた構造の基が他の化学構造を有する基に結合した化合物が、脂環式エポキシ化合物となり得る。(CH2m中の1個または複数個の水素は、メチル基やエチル基などの直鎖状アルキル基で適宜置換されていてもよい。
 上述したようなエポキシ化合物の中でも、脂環式エポキシ化合物、すなわち、エポキシ基の少なくとも1個が脂環式環に結合している化合物が好ましく、とりわけ、オキサビシクロヘキサン環(上記式においてm=3のもの)や、オキサビシクロヘプタン環(上記式においてm=4のもの)を有するエポキシ化合物は、硬化物の弾性率が高く、偏光フィルムとの密着性に優れる保護層が得られやすいことからより好ましく用いられる。以下に、本発明において好ましく用いられる脂環式エポキシ化合物の構造を具体的に例示するが、これらの化合物に限定されるものではない。
 (a)下記式(I)で示されるエポキシシクロヘキシルメチル エポキシシクロヘキサンカルボキシレート類:
Figure JPOXMLDOC01-appb-C000004
(式中、R1およびR2は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表す。)
 (b)下記式(II)で示されるアルカンジオールのエポキシシクロヘキサンカルボキシレート類:
Figure JPOXMLDOC01-appb-C000005
(式中、R3およびR4は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表し、nは2~20の整数を表す。)
 (c)下記式(III)で示されるジカルボン酸のエポキシシクロヘキシルメチルエステル類:
Figure JPOXMLDOC01-appb-C000006
(式中、R5およびR6は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表し、pは2~20の整数を表す。)
 (d)下記式(IV)で示されるポリエチレングリコールのエポキシシクロヘキシルメチルエーテル類:
Figure JPOXMLDOC01-appb-C000007
(式中、R7およびR8は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表し、qは2~10の整数を表す。)
 (e)下記式(V)で示されるアルカンジオールのエポキシシクロヘキシルメチルエーテル類:
Figure JPOXMLDOC01-appb-C000008
(式中、R9およびR10は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表し、rは2~20の整数を表す。)
 (f)下記式(VI)で示されるジエポキシトリスピロ化合物:
Figure JPOXMLDOC01-appb-C000009
(式中、R11及びR12は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表す。)
 (g)下記式(VII)で示されるジエポキシモノスピロ化合物:
Figure JPOXMLDOC01-appb-C000010
(式中、R13およびR14は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表す。)
 (h)下記式(VIII)で示されるビニルシクロヘキセンジエポキシド類:
Figure JPOXMLDOC01-appb-C000011
(式中、R15は、水素原子または炭素数1~5の直鎖状アルキル基を表す。)
 (i)下記式(IX)で示されるエポキシシクロペンチルエーテル類:
Figure JPOXMLDOC01-appb-C000012
(式中、R16およびR17は、互いに独立して、水素原子または炭素数1~5の直鎖状アルキル基を表す。)
 (j)下記式(X)で示されるジエポキシトリシクロデカン類:
Figure JPOXMLDOC01-appb-C000013
(式中、R18は、水素原子または炭素数1~5の直鎖状アルキル基を表す。)
 上記例示した脂環式エポキシ化合物のなかでも、次の脂環式エポキシ化合物は、市販されているか、またはその類似物であって、入手が比較的容易であるなどの理由から、好ましく用いられる。
 (A)7-オキサビシクロ[4.1.0]ヘプタン-3-カルボン酸と(7-オキサ-ビシクロ[4.1.0]ヘプト-3-イル)メタノールとのエステル化物〔式(I)において、R1=R2=Hの化合物〕、
 (B)4-メチル-7-オキサビシクロ[4.1.0]ヘプタン-3-カルボン酸と(4-メチル-7-オキサ-ビシクロ[4.1.0]ヘプト-3-イル)メタノールとのエステル化物〔式(I)において、R1=4-CH3、R2=4-CH3の化合物〕、
 (C)7-オキサビシクロ[4.1.0]ヘプタン-3-カルボン酸と1,2-エタンジオールとのエステル化物〔式(II)において、R3=R4=H、n=2の化合物〕、
 (D)(7-オキサビシクロ[4.1.0]ヘプト-3-イル)メタノールとアジピン酸とのエステル化物〔式(III)において、R5=R6=H、p=4の化合物〕、
 (E)(4-メチル-7-オキサビシクロ[4.1.0]ヘプト-3-イル)メタノールとアジピン酸とのエステル化物〔式(III)において、R5=4-CH3、R6=4-CH3、p=4の化合物〕、
 (F)(7-オキサビシクロ[4.1.0]ヘプト-3-イル)メタノールと1,2-エタンジオールとのエーテル化物〔式(V)において、R9=R10=H、r=2の化合物〕。
 本発明において、それぞれのエポキシ化合物は、単独で使用してもよいし、あるいは別の1種以上と併用してもよい。
 本発明に用いられる硬化性樹脂組成物において、エポキシ化合物は、活性エネルギー線硬化性化合物100重量部中、30~90重量部の割合で含有されることが好ましく、35~80重量部の割合で含有されることがより好ましく、40~70重量部の割合で含有されることがさらに好ましい。エポキシ化合物の含有量が30重量部未満である場合には、偏光フィルムと保護層との密着性が低下する傾向があり、また、90重量部を超えると、硬化物である保護層の黄変により光学性能が低下する傾向がある。
 また、この硬化性樹脂組成物は、上記エポキシ化合物に加え、オキセタン系化合物を含有していてもよい。オキセタン系化合物を添加することにより、硬化性樹脂組成物の粘度を低くし、硬化速度を速めることができる。また、硬化物である保護層の黄変を防ぎ、光学性能を向上させることができる。
 オキセタン系化合物は、分子内に少なくとも1個のオキセタン環(4員環エーテル)を有する化合物であり、たとえば、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス〔(3-エチル-3-オキセタニル)メトキシメチル〕ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ〔(3-エチル-3-オキセタニル)メチル〕エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタンなどが挙げられる。これらのオキセタン化合物は、市販品を容易に入手することが可能であり、たとえば、いずれも商品名で、「アロンオキセタン OXT-101」、「アロンオキセタン OXT-121」、「アロンオキセタン OXT-211」、「アロンオキセタン OXT-221」、「アロンオキセタン OXT-212」(以上、東亞合成(株)製)などを挙げることができる。
 オキセタン系化合物の配合量は、特に限定されないが、通常、活性エネルギー線硬化性化合物100重量部中、30重量部以下、好ましくは10~25重量部である。
 本発明に用いられる硬化性樹脂組成物が、エポキシ化合物やオキセタン系化合物などのカチオン系硬化性化合物を含む場合、当該硬化性樹脂組成物には、光カチオン重合開始剤が配合されることが好ましい。光カチオン重合開始剤を使用すると、常温での保護層の形成が可能となるため、偏光フィルムの耐熱性あるいは膨張による歪を考慮する必要が減少し、保護層を、密着性良く偏光フィルム上に形成することができる。また、光カチオン重合開始剤は、光で触媒的に作用するため、硬化性樹脂組成物に混合しても保存安定性や作業性に優れる。
 光カチオン重合開始剤は、可視光線、紫外線、X線、電子線などの活性エネルギー線の照射によって、カチオン種またはルイス酸を発生し、エポキシ化合物および/またはオキセタン系化合物の重合反応を開始させるものである。本発明においては、いずれのタイプの光カチオン重合開始剤を用いてもよく、特に限定されないが、たとえば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩などのオニウム塩、鉄-アレン錯体などを挙げることができる。
 芳香族ジアゾニウム塩としては、たとえば、ベンゼンジアゾニウム ヘキサフルオロアンチモネート、ベンゼンジアゾニウム ヘキサフルオロホスフェート、ベンゼンジアゾニウム ヘキサフルオロボレートなどが挙げられる。
 また、芳香族ヨードニウム塩としては、たとえば、ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム ヘキサフルオロホスフェート、ジフェニルヨードニウム ヘキサフルオロアンチモネート、ジ(4-ノニルフェニル)ヨードニウム ヘキサフルオロホスフェートなどが挙げられる。
 芳香族スルホニウム塩としては、たとえば、トリフェニルスルホニウム ヘキサフルオロホスフェート、トリフェニルスルホニウム ヘキサフルオロアンチモネート、トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、4,4’-ビス〔ジ(β-ヒドロキシエトキシ)フェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン ヘキサフルオロアンチモネート、7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン テトラキス(ペンタフルオロフェニル)ボレート、4-フェニルカルボニル-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロホスフェート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオ-ジフェニルスルフィド ヘキサフルオロアンチモネート、4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド テトラキス(ペンタフルオロフェニル)ボレートなどが挙げられる。
 また、鉄-アレン錯体としては、たとえば、キシレン-シクロペンタジエニル鉄(II)ヘキサフルオロアンチモネート、クメン-シクロペンタジエニル鉄(II)ヘキサフルオロホスフェート、キシレン-シクロペンタジエニル鉄(II)-トリス(トリフルオロメチルスルホニル)メタナイドなどが挙げられる。
 これらの光カチオン重合開始剤は、市販品を容易に入手することが可能であり、たとえば、それぞれ商品名で、「カヤラッド PCI-220」、「カヤラッド PCI-620」(以上、日本化薬(株)製)、「UVI-6990」(ユニオンカーバイド社製)、「アデカオプトマー SP-150」、「アデカオプトマー SP-170」(以上、(株)ADEKA製)、「CI-5102」、「CIT-1370」、「CIT-1682」、「CIP-1866S」、「CIP-2048S」、「CIP-2064S」(以上、日本曹達(株)製)、「DPI-101」、「DPI-102」、「DPI-103」、「DPI-105」、「MPI-103」、「MPI-105」、「BBI-101」、「BBI-102」、「BBI-103」、「BBI-105」、「TPS-101」、「TPS-102」、「TPS-103」、「TPS-105」、「MDS-103」、「MDS-105」、「DTS-102」、「DTS-103」(以上、みどり化学(株)製)、「PI-2074」(ローディア社製)、「UVACURE 1590」(ダイセル・サイテック(株)製)などを挙げることができる。
 これらの光カチオン重合開始剤それぞれは、単独で使用してもよいし、あるいは別の1種以上と混合して使用してもよい。これらのなかでも特に芳香族スルホニウム塩は、300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械的強度や偏光フィルムとの良好な密着性を有する硬化物を与えることができるため、好ましく用いられる。
 光カチオン重合開始剤の配合量は、エポキシ化合物、オキセタン系化合物などのカチオン系硬化性化合物の合計量100重量部に対して、通常0.5~20重量部であり、好ましくは1~6重量部である。光カチオン重合開始剤の配合量が、エポキシ化合物およびオキセタン系化合物の合計量100重量部に対して0.5重量部を下回ると、硬化が不十分になり、機械的強度や保護層と偏光フィルムとの密着性が低下する傾向にある。また、光カチオン重合開始剤の配合量が、カチオン系硬化性化合物の合計量100重量部に対して、20重量部を超えると、硬化物中のイオン性物質が増加することで硬化物の吸湿性が高くなり、耐久性能が低下する可能性がある。
 また、保護層の形成に用いられる硬化性樹脂組成物は、上述したエポキシ化合物とともに、あるいは、上述したエポキシ化合物およびオキセタン系化合物とともに、ラジカル重合性である、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物を含有する。(メタ)アクリル系化合物を含有することで、硬度が高く、機械的強度に優れ、より耐久性能の高い保護層が得られるためである。さらには、(メタ)アクリル系化合物を含有することで、硬化性樹脂組成物の粘度および硬化速度、ならびに、得られる保護層の表面硬化性、偏光フィルムとの密着性などの調整をより容易に行うことができるようになる。
 なお、本発明における(メタ)アクリル系化合物としては、当該(メタ)アクリロイル基を有する化合物および重合開始剤のみからなる硬化物が3000MPa以上(好ましくは3100MPa以上)の弾性率を与えるものを用いることが好ましい。当該(メタ)アクリロイル基を有する化合物および重合開始剤のみからなる硬化物の弾性率が3000MPa未満である(メタ)アクリル系化合物を用いた場合には、保護膜としての機械強度が不足し、偏光フィルムの収縮を抑制することができなくなるためである。
 ここで、「(メタ)アクリロイルオキシ基」とは、メタクリロイルオキシ基またはアクリロイルオキシ基を意味する。また、「分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物」とは、分子内に少なくとも1個のメタクリロイルオキシ基またはアクリロイルオキシ基を有し、光ラジカル重合開始剤の存在下、活性エネルギー線(たとえば、紫外線、可視光、電子線、X線など)の照射により硬化し得るメタクリル酸エステル誘導体またはアクリル酸エステル誘導体をそれぞれ意味する。
 分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物としては、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー(以下、「(メタ)アクリレートモノマー」という。)、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートオリゴマー(以下、「(メタ)アクリレートオリゴマー」という。)などの(メタ)アクリロイルオキシ基含有化合物を挙げることができる。これらそれぞれは単独で用いてよいし、別の1種以上と併用してもよい。なお、「(メタ)アクリレートモノマー」とは、アクリレートモノマーまたはメタアクリレートモノマーを、「(メタ)アクリレートオリゴマー」とは、アクリレートオリゴマーまたはメタアクリレートオリゴマーをそれぞれ意味する。
 上記(メタ)アクリレートモノマーとしては、分子内に1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー(以下、「単官能(メタ)アクリレートモノマー」という。)、分子内に2個の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー(以下、「2官能(メタ)アクリレートモノマー」という。)および分子内に3個以上の(メタ)アクリロイルオキシ基を有する(メタ)アクリレートモノマー(以下、「多官能(メタ)アクリレートモノマー」という。)が挙げられる。(メタ)アクリレートモノマーは、1種のみを用いてもよく、2種以上併用してもよい。
 単官能(メタ)アクリレートモノマーの具体例としては、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、トリメチロールプロパンモノ(メタ)アクリレート、ペンタエリスリトールモノ(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレートなどを挙げることができる。
 また、単官能(メタ)アクリレートモノマーとして、カルボキシル基含有の(メタ)アクリレートモノマーが用いられてもよい。カルボキシル基含有の単官能(メタ)アクリレートモノマーとしては、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、カルボキシエチル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルコハク酸、N-(メタ)アクリロイルオキシ-N’,N’-ジカルボキシ-p-フェニレンジアミン、4-(メタ)アクリロイルオキシエチルトリメリット酸などが挙げられる。また、単官能(メタ)アクリレートモノマーとして、4-(メタ)アクリロイルアミノ-1-カルボキシメチルピペリジンなどの(メタ)アクリロイルアミノ基含有モノマーなどを用いることもできる。
 上記2官能(メタ)アクリレートモノマーとしては、アルキレングリコールジ(メタ)アクリレート類、ポリオキシアルキレングリコールジ(メタ)アクリレート類、ハロゲン置換アルキレングリコールジ(メタ)アクリレート類、脂肪族ポリオールのジ(メタ)アクリレート類、水添ジシクロペンタジエンまたはトリシクロデカンジアルカノールのジ(メタ)アクリレート類、ジオキサングリコールまたはジオキサンジアルカノールのジ(メタ)アクリレート類、ビスフェノールAまたはビスフェノールFのアルキレンオキシド付加物のジ(メタ)アクリレート類、ビスフェノールAまたはビスフェノールFのエポキシジ(メタ)アクリレート類などが代表的であるが、これらに限定されるものではなく種々のものが使用できる。
 2官能(メタ)アクリレートモノマーのより具体的な例は、エチレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ジトリメチロールプロパンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、ヒドロキシピバリン酸エステルネオペンチルグリコールジ(メタ)アクリレート、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシフェニル]プロパン、2,2-ビス[4-(メタ)アクリロイルオキシエトキシエトキシシクロヘキシル]プロパン、水添ジシクロペンタジエニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、1,3-ジオキサン-2,5-ジイルジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート〕、ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物〔化学名:2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートのジ(メタ)アクリレートなどを含む。
 3官能以上の多官能(メタ)アクリレートモノマーとしては、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの3官能以上の脂肪族ポリオールのポリ(メタ)アクリレートが代表的なものであり、その他に、3官能以上のハロゲン置換ポリオールのポリ(メタ)アクリレート、グリセリンのアルキレンオキシド付加物のトリ(メタ)アクリレート、トリメチロールプロパンのアルキレンオキシド付加物のトリ(メタ)アクリレート、1,1,1-トリス[(メタ)アクリロイルオキシエトキシエトキシ]プロパン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート類、シリコーンヘキサ(メタ)アクリレートなどが挙げられる。
 上記(メタ)アクリレートオリゴマーとしては、ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマなどが挙げられる。(メタ)アクリレートオリゴマーは、1種のみを用いてもよく、2種以上併用してもよい。
 ウレタン(メタ)アクリレートオリゴマーとは、分子内にウレタン結合(-NHCOO-)および少なくとも2個の(メタ)アクリロイルオキシ基を有する化合物である。具体的には、分子内に少なくとも1個の(メタ)アクリロイルオキシ基および少なくとも1個の水酸基をそれぞれ有する(メタ)アクリレートモノマーとポリイソシアネートとのウレタン化反応生成物や、ポリオール類をポリイソシアネートと反応させて得られる末端イソシアナト基含有ウレタン化合物と、分子内に少なくとも1個の(メタ)アクリロイルオキシ基および少なくとも1個の水酸基をそれぞれ有する(メタ)アクリレートモノマーとのウレタン化反応生成物であり得る。
 ウレタン化反応に用いられる水酸基含有(メタ)アクリレートモノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートなどが挙げられる。
 かかる水酸基含有(メタ)アクリレートモノマーとのウレタン化反応に用いられるポリイソシアネートとしては、ヘキサメチレンジイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、これらジイソシアネートのうち芳香族のイソシアネート類を水素添加して得られるジイソシアネート(たとえば、水素添加トリレンジイソシアネート、水素添加キシリレンジイソシアネートなどのジイソシアネート)、トリフェニルメタントリイソシアネート、ジメチレントリフェニルトリイソシアネート、ジベンジルベンゼントリイソシアネートなどのジ-またはトリ-イソシアネート、および、ジイソシアネートを多量化させて得られるポリイソシアネートなどが挙げられる。
 また、ポリイソシアネートとの反応により末端イソシアナト基含有ウレタン化合物とするために用いられるポリオール類としては、芳香族、脂肪族および脂環式のポリオールの他、ポリエステルポリオール、ポリエーテルポリオールなどが挙げられる。脂肪族および脂環式のポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブタン酸、グリセリン、水添ビスフェノールAなどが挙げられる。
 上記ポリエステルポリオールは、上記ポリオール類と多塩基性カルボン酸またはその無水物との縮合反応により得られるものである。多塩基性カルボン酸またはその無水物としては、(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸などが挙げられる。
 上記ポリエーテルポリオールとしては、ポリアルキレングリコールの他、上記ポリオール類またはジヒドロキシベンゼン類とアルキレンオキサイドとの反応により得られるポリオキシアルキレン変性ポリオールが挙げられる。
 ポリエステル(メタ)アクリレートオリゴマーとは、分子内にエステル結合と少なくとも2個の(メタ)アクリロイルオキシ基とを有する化合物である。具体的には、(メタ)アクリル酸、多塩基性カルボン酸またはその無水物、およびポリオールの縮合反応により得ることができる。縮合反応に用いられる多塩基性カルボン酸またはその無水物としては、(無水)コハク酸、アジピン酸、(無水)マレイン酸、(無水)イタコン酸、(無水)トリメリット酸、(無水)ピロメリット酸、ヘキサヒドロ(無水)フタル酸、(無水)フタル酸、イソフタル酸、テレフタル酸などが挙げられる。また、縮合反応に用いられるポリオールとしては、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ジメチロールヘプタン、ジメチロールプロピオン酸、ジメチロールブタン酸、グリセリン、水添ビスフェノールAなどが挙げられる。
 エポキシ(メタ)アクリレートオリゴマーは、ポリグリシジルエーテルと(メタ)アクリル酸との付加反応により得ることができ、分子内に少なくとも2個の(メタ)アクリロイルオキシ基を有している。付加反応に用いられるポリグリシジルエーテルとしては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルなどが挙げられる。
 本発明においては(メタ)アクリル系化合物の中でも特に、密着性と弾性率がともに優れている点から、下記式(1)~(4)で表される(メタ)アクリル系化合物を少なくとも1つ使用することが好ましい。
Figure JPOXMLDOC01-appb-C000014
 前記式(1)および(2)において、Q1およびQ2は互いに独立に、(メタ)アクリロイルオキシ基または(メタ)アクリロイルオキシアルキル基を表す。Q1またはQ2が(メタ)アクリロイルオキシアルキル基である場合、そのアルキルは、直鎖でも分岐していてもよく、その炭素数は1~10であり、一般には炭素数1~6程度で十分である。また式(2)において、Rは水素または炭素数1~10の炭化水素基であり、炭化水素基は、直鎖でも分岐していてもよく、典型的にはアルキル基であることができる。この場合のアルキル基も、一般には炭素数1~6程度で十分である。さらに、式(3)において、T1、T2およびT3は互いに独立して、(メタ)アクリロイルオキシ基を表し、式(4)において、Tは水酸基または(メタ)アクリロイルオキシ基を表す。
 式(1)で表される化合物は、水添ジシクロペンタジエンまたはトリシクロデカンジアルカノールのジ(メタ)アクリレート誘導体であり、その具体例は、先にも例示したが、水添ジシクロペンタジエニルジ(メタ)アクリレート〔式(1)において、Q1=Q2=(メタ)アクリロイルオキシ基の化合物〕、トリシクロデカンジメタノールジ(メタ)アクリレート〔式(1)において、Q1=Q2=(メタ)アクリロイルオキシメチル基の化合物〕などを含む。
 式(2)で表される化合物は、ジオキサングリコールまたはジオキサンジアルカノールのジ(メタ)アクリレート誘導体であり、その具体例は、先にも例示したが、1,3-ジオキサン-2,5-ジイルジ(メタ)アクリレート〔別名:ジオキサングリコールジ(メタ)アクリレート、式(2)において、Q1=Q2=(メタ)アクリロイルオキシ基、R=Hの化合物〕、ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物〔化学名:2-(2-ヒドロキシ-1,1-ジメチルエチル)-5-エチル-5-ヒドロキシメチル-1,3-ジオキサン〕のジ(メタ)アクリレート〔式(2)において、Q1=(メタ)アクリロイルオキシメチル基、Q2=2-(メタ)アクリロイルオキシ-1,1-ジメチルエチル基、R=エチル基の化合物〕などを含む。
 式(3)で表される化合物は、先にも例示したが、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートのトリアクリレートまたはトリメタアクリレートである。
 また、式(4)で表される化合物は、ペンタエリスリトールのトリ-またはテトラ-(メタ)アクリレートであり、その具体例は、先にも例示したが、ペンタエリスリトールトリ(メタ)アクリレートおよびペンタエリスリトールテトラ(メタ)アクリレートを含む。
 本発明に用いられる硬化性樹脂組成物において、活性エネルギー線硬化性化合物100重量部中、(メタ)アクリル系化合物が10~70重量部であることが好ましく、20~65重量部であることがより好ましく、30~60重量部であることが特に好ましい。(メタ)アクリル系化合物の含有率が10重量部未満である場合には、偏光板の収縮率は大きくなる場合がある。また、(メタ)アクリル系化合物の含有率が70重量部を超えると、偏光フィルムと保護層との密着性が十分でない場合がある。
 この硬化性樹脂組成物が上述した(メタ)アクリル系化合物などのラジカル重合性化合物を含有する場合は、光ラジカル重合開始剤が配合されることが好ましい。光ラジカル重合開始剤としては、活性エネルギー線の照射により、(メタ)アクリル系化合物の如きラジカル重合性化合物の重合を開始できるものであればよく、従来公知のものを用いることができる。光ラジカル重合開始剤の具体例は、アセトフェノン、3-メチルアセトフェノン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)フェニル-2-モルホリノプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンをはじめとするアセトフェノン系開始剤;ベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジアミノベンゾフェノンをはじめとするベンゾフェノン系開始剤;ベンゾインプロピルエーテル、ベンゾインエチルエーテルをはじめとするベンゾインエーテル系開始剤;4-イソプロピルチオキサントンをはじめとするチオキサントン系開始剤;その他、キサントン、フルオレノン、カンファーキノン、ベンズアルデヒド、アントラキノンなどを含む。
 光ラジカル重合開始剤の配合量は、(メタ)アクリル系化合物などのラジカル重合性化合物100重量部に対して、通常0.5~20重量部であり、好ましくは1~6重量部である。光ラジカル重合開始剤の配合量が、ラジカル重合性化合物100重量部に対して0.5重量部を下回ると、硬化が不十分になり、機械的強度や保護層と偏光フィルムとの密着性が低下する傾向にある。また、光ラジカル重合開始剤の配合量が、(メタ)アクリル系化合物100重量部に対して20重量部を超えると、得られる偏光板の耐久性能が低下する可能性がある。
 本発明に用いられる硬化性樹脂組成物は、微粒子をさらに含有していてもよい。硬化性樹脂組成物が微粒子を含有することにより、得られる保護層の硬度および機械的強度をより向上させることができる。これにより、高温高湿下における偏光フィルムの収縮を抑制する能力をさらに高めることができる。上記微粒子としては、無機微粒子、有機微粒子および無機/有機ハイブリッド微粒子を挙げることができる。保護層は、光学的に透明であることが好ましいことから、用いる微粒子は、光散乱を生じさせないなど、保護層の光学的透明性を阻害しないものを用いることが好ましい。
 無機微粒子としては、特に限定されないが、たとえば、シリカ微粒子、アルミナ微粒子、酸化スズ微粒子、酸化アンチモン微粒子、酸化インジウム微粒子などの金属酸化物微粒子;酸化スズ-アンチモン複合酸化物微粒子、酸化インジウム-スズ複合酸化物微粒子などの複合酸化物微粒子などが挙げられる。中でもシリカ微粒子は、材料そのものの屈折率が低く、かつ高強度であることから好ましく用いられる。シリカ微粒子は、その表面に水酸基を有していてもよい。また、有機微粒子としては、たとえば、ポリスチレン系樹脂、アクリル系樹脂、有機シリコーン系樹脂、ポリカーボネート系樹脂などからなる微粒子が挙げられる。また無機/有機ハイブリッド微粒子としては、表面にエポキシ基、(メタ)アクリロイルオキシ基、ビニル基などの官能基を有するシリカ微粒子が挙げられる。表面に水酸基、エポキシ基、(メタ)アクリロイルオキシ基、ビニル基などの反応性官能基を有するシリカ微粒子は、活性エネルギー線硬化性化合物と反応し、架橋する観点から好ましく用いられる。
 BET法または動的光散乱法(DLS法)により測定される上記微粒子の粒径は、100nm以下であることが好ましく、70nm以下であることがより好ましい。微粒子の粒径が100nmを超えると、光学的に透明な保護層が得られない傾向にある。また、その粒径は通常3nm以上である。
 上記無機微粒子は、硬化性樹脂組成物中に、固体状の微粒子として添加されてもよいし、溶剤中に分散されたコロイド状物として添加されてもよい。溶剤としては、乾燥が比較的容易に行なえることから、有機溶剤が好ましく用いられる。本発明において好ましく用いられる有機溶剤中に分散された無機微粒子としては、コロイダルシリカを挙げることができる。コロイダルシリカ中のシリカ濃度は、特に限定されるものではなく、市販品として入手可能な、たとえば20~40重量%程度のものを用いることができる。コロイダルシリカは、1種のみを用いてもよいし、2種以上を併用してもよい。
 市販品として入手可能なコロイダルシリカとしては、たとえば、有機溶剤がメチルアルコールである「メタノールシリカゾル」(日産化学工業(株)製、シリカ粒径10~15nm、固形分30重量%)、「MA-ST-M」(日産化学工業(株)製、シリカ粒径20~25nm、固形分40重量%)、「OSCAL 1132」(触媒化成工業(株)製、シリカ粒径10~20nm、固形分30~31重量%);有機溶剤がエチルアルコールである「OSCAL 1232」(触媒化成工業(株)製、シリカ粒径10~20nm、固形分30~31重量%);有機溶剤がn-プロピルアルコールである「OSCAL 1332」(触媒化成工業(株)製、シリカ粒径10~20nm、固形分30~31重量%);有機溶剤がイソプロピルアルコールである「IPA-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分30重量%)、「OSCAL 1432」(触媒化成工業(株)製、シリカ粒径10~20nm、固形分30~31重量%);有機溶剤がn-ブチルアルコールである「NBA-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分20重量%)、「OSCAL 1532」(触媒化成工業(株)製、シリカ粒径10~20nm、固形分30~31重量%);有機溶剤がエチレングリコールである「EG-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分20重量%);有機溶剤がエチルセロソルブである「OSCAL 1632」(触媒化成工業(株)製、シリカ粒径10~20nm、固形分30~31重量%);有機溶剤がエチレングリコールモノn-プロピルエーテルである「NPC-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分30重量%);有機溶剤がジメチルアセトアミドである「DMAC-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分20重量%)、「DMAC-ST-ZL」(日産化学工業(株)製、シリカ粒径70~100nm、固形分20重量%);有機溶剤がキシレンとn-ブチルアルコールの混合物である「XBA-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分30重量%);有機溶剤がメチルイソブチルケトンである「MIBK-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分30重量%);有機溶剤がメチルエチルケトンである「MEK-ST」(日産化学工業(株)製、シリカ粒径10~15nm、固形分30重量%)、「SP-1120」(小西化学工業(株)製、シリカ粒径15~20nm、固形分5~10重量%)、「SP-6120」(小西化学工業(株)製、シリカ粒径15~20nm、固形分5~10重量%);分散媒が水である「スノーテックス20」、(日産化学工業(株)製、シリカ粒径10~20nm)「スノーテックスC」(日産化学工業(株)製、シリカ粒径10~20nm)などが挙げられ、これらの1種または2種以上を好適に使用することができる。
 また、固体状のシリカ微粒子の市販品としては、たとえば、「AEROSIL 50」、「AEROSIL 130」などの「AEROSIL」シリーズとして、日本アエロジル(株)から販売されているもの、「Nipsil E 150K」、「Nipsil E 200」などの「Nipsil」シリーズとして、日本シリカ工業(株)から販売されているものなどが挙げられ、これらも好適に使用することができる。
 上記微粒子は、硬化性樹脂組成物に含有される活性エネルギー線硬化性化合物100重量部に対して、5~250重量部添加されることが好ましく、より好ましくは10~100重量部である。微粒子の添加量が活性エネルギー線硬化性化合物100重量部に対して5重量部未満であると、微粒子の添加による保護層の硬度向上が十分でない場合がある。一方、微粒子の添加量が活性エネルギー線硬化性化合物100重量部に対して250重量部を超えると、偏光フィルムと保護層との密着性が低下する場合がある。また、微粒子の添加量が250重量部を超えると、硬化性樹脂組成物中における微粒子の分散安定性が低下したり、硬化性樹脂組成物の粘度が過度に上昇したりする場合がある。
 硬化性樹脂組成物は、必要に応じて、さらに光増感剤を含有することができる。光増感剤を使用することで、活性エネルギー線硬化性化合物のカチオン重合および/またはラジカル重合の反応性が向上し、保護層の機械的強度や保護層と偏光フィルムとの密着性を向上させることができる。光増感剤としては、たとえば、カルボニル化合物、有機硫黄化合物、過硫化物、レドックス系化合物、アゾおよびジアゾ化合物、ハロゲン化合物、光還元性色素などが挙げられる。具体的な光増感剤としては、たとえば、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、α,α-ジメトキシ-α-フェニルアセトフェノンなどのベンゾイン誘導体;ベンゾフェノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノンなどのベンゾフェノン誘導体;2-クロロチオキサントン、2-イソプロピルチオキサントンなどのチオキサントン誘導体;2-クロロアントラキノン、2-メチルアントラキノンなどのアントラキノン誘導体;N-メチルアクリドン、N-ブチルアクリドンなどのアクリドン誘導体;その他、α,α-ジエトキシアセトフェノン、ベンジル、フルオレノン、キサントン、ウラニル化合物、ハロゲン化合物などが挙げられる。これらそれぞれは単独で使用してもよいし、別の1種以上と混合して使用してもよい。光増感剤は、活性エネルギー線硬化性化合物100重量部に対し、0.1~20重量部の範囲で含有されるのが好ましい。
 また、硬化性樹脂組成物は、偏光板に帯電防止性能を付与するための帯電防止剤を含有していてもよい。帯電防止剤は特に限定されず、公知の帯電防止剤を使用することができる。たとえば、アシロイルアミドプロピルジメチルヒドロキシエチルアンモニウムナイトレート、アシロイルアミドプロピルトリメチルアンモニウムサルフェート、セチルモルホリウムメトサルフェートなどの陽イオン系界面活性剤;直鎖アルキルリン酸カリウム塩、ポリオキシエチレンアルキルリン酸カリウム塩、アルカンスルフォン酸塩などの陰イオン系界面活性剤;N,N-ビス(ヒドロキシエチル)-N-アルキルアミン、その脂肪酸エステル誘導体、多価アルコール脂肪酸部分エステル類などの非イオン系界面活性剤などを使用することができる。これら帯電防止剤の配合比は、所望とする特性に合わせて適宜決められるが、活性エネルギー線硬化性化合物100重量部に対し、通常0.1~20重量部程度である。
 硬化性樹脂組成物には、高分子材料に通常使用されている公知の高分子添加剤を添加することもできる。たとえば、フェノール系やアミン系などの一次酸化防止剤、イオウ系の二次酸化防止剤、ヒンダードアミン系光安定剤(HALS)、ベンゾフェノン系、ベンゾトリアゾール系、ベンゾエート系などの紫外線吸収剤などが挙げられる。
 また、硬化性樹脂組成物は、必要に応じて、レベリング剤を含有することができる。硬化性樹脂組成物を偏光フィルムや基材上へ塗布する際、該偏光フィルムや該基材上への濡れ性が乏しい場合や、硬化性樹脂組成物の硬化物の表面性が悪い場合、レベリング剤を添加することで、それらを改善し得る。レベリング剤としては、シリコーン系、フッ素系、ポリエーテル系、アクリル酸共重合物系、チタネート系などの種々の化合物を用いることができる。これらのレベリング剤は、それぞれ単独で用いてもよいし、2種類以上混合して用いることもできる。
 上記レベリング剤は、硬化性樹脂組成物に含有される活性エネルギー線硬化性化合物100重量部に対して0.01~1重量部添加されることが好ましく、より好ましくは0.1~0.7重量部、さらに好ましくは0.2~0.5重量部である。レベリング剤の添加量が活性エネルギー線硬化性化合物100重量部に対して0.01重量部未満であると、濡れ性や表面性の改善が十分でない場合がある。また、レベリング剤の添加量が活性エネルギー線硬化性化合物100重量部に対して1重量部を超えると、偏光フィルムと保護層との密着性が低下する場合がある。
 なお、硬化性樹脂組成物は必要に応じて溶剤を含んでいてもよい。溶剤は、硬化性樹脂組成物を構成する成分の溶解性により、適宜選択される。一般に用いられる溶剤としては、n-ヘキサンやシクロヘキサンなどの脂肪族炭化水素類;トルエンやキシレンなどの芳香族炭化水素類;メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノールなどのアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;酢酸メチル、酢酸エチル、酢酸などのセロソルブ類;塩化メチレンやクロロホルムなどのハロゲン化炭化水素類などが挙げられる。溶剤の配合割合は、成膜性などの加工性を考慮した所望される活性エネルギー線硬化性樹脂組成物の粘度などの観点から、適宜決定される。
 偏光フィルムの片面または両面に、上記保護層を形成する方法としては、たとえば次の方法を挙げることができる。まず、たとえばポリエチレンテレフタレートフィルム(PETフィルム)などの基材上に上記硬化性樹脂組成物を塗工する。ついで、必要に応じて溶剤除去のための乾燥を行なった後、当該硬化性樹脂組成物からなる塗膜を有する基材を、該塗膜側が貼合面となるように、偏光フィルムに貼合する。この際、偏光フィルムの両面に保護層を積層させる場合には、塗膜を有する基材を2枚作製し、当該2枚の基材を偏光フィルムの両面に貼合する。次に、この積層体に、可視光線、紫外線、X線、電子線などの活性エネルギー線を照射または加熱することにより、硬化性樹脂組成物からなる塗膜を硬化させて保護層を形成する。最後に、基材を剥離して、偏光フィルムの片面または両面に保護層を有する偏光板を得る。保護層の厚みは、薄型軽量性を考慮すると、薄いほど好ましいが、あまりに薄くすると、偏光フィルムを十分に保護することができず、また、取扱い性に欠ける。したがって保護層の厚みは1~35μm程度とすることが好ましい。
 偏光フィルム上に、直接、硬化性樹脂組成物を塗工し、硬化させることにより保護層を形成することも可能であるが、硬化性樹脂組成物が溶媒を含み、乾燥工程を経てから硬化させる場合は、偏光フィルムが溶媒に侵食されたり乾燥温度で収縮したりすることを防ぐ観点から、上記した方法が好ましい。また、偏光フィルムの両面に保護層を形成する場合、両保護層を形成するための硬化性樹脂組成物の含有成分は同じであっても、異なっていてもよい。
 活性エネルギー線の照射により硬化を行なう場合、利用される光源は、特に限定されないが、波長400nm以下に発光分布を有する、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどを用いることができる。硬化性樹脂組成物への光照射強度は、該組成物ごとに異なり得るが、光ラジカル重合開始剤および/または光カチオン重合開始剤の活性化に有効な波長領域の照射強度が10~2500mW/cm2であることが好ましい。硬化性樹脂組成物への光照射強度が10mW/cm2未満であると、反応時間が長くなりすぎ、2500mW/cm2を超えると、ランプから輻射される熱および硬化性樹脂組成物の重合時の発熱により、硬化性樹脂組成物の黄変や偏光フィルムの劣化を生じる可能性がある。硬化性樹脂組成物への光照射時間は、該組成物ごとに制御されるものであって、やはり特に限定されないが、照射強度と照射時間との積として表される積算光量が10~2500mJ/cm2となるように設定されることが好ましい。硬化性樹脂組成物への積算光量が10mJ/cm2未満であると、重合開始剤由来の活性種の発生が十分でなく、得られる保護層の硬化が不十分となる可能性がある。また、積算光量が2500mJ/cm2を超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。なお、活性エネルギー線の照射は、偏光フィルムの偏光度、透過率などの各種性能が低下しない範囲で行なわれることが好ましい。
 <光学部材および液晶表示装置>
 本発明の光学部材は、上記偏光板と光学機能層との積層体からなり、具体的には、上記偏光板の保護層上に光学機能層を設けた構造を有する。光学機能層としては、特に限定されず、従来公知のものを用いることができる。光学機能層の具体例を挙げれば、たとえば、反射層、半透過型反射層、光拡散層、位相差板、集光板、輝度向上フィルムなどである。
 反射層は、たとえば、偏光板の保護層上に、アルミニウムなどの金属からなる箔や蒸着膜を設けることにより形成することができる。半透過型反射層は、反射層をハーフミラーとしたり、パール顔料などを含有し、光透過性を示す反射板を保護層上に設けたりすることにより、形成することができる。光拡散層は、保護層にマット処理を行なう方法、微粒子を含有する樹脂を塗布する方法、微粒子を含有するフィルムを接着する方法などにより形成することができる。
 位相差板は、液晶セルによる位相差の補償などを目的として使用されるものであり、たとえば、各種プラスチックの延伸フィルムなどからなる複屈折性フィルム、ディスコティック液晶やネマチック液晶が配向固定されたフィルム、フィルム基材上に上記の液晶層が形成されたものなどが挙げられる。この場合、配向液晶層を支持するフィルム基材として、トリアセチルセルロースなどセルロース系フィルムが好ましく用いられる。
 集光板は、光路制御などを目的に用いられるもので、プリズムアレイシートやレンズアレイシート、あるいはドット付設シートなどとして、形成することができる。
 輝度向上フィルムは、液晶表示装置などにおける輝度の向上を目的として用いられ、その例としては、屈折率の異方性が互いに異なる薄膜フィルムを複数枚積層して反射率に異方性が生じるように設計された反射型偏光分離シート、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持した円偏光分離シートなどが挙げられる。
 上記光学機能層は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。光学機能層の保護層への貼合は、保護層が該光学機能層に対して接着力を有している場合には、直接両者を貼合することによりなされてもよく、あるいは、接着剤または粘着剤を用いて行うこともできる。光学機能層同士の貼合にも、接着剤や粘着剤を用いることができる。
 保護層と光学機能層を直接貼合する方法としては、光学機能層の片面に活性エネルギー線硬化性樹脂組成物を塗工して、位相差板上に塗膜を形成した後、該塗膜が貼合面となるように、位相差板を偏光フィルムに貼合し、その後、活性エネルギー線を照射して該塗膜を硬化させる方法を挙げることができる。このような作製方法により、偏光フィルム、保護層および位相差板が、他の層(たとえば、接着剤層や粘着剤層)を介さず、直接接合された偏光板を得ることができる。
 また、光学機能層は、そのまま本発明に係る光学部材の製造に用いてもよいが、保護層を形成する塗膜との貼合面にコロナ放電処理、プラズマ処理を行ってもよい。
 本発明の偏光板または光学部材は、液晶表示装置に好適に適用することができる。この際、本発明の偏光板または光学部材は、液晶セルの片側または両面に配置される。液晶セルの両側に設ける偏光板または光学部材は、同じであってもよく、異なっていてもよい。
 以下、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、使用量ないし含有量を表す「部」および「%」は、特に断りのない限り重量基準である。
 (製造例1:偏光フィルムの作製)
 平均重合度約2400、ケン化度99.9モル%以上で厚み75μmのポリビニルアルコールフィルムを、30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.02/2/100の水溶液に30℃で浸漬した。その後、ヨウ化カリウム/ホウ酸/水の重量比が12/5/100の水溶液に56.5℃で浸漬した。引き続き、8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向された偏光フィルムを得た(厚み30μm)。延伸は、主に、ヨウ素染色およびホウ酸処理の工程で行ない、トータル延伸倍率は5.3倍であった。
 (製造例2:硬化性樹脂組成物Iの調製)
 以下の各成分を混合して、硬化性樹脂組成物Iを得た。
 ・3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学(株)製、セロキサイド 2021P):35部
 ・ビス(3-エチル-3-オキセタニルメチル)エーテル(東亞合成(株)製、アロンオキセタン OXT-221):15部
 ・トリシクロデカンジメタノールジアクリレート(新中村化学工業(株)製、A-DCP):50部
 ・2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、DAROCUR 1173:光ラジカル重合開始剤):2.5部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):2.5部
 ・シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 なお、上記A-DOG(ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物のジアクリレート)は、次式の構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000015
 (製造例3:硬化性樹脂組成物IIの調製)
 以下の各成分を混合して、硬化性樹脂組成物IIを得た。
 ・3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学(株)製、セロキサイド 2021P):35部
 ・ビス(3-エチル-3-オキセタニルメチル)エーテル(東亞合成(株)製、アロンオキセタン OXT-221):15部
 ・ヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物のジアクリレート(新中村化学工業(株)製、A-DOG):50部
 ・2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、DAROCUR 1173:光ラジカル重合開始剤):2.5部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):2.5部
 ・シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 (製造例4:硬化性樹脂組成物IIIの調製)
 以下の各成分を混合して、硬化性樹脂組成物IIIを得た。
 ・3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学(株)製、セロキサイド 2021P):35部
 ・ビス(3-エチル-3-オキセタニルメチル)エーテル(東亞合成(株)製、アロンオキセタン OXT-221):15部
 ・1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートのトリアクリレート(新中村化学工業(株)製、A-9300):50部
 ・2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、DAROCUR 1173:光ラジカル重合開始剤):2.5部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):2.5部
 ・シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 (製造例5:硬化性樹脂組成物IVの調製)
 以下の各成分を混合して、硬化性樹脂組成物IVを得た。
 ・3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学(株)製、セロキサイド 2021P):35部
 ・ビス(3-エチル-3-オキセタニルメチル)エーテル(東亞合成(株)製、アロンオキセタン OXT-221):15部
 ・ペンタエリスリトールテトラアクリレート(新中村化学工業(株)製、A-TMMT):50部
 ・2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、DAROCUR 1173:光ラジカル重合開始剤):2.5部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):2.5部
 シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 (製造例6:硬化性樹脂組成物Vの調製)
 硬化性樹脂組成物I 73部と、コロイダルシリカ(日産化学(株)製、MEK-ST、シリカ粒径10~15nm)30部(固形分換算)を混合して、硬化性樹脂組成物Vを得た。
 (製造例7:硬化性樹脂組成物VIの調製)
 硬化性樹脂組成物II 73部と、コロイダルシリカ(日産化学(株)製、MEK-ST、シリカ粒径10~15nm)30部(固形分換算)を混合して、硬化性樹脂組成物VIを得た。
 (製造例8:硬化性樹脂組成物VIIの調製)
 以下の各成分を混合して、硬化性樹脂組成物VIIを得た。
 ・3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学(株)製、セロキサイド 2021P):15部
 ・3-エチル-3-ヒドロキシメチルオキセタン(東亞合成(株)製、アロンオキセタン OXT-101):15部
 ・ビスフェノールAのエチレンオキサイド変性ジアクリレート(東亞合成(株)製、アロニックス M-210):49部
 ・トリメチロールプロパントリアクリレート(新中村化学工業(株)製、TMPTA):21部
 ・2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、DAROCURE 1173:光ラジカル重合開始剤):3部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):2部
 ・シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 (製造例9:硬化性樹脂組成物VIIIの調製)
 以下の各成分を混合して、硬化性樹脂組成物VIIIを得た。
 ・核水添ビスフェノールAのジグリシジルエーテル(ジャパンエポキシレジン(株)製、エピコート YX8000):100部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):40部
 ・シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 (製造例10:硬化性樹脂組成物IXの調製)
 以下の各成分を混合して、硬化性樹脂組成物IXを得た。
 ・核水添ビスフェノールAのジグリシジルエーテル(ジャパンエポキシレジン(株)製、エピコート YX8000):70部
 ・1,4-ビス〔{(3-エチル-3-オキセタニル)メトキシ}メチル〕ベンゼン(東亞合成(株)製、アロンオキセタン OXT-121):30部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):40部
 ・シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 (製造例11:硬化性樹脂組成物Xの調製)
 以下の各成分を混合して、硬化性樹脂組成物Xを得た。
 ・3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学(株)製、セロキサイド 2021P):35部
 ・ビス(3-エチル-3-オキセタニルメチル)エーテル(東亞合成(株)製、アロンオキセタン OXT-221):15部
 ・2-ヒドロキシ-3-フェノキシプロピルアクリレート(新中村化学工業(株)製、702A):50部
 ・2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、DAROCUR 1173:光ラジカル重合開始剤):2.5部
 ・4,4’-ビス〔ジフェニルスルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート系の光カチオン重合開始剤((株)ADEKA製、アデカオプトマー SP-150):2.5部
 ・シリコーン系レベリング剤((株)東レ・ダウコーニング(株)製、SH710):0.2部
 <実施例1>
 ポリエチレンテレフタレート(PET)フィルム(東洋紡(株)製、エステルフィルムE7002)の上に、バーコーターを用いて、製造例2で得られた硬化性樹脂組成物Iを塗布した。ついで、硬化性樹脂組成物からなる塗膜が形成されたPETフィルム2枚を、それぞれ塗膜側が貼合面となるように、製造例1で得られた偏光フィルムの両面に、貼付装置(フジプラ(株)製、LPA3301)を用いて貼合した。次に、この積層体に、フュージョンUVシステムズ社製のDバルブにより紫外線を積算光量1500mJ/cm2で照射し、両面の塗膜を硬化させた。最後に、両面のPETフィルムを剥離し、偏光フィルムの両面に保護層を有する偏光板を得た。
 <実施例2~6、比較例1~4>
 硬化性樹脂組成物Iの代わりに、後述する表1に示す硬化性樹脂組成物をそれぞれ用いたこと以外は、実施例1と同様にして,偏光板を作製した。
 <実施例7>
 ポリエチレンテレフタレート(PET)フィルム(東洋紡(株)製、エステルフィルムE7002)の上に、バーコーターを用いて、製造例6で得られた硬化性樹脂組成物Vを塗布した。次に、80℃で3分間乾燥して溶媒を除去した。ついで、硬化性樹脂組成物からなる塗膜が形成されたPETフィルム2枚を、それぞれ塗膜側が貼合面となるように、製造例1で得られた偏光フィルムの両面に、貼付装置(フジプラ(株)製、LPA3301)を用いて貼合した。次に、この積層体に、フュージョンUVシステムズ社製のDバルブにより紫外線を積算光量1500mJ/cm2で照射し、両面の塗膜を硬化させた。最後に、両面のPETフィルムを剥離し、偏光フィルムの両面に保護層を有する偏光板を得た。
 <実施例8>
 ポリエチレンテレフタレート(PET)フィルム(東洋紡(株)製、エステルフィルムE7002)の上に、バーコーターを用いて、製造例7で得られた硬化性樹脂組成物VIを塗布した。次に、80℃で3分間乾燥して溶媒を除去した。ついで、硬化性樹脂組成物からなる塗膜が形成されたPETフィルム2枚を、それぞれ塗膜側が貼合面となるように、製造例1で得られた偏光フィルムの両面に、貼付装置(フジプラ(株)製、LPA3301)を用いて貼合した。次に、この積層体に、フュージョンUVシステムズ社製のDバルブにより紫外線を積算光量1500mJ/cm2で照射し、両面の塗膜を硬化させた。最後に、両面のPETフィルムを剥離し、偏光フィルムの両面に保護層を有する偏光板を得た。
 <比較例5>
 ポリビニルアルコールフィルムにヨウ素が吸着配向している偏光フィルムの両面に、それぞれ厚さ80μmのトリアセチルセルロース(表1では「TAC」と略記)からなる保護フィルムが貼合されている偏光板(TRW842A、住友化学(株)製)を、比較例5として用いた。
 表1に、実施例1~8および比較例1~5でそれぞれ用いた組成物の組成、それを硬化させたときの弾性率、そこに配合された(メタ)アクリル系化合物とラジカル重合開始剤のみからなる硬化物の弾性率(表では「弾性率」の欄に単に「アクリル」と記載)、および各組成物の硬化物の80℃における貯蔵弾性率を示す。なお、弾性率および貯蔵弾性率は、それぞれ次のようにして求めた。
 [弾性率の測定方法]
 ポリエチレンテレフタレート(PET)フィルム(エステルフィルムE7002、東洋紡(株)製)の片面に、塗工機(第一理化(株)製、バーコーター)を用いて、保護層を形成するための硬化性樹脂組成物を塗工し、フュージョンUVシステムズ社製のDバルブにより、紫外線を積算光量1500mJ/cm2で照射し、硬化性樹脂組成物を硬化させた。次に、この硬化物をPETフィルムごと1cm幅×8cm長さにカットし、PETフィルムを剥がしてサンプルを得た。ついで、このサンプルの長辺部分を(株)島津製作所製 AUTOGRAPH AG-1S試験機の上下つかみ具で、23℃55%RH条件下でつかみ具の間隔が5cmとなるように挟み、温度23℃、相対湿度55%の環境下、引張り速度10mm/分で引張り(サンプルの長辺方向が引張り方向となる)、得られる応力-ひずみ曲線の初期の直線から、データ処理ソフトウェア((株)島津製作所製、TRAPEZIUM2)を用いて、弾性率を算出した。また、各硬化性樹脂組成物に用いた(メタ)アクリル系化合物およびラジカル重合開始剤のみからなる硬化物についても同様に作製し、測定した。
 [80℃における弾性率の測定方法]
 上述と同様にPETフィルム上に各硬化性樹脂組成物を塗工し、紫外線照射して硬化させた。次に、これを5mm×30mmにカットし、PETフィルムを剥がして、各硬化性樹脂組成物の単独硬化フィルムを得た。アイティー計測制御(株)製DVA-220を使用し、得られた単独フィルムをその長辺が引っ張る方向となるように把持し、つかみ具の間隔2cm、周波数1Hz、昇温速度3℃/分で設定し、80℃における貯蔵弾性率を求めた。
 表1においては、エポキシ系カチオン重合性化合物、オキセタン系カチオン重合性化合物、ラジカル重合性化合物、カチオン系重合開始剤およびラジカル系重合開始剤を、先に示した商品名ないし略語に準じて、それぞれ以下の項目毎にコロンの左側に示す記号で表示した。商品名ないし略語と同じになるものもあるが、表1に現れる全ての記号を以下に示す。
 〔エポキシ系カチオン重合性化合物〕
 ・CEL 2021P:ダイセル化学(株)製のセロキサイド 2021P、化学名は3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート。
 ・YX8000:ジャパンエポキシレジン(株)製のエピコート YX8000、化学名は核水添ビスフェノールAのジグリシジルエーテル。
 〔オキセタン系カチオン重合性化合物〕
 ・OXT-221:東亞合成(株)製のアロンオキセタン OXT-221、化学名はビス(3-エチル-3-オキセタニルメチル)エーテル。
 ・OXT-101:東亞合成(株)製のアロンオキセタン OXT-101、化学名は3-エチル-3-ヒドロキシメチルオキセタン。
 ・OXT-121:東亞合成(株)製のアロンオキセタン OXT-121、化学名は1,4-ビス〔{(3-エチル-3-オキセタニル)メトキシ}メチル〕ベンゼン。
 〔ラジカル重合性化合物〕
 ・A-DCP:新中村化学工業(株)製のA-DCP、化学名はトリシクロデカンジメタノールジアクリレート。
 ・A-DOG:新中村化学工業(株)製のA-DOG、化学名はヒドロキシピバルアルデヒドとトリメチロールプロパンとのアセタール化合物のジアクリレート〔前記式(2)において、Q1=アクリロイルオキシメチル基、Q2=2-アクリロイルオキシ-1,1-ジメチルエチル基、R=エチル基の化合物〕。
 ・A-9300:新中村化学工業(株)製のA-9300、化学名は1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレートのトリアクリレート。
 ・A-TMMT:新中村化学工業(株)製のA-TMMT、化学名はペンタエリスリトールテトラアクリレート。
 ・M-210:東亞合成(株)製のアロニックス M-210、化学名はビスフェノールAのエチレンオキサイド変性ジアクリレート。
 ・TMPTA:化学名はトリメチロールプロパントリアクリレート。
 ・702A:新中村化学工業(株)製の702A、化学名は2-ヒドロキシ-3-フェノキシプロピルアクリレート。
Figure JPOXMLDOC01-appb-T000016
 <評価試験>
 実施例1~8および比較例1~5で作製した偏光板について、以下の評価試験を行った。結果を表2に示す。
 〔1〕密着性試験(クロスハッチ試験)
 偏光板の一方の保護層側で感圧接着剤を介してガラスに貼合し、ガラス面と反対側の保護層表面にカッターナイフで1mm角の碁盤目を100個刻み、そこにセロハンテープを貼ってから引き剥がす試験を行い、100個の碁盤目のうち剥がれずに残った碁盤目の数で密着性を評価した。残った碁盤目の数が95~100/100の場合をA、50~95/100の場合をB、0~49/100の場合をCとした。
 〔2〕耐温水性試験
 各偏光板について、以下の耐温水性試験(温水浸漬試験)を行い、耐水性を評価した。まず、偏光板の吸収軸(延伸方向)を長辺として5cm×2cmの短冊状に偏光板をカットしてサンプルを作製し、長辺方向の寸法を正確に測定した。このときサンプルは、ポリビニルアルコールフィルムに吸着されたヨウ素に起因して、全面にわたって均一に特有の色を呈している。図1は、耐水性の評価試験方法を模式的に示す図であり、図1(A)は温水浸漬前のサンプル1、図1(B)は温水浸漬後のサンプル1を示している。図1(A)に示すように、サンプルの一短辺側を把持部5で把持し、長手方向の8割ほどを60℃の水槽に浸漬し、4時間保持した。その後、サンプル1を水槽から取り出し、水分を拭き取った。
 温水浸漬により、偏光板を構成する偏光フィルム4は収縮する。すなわち、図1(B)に示すように、温水浸漬により、偏光板の真中に位置する偏光フィルム4が縮むことにより、保護膜間に偏光フィルム4が存在しない領域2が形成される。そして、短辺中央におけるサンプル1の端1a(保護膜の端)から収縮した偏光フィルム4の端までの距離を収縮長さとした。また、温水浸漬によって、温水に接する偏光フィルム4の周縁部からヨウ素が溶出し、サンプル1の周縁部に色が抜けた部分3が生じる。この色が抜けた部分の長さをヨウ素抜け長さとした。これら収縮長さとヨウ素抜け長さとの合計を総侵食長さXとした。すなわち、総侵食長さXとは、サンプル1の短辺中央における、サンプル1の端1a(保護膜の端)から偏光板特有の色が残っている領域までの距離である。総侵食長さXが小さいほど、水存在下における接着性(耐水性)が高いと判断することができる。浸食距離が1000μm未満の場合をA、1000μm以上3000μm未満の場合をB、そして3000μm以上の場合をCとして評価した。
 〔3〕寸法安定性試験
 各偏光板について、85℃の乾燥環境下に120時間置いた後の寸法変化を測定した。すなわち、まず偏光板を8cm×8cmのサイズにカットし、感圧接着剤を介してガラスに貼合し、測定サンプルとした。このサンプルに、温度50℃、圧力5kg/cm2(490.3kPa)で1時間オートクレーブ処理を施した後、温度23℃、相対湿度55%の環境下で24時間放置した。この状態の寸法を初期とし、85℃の乾燥環境下に120時間静置した後、縦方向(MD)および横方向(TD)の寸法を二次元寸法測定器((株ニコン)製、NEXIV VMR-12072)を用いて測定し、下式より寸法変化率を算出した。
  寸法変化率(%)={(試験後の寸法-初期の寸法)/初期の寸法}×100
 表2には、MD方向における寸法変化率を示した(いずれも符号がマイナスなので、収縮していることを意味する)。寸法変化率が絶対値で0.7%未満の場合をA、0.7%以上1.0%未満の場合をB、1.0%以上1.3%未満の場合をC、1.3%以上の場合をDとして評価した。
 〔4〕光学耐久性試験
 各偏光板について、85℃乾燥または、60℃で相対湿度90%の環境下に静置し、時間経過における光学性能の変化を求めた。すなわち、まず偏光板を3cm×3cmのサイズにカットし、感圧接着剤を介してガラスに貼合し、測定サンプルとした。このサンプルに、温度50℃、圧力5kg/cm2(490.3kPa)で1時間オートクレーブ処理を施した後、温度23℃、相対湿度55%の環境下で24時間放置した。このサンプルについて、紫外可視分光光度計(UV2450、(株)島津製作所製)にオプションアクセサリーの「偏光フィルム付フィルムホルダー」をセットして、波長380~700nmの範囲における偏光板の透過軸方向と吸収軸方向の透過スペクトルを測定し、それらをもとに、偏光度Py(単位:%)と単体透過率Ty(単位:%)を求め、さらにJIS Z 8729に準拠して単体色相である単体b*(単位なし)を求めた。この状態の光学性能を初期とし、85℃乾燥または、60℃で相対湿度90%の環境下に120時間静置した後の光学性能を測定し、下式より偏光度変化ΔPy、単体透過率変化ΔTyおよび色相変化Δb*を算出した。
  ΔPy=試験後Py-初期Py
  ΔTy=試験後Ty-初期Ty
  Δb*=試験後b*-初期b*
 そして、ΔPyについては、%で表示される偏光度の変化量が1ポイント未満の場合をA、1ポイント以上5ポイント未満の場合をB、5ポイント以上の場合をCとして評価した。ΔTyについては、%で表示される透過率の変化量が3ポイント未満の場合をA、3ポイント以上5ポイント未満の場合をB、5ポイント以上の場合をCとして評価した。またΔb*については、変化量が3未満の場合をA、3以上5未満の場合をB、5以上の場合をCとして評価した。表2には、85℃乾燥下に置いた場合のΔPyおよびΔb*の評価結果と、60℃で相対湿度90%の環境下に置いた場合のΔPyおよびΔTyの評価結果を示した。
 〔4〕膜厚測定
 膜厚測定器(ZC-101、(株)ニコン製)を用い、作製した偏光板全体(上下保護膜と偏光フィルムとの積層体)の膜厚を測定した。
Figure JPOXMLDOC01-appb-T000017
 表2より、実施例では、偏光フィルムとの密着性に優れた保護膜を有し、耐水性、寸法安定性および光学耐久性ともに優れた薄膜の偏光板が得られていることが分かる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (13)

  1.  ポリビニルアルコール系樹脂フィルムに二色性色素が吸着配向された偏光フィルムと、当該偏光フィルムの少なくとも一方の面に形成された、活性エネルギー線硬化性化合物を含有する硬化性樹脂組成物の硬化物からなる保護層とを備え、
     前記活性エネルギー線硬化性化合物は、分子内に少なくとも1個のエポキシ基を有する化合物と、分子内に少なくとも1個の(メタ)アクリロイルオキシ基を有する(メタ)アクリル系化合物とを含有し、
     前記保護層の弾性率は、3300~10000MPaである、偏光板。
  2.  前記活性エネルギー線硬化性化合物100重量部中、前記(メタ)アクリル系化合物が10~70重量部含有される、請求の範囲第1項に記載の偏光板。
  3.  前記(メタ)アクリル系化合物が、当該(メタ)アクリル系化合物および重合開始剤のみからなる硬化物が3000MPa以上の弾性率を与えるようなものである、請求の範囲第1項に記載の偏光板。
  4.  前記(メタ)アクリル系化合物が、下式(1)~(4)で表わされる化合物の少なくとも1つを含有する請求の範囲第1項に記載の偏光板。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)および(2)中、Q1およびQ2は互いに独立して、(メタ)アクリロイルオキシ基または(メタ)アクリロイルオキシアルキル基を表し、ここでアルキルの炭素数は1~10であり;
     上記式(2)中、Rは水素または炭素数1~10の炭化水素基を表し;
     上記式(3)中、T1、T2およびT3は互いに独立して、(メタ)アクリロイルオキシ基を表し;
     上記式(4)中、Tは水酸基または(メタ)アクリロイルオキシ基を表す。)
  5.  前記硬化性樹脂組成物がオキセタン系化合物をさらに含有する、請求の範囲第1項に記載の偏光板。
  6.  前記硬化性樹脂組成物が微粒子をさらに含有する、請求の範囲第1項に記載の偏光板。
  7.  前記硬化性樹脂組成物が、前記活性エネルギー線硬化性化合物100重量部に対して、5~250重量部の微粒子を含有する、請求の範囲第6項に記載の偏光板。
  8.  前記微粒子は、粒径100nm以下のシリカ粒子である、請求の範囲第6項に記載の偏光板。
  9.  前記シリカ微粒子は、その表面に、水酸基、エポキシ基、(メタ)アクリロイルオキシ基およびビニル基からなる群より選択される1種以上の官能基を有する、請求の範囲第8項に記載の偏光板。
  10.  保護層の厚みが1~35μmである、請求の範囲第1項に記載の偏光板。
  11.  請求の範囲第1項~第10項のいずれかに記載の偏光板と光学機能層との積層体からなる光学部材。
  12.  前記光学機能層は、位相差層、輝度向上フィルム、表面処理層のいずれかである、請求の範囲第11項に記載の光学部材。
  13.  請求の範囲第1項~第10項のいずれかに記載の偏光板、または、請求の範囲第11項または第12項に記載の光学部材が、液晶セルの片面または両面に配置されてなる液晶表示装置。
PCT/JP2009/051760 2008-02-04 2009-02-03 偏光板、光学部材および液晶表示装置 WO2009099049A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980103972.0A CN101932960B (zh) 2008-02-04 2009-02-03 偏振板、光学构件及液晶显示装置
KR1020157034197A KR101668577B1 (ko) 2008-02-04 2009-02-03 편광판, 광학 부재 및 액정 표시 장치

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-024137 2008-02-04
JP2008024137 2008-02-04
JP2008059348A JP2009216874A (ja) 2008-03-10 2008-03-10 偏光板および液晶表示装置
JP2008-059348 2008-03-10
JP2008-059347 2008-03-10
JP2008059347 2008-03-10

Publications (1)

Publication Number Publication Date
WO2009099049A1 true WO2009099049A1 (ja) 2009-08-13

Family

ID=40952124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051760 WO2009099049A1 (ja) 2008-02-04 2009-02-03 偏光板、光学部材および液晶表示装置

Country Status (4)

Country Link
KR (2) KR101668577B1 (ja)
CN (1) CN101932960B (ja)
TW (1) TWI463197B (ja)
WO (1) WO2009099049A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102533135A (zh) * 2010-12-17 2012-07-04 东亚合成株式会社 光固化性粘合剂组合物、偏振片及其制造方法、光学部件及液晶显示装置
JP2012179893A (ja) * 2011-02-08 2012-09-20 Nitto Denko Corp 多層積層フィルムの製造方法
JP2013164596A (ja) * 2008-02-04 2013-08-22 Sumitomo Chemical Co Ltd 偏光板
US20150077953A1 (en) * 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Display apparatus and method of fabricating the same
JP2016118761A (ja) * 2014-12-22 2016-06-30 住友化学株式会社 偏光板及びその製造方法、並びに偏光板のセット、液晶パネル、液晶表示装置
CN106716196A (zh) * 2014-09-30 2017-05-24 日东电工株式会社 偏振膜的制造方法
EP3144327A4 (en) * 2014-07-30 2018-01-10 LG Chem, Ltd. Resin composition for polarizer protective film, polarizer protective film, and polarizing plate comprising same
US10061066B2 (en) 2014-09-30 2018-08-28 Nitto Denko Corporation One-sided-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
US10094954B2 (en) 2014-09-30 2018-10-09 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
US10215901B2 (en) * 2015-11-04 2019-02-26 Nitto Denko Corporation Polarizer, polarizing plate, and method of producing polarizer
US10247979B2 (en) 2014-09-30 2019-04-02 Nitto Denko Corporation Polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, and image display device
JP2019152880A (ja) * 2014-12-24 2019-09-12 住友化学株式会社 偏光板及び液晶表示装置
TWI706176B (zh) * 2018-05-28 2020-10-01 南韓商Lg化學股份有限公司 偏光板、其製備方法以及包含其的影像顯示器件
CN112789527A (zh) * 2018-09-28 2021-05-11 住友化学株式会社 偏光膜及其制造方法
US11137522B2 (en) 2014-09-30 2021-10-05 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
WO2023189796A1 (ja) * 2022-03-30 2023-10-05 日東電工株式会社 偏光フィルム積層体、及び画像表示装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101930958B1 (ko) * 2011-02-08 2018-12-19 닛토덴코 가부시키가이샤 다층 적층 필름의 제조 방법
JP6363322B2 (ja) * 2012-06-08 2018-07-25 住友化学株式会社 偏光板の製造方法
KR101732228B1 (ko) 2013-09-30 2017-05-02 주식회사 엘지화학 편광판 및 이를 포함하는 화상표시장치
WO2015046814A1 (ko) * 2013-09-30 2015-04-02 주식회사 엘지화학 라디칼 경화형 접착제 조성물 및 이를 포함하는 편광판
WO2015046815A1 (ko) * 2013-09-30 2015-04-02 주식회사 엘지화학 편광판 및 이를 포함하는 화상표시장치
KR101685257B1 (ko) * 2013-09-30 2016-12-09 주식회사 엘지화학 라디칼 경화형 접착제 조성물 및 이를 포함하는 편광판
KR101802562B1 (ko) 2014-08-29 2017-11-29 삼성에스디아이 주식회사 편광판, 이를 위한 편광판용 보호층 조성물 및 이를 포함하는 광학표시장치
TWI568589B (zh) * 2014-10-02 2017-02-01 Nitto Denko Corp An optical film laminate, an optical display device using the optical film laminate, and a transparent protective film
US20200201089A1 (en) * 2017-09-22 2020-06-25 Lg Chem, Ltd. Polarizing Plate and Image Display Device Comprising Same
JP2020024240A (ja) * 2018-08-06 2020-02-13 日東電工株式会社 偏光子の製造方法
JP7082022B2 (ja) * 2018-09-28 2022-06-07 住友化学株式会社 偏光フィルム及びその製造方法
JP2020190686A (ja) * 2019-05-23 2020-11-26 コニカミノルタ株式会社 光学フィルム及び光学フィルムの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295522A (ja) * 1998-04-10 1999-10-29 Nippon Synthetic Chem Ind Co Ltd:The 偏光板
JP2005092112A (ja) * 2003-09-19 2005-04-07 Kuraray Co Ltd 偏光板およびその製造方法
JP2006083225A (ja) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd 機能性フィルム
JP2007169330A (ja) * 2005-12-19 2007-07-05 Fujifilm Corp 透明フィルム、光学フィルム、透明フィルムの製造方法、偏光板、及び画像表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199819A (ja) 1998-12-28 2000-07-18 Nitto Denko Corp 偏光板、その製造方法、光学部材及び液晶表示装置
JP4131104B2 (ja) 2001-12-21 2008-08-13 ソニーケミカル&インフォメーションデバイス株式会社 偏光板
JP4306269B2 (ja) * 2003-02-12 2009-07-29 住友化学株式会社 偏光板、その製造方法、光学部材及び液晶表示装置
JP2007304366A (ja) * 2006-05-12 2007-11-22 Konica Minolta Opto Inc 偏光板
JP4740184B2 (ja) * 2006-05-16 2011-08-03 日東電工株式会社 偏光板およびそれを用いた画像表示装置
KR101307400B1 (ko) * 2006-06-30 2013-09-11 동우 화인켐 주식회사 경화성 수지 조성물,코팅 필름, 및 이를 구비한 편광판 및 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295522A (ja) * 1998-04-10 1999-10-29 Nippon Synthetic Chem Ind Co Ltd:The 偏光板
JP2005092112A (ja) * 2003-09-19 2005-04-07 Kuraray Co Ltd 偏光板およびその製造方法
JP2006083225A (ja) * 2004-09-14 2006-03-30 Fuji Photo Film Co Ltd 機能性フィルム
JP2007169330A (ja) * 2005-12-19 2007-07-05 Fujifilm Corp 透明フィルム、光学フィルム、透明フィルムの製造方法、偏光板、及び画像表示装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164596A (ja) * 2008-02-04 2013-08-22 Sumitomo Chemical Co Ltd 偏光板
CN102533135B (zh) * 2010-12-17 2016-08-10 东亚合成株式会社 光固化性粘合剂组合物、偏振片及其制造方法、光学部件及液晶显示装置
CN102533135A (zh) * 2010-12-17 2012-07-04 东亚合成株式会社 光固化性粘合剂组合物、偏振片及其制造方法、光学部件及液晶显示装置
JP2012179893A (ja) * 2011-02-08 2012-09-20 Nitto Denko Corp 多層積層フィルムの製造方法
US20150077953A1 (en) * 2013-09-13 2015-03-19 Samsung Display Co., Ltd. Display apparatus and method of fabricating the same
US10285278B2 (en) * 2013-09-13 2019-05-07 Samsung Display Co., Ltd. Display apparatus having protective layer on the pad unit and method of fabricating the same
EP3144327A4 (en) * 2014-07-30 2018-01-10 LG Chem, Ltd. Resin composition for polarizer protective film, polarizer protective film, and polarizing plate comprising same
US10094954B2 (en) 2014-09-30 2018-10-09 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
US11137522B2 (en) 2014-09-30 2021-10-05 Nitto Denko Corporation One-side-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
US10088705B2 (en) 2014-09-30 2018-10-02 Nitto Denko Corporation Method for producing polarizing film
CN106716196A (zh) * 2014-09-30 2017-05-24 日东电工株式会社 偏振膜的制造方法
US10061066B2 (en) 2014-09-30 2018-08-28 Nitto Denko Corporation One-sided-protected polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, image display device, and method for continuously producing same
US10247979B2 (en) 2014-09-30 2019-04-02 Nitto Denko Corporation Polarizing film, pressure-sensitive-adhesive-layer-attached polarizing film, and image display device
JP2016118761A (ja) * 2014-12-22 2016-06-30 住友化学株式会社 偏光板及びその製造方法、並びに偏光板のセット、液晶パネル、液晶表示装置
JP2019152880A (ja) * 2014-12-24 2019-09-12 住友化学株式会社 偏光板及び液晶表示装置
US10215901B2 (en) * 2015-11-04 2019-02-26 Nitto Denko Corporation Polarizer, polarizing plate, and method of producing polarizer
US10578786B2 (en) 2015-11-04 2020-03-03 Nitto Denko Corporation Polarizer, polarizing plate, and method of producing polarizer
TWI706176B (zh) * 2018-05-28 2020-10-01 南韓商Lg化學股份有限公司 偏光板、其製備方法以及包含其的影像顯示器件
CN112789527A (zh) * 2018-09-28 2021-05-11 住友化学株式会社 偏光膜及其制造方法
CN112789527B (zh) * 2018-09-28 2024-04-05 住友化学株式会社 偏光膜及其制造方法
WO2023189796A1 (ja) * 2022-03-30 2023-10-05 日東電工株式会社 偏光フィルム積層体、及び画像表示装置

Also Published As

Publication number Publication date
CN101932960B (zh) 2013-03-13
CN101932960A (zh) 2010-12-29
KR20100138902A (ko) 2010-12-31
KR101668577B1 (ko) 2016-10-24
TW200949317A (en) 2009-12-01
KR101653416B1 (ko) 2016-09-01
KR20150143866A (ko) 2015-12-23
TWI463197B (zh) 2014-12-01

Similar Documents

Publication Publication Date Title
WO2009099049A1 (ja) 偏光板、光学部材および液晶表示装置
JP5267920B2 (ja) 偏光板およびその製造方法、ならびに液晶表示装置
JP6084665B2 (ja) 偏光板、複合偏光板および液晶表示装置
JP5120715B2 (ja) 偏光板およびその製造方法、ならびに光学部材、液晶表示装置
JP5454862B2 (ja) 偏光板、光学部材および液晶表示装置
JP5267919B2 (ja) 偏光板、光学部材および液晶表示装置
WO2018139358A1 (ja) 偏光板及び画像表示装置
JP5563685B2 (ja) 偏光板
JP2013160775A (ja) 偏光板及び光学部材
JP5712892B2 (ja) 偏光板の製造方法
JP5586174B2 (ja) 光学積層体およびその製造方法
JP2010277063A (ja) 液晶表示装置
JP2010102310A (ja) 複合偏光板およびこれを用いた液晶表示装置
JP2014206732A (ja) 偏光板の製造方法
JP5985145B2 (ja) 光学積層体とその製造方法
JP2009216874A (ja) 偏光板および液晶表示装置
JP2016206684A (ja) 偏光板及び光学部材
JP2010102311A (ja) 複合偏光板およびこれを用いた液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103972.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107019640

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09707420

Country of ref document: EP

Kind code of ref document: A1