WO2009098863A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2009098863A1
WO2009098863A1 PCT/JP2009/000408 JP2009000408W WO2009098863A1 WO 2009098863 A1 WO2009098863 A1 WO 2009098863A1 JP 2009000408 W JP2009000408 W JP 2009000408W WO 2009098863 A1 WO2009098863 A1 WO 2009098863A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
compression
refrigerant
power
compression mechanism
Prior art date
Application number
PCT/JP2009/000408
Other languages
English (en)
French (fr)
Inventor
Tetsuya Okamoto
Kazuhiro Furusho
Takayuki Kawano
Shinichi Kasahara
Masakazu Okamoto
Takahiro Yamaguchi
Michio Moriwaki
Syuuji Furui
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2009098863A1 publication Critical patent/WO2009098863A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • F25B2400/141Power generation using energy from the expansion of the refrigerant the extracted power is not recycled back in the refrigerant circuit

Definitions

  • the present invention relates to a refrigeration apparatus including a refrigerant circuit that performs a refrigeration cycle by circulating refrigerant, and particularly relates to energy saving measures for the refrigeration apparatus.
  • Patent Document 1 discloses this type of air conditioner.
  • the air conditioner is provided with a refrigerant circuit that performs a refrigeration cycle by circulating the refrigerant.
  • a compressor, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and the like are connected to the refrigerant circuit.
  • the refrigerant compressed by the compressor is condensed (radiated) by the outdoor heat exchanger and then decompressed by the expansion valve.
  • the refrigerant after decompression evaporates in the indoor heat exchanger, thereby cooling the room air and cooling it.
  • oil for lubricating the sliding portion of the compressor is mixed. That is, in the compression mechanism of the compressor, the piston, the bearing portion of the drive shaft, and the like are lubricated with oil. This oil is discharged from the compressor together with the refrigerant. Therefore, the refrigerant circuit is provided with an oil separator on the discharge side of the compressor. In the oil separator, oil is separated from the high-pressure refrigerant. The separated oil flows into the oil return pipe, is decompressed by the capillary tube, and then supplied to the compressor. JP 2007-147212 A
  • the oil separated from the high-pressure refrigerant is depressurized by a capillary tube or the like and then sent to the suction side of the compressor.
  • the energy of the oil is wasted by the decompression mechanism such as the capillary tube even though the compressor spends energy for boosting the oil. It was causing a decline.
  • the present invention has been made in view of the above points, and an object of the present invention is to reduce energy loss caused by pressure increase of oil in a refrigeration apparatus in which a refrigerant circulates and performs a refrigeration cycle, and thus energy saving of the refrigeration apparatus. Is to make it easier.
  • the first invention is premised on a refrigerating apparatus having a refrigerant circuit (11) having a compression mechanism (20) for compressing refrigerant and performing a refrigeration cycle by circulating the refrigerant.
  • the refrigeration apparatus was separated into the refrigerant circuit (11) by the oil separation means (60) for separating oil from the high-pressure refrigerant compressed by the compression mechanism (20) and the oil separation means (60).
  • a recovery mechanism (40) for recovering the energy of the oil.
  • the refrigerant circuit (11) of the first invention is provided with an oil separation means (60) and a recovery mechanism (40).
  • oil separation means (60) oil is separated from the high-pressure refrigerant.
  • the oil after separation has almost the same pressure as the high-pressure refrigerant.
  • the recovery mechanism (40) recovers the power of the oil after separation (that is, the energy of the oil).
  • the oil separated from the high-pressure refrigerant has the power used to pressurize the oil in the compression mechanism (20) as energy such as kinetic energy, potential energy, and pressure energy.
  • the recovery mechanism (40) recovers such energy from the separated oil.
  • high pressure oil was depressurized by a predetermined depressurization mechanism to cause energy loss.
  • such energy can be recovered and used as a predetermined power source. it can.
  • the refrigerant circuit (11) is introduced with oil for supplying oil recovered by the recovery mechanism (40) to the compression mechanism (20).
  • the road (70) is connected.
  • the oil from which the energy is recovered by the recovery mechanism (40) is supplied to the compression mechanism (20) through the oil introduction path (70).
  • This oil is used for lubrication of each sliding portion of the compression mechanism (20), and the oil that has flowed into the refrigerant in the middle of compression is compressed again together with the refrigerant and discharged from the compression mechanism (20).
  • the refrigerant circuit (11) is provided with a cooling means (80) for cooling the oil separated by the oil separation means (60). It is a feature.
  • the oil separated by the oil separating means (60) is cooled by the cooling means (80).
  • relatively low temperature oil is supplied to the compression mechanism (20).
  • the refrigerant is cooled by oil simultaneously with the compression of the refrigerant.
  • the temperature rise of the refrigerant is suppressed, and only the refrigerant pressure rises. That is, by introducing relatively low temperature oil into the compression mechanism (20) to cool the refrigerant being compressed, the refrigerant is compressed so as to approach the isotherm on the Ph diagram (Mollier diagram). So-called isothermal compression is performed. As a result, the power required for refrigerant compression is reduced, and the efficiency of the compression mechanism (20) is improved.
  • the compression mechanism (20) increases the power associated with the pressure increase of the oil.
  • the amount of increase in the compression power required for boosting the oil is larger than the amount of reduction in the compression power of the refrigerant obtained by the cooling effect of the refrigerant by the oil, and the overall power of the compression mechanism (20) is rather large. There is a risk of becoming.
  • the energy required for the pressure increase of the oil is not reduced. 40). Therefore, in the present invention, the low-temperature oil is positively introduced into the compression mechanism (20), whereby the compression power of the refrigerant can be effectively reduced and the power that can be recovered by the recovery mechanism (40) can be increased. As a result, in the present invention, the power of the entire apparatus can be effectively reduced.
  • the refrigerant circuit (11) is configured to perform a refrigeration cycle in which the refrigerant is compressed to a critical pressure or higher by the compression mechanism (20). It is a feature.
  • a refrigeration cycle is performed in which the high-pressure refrigerant is equal to or higher than the critical pressure.
  • a refrigeration cycle hereinafter referred to as a supercritical cycle
  • the effect of reducing the compression power of the refrigerant due to the introduction of low-temperature oil into the compression mechanism (20) is increased.
  • the refrigerant in the supercritical cycle, even if the refrigerant is cooled in the compression stroke of the compression mechanism (20), the refrigerant is not pressurized and condensed as superheated steam. That is, in the compression stroke of the supercritical cycle, even if the refrigerant is cooled, the refrigerant does not reach the gas-liquid two-phase region (condensation region). Therefore, in the present invention, compared with a general refrigeration cycle (a refrigeration cycle in which the refrigerant is compressed in a range smaller than the critical pressure), the effect of reducing the compression power of the refrigerant by so-called isothermal compression can be improved.
  • a general refrigeration cycle a refrigeration cycle in which the refrigerant is compressed in a range smaller than the critical pressure
  • the oil introduction path (70) is configured to supply oil during the compression stroke of the compression mechanism (20). It is characterized by.
  • the oil cooled to a relatively low temperature by the cooling means (80) is in the middle of the compression stroke of the compression mechanism (20) (that is, the intermediate pressure between the suction pressure and the discharge pressure of the refrigerant).
  • the refrigerant has already been compressed (adiabatic compression) and heated up. Therefore, it is possible to avoid the refrigerant from becoming cooler than the oil by introducing the low-temperature oil into this portion. Thereby, it can avoid that a refrigerant
  • coolant is heated with oil and overheated in a subsequent compression process. Therefore, it can be avoided that the effect of reducing the compression power of the refrigerant due to such overheat compression is reduced, and the effect of reducing the compression power of the refrigerant by so-called isothermal compression can be improved.
  • a sixth invention is the refrigeration apparatus of the third or fourth invention, wherein the oil introduction passage (70) is configured to supply oil to the suction side of the compression mechanism (20). It is what.
  • the oil cooled to the relatively low temperature by the cooling means (80) is supplied to the suction side of the compression mechanism (20).
  • a seventh invention is the refrigeration apparatus according to any one of the first to sixth inventions, wherein the recovery mechanism (40) includes a movable part (50) that is rotationally driven by oil, and the movable part (50). And an output shaft (42) to be connected.
  • the recovery mechanism (40) includes a movable part (50) that is rotationally driven by oil, and the movable part (50). And an output shaft (42) to be connected.
  • the recovery mechanism (40) is provided with the movable part (50) and the output shaft (42).
  • the movable part (50) is rotationally driven by the oil separated from the high-pressure refrigerant.
  • the output shaft (42) connected to the movable part (50) also rotates.
  • Such rotational power of the output shaft (42) is used, for example, as driving power for a generator or other equipment.
  • the compression mechanism (20) is configured to be connected to and driven by the output shaft (42) of the recovery mechanism (40). It is a feature.
  • the power of the oil recovered by the recovery mechanism (40) (that is, the energy of the oil) is used as a power source of the compression mechanism (20) via the output shaft (42).
  • the compression mechanism (20) The power required to pressurize the oil increases.
  • the power recovered by the recovery mechanism (40) increases, and the power of the compression mechanism (20) decreases by the increase in this power. .
  • the low-temperature oil is positively introduced into the compression mechanism (20), so that the compression power of the refrigerant can be effectively reduced and the power that can be recovered by the recovery mechanism (40) can be increased.
  • power is effectively reduced as a whole of the compression mechanism (20), and the efficiency of the compression mechanism (20) is effectively improved.
  • the refrigerant circuit (11) is driven to rotate by the refrigerant and is connected to the output shaft (42) of the recovery mechanism (40).
  • An expansion mechanism (30) having a portion is provided.
  • the refrigerant circuit (11) of the ninth invention is provided with an expansion mechanism (30) that is rotationally driven by the refrigerant.
  • the movable part of the expansion mechanism (30) is also coupled to the output shaft (42) of the recovery mechanism (40). That is, the output shaft (42) is rotationally driven by both the power recovered by the recovery mechanism (40) and the power (ie, expansion power) obtained by the expansion of the refrigerant by the expansion mechanism (30). .
  • Such rotational power of the output shaft (42) is used for driving power of the compression mechanism (20) of the eighth invention.
  • a tenth aspect of the invention is the refrigeration apparatus of any one of the seventh to ninth aspects, further comprising a generator (45) that is driven by being connected to the output shaft (42) of the recovery mechanism (40). It is characterized by this.
  • the energy of the oil recovered by the recovery mechanism (40) is used as drive power for the generator (45) via the output shaft (42).
  • electric power can be generated by the generator (45), and this electric power can be used as a power source for other component machines and the like.
  • the energy of the oil (that is, the power of the oil) is recovered by the recovery mechanism (40).
  • the energy of the oil after the pressure increase was wasted by the pressure reducing mechanism such as the capillary tube, but in the present invention, such energy of the oil is recovered by the recovery mechanism (40). can do.
  • a predetermined element machine or the like can be driven using the energy of the oil, and the energy saving performance of the refrigeration apparatus can be improved.
  • the oil after the energy is recovered by the recovery mechanism (40) is supplied to the compression mechanism (20). Accordingly, each sliding portion of the compression mechanism (20) can be lubricated by this oil, and the mechanical loss of each sliding portion can be reduced or seizure can be prevented, thereby improving the reliability of the refrigeration apparatus.
  • the oil separated by the oil separation means (60) is cooled by the cooling means (80) and then supplied to the compression mechanism (20).
  • what is called isothermal compression can be performed in the compression stroke of a compression mechanism (20), and the compression power of the refrigerant
  • the energy of the oil separated by the oil separation means (60) is recovered by the recovery mechanism (40). Therefore, in the present invention, the greater the amount of low-temperature oil introduced into the compression mechanism (20), the greater the energy that can be recovered by the recovery mechanism (40).
  • the compression mechanism (20) also increases the power required to pressurize the oil.
  • the power of the compression mechanism (20) as a whole can be greatly reduced.
  • the temperature of the refrigerant discharged from the compression mechanism (20) can be kept low.
  • the system abnormality of the refrigeration apparatus and the damage to the compression mechanism (20) due to the temperature rise of the discharged refrigerant can be avoided in advance.
  • the temperature rise of each sliding part of a compression mechanism (20) can also be suppressed, and while seizing of each sliding part can be prevented reliably, deterioration of oil (refrigeration machine oil) can also be prevented. As a result, the reliability of the refrigeration apparatus can be further improved.
  • the ambient temperature of the motor of the compression mechanism (20) can be kept low by introducing a large amount of low-temperature oil into the compression mechanism (20).
  • the motor efficiency can be improved and the input of the compression mechanism (20) can be further reduced.
  • the low temperature oil is introduced into the compression mechanism (20) while performing a supercritical cycle in which the high pressure refrigerant is compressed to a critical pressure or higher.
  • the compression process of a compression mechanism (20) it can compress so that it may approach an isotherm, without condensing a refrigerant
  • low temperature oil is supplied during the compression of the compression mechanism (20).
  • the refrigerant coolant after temperature rising can be cooled with oil.
  • the refrigerant can be reliably cooled by the low-temperature oil, and the effect of reducing the compression power by isothermal compression can be further improved.
  • low temperature oil is supplied to the suction side of the compression mechanism (20).
  • coolant can be cooled with low temperature oil from the start of the compression process of a compression mechanism (20), and the reduction effect of the compression power by isothermal compression can further be improved.
  • the output shaft (42) can be rotated by the energy of the oil recovered by the recovery mechanism (40), and this rotational power can be used as a predetermined power source.
  • the rotational power of an output shaft (42) can be utilized as a drive power of a compression mechanism (20).
  • the output shaft (42) can be rotated by both the energy of the refrigerant recovered by the expansion mechanism (30) and the energy of the oil recovered by the recovery mechanism (40).
  • the rotational power generated at the output shaft (42) can be increased.
  • electric power can be generated by the generator (45) using the rotational power of the output shaft (42), and this electric power can be used as a power source of each element machine of the refrigeration apparatus. It can be used as appropriate.
  • FIG. 1 is a piping diagram illustrating a schematic configuration of an air-conditioning apparatus according to Embodiment 1.
  • FIG. 2 is an enlarged longitudinal sectional view of the recovery mechanism.
  • FIG. 3 is a cross-sectional view showing the inside of the recovery mechanism, and shows the operation of the piston.
  • FIG. 4 shows an ideal refrigeration cycle of the present embodiment.
  • FIG. 4 (A) shows a Ph diagram and
  • FIG. 4 (B) shows a PV diagram.
  • FIG. 5 shows a general refrigeration cycle.
  • FIG. 5 (A) shows a Ph diagram and FIG. 5 (B) shows a PV diagram.
  • FIG. 6 is a graph showing the relationship between the oil injection amount and the power of the compression mechanism.
  • FIG. 7 is a graph showing the relationship between the oil injection amount and the COP improvement rate.
  • FIG. 1 is a piping diagram illustrating a schematic configuration of an air-conditioning apparatus according to Embodiment 1.
  • FIG. 2 is an enlarged longitudinal sectional view of the recovery mechanism
  • FIG. 8 is a piping system diagram illustrating a schematic configuration of an air-conditioning apparatus according to a modification of the first embodiment.
  • FIG. 9 is a piping diagram illustrating a schematic configuration of the air-conditioning apparatus according to Embodiment 2.
  • FIG. 10 is a piping diagram illustrating a schematic configuration of the air-conditioning apparatus according to Embodiment 3.
  • FIG. 11 is a piping diagram illustrating a schematic configuration of an air-conditioning apparatus according to Embodiment 4.
  • FIG. 12 is a cross-sectional view illustrating a first state during operation of the compression mechanism in the air-conditioning apparatus according to Embodiment 5.
  • FIG. 13 is a cross-sectional view illustrating a second state during operation of the compression mechanism in the air-conditioning apparatus according to Embodiment 5.
  • FIG. 14 is a block diagram showing the configuration of the controller.
  • FIG. 15 is a block diagram illustrating a configuration of a controller of the air-conditioning apparatus according to Embodiment 6.
  • FIG. 16 is a cross-sectional view showing a first state of the compression mechanism.
  • FIG. 17 is a cross-sectional view showing a second state of the compression mechanism.
  • FIG. 18 is a graph showing the power reduction effect by isothermal compression in the compressor of the comparative example.
  • FIG. 19 is a graph showing the power reduction effect by isothermal compression in the compression mechanism of the sixth embodiment.
  • FIG. 20 is a piping system diagram illustrating a schematic configuration of an air-conditioning apparatus according to Modification 1 of the other embodiment.
  • FIG. 21 is a piping diagram illustrating a schematic configuration of an air-conditioning apparatus according to Modification 2 of the other embodiment.
  • FIG. 22 is a piping diagram illustrating a schematic configuration of an air-conditioning apparatus according to Modification 3 of the other embodiment.
  • FIG. 23 is a piping diagram illustrating a schematic configuration of an air-conditioning apparatus according to Modification 4 of the other embodiment.
  • FIG. 24 is a Ph diagram illustrating an example of another refrigeration cycle in which isothermal compression is performed.
  • FIG. 25 is a cross-sectional view of a compression mechanism according to a comparative example.
  • Air conditioning equipment (refrigeration equipment) 11 Refrigerant circuit 20 Compression mechanism 30 Expansion mechanism 40 Recovery mechanism 42 Output shaft 45 Generator 50 piston (movable part) 60 Oil separator (Oil separation means) 70 Oil introduction pipe 80 Oil cooler (cooling means)
  • the refrigeration apparatus constitutes an air conditioner (10) that performs indoor air conditioning.
  • the air conditioner (10) is configured to switch between a cooling operation and a heating operation.
  • the air conditioner (10) includes a refrigerant circuit (11).
  • a refrigeration cycle is performed by circulating the refrigerant.
  • the refrigerant circuit (11) is filled with carbon dioxide (CO 2 ) as a refrigerant.
  • CO 2 carbon dioxide
  • a refrigeration cycle (so-called supercritical cycle) in which the refrigerant is compressed to a critical pressure or higher is performed.
  • the refrigerant circuit (11) contains oil (refrigerating machine oil) made of polyalkylene glycol (PAG).
  • the refrigerant circuit (11) includes an oil power recovery type compression unit (C / O), an expansion unit (E), an outdoor heat exchanger (12), an indoor heat exchanger (13), and a first four-way switching.
  • a valve (14) and a second four-way switching valve (15) are provided.
  • the refrigerant circuit (11) is provided with an oil separator (60), an oil introduction path (70), and an oil cooler (80).
  • the oil power recovery type compression unit (C / O) includes a compression mechanism (20), a recovery mechanism (40), and an electric motor (25) housed in a casing (not shown).
  • the compression mechanism (20) constitutes a rotary positive displacement compressor.
  • the recovery mechanism (40) has a main body (41) and an output shaft (42).
  • the main body (41) of the recovery mechanism (40) constitutes a rotary positive displacement fluid machine.
  • the output shaft (42) connects the compression mechanism (20) and the main body (41).
  • the electric motor (25) constitutes a motor that rotationally drives the output shaft (42), and is configured as an inverter type in which the output frequency (that is, the rotational speed of the output shaft) is variable.
  • the oil power recovery type compression unit (C / O) has a suction pipe (22) for sucking refrigerant into the compression mechanism (20) and a discharge pipe for discharging refrigerant compressed by the compression mechanism (20). (23) is provided.
  • the oil power recovery type compression unit (C / O) has an oil inflow pipe (43) through which oil (refrigeration oil) flows into the main body (41) of the recovery mechanism (40), and the main body ( 41) and an oil spill pipe (44) for spilling the oil.
  • the expansion unit (E) includes an expansion mechanism (30), an expansion side output shaft (31), and an expansion side generator (35) housed in a casing (not shown).
  • the expansion mechanism (30) constitutes a rotary positive displacement expansion mechanism.
  • the refrigerant expands and decompresses in the expansion chamber.
  • a piston (not shown) as a movable portion is rotationally driven by the refrigerant expanding in the expansion chamber, and the expansion-side output shaft (31) connected to the piston is further rotationally driven.
  • an expansion side generator (35) is driven and electric power generation is performed. That is, the expansion-side generator (35) constitutes a drive target that is driven by being connected to the expansion-side output shaft (31) of the expansion mechanism (30).
  • the electric power generated by the expansion unit (E) is used as power for the oil power recovery type compression unit (C / O) and other element machines.
  • the expansion unit (E) is provided with an inflow pipe (33) for allowing the refrigerant to flow into the expansion mechanism (30) and an outflow pipe (34) for allowing the refrigerant to flow out from the expansion mechanism (30). ing.
  • the outdoor heat exchanger (12) is an air heat exchanger for exchanging heat between the refrigerant and outdoor air.
  • the indoor heat exchanger (13) is an air heat exchanger for exchanging heat between the refrigerant and room air.
  • the first four-way switching valve (14) and the second four-way switching valve (15) have first to fourth ports, respectively.
  • a first port is connected to the discharge pipe (23) via a discharge line (18), and a second port is connected to the suction pipe (17) via a suction line (17). 22) is connected.
  • the third port is connected to one end of the outdoor heat exchanger (12), and the fourth port is connected to one end of the indoor heat exchanger (13).
  • the first port is connected to the inflow pipe (33), and the second port is connected to the outflow pipe (34).
  • the third port is connected to the other end of the outdoor heat exchanger (12), and the fourth port is connected to the other end of the indoor heat exchanger (13). Yes.
  • the first four-way switching valve (14) and the second four-way switching valve (15) are respectively a first port and a third port that communicate with each other and a second port and a fourth port that communicate with each other.
  • 1 state state indicated by a solid line in FIG. 1
  • 2nd state state indicated by a broken line in FIG. 1 in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other. It is comprised so that it may switch to.
  • the oil separator (60) is provided in the middle of the discharge line (18).
  • the oil separator (60) is composed of a vertically long, substantially cylindrical sealed container, and constitutes an oil separating means for separating oil from the high-pressure refrigerant.
  • the oil separator (60) is connected with a refrigerant / oil inflow pipe (61) at its body, with a refrigerant discharge pipe (62) at its top and with an oil discharge pipe (63) at its bottom. ing.
  • oil is separated from the refrigerant flowing in from the refrigerant / oil inflow pipe (61).
  • the oil separator (60) there are a method of centrifugal separation of oil using a swirl flow, a method of sedimentation separation of oil using a specific gravity difference between refrigerant and oil, and the like. Can be mentioned.
  • the refrigerant after the oil is separated flows out of the refrigerant discharge pipe (62), and the oil after the separation flows out of the oil discharge pipe (63).
  • the oil introduction path (70) constitutes a flow path for supplying the oil separated by the oil separator (60) to the compression mechanism (20).
  • the oil introduction path (70) includes a first oil guide pipe (71) and a second oil guide pipe (72).
  • the first oil guiding pipe (71) has a start end connected to the oil discharge pipe (63) of the oil separator (60) and a terminal end connected to the oil inflow pipe (43).
  • the first oil guide pipe (71) is provided with the oil cooler (80).
  • the oil cooler (80) is a cooling means for cooling the oil separated by the oil separator (60), and is constituted by, for example, an air-cooled heat exchanger.
  • the second oil guide pipe (72) has its start end connected to the oil outflow pipe (44) and its end connected to the oil injection port (24) of the compression mechanism (20).
  • the oil injection port (24) of the compression mechanism (20) opens in the middle of the compression stroke in the compression chamber. That is, the oil introduction path (70) of the present embodiment is connected to the compression mechanism (20) so as to supply the oil separated by the oil separator (60) in the middle of the compression stroke of the compression mechanism (20). Yes.
  • the configuration of the recovery mechanism (40) will be further described with reference to FIGS.
  • the recovery mechanism (40) recovers the power of the oil (that is, the energy of the oil).
  • the oil separated from the high-pressure refrigerant has the power used to pressurize the oil in the compression mechanism (20) as energy such as kinetic energy, potential energy, and pressure energy. Therefore, the recovery mechanism (40) recovers such oil energy as power.
  • the main body (41) of the recovery mechanism (40) is constituted by a so-called oscillating piston type rotary fluid machine.
  • the output shaft (42) has one end connected to the main body (41) and the other end connected to the movable part (piston) of the compression mechanism (20).
  • the compression mechanism (20) constitutes a drive target that is driven by being connected to the output shaft (42) of the recovery mechanism (40).
  • the output shaft (42) is formed with a main shaft portion (42a) and an eccentric portion (42b).
  • the eccentric part (42b) is eccentric by a predetermined amount with respect to the main shaft part (42a) and is configured to have a larger diameter than the main shaft part (42a).
  • the main body (41) of the recovery mechanism is provided with a front head (46), a cylinder (47), and a rear head (48) in that order from the bottom to the top.
  • the cylinder (47) is formed in a cylindrical shape through which the output shaft (42) passes vertically.
  • the cylinder (47) has a lower end closed by the front head (46) and an upper end closed by the rear head (48).
  • a piston (50) as a movable part is accommodated in the cylinder (47) (cylinder chamber).
  • the piston (50) is formed in an annular shape or a cylindrical shape.
  • the eccentric portion (42b) of the output shaft (42) is engaged and connected to the inside of the piston (50).
  • the piston (50) has its outer peripheral surface in sliding contact with the inner peripheral surface of the cylinder (47), one end surface in sliding contact with the front head (46), and the other end surface in contact with the rear head (48).
  • An oil chamber (49) is formed in the cylinder (47) between its inner peripheral surface and the outer peripheral surface of the piston (50).
  • the oil chamber (49) communicates with the oil inflow pipe (43) and the oil outflow pipe (44).
  • the piston (50) is integrally provided with a blade (51).
  • the blade (51) is formed in a plate shape extending in the radial direction of the piston (50), and projects outward from the outer peripheral surface of the piston (50).
  • the blade (51) is inserted into the blade groove (52) of the cylinder (47).
  • the blade groove (52) of the cylinder (47) penetrates the cylinder (47) in the thickness direction, and opens to the inner peripheral surface of the cylinder (47).
  • the cylinder (47) is provided with a pair of bushes (53).
  • Each bush (53) is a small piece formed such that the inner surface is a flat surface and the outer surface is a circular arc surface.
  • the pair of bushes (53) are inserted into the bush holes (54) and sandwich the blade (51).
  • the inner surface of the bush (53) is in sliding contact with the blade (51), and the outer surface of the bush (53) is slid with the cylinder (47).
  • the blade (51) integrated with the piston (50) is supported by the cylinder (47) via the bush (53), and can rotate and advance and retract with respect to the cylinder (47).
  • the oil chamber (49) in the cylinder (47) is partitioned by the piston (50) and the blade (51).
  • the left chamber of the blade (51) in FIG. 3 communicates with the oil inflow pipe (43), and the right chamber communicates with the oil outflow pipe (44).
  • the operation of the air conditioner (10) according to Embodiment 1 will be described.
  • the air conditioner (10) can perform a cooling operation and a heating operation according to the settings of the first four-way switching valve (14) and the second four-way switching valve (15).
  • First, the basic operation during the cooling operation of the air conditioner (10) will be described.
  • the first four-way switching valve (14) and the second four-way switching valve (15) are set to the first state (the state indicated by the solid line in FIG. 1), and the refrigerant circulates in the refrigerant circuit (11).
  • a compression refrigeration cycle is performed.
  • a refrigeration cycle in which the outdoor heat exchanger (12) serves as a radiator (condenser) and the indoor heat exchanger (13) serves as an evaporator is performed.
  • the high pressure is set to a value higher than the critical pressure of carbon dioxide, which is a refrigerant, and a so-called supercritical cycle is performed.
  • the compression mechanism (20) In the oil power recovery type compression unit (C / O), the compression mechanism (20) is rotationally driven by the electric motor (25). In the compression mechanism (20), the refrigerant sucked into the compression chamber from the suction pipe (22) is compressed, and the compressed refrigerant is discharged from the discharge pipe (23). The refrigerant discharged from the compression mechanism (20) flows through the discharge line (18) and flows into the oil separator (60) through the refrigerant / oil inflow pipe (61).
  • the oil separator (60) Inside the oil separator (60), the oil is separated from the refrigerant, the refrigerant after the oil is separated accumulates at the top, and the separated oil accumulates at the bottom.
  • the separated refrigerant flows out of the refrigerant discharge pipe (62) and flows through the outdoor heat exchanger (12).
  • the outdoor heat exchanger (12) In the outdoor heat exchanger (12), the high-pressure refrigerant radiates heat to the outdoor air.
  • the refrigerant that has flowed out of the outdoor heat exchanger (12) flows into the expansion mechanism (30) of the expansion unit (E) through the inflow pipe (33).
  • the expansion mechanism (30) the high-pressure refrigerant expands in the expansion chamber, whereby the expansion-side output shaft (31) is rotationally driven. As a result, the expansion-side generator (35) is driven and electric power is generated from the expansion-side generator (35). This electric power is supplied to the compression mechanism (20) and other element machines.
  • the refrigerant expanded by the expansion mechanism (30) is sent out from the expansion unit (E) through the outflow pipe (34).
  • the refrigerant that has flowed out of the expansion unit (E) flows through the indoor heat exchanger (13).
  • the refrigerant absorbs heat from the indoor air and evaporates. As a result, the room air is cooled and cooling is performed.
  • the refrigerant flowing out of the indoor heat exchanger (13) is sucked into the compression mechanism (20) through the suction pipe (22) and compressed again.
  • an oil injection operation is performed in order to improve the coefficient of performance (COP) of the air conditioner (10).
  • the oil separated by the oil separator (60) flows through the first oil guide pipe (71) through the oil discharge pipe (63).
  • This refrigerant is cooled to a predetermined temperature by the oil cooler (80).
  • the cooled refrigerant flows into the main body (41) of the recovery mechanism (40) of the oil power recovery type compression unit (C / O) through the oil inflow pipe (43).
  • the piston (50) In the main body (41) of the recovery mechanism (40), the piston (50) is rotationally driven by the oil flowing through the oil chamber (49), and the piston (50) moves inside the cylinder (47) in FIG. (B) ⁇ (C) ⁇ (D) ⁇ (A) ⁇ . With the eccentric rotation of the piston (50), the eccentric portion (42b) and further the main shaft portion (42a) are rotationally driven. As a result, this rotational power is used as driving power for driving the compression mechanism (20). As described above, in the oil power recovery type compression unit (C / O), the energy of the oil recovered by the recovery mechanism (40) is recovered as drive power of the compression mechanism (20), and the compression mechanism (20) Power is reduced.
  • the oil whose energy has been recovered in the oil chamber (49) is depressurized to a predetermined pressure and then flows out from the main body (41) of the recovery mechanism (40) through the oil outflow pipe (44).
  • the oil after flowing out flows into the oil injection port (24) of the compression mechanism (20) through the second oil guide pipe (72).
  • the compression mechanism (20) low temperature oil is supplied during the compression stroke in the compression chamber, and an oil injection operation is performed.
  • FIG. 4 (A) is a Ph diagram showing a refrigeration cycle in ideal isothermal compression
  • FIG. 4 (B) shows a PV corresponding to the refrigeration cycle in FIG. 4 (A).
  • the refrigerant is compressed along an isotherm (for example, about 40 ° C.) shown in FIG. 4A and reaches a target high pressure (point C).
  • a target high pressure point C
  • the refrigerant when a general adiabatic compression is performed in the compression stroke, the refrigerant is compressed in a manner of A ⁇ B ⁇ C ′ shown in FIG. 4. As a result, in this refrigeration cycle, the compression power of the refrigerant increases.
  • the point B-C-C 'in FIG. The compression power of the refrigerant in the compression mechanism (20) can be reduced by the enclosed area ⁇ S.
  • the supercritical cycle is performed using carbon dioxide as a refrigerant.
  • the compression power reduction effect of the compression mechanism (20) is improved. This will be described below.
  • the refrigerant circuit (11) of the present embodiment As described above, the refrigerant is compressed in the compression stroke so that the carbon dioxide becomes equal to or higher than the critical pressure (pressure indicated by the point cP in FIG. 4A). Yes. For this reason, it is possible to avoid the refrigerant reaching the gas-liquid two-phase region (condensation region) when the refrigerant is compressed while being cooled from the point B to the point C in the compression stroke. That is, in the supercritical cycle, it is possible to avoid the cold oil from being used for the condensation of the refrigerant, so that the refrigerant can be effectively lowered in temperature and the behavior of the refrigerant can be brought close to an isotherm.
  • the critical pressure pressure indicated by the point cP in FIG. 4A
  • the refrigerant is compressed in a range smaller than the critical pressure. Therefore, when the oil injection operation is applied to this refrigeration cycle, the refrigerant reaches the gas-liquid two-phase region (condensation region) when the refrigerant is compressed at point A1 and the refrigerant is cooled by oil from point B1. End up. As a result, in this refrigeration cycle, isothermal compression can be performed only in the range of point B1 to point C1.
  • the power of the oil is recovered by the recovery mechanism (40).
  • the compression mechanism (20) In addition to the compression power of the refrigerant (Wr in FIG. 6), the power required to pressurize the oil (Wo in FIG. 6) is consumed.
  • the compression power Wr of the refrigerant is reduced by the effect of isothermal compression by the oil injection operation. Accordingly, the compression power Wr of the refrigerant decreases as the amount of low-temperature oil (oil injection amount Goil) supplied to the compression mechanism (20) increases.
  • the oil injection amount Goil increases as described above, the compression power Wo required for pressurizing the oil increases in the compression mechanism (20).
  • the relationship between the overall power Wt (that is, Wr + Wo) and the oil injection amount Goil is as shown in FIG. 6, and the oil injection amount Goil is a predetermined value (Gb). If it is larger than the range, the overall power Wt of the compression mechanism (20) may increase.
  • the recovery mechanism (40) is used to recover the compression power Wo required for boosting the oil.
  • the compression power Wo required for boosting the oil also increases, but in the oil power recovery type compression unit (C / O), The power (kinetic energy) of the oil after the pressure increase is recovered as the driving power of the compression mechanism (20).
  • this air conditioner (10) even if the oil injection amount Goil is increased, a relatively high COP improvement rate (effect by isothermal compression) can be obtained with this air conditioner (10).
  • a high COP improvement rate can be obtained even if the amount of oil injection is increased.
  • Embodiment 1- oil is separated from the high-pressure refrigerant by the oil separator (60), and the energy of the oil is recovered by the recovery mechanism (40) and used as driving power for the compression mechanism (20). Yes. For this reason, the power required to pressurize the oil by the compression mechanism (20) can be recovered by the recovery mechanism (40), and the energy saving of the air conditioner (10) can be improved.
  • the oil separated by the oil separator (60) is cooled by the oil cooler (80), and the low temperature oil is supplied to the compression mechanism (20).
  • the refrigerant can be compressed so as to approach the isothermal compression behavior as shown in FIG. 4 (that is, the point A ⁇ the point B ⁇ the point C). It can be greatly reduced.
  • the cooling effect of the refrigerant is improved and the compression power of the refrigerant is further reduced, while the energy of the oil recovered by the recovery mechanism (40) is also increased.
  • the COP improvement rate of the air conditioner (10) can be greatly improved, and the energy saving performance can be further improved.
  • the oil injection amount (mass flow rate) for effectively improving the COP improvement rate of the air conditioner (10) is approximately the amount of refrigerant sucked into the compression mechanism (20) (mass flow rate).
  • the range is preferably 0.5 times or more and about 6.0 times or less.
  • the compression mechanism (20) by increasing the amount of oil injection in this way and actively introducing low temperature oil into the compression mechanism (20), the following secondary effects can be obtained. Specifically, first, the temperature rise of the refrigerant discharged from the compression mechanism (20) can be prevented, and system abnormality of the air conditioner (10) and mechanical damage to the compression mechanism (20) can be avoided. Further, in the compression mechanism (20), the sliding portions such as pistons and bearings are sufficiently lubricated, and the heat dissipation effect of the sliding portions is improved. As a result, increase in mechanical loss and seizure at these sliding portions can be prevented. Furthermore, in the compression mechanism (20), since the oil can be suppressed to a relatively low temperature, it is possible to avoid deterioration due to excessive oil temperature.
  • the ambient temperature can be suppressed to a relatively low temperature.
  • the temperature in the casing is also relatively low.
  • the low-temperature oil is introduced into the compression mechanism (20) while performing a supercritical cycle in which the high-pressure refrigerant is compressed to a critical pressure or higher.
  • the refrigerant in the compression stroke of the compression mechanism (20), the refrigerant can be compressed so as to approach the isotherm without condensing the refrigerant (see, for example, FIG. 4), and compared with a normal refrigeration cycle (see, for example, FIG. 5).
  • the compression power can be effectively reduced.
  • Embodiment 1 described above low temperature oil is supplied during the compression of the compression mechanism (20).
  • the refrigerant after the temperature rise can be cooled with oil.
  • coolant mixed with oil becomes temperature lower than oil, and it can prevent that a refrigerant
  • the refrigerant can be reliably cooled by the low-temperature oil, and the effect of reducing the compression power by isothermal compression can be further improved.
  • the expansion mechanism (30) composed of a positive displacement fluid machine is used as the expansion mechanism for expanding the refrigerant.
  • the refrigerant may be decompressed using an electronic expansion valve (38) whose opening degree is adjustable as an expansion mechanism.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described.
  • the configuration of the refrigerant circuit (11) is different from that of the first embodiment.
  • the compression mechanism (20) and the expansion mechanism (30) are integrated into the expansion / compression unit (C / E), and the recovery mechanism ( 40) is installed in the oil power recovery unit (O).
  • the expansion / compression unit (C / E) includes a compression mechanism (20), an expansion mechanism (30), an expansion side output shaft (31), and an electric motor (25) housed in a casing (not shown). It is configured.
  • the compression mechanism (20) and the expansion mechanism (30) are connected to each other via the expansion side output shaft (31). That is, in the expansion / compression unit (C / E), the energy of the refrigerant recovered by the expansion mechanism (30) is used as drive power for the compression mechanism (20).
  • the compression mechanism (20) constitutes a drive target that is driven by being connected to the expansion-side output shaft (31) of the expansion mechanism (30).
  • the oil power recovery unit (O) includes a recovery mechanism (40) and a generator (45) housed in a casing (not shown).
  • the output shaft (42) of the recovery mechanism (40) is connected to the generator (45).
  • the generator (45) is driven by the power of the oil recovered by the recovery mechanism (40) (that is, the energy of the oil), and electric power is generated by this generator (45). To do.
  • the electric power generated by the generator (45) is used as driving power for the compression mechanism (20) and other element machines.
  • the refrigerant compressed by the compression mechanism (20) of the compression / expansion unit (C / E) flows into the oil separator (60).
  • the refrigerant from which the oil has been separated by the oil separator (60) is radiated by the outdoor heat exchanger (12) and then expanded by the expansion mechanism (30) of the compression / expansion unit (C / E).
  • the power (that is, expansion power) obtained by the refrigerant expanding in the expansion mechanism (30) is used as drive power for the compression mechanism (20).
  • the refrigerant expanded by the expansion mechanism (30) is evaporated by the indoor heat exchanger (13) and used for indoor cooling, and then sucked into the compression mechanism (20) of the compression / expansion unit (C / E).
  • the oil separated by the oil separator (60) is cooled by the oil cooler (80) and then flows into the recovery mechanism (40) of the oil power recovery unit (O).
  • the recovery mechanism (40) the output shaft (42) is rotationally driven by the oil in the oil chamber (49), and the generator (45) is driven. As a result, electric power is generated by the generator (45).
  • the compression mechanism (20) the refrigerant in the middle of compression is cooled by oil, so that the refrigerant is compressed so as to approach the isotherm. As a result, the power required for refrigerant compression is reduced.
  • the compression power of the refrigerant is reduced by the isothermal compression effect, and the power of oil recovered from the oil after the pressure increase ( That is, the energy of oil) also increases.
  • the COP of the air conditioner (10) is effectively improved.
  • Embodiment 3 of the Invention will be described.
  • the configuration of the refrigerant circuit (11) is different from those in the above embodiments.
  • the compression mechanism (20) is incorporated in the compression unit (C), and the expansion mechanism (30) and the recovery mechanism (40) are integrated into oil.
  • the power recovery expansion unit (E / O) Built into the power recovery expansion unit (E / O).
  • the compression unit (C) includes a compression mechanism (20), a drive shaft (21), and an electric motor (25) housed in a casing (not shown).
  • the compression mechanism (20) and the electric motor (25) are connected to each other via the drive shaft (21). That is, in the compression unit (C), the compression mechanism (20) is driven by the electric motor (25).
  • the oil power recovery type expansion unit (E / O) includes an expansion mechanism (30), a recovery mechanism (40), and a generator (45) housed in a casing (not shown).
  • the expansion mechanism (30) is connected to an end portion of the output shaft (42) of the recovery mechanism (40), and a generator (45) is connected to an intermediate portion thereof. That is, in the oil power recovery type expansion unit (E / O), the refrigerant energy is recovered by the expansion mechanism (30), and the oil energy is recovered by the recovery mechanism (40). These energies are used as driving power for the generator (45) via the output shaft (42).
  • the generator (45) constitutes a drive target that is driven by being connected to the recovery mechanism (40) and the expansion mechanism (30) via the output shaft (42). As a result, the generator (45) generates a larger amount of power than the expansion unit (E) of the first embodiment.
  • the electric power generated by the generator (45) is used as driving power for the compression mechanism (20) and other element machines.
  • the refrigerant compressed by the compression mechanism (20) of the compression unit (C) flows into the oil separator (60).
  • the refrigerant from which the oil has been separated by the oil separator (60) is radiated by the outdoor heat exchanger (12) and then expanded by the expansion mechanism (30) of the oil power recovery type expansion unit (E / O).
  • the power obtained by the refrigerant expanding in the expansion mechanism (30) is used for power generation by the generator (45).
  • the refrigerant expanded in the expansion mechanism (30) evaporates in the indoor heat exchanger (13), is used for indoor cooling, and is then sucked into the compression mechanism (20) of the compression unit (C).
  • the oil separated by the oil separator (60) is cooled by the oil cooler (80) and then flows into the recovery mechanism (40) of the oil power recovery type expansion unit (E / O).
  • the recovery mechanism (40) the output shaft (42) is rotated by the power of the oil in the oil chamber (49), and the generator (45) is driven. As a result, electric power is generated by the generator (45).
  • the oil whose power is recovered by the recovery mechanism (40) and depressurized flows out of the oil power recovery type expansion unit (E / O) and flows to the oil injection port (24) of the compression mechanism (20) of the compression unit (C) Inflow.
  • the compression mechanism (20) the refrigerant in the middle of compression is cooled by oil, so that the refrigerant is compressed so as to approach the isotherm.
  • the power required for refrigerant compression is reduced.
  • the COP of the air conditioner (10) is effectively improved.
  • Embodiment 4 of the Invention will be described.
  • the configuration of the refrigerant circuit (11) is different from those in the above embodiments.
  • the compression mechanism (20), the expansion mechanism (30), and the recovery mechanism (40) are integrated into an oil power recovery type expansion / compression unit (C / E / O).
  • the oil power recovery type expansion / compression unit (C / E / O) includes a compression mechanism (20), an expansion mechanism (30), a recovery mechanism (40), and an electric motor (25) in a casing (not shown). Contained and configured.
  • the output mechanism (40) of the recovery mechanism (40) has an expansion mechanism (30) connected to the end thereof and a compression mechanism (20) connected to an intermediate portion thereof.
  • An electric motor (25) is coupled to the output shaft (42) between the expansion mechanism (30) and the compression mechanism (20).
  • both of these energies are used as power for rotationally driving the compression mechanism (20) via the output shaft (42).
  • the compression mechanism (20) constitutes a drive target that is driven by being connected to the recovery mechanism (40) and the expansion mechanism (30) via the output shaft (42).
  • the oil power recovery type expansion / compression unit (C / E / O) compared with the oil power recovery type compression unit (C / O) of the first embodiment, the compression mechanism (20) by the electric motor (25). The driving power is reduced.
  • the refrigerant compressed by the compression mechanism (20) of the oil power recovery type expansion / compression unit (C / E / O) flows into the oil separator (60).
  • the refrigerant from which the oil has been separated by the oil separator (60) is radiated by the outdoor heat exchanger (12) and then expanded by the expansion mechanism (30).
  • the energy of the refrigerant expanded by the expansion mechanism (30) is used as driving power for the compression mechanism (20) via the output shaft (42).
  • the refrigerant expanded in the expansion mechanism (30) evaporates in the indoor heat exchanger (13), is used for indoor cooling, and is then sucked into the compression mechanism (20) of the compression unit (C).
  • the oil separated by the oil separator (60) is cooled by the oil cooler (80) and then flows into the recovery mechanism (40).
  • the output shaft (42) is rotationally driven by the oil in the oil chamber (49), and the rotational power of the output shaft (42) is used as the driving power of the compression mechanism (20).
  • the compression mechanism (20) the refrigerant in the middle of compression is cooled by oil, so that the refrigerant is compressed so as to approach the isotherm.
  • the power required for refrigerant compression is reduced.
  • the COP of the air conditioner (10) is effectively improved.
  • Embodiment 5 of the Invention ⁇ Embodiment 5 of the present invention will be described.
  • the air conditioner (10) of the fifth embodiment is provided with an oil injection mechanism (100) and a controller (95) for each of the embodiments described above.
  • the compression mechanism (20) is composed of a oscillating piston type rotary fluid machine, similar to the recovery mechanism (40).
  • the compression mechanism (20) has a compression chamber (26), and is configured to suck carbon dioxide as a working fluid into the compression chamber (26) and compress it.
  • the oil injection mechanism (100) is configured to open and close the oil injection port (24), and is configured to supply refrigeration oil to the compression chamber (26) at a predetermined timing.
  • This compression mechanism (20) is housed in the casing of the oil power recovery type compression unit (C / O) as described above.
  • the compression mechanism (20) is configured to suck and compress the refrigerant by the operation of the piston (28) in the cylinder (27) having the compression chamber (26).
  • the compression mechanism (20) is configured such that the compression chamber (26) is formed in a circular cross section, and the piston (28) performs an eccentric rotational motion in the compression chamber (26).
  • the piston (28) is formed integrally with an annular portion (28a) that engages with a crankpin (42c) of a crankshaft (42) that is an output shaft and performs eccentric rotational motion, and the annular portion (28a).
  • the blade (28b) has a plate shape and extends outward in the radial direction of the annular portion (28a).
  • the cylinder (27) has a swing bush (29) that slidably holds the blade (28b).
  • the swing bush (29) is composed of a substantially semicircular suction side bush (29a) and a discharge side bush (29b). The suction side bush (29a) and the discharge side bush (29b) may be partly connected and integrated.
  • the cylinder (27) is formed with a suction port (22a) having one end opened to the compression chamber (26) so as to suck the refrigerant into the compression chamber (26).
  • the other end of the suction port (22a) communicates with the suction pipe (22) of the suction line (17).
  • the cylinder (27) has two end plates (27a, 27b) (the end plate (27a) on the motor side) that closes both end surfaces in the axial direction as the front mechanism, similar to the recovery mechanism (40).
  • the end plate (27b) opposite to the electric motor is referred to as a rear head).
  • One of the front head (27a) and the rear head (27b) has a discharge port (for discharging the refrigerant compressed in the compression chamber (26) to the space in the casing of the oil power recovery type compression unit (C / O)).
  • 23a) is formed.
  • This discharge port (23a) is provided with a reed valve (not shown) as a discharge valve, and the pressure in the compression chamber (26) and the pressure in the casing of the oil power recovery type compression unit (C / O) When the pressure difference between and reaches a predetermined value, the discharge port (23a) opens.
  • the discharge pipe (23) is directly connected to the casing of the oil power recovery type compression unit (C / O), and the refrigerant flowing out of the discharge port (23a) passes through the discharge pipe (23) to form a refrigerant circuit. It is discharged to the discharge line (18) of (11).
  • the suction port (22a) is provided at a position that is angled by ⁇ s in the right direction of the horizontal axis when the upward direction of the vertical axis in FIG.
  • the oil injection mechanism (100) has an injection nozzle portion (101) provided in the cylinder (27), and the injection nozzle portion (101) is provided at a position having an angle ⁇ i, and the oil injection It communicates with the compression chamber (26) through the port (24).
  • the suction port (22a) and the oil injection port (24) are arranged at positions that communicate with each other via the compression chamber (26) during the suction stroke shown in FIG.
  • the injection nozzle part (101) of the oil injection mechanism (100) includes a cylindrical injection case (102), a spool (103) slidable in the axial direction of the injection case (102), and the spool (103) And a drive mechanism (104) for driving the motor.
  • An oil injection port (105) communicating with the oil injection port (24) is formed at one end of the injection case (102).
  • the other end of the injection case (102) is connected to an oil supply pipe (106) connected to the second oil guide pipe (72) of the oil introduction path (70).
  • the spool (103) has an end on the oil injection port (105) side formed as a tapered valve portion (107).
  • the oil injection port (105) is a valve seat (108) formed on the inner surface side of the injection case (102) by a tapered surface having the same angle as the valve portion (107) of the spool (103).
  • the oil supply pipe ( The refrigerating machine oil supplied from 106) is injected into the compression chamber (26) from the oil injection port (24) through the gap between the valve portion (107) and the valve seat (108).
  • the solenoid mechanism (109) is used as the drive mechanism (104) for moving the spool (103) back and forth in the axial direction.
  • the solenoid mechanism (109) includes an iron core (110) fixed to the spool (103) and a coil (111) fixed to the injection case (102).
  • a coil spring (112) that applies a spring force in a direction to retract the spool (103).
  • the spool (103) receives a spring receiver (113) that receives one end of the coil spring (112). Is fixed.
  • the other end of the coil spring (112) is in contact with the end surface on the oil injection port (105) side of the injection case (102).
  • the air conditioner (10) of Embodiment 5 has a controller (95) as a control means for controlling the oil injection mechanism (100).
  • the controller (control means) (95) for controlling the compression mechanism (20) is configured as shown in the block diagram of FIG.
  • the controller (95) includes an input value (specification) reading unit (96), a measurement value (or set value) reading unit (97), and a calculated value determination unit (98).
  • the input value reading unit (96) and the measured value reading unit (97) are connected to the calculated value determining unit (98) so as to send a signal to the calculated value determining unit (98).
  • the position ⁇ s of the suction port (22a), the position ⁇ i of the oil injection port (24), the rotational speed ⁇ of the crankshaft (42), and the rotational angle of the crankshaft (42) The injection timing is obtained based on the current value ⁇ c, and a control signal is sent from the controller (95) to the oil injection mechanism (100). Based on this control signal, the solenoid mechanism (109) is turned on and off, and the oil injection timing is controlled.
  • the controller (95) is at least part of the range from the injection start point to the injection end point, with the piston (28 reaching the position where it passes through the oil injection port (24)) as the injection end point.
  • the oil injection mechanism (100) is controlled so as to perform the oil injection operation.
  • the controller (95) is configured to perform the oil injection operation in the entire range from the injection start point to the injection end point in order to perform isothermal compression over the entire range.
  • the controller (95) the position ⁇ s of the suction port (22a) and the position ⁇ i of the oil injection mechanism (100) are input to the input value reading unit (96) as preset positions.
  • the rotational speed ⁇ of the crankshaft (42) during operation and the current value ⁇ c of the rotational angle of the crankshaft (42) are measured by the measured value reading unit (97).
  • the calculation value determination unit (98) obtains the injection timing based on these values.
  • the position at which the suction stroke ends is the injection start point ⁇ s, and the position before the discharge stroke ends (specifically, the piston
  • the point at which (28) reaches the position where it passes through the oil injection port (24)) is set as the injection end point ⁇ i, and at least part of the range from the injection start point ⁇ s to the injection end point ⁇ , or all of the range It is determined to perform an oil injection operation.
  • the oil injection operation is performed in the entire range, as shown in FIG.
  • the controller (95) determines the injection timing so that the oil injection port (105) is opened only during the injection time ⁇ t determined by the calculated value determination unit (98) in FIG. 100)
  • the oil injection port (105) is opened and closed, and the oil injection operation to the compression mechanism (20) is controlled.
  • the oil injection port (105) is always open. Therefore, when the piston (28) is located in the range of ⁇ i to ⁇ s as shown in FIG.
  • the port (22a) and the oil injection port (24) communicate with each other via the compression chamber (26), and the oil that has entered the compression chamber (26) from the oil injection port (24) flows back to the suction port (22a). There was a case.
  • the suction port (22a) and the oil injection port (24) are not connected. Since the oil injection port (24) is opened, the above-described isothermal compression effect can be sufficiently obtained by performing the oil injection operation during that time. Further, the oil injection port (24) is closed while the suction port (22a) and the oil injection port (24) are in communication with each other during the operation of the piston (28). Can be prevented. If the oil injection port (24) is open while the suction port (22a) and the oil injection port (24) are in communication with the piston (28), the oil injection port (24) will move to the compression chamber (26).
  • the required cooling amount is calculated from many values such as the compressor rotation speed, suction pressure, discharge pressure, enthalpy, and refrigerant circulation amount to calculate the opening time and injection amount of the liquid refrigerant injection device.
  • the calculation logic to measure the compressor input so that it becomes the minimum value in the controller (95), and simply set the suction port (22a) position as the injection start point ⁇ s. Since the oil injection port (24) is set to the injection end point ⁇ i, and the oil injection operation is performed within the range, the calculation of the injection timing in the oil injection mechanism (100) is very easy. Therefore, effective oil injection is possible simply by implementing simple calculation logic.
  • Embodiment 6 of the Invention Embodiment 6 of the present invention will be described.
  • the air conditioner (10) of the sixth embodiment has the same oil injection mechanism (100) as that of the fifth embodiment, but differs from the fifth embodiment in the configuration of the controller (95).
  • the controller (95) of the sixth embodiment is configured as shown in the block diagram of FIG.
  • the controller (95) includes an input value (specification) reading unit (96), a measurement value (or set value) reading unit (97), and a calculated value determination unit (98).
  • the input value reading unit (96) and the measured value reading unit (97) are connected to the calculated value determining unit (98) in order to send a signal to the calculated value determining unit (98).
  • the cylinder volume Vc, the suction port position ⁇ s, the oil injection position ⁇ i (hereinafter, the data of the input value reading unit (96)), the rotational speed ⁇ of the crankshaft (42), The current value ⁇ c of the rotation angle of the crankshaft (42), the intake gas temperature Ts, the low pressure Lp of the refrigerant circuit (11), the high pressure Hp of the refrigerant circuit (11), the injection oil temperature To, and the injection oil
  • the timing of the oil injection operation is determined based on the pressure Po (the data of the measured value reading unit (97)).
  • the refrigerant gas temperature Tr during compression and the refrigerant gas pressure Pr during compression are the compressor specifications such as the cylinder volume Vc and the suction port position ⁇ s, the intake gas temperature Ts, the low pressure Lp of the refrigerant circuit (11), It is calculated from measured values such as the high pressure Hp of the refrigerant circuit (11) and refrigerant physical property data recorded in advance in the controller.
  • the calculation of the injection start position ⁇ 1 and the injection end point ⁇ 2 in FIG. 15 includes the calculation process of the refrigerant gas temperature Tr during compression and the refrigerant gas pressure Pr during compression (refrigerant temperature detection means and refrigerant pressure detection means). ing.
  • the position at which the refrigerant temperature Tr in the compression chamber (26) becomes the temperature of the injected oil To is the injection start point.
  • the position at which the refrigerant pressure Tr in the compression chamber (26) reaches the discharge pressure Hp is defined as ⁇ 1, and the controller (95) is at least partly within the range from the injection start point ⁇ 1 to the injection end point ⁇ 2.
  • the oil injection mechanism (100) is controlled so as to perform the oil injection operation. In particular, it is preferable to configure the controller (95) so that the oil injection operation is performed in the entire range from the injection start point ⁇ 1 to the injection end point ⁇ 2, in order to perform isothermal compression over the entire range.
  • the cylinder volume Vc, the suction port position ⁇ s, and the oil injection position ⁇ i are input to the controller (95) as preset positions in the input value reading unit (96).
  • the rotational speed ⁇ of the crankshaft (42), the current value ⁇ c of the rotational angle of the crankshaft (42), the intake gas temperature Ts, the low pressure Lp of the refrigerant circuit (11), the refrigerant The high pressure Hp of the circuit (11), the injection oil temperature To, and the injection oil pressure Po are measured by the measured value reading unit (97). Then, in the calculated value determining unit (98), the injection timing is obtained based on these values.
  • Tr To when the refrigerant gas temperature during compression is Tr
  • the position at which the refrigerant temperature Tr in the compression chamber (26) becomes the temperature of the injected oil To during the operation in which the suction stroke, the compression stroke, and the discharge stroke are one cycle is the injection start point.
  • the position at which the refrigerant pressure Pr in the compression chamber (26) reaches the discharge pressure Hp is defined as ⁇ 1, and the controller (95) is at least part of the range from the injection start point ⁇ 1 to the injection end point ⁇ 2. Or the entire range of the oil injection operation.
  • the oil injection operation is performed in the entire range, the entire range from the point ⁇ 1 to the point ⁇ 2 in FIG. 16 is performed.
  • the spool (103) of the oil injection mechanism (100) is moved backward. Open the oil injection port (105).
  • the spool (103) of the oil injection mechanism (100) is advanced to close the oil injection port (105). become.
  • the controller (95) opens and closes the oil injection port (105) of the oil injection mechanism (100) based on the injection timing obtained by the calculated value determination unit (98), and the oil injection operation to the compression mechanism (20) To control.
  • the position at which the temperature To becomes the injection start point ⁇ 1, and the position at which the refrigerant pressure in the compression chamber (26) reaches the discharge pressure is the injection end point ⁇ 2, and at least one in the range from the injection start point ⁇ 1 to the injection end point ⁇ 2.
  • the oil injection operation is performed in the part or all of the range.
  • the oil separated from the refrigerant by the oil separator (60) is supplied to the suction side (low pressure side) of the compression mechanism (20), not during the compression of the compression mechanism (20). Also good. That is, for example, as shown in FIG. 20, the oil introduction path (70) of each of the above embodiments may be configured to supply the separated oil to the suction side of the compression mechanism (20). In the example of FIG. 20, in the first embodiment, the terminal end of the second oil guide pipe (72) of the oil introduction path (70) is connected to the suction line (17). Also in this modification, the refrigerant cooled by the compression mechanism (20) can be simultaneously cooled by the oil cooled by the oil cooler (80), and the isothermal compression effect as described above can be obtained.
  • the oil cooled by the oil cooler (80) is not supplied to the recovery mechanism (40), but the oil recovered by the recovery mechanism (40) is cooled by the oil cooler (80). Also good. That is, for example, as shown in FIG. 21, in each of the above embodiments, the oil cooler (80) may be arranged on the downstream side of the recovery mechanism (40) in the oil introduction path (70). In the example of FIG. 21, the oil cooler (80) is arranged on the downstream side of the recovery mechanism (40) in the first embodiment.
  • the energy of the oil can be recovered by the recovery mechanism (40) and the oil cooled by the oil cooler (80) is supplied to the compression mechanism (20), so that the effect of isothermal compression as described above can be achieved. Obtainable. Further, according to the modified example of FIG. 21, the oil immediately before being supplied to the compression mechanism (20) can be cooled by the oil cooler (80), so that the low-temperature oil can be stably supplied to the compression mechanism (20). Can supply. As a result, the above-mentioned isothermal compression effect can be further improved.
  • an internal heat exchanger (90) may be added to the refrigerant circuit (11).
  • the internal heat exchanger (90) is connected to the refrigerant circuit (11) in the above-described modification 2 (example of FIG. 21).
  • the internal heat exchanger (90) has a first flow path (91) and a second flow path (92), and exchanges heat between the refrigerants flowing through both flow paths (91, 92).
  • the first flow path (91) is a high pressure through which the refrigerant before flowing into the expansion mechanism (30) flows after the heat is radiated by the radiator (for example, the outdoor heat exchanger (12) during cooling operation) in the refrigerant circuit (11).
  • the second channel (92) is connected to the suction line (17). Therefore, in the internal heat exchanger (90), the first flow path (91) is cooled by the high pressure refrigerant and the low pressure refrigerant flowing in the second flow path (92).
  • the oil separator (60) may be provided at another location.
  • the oil separator (60) is arranged in the high-pressure line (19) described in the modification 3 with respect to the first embodiment.
  • the oil pressurized by the compression mechanism (20) since the oil pressurized by the compression mechanism (20) accumulates in the oil separator (60), the oil energy is recovered by sending the oil to the recovery mechanism (40). be able to.
  • the oil which accumulates in the oil separator (60) during the cooling operation becomes oil after heat dissipation in the outdoor heat exchanger (12).
  • the refrigerant separated by the oil separator (60) is supplied to the compression mechanism (20) so that the refrigerant is isothermally compressed in the compression stroke of the compression mechanism (20) (FIG. 4). See).
  • the refrigerant is isothermally compressed during a part of the compression stroke (that is, from the point B to the point C). May be compressed isothermally.
  • the partial period of the compression stroke is not limited to the example of FIG. 4 and may be at different timing.
  • the refrigerant is compressed so as to substantially follow the isothermal line during the compression stroke.
  • FIG. 4 merely illustrates ideal isothermal compression as described above, and the isothermal compression of the present invention does not necessarily have the behavior shown in FIG.
  • the isothermal compression of the present invention may be performed in such a manner that the refrigerant cooled by the oil is gradually separated from the isotherm.
  • the “isothermal compression” of the present invention is that the refrigerant in the compression stroke is cooled by the oil, and in the compression stroke, the refrigerant is compressed so as to approach the isotherm as compared with general adiabatic compression. (That is, so-called pseudo-isothermal compression).
  • the recovery mechanism (40) of the present invention is applied to what performs so-called isothermal compression by actively supplying the oil separated by the oil separator (60) to the compression mechanism (20).
  • a refrigerant circuit that returns oil that has flowed out of the compression mechanism (20) to the suction side of the compression mechanism (20) via an oil return pipe to prevent poor lubrication of the compression mechanism (20).
  • the recovery mechanism (40) of the present invention may be applied to the oil return pipe. Even in this case, the kinetic energy of the high-pressure oil can be recovered by the recovery mechanism (40), and the COP of the refrigeration apparatus can be improved.
  • the main body (41) of the recovery mechanism (40) of each embodiment described above is composed of a rotary positive displacement fluid machine.
  • the main body portion (41) may be constituted by, for example, a scroll type positive displacement fluid machine, or may be constituted by, for example, a non positive displacement type fluid machine (eg, a turbine type non positive displacement type fluid machine).
  • the compression mechanism (20) and the expansion mechanism (30) may be formed of other types of fluid machines.
  • another refrigerant may be used as the refrigerant charged in the refrigerant circuit (11).
  • this invention is applied about the air conditioning apparatus (10) which air-conditions a room
  • this invention is applied to the freezing apparatus which cools the inside of a refrigerator or a freezer, for example, and another freezing apparatus. It may be applied.
  • the present invention is useful for a refrigeration apparatus including a refrigerant circuit that performs a refrigeration cycle by circulating refrigerant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

 冷媒回路(11)には、高圧冷媒中から油を分離する油分離器(60)と、分離後の油のエネルギーを回収する回収機構(40)とが設けられる。回収機構(40)で回収された動力は、圧縮機構(20)の動力源として利用される。また、油分離器(60)で分離された油は、油クーラ(80)で冷却された後、圧縮機構(20)へ供給される。圧縮機構(20)の圧縮行程では、冷媒が等温線に近づくように冷媒が圧縮され、圧縮動力が低減される。

Description

冷凍装置
 本発明は、冷媒が循環して冷凍サイクルを行う冷媒回路を備えた冷凍装置に関し、特に冷凍装置の省エネ対策に係るものである。
 従来より、冷凍サイクルを行う冷媒回路を備えた冷凍装置は、室内の空調を行う空気調和装置等に広く適用されている。
 特許文献1には、この種の空気調和装置が開示されている。空気調和装置には、冷媒が循環して冷凍サイクルを行う冷媒回路が設けられている。冷媒回路には、圧縮機、室内熱交換器、膨張弁、室外熱交換器等が接続されている。例えば空気調和装置の冷房運転時には、圧縮機で圧縮された冷媒が室外熱交換器で凝縮(放熱)した後、膨張弁で減圧される。減圧後の冷媒は、室内熱交換器で蒸発し、これにより室内空気が冷却されて冷房が行われる。
 また、同文献に記載の冷媒回路には、圧縮機の摺動部を潤滑するための油(冷凍機油)が混在している。即ち、圧縮機の圧縮機構では、ピストンや駆動軸の軸受け部等が油によって潤滑される。この油は、冷媒と共に圧縮機から吐出される。そこで、冷媒回路には、圧縮機の吐出側に油分離器が設けられている。油分離器では、高圧冷媒中から油が分離される。分離後の油は、油戻し管へ流入し、キャピラリーチューブで減圧された後、圧縮機へ供給される。
特開2007-147212号公報
 特許文献1に開示のように、高圧冷媒中から分離された油は、キャピラリーチューブ等で減圧されてから、圧縮機の吸入側へ送られる。つまり、従来の冷凍装置では、圧縮機で油の昇圧にエネルギーを費やしているにも拘わらず、この油のエネルギーをキャピラリーチューブ等の減圧機構により無駄に捨てていたため、結果として圧縮機の効率の低下を招いていた。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、冷媒が循環して冷凍サイクルを行う冷凍装置において、油の昇圧に起因するエネルギーのロスを緩和し、ひいては冷凍装置の省エネルギー化を図ることである。
 第1の発明は、冷媒を圧縮する圧縮機構(20)を有して冷媒が循環して冷凍サイクルを行う冷媒回路(11)を備えた冷凍装置を前提としている。そして、この冷凍装置は、冷媒回路(11)には、圧縮機構(20)で圧縮した高圧冷媒中から油を分離する油分離手段(60)と、該油分離手段(60)で分離された油のエネルギーを回収するための回収機構(40)とが設けられていることを特徴とするものである。
 第1の発明の冷媒回路(11)には、油分離手段(60)と回収機構(40)とが設けられる。油分離手段(60)では、高圧冷媒中から油が分離される。分離後の油は、高圧冷媒とほぼ同じ圧力となっている。回収機構(40)は、分離後の油の動力(即ち、油の持つエネルギー)を回収する。つまり、高圧冷媒と分離された油は、圧縮機構(20)において油を昇圧させるために使われた動力を、運動エネルギー、位置エネルギー、圧力エネルギー等のエネルギーとして保有している。回収機構(40)は、分離後の油からこのようなエネルギーを回収する。その結果、従来であれば、高圧の油を所定の減圧機構で減圧してエネルギーのロスを招いていたが、本発明では、このようなエネルギーを回収して所定の動力源として利用することができる。
 第2の発明は、第1の発明の冷凍装置において、上記冷媒回路(11)には、上記回収機構(40)でエネルギーを回収した油を上記圧縮機構(20)へ供給するための油導入路(70)が接続されていることを特徴とするものである。
 第2の発明では、回収機構(40)で上記のエネルギーが回収された油が、油導入路(70)を通じて圧縮機構(20)へ供給される。この油は、圧縮機構(20)の各摺動部の潤滑に利用され、圧縮途中の冷媒に流入した油は冷媒と共に再び圧縮されて圧縮機構(20)から吐出される。
 第3の発明は、第2の発明の冷凍装置において、上記冷媒回路(11)には、上記油分離手段(60)で分離した油を冷却する冷却手段(80)が設けられていることを特徴とするものである。
 第3の発明では、油分離手段(60)で分離した油が、冷却手段(80)によって冷却される。このため、圧縮機構(20)へは、比較的低温の油が供給されることになる。その結果、圧縮機構(20)の圧縮行程では、冷媒の圧縮と同時に油による冷媒の冷却が行われる。これにより、圧縮行程では、冷媒の温度の昇温が抑制されながら、且つ冷媒の圧力だけが上昇していく。つまり、圧縮機構(20)へ比較的低温の油を導入して圧縮中の冷媒を冷却することで、冷媒はP-h線図(モリエル線図)上において、等温線に近づくように圧縮され、いわゆる等温圧縮が行われる。その結果、冷媒の圧縮に要する動力が低減され、圧縮機構(20)の効率が向上する。
 一方、圧縮機構(20)で冷媒を油によって冷却する場合、圧縮機構(20)へ導入する油の量が多ければ多いほど冷却効果が高まり、冷媒の圧縮に要する動力も小さくなる。ところが、このように油の導入量が多くなると、圧縮機構(20)では、油の昇圧に伴う動力が増大してしまう。その結果、油による冷媒の冷却効果によって得られる冷媒の圧縮動力の削減量よりも、油の昇圧に要する圧縮動力の増加量の方が大きくなり、圧縮機構(20)の全体の動力がかえって大きくなる虞がある。
 しかしながら、本発明では、圧縮機構(20)への油の導入量を比較的多量として油の昇圧に要する圧縮動力が増大したとしても、この油の昇圧に要したエネルギーが、上述の回収機構(40)によって回収される。従って、本発明では、圧縮機構(20)へ低温油を積極的に導入することで、冷媒の圧縮動力を効果的に低減でき、且つ回収機構(40)で回収できる動力を増大できる。その結果、本発明では、装置全体としての動力を効果的に低減できる。
 第4の発明は、第3の発明の冷凍装置において、上記冷媒回路(11)は、上記圧縮機構(20)によって冷媒を臨界圧力以上まで圧縮する冷凍サイクルを行うように構成されていることを特徴とするものである。
 第4の発明の冷媒回路(11)では、高圧冷媒が臨界圧力以上となる冷凍サイクルが行われる。このような冷凍サイクル(以下、超臨界サイクルという)では、上述の圧縮機構(20)への低温油の導入による冷媒の圧縮動力の低減効果が大きくなる。
 具体的には、上記超臨界サイクルでは、圧縮機構(20)の圧縮行程で冷媒を冷却しても、この冷媒が過熱蒸気のまま昇圧されて凝縮することがない。つまり、超臨界サイクルの圧縮行程では、冷媒を冷却しても、この冷媒が気液二相領域(凝縮領域)に至ることがない。従って、本発明では、一般的な冷凍サイクル(冷媒を臨界圧力よりも小さい範囲で圧縮する冷凍サイクル)と比較して、いわゆる等温圧縮による冷媒の圧縮動力の低減効果を向上できる。
 第5の発明は、第3又は第4の発明の冷凍装置において、上記油導入路(70)は、上記圧縮機構(20)の圧縮行程の途中に油を供給するように構成されていることを特徴とするものである。
 第5の発明では、冷却手段(80)で冷却されて比較的低温となった油が、圧縮機構(20)の圧縮行程の途中(即ち、冷媒が吸入圧力と吐出圧力との間の中間圧力となる箇所)へ供給される。ここで、圧縮機構(20)の圧縮行程の途中では、既に冷媒が圧縮(断熱圧縮)されて昇温されている。従って、この箇所に低温の油を導入することで、冷媒が油よりも低温になることを回避できる。これにより、その後の圧縮行程では、冷媒が油によって加熱されて過熱圧縮されることを回避できる。従って、このような過熱圧縮に起因して、冷媒の圧縮動力の低減効果が損なわれるのを回避でき、いわゆる等温圧縮による冷媒の圧縮動力の低減効果を向上できる。
 第6の発明は、第3又は第4の発明の冷凍装置において、上記油導入路(70)は、上記圧縮機構(20)の吸入側に油を供給するように構成されていることを特徴とするものである。
 第6の発明では、冷却手段(80)で冷却されて比較的低温となった油が、圧縮機構(20)の吸入側へ供給される。これにより、圧縮機構(20)では、圧縮行程の開始時から冷媒が油によって冷却されるので、上記等温圧縮による冷媒の圧縮動力の低減効果を向上できる。
 第7の発明は、第1乃至第6のいずれか1つの発明の冷凍装置において、上記回収機構(40)は、油によって回転駆動される可動部(50)と、該可動部(50)に連結する出力軸(42)とを有することを特徴とするものである。
 第7の発明では、回収機構(40)に可動部(50)と出力軸(42)とが設けられる。回収機構(40)では、高圧冷媒中から分離された油によって可動部(50)が回転駆動される。その結果、可動部(50)と連結する出力軸(42)も回転する。このような出力軸(42)の回転動力は、例えば発電機や他の機器の駆動動力として利用される。
 第8の発明は、第7の発明の冷凍装置において、上記圧縮機構(20)は、上記回収機構(40)の出力軸(42)と連結して駆動されるように構成されていることを特徴とするものである。
 第8の発明では、回収機構(40)で回収された油の動力(即ち、油のエネルギー)が、出力軸(42)を介して圧縮機構(20)の動力源として利用される。ここで、上述のように、圧縮機構(20)へ供給する油の導入量が多くなると、上記の等温圧縮による冷媒の圧縮動力が低減されるが、この際には、圧縮機構(20)での油の昇圧に要する動力も大きくなる。しかしながら、本発明では、このように油の導入量を多くすることで、回収機構(40)で回収される動力が大きくなり、この動力の増大分だけ圧縮機構(20)の動力が低減される。即ち、本発明では、圧縮機構(20)へ低温油を積極的に導入することで、冷媒の圧縮動力を効果的に低減でき、且つ回収機構(40)で回収できる動力を増大できる。その結果、本発明では、圧縮機構(20)の全体として動力が効果的に削減され、圧縮機構(20)の効率が効果的に向上する。
 第9の発明では、第7又は第8の発明の冷凍装置において、上記冷媒回路(11)には、冷媒によって回転駆動されると共に上記回収機構(40)の出力軸(42)と連結する可動部を有する膨張機構(30)が設けられていることを特徴とするものである。
 第9の発明の冷媒回路(11)には、冷媒によって回転駆動される膨張機構(30)が設けられる。そして、回収機構(40)の出力軸(42)には、膨張機構(30)の可動部も連結される。つまり、出力軸(42)は、回収機構(40)で回収された動力と、膨張機構(30)で冷媒の膨張により得られた動力(即ち、膨張動力)との双方によって、回転駆動される。このような出力軸(42)の回転動力は、第8の発明の圧縮機構(20)の駆動動力等に利用される。
 第10の発明は、第7乃至第9のいずれか1つの発明の冷凍装置において、上記回収機構(40)の出力軸(42)と連結して駆動される発電機(45)を備えていることを特徴とするものである。
 第10の発明では、回収機構(40)で回収された油のエネルギーが、出力軸(42)を介して発電機(45)の駆動動力として利用される。その結果、本発明では、発電機(45)で電力を発生することができ、この電力を他の要素機械等の動力源として利用できる。
 本発明によれば、油分離手段(60)によって高圧冷媒中の油を分離した後、この油のエネルギー(即ち、油の動力)を回収機構(40)によって回収するようにしている。つまり、従来のものであれば、昇圧後の油のエネルギーをキャピラリーチューブ等の減圧機構によって無駄に捨てていたのに対し、本発明では、このような油のエネルギーを回収機構(40)で回収することができる。その結果、本発明によれば、この油のエネルギーを利用して所定の要素機械等を駆動することができ、冷凍装置の省エネルギー性の向上を図ることができる。
 また、第2の発明では、回収機構(40)でエネルギーを回収した後の油を、圧縮機構(20)へ供給するようにしている。従って、この油によって圧縮機構(20)の各摺動部の潤滑を行うことができ、各摺動部の機械損失の低減、あるいは焼き付きの防止を図り、冷凍装置の信頼性を向上できる。
 更に、第3の発明では、油分離手段(60)で分離した油を冷却手段(80)で冷却してから、圧縮機構(20)へ供給するようにしている。これにより、本発明によれば、圧縮機構(20)の圧縮行程で、いわゆる等温圧縮を行うことができ、圧縮機構(20)での冷媒の圧縮動力を大幅に低減することができる。しかも、本発明では、油分離手段(60)で分離した油のエネルギーを回収機構(40)で回収するようにしている。従って、本発明では、圧縮機構(20)への低温油の導入量が多ければ多いほど、回収機構(40)で回収できるエネルギーも多くなる。即ち、圧縮機構(20)で等温圧縮を行うために、低温油を積極的に圧縮機構(20)へ供給すると、圧縮機構(20)では、油の昇圧に要する動力も増大してしまうが、本発明では、このように昇圧された油のエネルギーを動力として回収しているので、圧縮機構(20)全体としての動力を大幅に低減することが可能となる。
 また、このように多量の低温油を圧縮機構(20)へ導入するようにすると、圧縮機構(20)から吐出される冷媒の温度を低く抑えることができる。その結果、吐出冷媒の温度上昇に起因する冷凍装置のシステム異常や、圧縮機構(20)の損傷を未然に回避できる。また、圧縮機構(20)の各摺動部の温度上昇も抑えることができ、各摺動部の焼き付きを確実に防止できると共に、油(冷凍機油)の劣化も防止できる。その結果、冷凍装置の信頼性を更に向上できる。
 加えて、圧縮機構(20)へ低温の油を多量に導入することで、圧縮機構(20)のモータの周囲温度も低く抑えることができる。その結果、モータ効率を向上させて、圧縮機構(20)の入力を更に削減することができる。
 また、第4の発明では、高圧冷媒を臨界圧力以上まで圧縮する、超臨界サイクルを行いながら、低温油を圧縮機構(20)へ導入するようにしている。これにより、圧縮機構(20)の圧縮行程では、冷媒を凝縮させることなく、等温線に近づくように圧縮でき、冷媒の圧縮動力を効果的に削減できる。
 更に、第5の発明では、低温油を圧縮機構(20)の圧縮途中へ供給するようにしている。これにより、本発明では、圧縮機構(20)で冷媒を有る程度昇温させてから、昇温後の冷媒を油で冷却することができる。その結果、低温油によって冷媒を確実に冷却することができ、等温圧縮による圧縮動力の低減効果を更に向上させることができる。
 また、第6の発明では、低温油を圧縮機構(20)の吸入側へ供給するようにしている。これにより、本発明では、圧縮機構(20)の圧縮行程の開始時から冷媒を低温油によって冷却することができ、等温圧縮による圧縮動力の低減効果を更に向上させることができる。
 第7の発明では、回収機構(40)で回収した油のエネルギーによって出力軸(42)を回転させることができ、この回転動力を所定の動力源として利用できる。そして、第8の発明によれば、出力軸(42)の回転動力を圧縮機構(20)の駆動動力として利用できる。また、第9の発明によれば、膨張機構(30)で回収した冷媒のエネルギーと、回収機構(40)で回収した油のエネルギーとの双方で出力軸(42)を回転させることができ、出力軸(42)で発生する回転動力を増大させることができる。更に、第10の発明によれば、出力軸(42)の回転動力を利用して、発電機(45)で電力を発生させることができ、この電力を冷凍装置の各要素機械の動力源として適宜利用できる。
図1は、実施形態1に係る空気調和装置の概略構成を示す配管系統図である。 図2は、回収機構を拡大した縦断面図である。 図3は、回収機構の内部を表した横断面図であり、ピストンの動作を示すものである。 図4は、本実施形態の理想的な冷凍サイクルを示すものであり、図4(A)はP-h線図を、図4(B)は、P-V線図を表したものである。 図5は、一般的な冷凍サイクルを示すものであり、図5(A)はP-h線図を、図5(B)は、P-V線図を表したものである。 図6は、油インジェクション量と、圧縮機構の動力との関係を示すグラフである。 図7は、油インジェクション量と、COPの改善率との関係を示すグラフである。 図8は、実施形態1の変形例に係る空気調和装置の概略構成を示す配管系統図である。 図9は、実施形態2に係る空気調和装置の概略構成を示す配管系統図である。 図10は、実施形態3に係る空気調和装置の概略構成を示す配管系統図である。 図11は、実施形態4に係る空気調和装置の概略構成を示す配管系統図である。 図12は、実施形態5に係る空気調和装置における圧縮機構の動作中の第1の状態を示す横断面図である。 図13は、実施形態5に係る空気調和装置における圧縮機構の動作中の第2の状態を示す横断面図である。 図14は、コントローラの構成を示すブロック図である。 図15は、実施形態6に係る空気調和装置のコントローラの構成を示すブロック図である。 図16は、圧縮機構の第1の状態を示す横断面図である。 図17は、圧縮機構の第2の状態を示す横断面図である。 図18は、比較例の圧縮機での等温圧縮による動力削減効果を示すグラフである。 図19は、実施形態6の圧縮機構での等温圧縮による動力削減効果を示すグラフである。 図20は、その他の実施形態の変形例1に係る空気調和装置の概略構成を示す配管系統図である。 図21は、その他の実施形態の変形例2に係る空気調和装置の概略構成を示す配管系統図である。 図22は、その他の実施形態の変形例3に係る空気調和装置の概略構成を示す配管系統図である。 図23は、その他の実施形態の変形例4に係る空気調和装置の概略構成を示す配管系統図である。 図24は、その他の等温圧縮が行われる冷凍サイクルの一例を示すP-h線図である。 図25は、比較例に係る圧縮機構の横断面図である。
符号の説明
10  空気調和装置(冷凍装置)
11  冷媒回路
20  圧縮機構
30  膨張機構
40  回収機構
42  出力軸
45  発電機
50  ピストン(可動部)
60  油分離器(油分離手段)
70  油導入管
80  油クーラ(冷却手段)
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
  《発明の実施形態1》
 本発明の実施形態1ついて説明する。本発明に係る冷凍装置は、室内の空調を行う空気調和装置(10)を構成している。空気調和装置(10)は、冷房運転と暖房運転とを切り換えて行うように構成されている。
  〈空気調和装置の全体構成〉
 図1に示すように、空気調和装置(10)は、冷媒回路(11)を備えている。冷媒回路(11)では、冷媒が循環することで冷凍サイクルが行われる。冷媒回路(11)には、冷媒として二酸化炭素(CO)が充填されている。そして、冷媒回路(11)では、冷媒が臨界圧力以上まで圧縮される冷凍サイクル(いわゆる超臨界サイクル)が行われる。更に、冷媒回路(11)には、ポリアルキレングリコール(PAG)から成る油(冷凍機油)が混在している。
 冷媒回路(11)には、油動力回収型圧縮ユニット(C/O)と、膨張ユニット(E)と、室外熱交換器(12)と、室内熱交換器(13)と、第1四方切換弁(14)と、第2四方切換弁(15)とが設けられている。また、冷媒回路(11)には、油分離器(60)と油導入路(70)と油クーラ(80)とが設けられている。
 油動力回収型圧縮ユニット(C/O)は、圧縮機構(20)と回収機構(40)と電動機(25)とがケーシング(図示省略)の内部に収容されて構成されている。圧縮機構(20)は、ロータリ式の容積型圧縮機を構成している。圧縮機構(20)では、その圧縮室において冷媒が臨界圧力以上まで圧縮される。回収機構(40)は、本体部(41)と出力軸(42)とを有している。回収機構(40)の本体部(41)は、ロータリ式の容積型の流体機械を構成している。出力軸(42)は、圧縮機構(20)と上記本体部(41)とを連結している。電動機(25)は、出力軸(42)を回転駆動させるモータを構成し、出力周波数(即ち、出力軸の回転速度)を可変とするインバータ式に構成されている。
 油動力回収型圧縮ユニット(C/O)には、圧縮機構(20)へ冷媒を吸入させるための吸入管(22)と、圧縮機構(20)で圧縮された冷媒を吐出させるための吐出管(23)とが設けられている。また、油動力回収型圧縮ユニット(C/O)には、回収機構(40)の本体部(41)へ油(冷凍機油)を流入させるための油流入管(43)と、この本体部(41)の油を流出させるための油流出管(44)とが設けられている。
 膨張ユニット(E)は、膨張機構(30)と膨張側出力軸(31)と膨張側発電機(35)とがケーシング(図示省略)の内部に収容されて構成されている。膨張機構(30)は、ロータリ式の容積型膨張機構を構成している。膨張機構(30)では、その膨張室において冷媒が膨張して減圧される。膨張機構(30)では、膨張室で膨張する冷媒によって可動部としてのピストン(図示省略)が回転駆動され、ピストンと連結する膨張側出力軸(31)が更に回転駆動される。これにより、膨張側発電機(35)が駆動されて発電が行われる。つまり、膨張側発電機(35)は、膨張機構(30)の膨張側出力軸(31)と連結して駆動される駆動対象を構成している。膨張ユニット(E)で発電された電力は、油動力回収型圧縮ユニット(C/O)や他の要素機械の動力として利用される。また、膨張ユニット(E)には、膨張機構(30)へ冷媒を流入させるための流入管(33)と、膨張機構(30)から冷媒を流出させるための流出管(34)とが設けられている。
 室外熱交換器(12)は、冷媒を室外空気と熱交換させるための空気熱交換器である。また、室内熱交換器(13)は、冷媒を室内空気と熱交換させるための空気熱交換器である。
 第1四方切換弁(14)及び第2四方切換弁(15)は、それぞれ第1から第4までのポートを有している。第1四方切換弁(14)では、第1のポートが吐出ライン(18)を介して上記吐出管(23)と接続し、第2のポートが吸入ライン(17)を介して上記吸入管(22)と接続している。また、第1四方切換弁(14)では、第3のポートが室外熱交換器(12)の一端と接続し、第4のポートが室内熱交換器(13)の一端と接続している。第2四方切換弁(15)では、第1のポートが上記流入管(33)と接続し、第2のポートが上記流出管(34)と接続している。また、第2四方切換弁(15)では、第3のポートが室外熱交換器(12)の他端と接続し、第4のポートが室内熱交換器(13)の他端と接続している。
 第1四方切換弁(14)と第2四方切換弁(15)とは、それぞれ、第1のポートと第3のポートとが連通し且つ第2のポートと第4のポートとが連通する第1状態(図1の実線で示す状態)と、第1のポートと第4のポートが連通し且つ第2のポートと第3のポートが連通する第2状態(図1の破線で示す状態)とに切り換わるように構成されている。
 油分離器(60)は、上記吐出ライン(18)の途中に設けられている。油分離器(60)は、縦長の略円筒形状の密閉容器から成り、高圧冷媒中から油を分離する油分離手段を構成している。油分離器(60)には、その胴部に冷媒/油流入管(61)が接続され、その頂部に冷媒排出管(62)が接続され、その底部に油排出管(63)が接続されている。油分離器(60)では、冷媒/油流入管(61)から流入した冷媒中から油が分離される。なお、油分離器(60)での油の分離方法としては、旋回流を利用して油を遠心分離する方法や、冷媒と油との比重差を利用して油を沈降分離する方法等が挙げられる。そして、油分離器(60)内では、油が分離された後の冷媒が冷媒排出管(62)を流出し、分離後の油が油排出管(63)を流出する。
 油導入路(70)は、油分離器(60)で分離した油を圧縮機構(20)へ供給する流路を構成している。油導入路(70)は、第1導油管(71)と第2導油管(72)とを含んで構成されている。
 第1導油管(71)は、その始端が油分離器(60)の油排出管(63)と接続し、その終端が油流入管(43)と接続している。第1導油管(71)には、上記油クーラ(80)が設けられている。油クーラ(80)は、油分離器(60)で分離した油を冷却する冷却手段であり、例えば空冷式の熱交換器で構成されている。
 第2導油管(72)は、その始端が油流出管(44)と接続し、その終端が圧縮機構(20)の油インジェクションポート(24)と接続している。圧縮機構(20)の油インジェクションポート(24)は、その圧縮室での圧縮行程の途中箇所に開口している。つまり、本実施形態の油導入路(70)は、油分離器(60)で分離した油を圧縮機構(20)の圧縮行程の途中へ供給するように、圧縮機構(20)に接続されている。
  〈回収機構の構成〉
 上記回収機構(40)の構成について図2及び図3を参照しながら更に説明する。
回収機構(40)は、油の動力(即ち、油の持つエネルギー)を回収するものである。つまり、高圧冷媒と分離された油は、圧縮機構(20)において油を昇圧させるために使われた動力を、運動エネルギー、位置エネルギー、圧力エネルギー等のエネルギーとして保有している。そこで、回収機構(40)は、このような油のエネルギーを動力として回収する。回収機構(40)の本体部(41)は、いわゆる揺動ピストン型のロータリ式流体機械で構成されている。また、出力軸(42)は、その一端が本体部(41)と連結し、その他端部が圧縮機構(20)の可動部(ピストン)と連結している。つまり、圧縮機構(20)は、回収機構(40)の出力軸(42)と連結して駆動される駆動対象を構成している。また、出力軸(42)には、主軸部(42a)と偏心部(42b)とが形成されている。偏心部(42b)は、主軸部(42a)に対して所定量だけ偏心し、且つ主軸部(42a)よりも大径に構成されている。
 回収機構の本体部(41)には、その下部から上部へ向かって順に、フロントヘッド(46)、シリンダ(47)、及びリアヘッド(48)が設けられている。シリンダ(47)は、上下に出力軸(42)が貫通する筒状に形成されている。シリンダ(47)は、その下端がフロントヘッド(46)に閉塞され、その上端がリアヘッド(48)に閉塞されている。
 図3にも示すように、シリンダ(47)の内部(シリンダ室)には、可動部としてのピストン(50)が収容されている。ピストン(50)は、円環状あるいは円筒状に形成されている。ピストン(50)の内部には、出力軸(42)の偏心部(42b)が係合して連結している。ピストン(50)は、その外周面がシリンダ(47)の内周面に、一方の端面がフロントヘッド(46)に、他方の端面がリアヘッド(48)にそれぞれ摺接している。シリンダ(47)内には、その内周面とピストン(50)の外周面との間に油室(49)が形成される。油室(49)は、上記油流入管(43)及び油流出管(44)が連通している。
 ピストン(50)には、ブレード(51)が一体に設けられている。ブレード(51)は、ピストン(50)の半径方向へ延びる板状に形成されており、ピストン(50)の外周面から外側へ突出している。このブレード(51)はシリンダ(47)のブレード溝(52)に挿入されている。シリンダ(47)のブレード溝(52)は、シリンダ(47)を厚み方向へ貫通すると共に、シリンダ(47)の内周面に開口している。
 シリンダ(47)には、一対のブッシュ(53)が設けられている。各ブッシュ(53)は、内側面が平面となって外側面が円弧面となるように形成された小片である。シリンダ(47)において、一対のブッシュ(53)は、ブッシュ孔(54)に挿入されてブレード(51)を挟み込んだ状態となる。ブッシュ(53)は、その内側面がブレード(51)と摺接し、その外側面がシリンダ(47)と摺動する。そして、ピストン(50)と一体のブレード(51)は、ブッシュ(53)を介してシリンダ(47)に支持され、シリンダ(47)に対して回動自在で且つ進退自在となっている。
 シリンダ(47)内の油室(49)は、ピストン(50)及びブレード(51)によって仕切られている。そして、図3におけるブレード(51)の左側の部屋が油流入管(43)と連通し、右側の部屋が油流出管(44)と連通している。
  -運転動作-
 実施形態1に係る空気調和装置(10)の運転動作について説明する。空気調和装置(10)は、第1四方切換弁(14)及び第2四方切換弁(15)の設定に応じて、冷房運転と暖房運転とが可能となっている。まず、空気調和装置(10)の冷房運転時の基本的な動作について説明する。
 冷房運転時には、第1四方切換弁(14)及び第2四方切換弁(15)が第1状態(図1に実線で示す状態)に設定され、冷媒回路(11)で冷媒が循環して蒸気圧縮冷凍サイクルが行われる。その結果、冷房運転時には、室外熱交換器(12)が放熱器(凝縮器)となり、室内熱交換器(13)が蒸発器となる冷凍サイクルが行われる。また、冷媒回路(11)では、その高圧が冷媒である二酸化炭素の臨界圧力よりも高い値に設定され、いわゆる超臨界サイクルが行われる。
 油動力回収型圧縮ユニット(C/O)では、電動機(25)によって圧縮機構(20)が回転駆動される。圧縮機構(20)では、吸入管(22)から圧縮室へ吸入された冷媒が圧縮され、圧縮された冷媒が吐出管(23)より吐出される。圧縮機構(20)から吐出された冷媒は、吐出ライン(18)を流れ、冷媒/油流入管(61)を通じて油分離器(60)内へ流入する。
 油分離器(60)の内部では、冷媒中から油が分離され、油が分離された後の冷媒が上部に溜まり、分離後の油が底部に溜まり込む。分離後の冷媒は、冷媒排出管(62)を流出し、室外熱交換器(12)を流れる。室外熱交換器(12)では、高圧冷媒が室外空気へ放熱する。室外熱交換器(12)を流出した冷媒は、流入管(33)を通じて膨張ユニット(E)の膨張機構(30)へ流入する。
 膨張機構(30)では、膨張室で高圧冷媒が膨張し、これによって膨張側出力軸(31)が回転駆動される。その結果、膨張側発電機(35)が駆動されて、膨張側発電機(35)から電力が発生する。この電力は、圧縮機構(20)や他の要素機械へ供給される。膨張機構(30)で膨張した冷媒は、流出管(34)を通じて膨張ユニット(E)から送り出される。
 膨張ユニット(E)を流出した冷媒は、室内熱交換器(13)を流れる。室内熱交換器(13)では、冷媒が室内空気から吸熱して蒸発する。その結果、室内空気が冷やされて冷房が行われる。室内熱交換器(13)を流出した冷媒は、吸入管(22)を通じて圧縮機構(20)へ吸入されて再び圧縮される。
 このような冷房運転時には、空気調和装置(10)の成績係数(COP)を改善するために、油インジェクション動作が行われる。具体的には、油分離器(60)で分離した油は、油排出管(63)を通じて第1導油管(71)を流れる。この冷媒は、油クーラ(80)で所定温度まで冷却される。冷却後の冷媒は、油流入管(43)を通じて油動力回収型圧縮ユニット(C/O)の回収機構(40)の本体部(41)へ流入する。
 回収機構(40)の本体部(41)では、油室(49)を流れる油によってピストン(50)が回転駆動され、ピストン(50)がシリンダ(47)内を、図3の(A)→(B)→(C)→(D)→(A)→…という順に偏心回転する。このピストン(50)の偏心回転に伴い、偏心部(42b)、更には主軸部(42a)が回転駆動される。その結果、この回転動力は、圧縮機構(20)を駆動するための駆動動力として利用される。以上のように、油動力回収型圧縮ユニット(C/O)では、回収機構(40)によって回収された油のエネルギーが、圧縮機構(20)の駆動動力として回収され、圧縮機構(20)の動力が軽減される。
 油室(49)でエネルギーが回収された油は、所定圧力まで減圧された後、油流出管(44)を通じて回収機構(40)の本体部(41)から流出する。流出後の油は、第2導油管(72)を介して圧縮機構(20)の油インジェクションポート(24)へ流入する。その結果、圧縮機構(20)では、圧縮室での圧縮行程の途中へ低温の油が供給され、油インジェクション動作が行われる。
 この油インジェクション動作により、冷房運転時の圧縮機構(20)では、冷媒がP-h線図上の等温線に近づくように圧縮され、いわゆる等温圧縮が行われる。この点について、図4(A)及び(B)を参照しながら説明する。ここで、図4(A)は、理想的な等温圧縮での冷凍サイクルを示すP-h線図であり、図4(B)は、図4(A)の冷凍サイクルに対応するP-V線図である。
 冷房運転時の冷媒回路(11)では、圧縮機構(20)の吸入側の冷媒が所定温度だけ過熱されるようなスーパーヒート制御が行われる。この吸入冷媒は、図4のA点より圧縮機構(20)で圧縮され、所定量だけ昇圧/昇温されてからB点で油と混合する。圧縮機構(20)で冷媒と油とが混合されると、上記油クーラ(80)で冷却されて低温となった油により、冷媒が冷却される。つまり、圧縮行程では、B点以降において冷媒が油によって冷やされながら、更に圧縮される。その結果、冷媒は、図4(A)に示す等温線(例えば約40℃)に沿うように圧縮されて、目標の高圧圧力(C点)に至る。このように、A点→B点→C点のような挙動で冷媒を圧縮させることで、圧縮機構(20)で冷媒を圧縮するのに要する動力が効果的に低減される。
 即ち、例えば圧縮行程で一般的な断熱圧縮が行われると、冷媒は図4に示すA→B→C’のような挙動で圧縮される。その結果、この冷凍サイクルでは、冷媒の圧縮動力が大きくなってしまう。これに対し、本実施形態のように、油インジェクション動作により圧縮行程中に冷媒を冷却すると、一般的な断熱圧縮と比して、図4(B)のB点-C点-C’点で囲まれる面積ΔS分だけ圧縮機構(20)での冷媒の圧縮動力を削減できる。
 また、本実施形態のように、冷媒として二酸化炭素を用いて超臨界サイクルを行うもので、上記の油インジェクション動作を行うと、圧縮機構(20)の圧縮動力の削減効果が向上する。この点について以下に説明する。
 まず、本実施形態の冷媒回路(11)では、上述のように、二酸化炭素を臨界圧力(図4(A)のcP点に示す圧力)以上となるように、圧縮行程で冷媒を圧縮している。このため、圧縮行程ではB点→C点で冷媒を冷却しながら圧縮する際、冷媒が気液二相領域(凝縮領域)に至ることを回避できる。つまり、超臨界サイクルでは、油の冷熱が冷媒の凝縮に利用されることを回避できるので、冷媒を効果的に低温化することができ、冷媒の挙動を等温線に近づけることができる。
 これに対し、例えば図5に示す、通常の蒸気圧縮式冷凍サイクル(ここでは、冷媒をR410Aとした場合)の圧縮行程では、冷媒が臨界圧力よりも小さい範囲で圧縮される。このため、この冷凍サイクルに上記油インジェクション動作を適用した場合、A1点で冷媒が圧縮されてB1点から冷媒が油で冷却される際に、冷媒が気液二相領域(凝縮領域)に至ってしまう。その結果、この冷凍サイクルでは、B1点→C1点の範囲でしか等温圧縮を行うことができない。
 以上のような理由により、図5の冷凍サイクルに油インジェクション動作を適用した場合には、圧縮機構の圧縮動力の削減量が図5(B)のB1点-C1点-C1’点で囲まれるΔS’となってしまう。これに対し、本実施形態の超臨界サイクルに油インジェクション動作を適用した場合には、圧縮機構(20)の圧縮動力の削減量がΔSとなり、圧縮動力の削減効果が高いものとなる。
 更に、本実施形態では、上述のように、回収機構(40)によって油の動力を回収している。これにより、油インジェクション動作による冷媒の圧縮動力の低減効果を図りつつ、更に油の昇圧に必要な圧縮動力も低減される。この点について図6を参照しながら説明する。
 上記油インジェクション動作を行うと、圧縮機構(20)では、冷媒の圧縮動力(図6のWr)に加えて、油の昇圧に要する動力(図6のWo)を費やすことになる。ここで、冷媒の圧縮動力Wrは、上述のように、油インジェクション動作による等温圧縮の効果により小さくなる。従って、冷媒の圧縮動力Wrは、圧縮機構(20)へ供給される低温の油の量(油インジェクション量Goil)が多ければ多いほど、小さくなっていく。一方、このように油インジェクション量Goilが多くなると、圧縮機構(20)では、油の昇圧に要する圧縮動力Woが増大していく。従って、圧縮機構(20)では、その全体としての動力Wt(即ち、Wr+Wo)と、油インジェクション量Goilとの関係が、図6で示すような関係となり、油インジェクション量Goilが所定値(Gb)よりも大きくなると、かえって圧縮機構(20)の全体の動力Wtが増大してしまう虞がある。
 そこで、本実施形態では、油の昇圧に要する圧縮動力Woを回収するべく、回収機構(40)を用いるようにしている。具体的に、例えば油インジェクション量Goilを所定値より大きいGbとして油インジェクション動作を行った場合、油の昇圧に要する圧縮動力Woも増大するが、油動力回収型圧縮ユニット(C/O)では、昇圧後の油の動力(運動エネルギー)が、圧縮機構(20)の駆動動力として回収される。その結果、本実施形態では、油インジェクション量Goilを多量としても、この空気調和装置(10)で比較的高いCOPの改善率(等温圧縮による効果)を得ることができる。
 即ち、例えば図7に示すように、回収機構(40)で油の動力を回収しないもの(図7の破線L-0)では、油インジェクション量が所定値Gbよりも多くなると、等温圧縮の効果に起因する冷媒の圧縮動力Wrの削減量よりも油の昇圧に要する動力Woの方が大きくなってしまい、COP改善率がかえって低くなってしまう。しかしながら、回収機構(40)で油の動力を回収するようにすると、油の昇圧に要する動力Woの増大に伴い、圧縮機構(20)へ回収される油の動力が大きくなる。その結果、例えば回収機構(40)の動力回収率が50%のもの(図7の実線L-50)では、油インジェクション量を多くしても、高いCOP改善率を得ることができる。そして、このCOP改善率は、回収機構(40)の動力回収率が高ければ高いほど(例えば図7の実線L-80(油動力回収率80%)や実線L-100(油動力回収率100%)を参照)、特に油インジェクション量Goilが多い条件下で増大することになる。
  -実施形態1の効果-
 上記実施形態1では、油分離器(60)で高圧冷媒中から油を分離し、この油のエネルギーを回収機構(40)で回収して圧縮機構(20)の駆動動力として利用するようにしている。このため、圧縮機構(20)で油の昇圧に要した動力を回収機構(40)で回収でき、空気調和装置(10)の省エネルギーを向上できる。
 また、上記実施形態1では、油分離器(60)で分離した油を油クーラ(80)で冷却し、低温とした油を圧縮機構(20)へ供給している。このため、圧縮機構(20)では、図4に示すような等温圧縮の挙動(即ち、A点→B点→C点)に近づくように、冷媒を圧縮することができ、冷媒の圧縮動力を大幅に削減することができる。しかも、油インジェクション量Goilを多くすることで、冷媒の冷却効果が向上して冷媒の圧縮動力が更に低減される一方、回収機構(40)で回収される油のエネルギーも増大する。その結果、空気調和装置(10)のCOP改善率を大幅に向上でき、省エネ性を更に向上できる。なお、ここで、空気調和装置(10)のCOP改善率を効果的に向上させるための、油インジェクション量(質量流量)は、圧縮機構(20)への吸入冷媒の量(質量流量)の約0.5倍以上約6.0倍以下の範囲であることが好ましい。
 加えて、このように油インジェクション量を多くして、圧縮機構(20)へ低温の油を積極的に導入することで以下のような副次的な効果も得られる。具体的には、まず、圧縮機構(20)の吐出冷媒の昇温を防止でき、空気調和装置(10)のシステム異常や、圧縮機構(20)の機械的な損傷を回避できる。また、圧縮機構(20)では、ピストンや軸受け等の摺動部の潤滑が充分図られ、且つ摺動部の放熱効果も向上する。その結果、これらの摺動部での機械損失の増大や焼き付きを防止できる。更に、圧縮機構(20)では、油も比較的低い温度に抑えられるために、油の温度が過剰となって劣化することも回避できる。加えて、圧縮機構(20)では、その周囲温度も比較的低温に抑えられる。その結果、油動力回収型圧縮ユニット(C/O)では、そのケーシング内の温度も比較的低くなる。これにより、電動機(25)の周囲温度も低くなることから、電動機(25)のモータ効率が向上し、圧縮機構(20)の入力が更に低減されることになる。
 また、上記実施形態1では、高圧冷媒を臨界圧力以上まで圧縮する、超臨界サイクルを行いながら、低温油を圧縮機構(20)へ導入するようにしている。これにより、圧縮機構(20)の圧縮行程では、冷媒を凝縮させることなく等温線に近づくように圧縮でき(例えば図4参照)、通常の冷凍サイクル(例えば図5参照)と比較して、冷媒の圧縮動力を効果的に削減できる。
 更に、上記実施形態1では、低温とした油を圧縮機構(20)の圧縮途中へ供給するようにしている。これにより、圧縮機構(20)で冷媒を有る程度昇温させてから、昇温後の冷媒を油で冷却することができる。このため、油と混合する冷媒が、油よりも低い温度になるのを回避でき、冷媒が油によって加熱されてしまうのを防止できる。その結果、低温油によって冷媒を確実に冷却することができ、等温圧縮による圧縮動力の低減効果を更に向上させることができる。
  〈実施形態1の変形例1〉
 上記実施形態1では、冷媒を膨張する膨張機構として、容積型流体機械から成る膨張機構(30)を用いるようにしている。しかしながら、図8に示すように、膨張機構として開度が調節自在な電子式の膨張弁(38)を用いて冷媒を減圧するようにしても良い。
  《発明の実施形態2》
 本発明の実施形態2について説明する。実施形態2では、冷媒回路(11)の構成が上記実施形態1と異なっている。図9に示すように、実施形態2の冷媒回路(11)では、圧縮機構(20)と膨張機構(30)とが一体となって膨張圧縮ユニット(C/E)に組み込まれ、回収機構(40)が油動力回収ユニット(O)に組み込まれている。
 具体的に、膨張圧縮ユニット(C/E)は、圧縮機構(20)と膨張機構(30)と膨張側出力軸(31)と電動機(25)とがケーシング(図示省略)内に収容されて構成されている。圧縮機構(20)と膨張機構(30)とは、膨張側出力軸(31)を介して互いに連結している。つまり、膨張圧縮ユニット(C/E)では、膨張機構(30)で回収された冷媒のエネルギーが、圧縮機構(20)の駆動動力として利用される。換言すると、圧縮機構(20)は、膨張機構(30)の膨張側出力軸(31)と連結して駆動される駆動対象を構成している。
 また、油動力回収ユニット(O)は、回収機構(40)と発電機(45)とがケーシング(図示省略)に収容されて構成されている。回収機構(40)の出力軸(42)は、発電機(45)と連結されている。つまり、油動力回収ユニット(O)では、回収機構(40)で回収された油の動力(即ち、油のエネルギー)によって発電機(45)が駆動され、この発電機(45)で電力が発生する。発電機(45)で発生した電力は、圧縮機構(20)や他の要素機械の駆動動力として利用される。
 実施形態2の空気調和装置(10)の冷房運転時には、圧縮膨張ユニット(C/E)の圧縮機構(20)で圧縮された冷媒が、油分離器(60)に流入する。油分離器(60)で油が分離された冷媒は、室外熱交換器(12)で放熱した後、圧縮膨張ユニット(C/E)の膨張機構(30)で膨張する。その結果、膨張機構(30)で膨張する冷媒により得られた動力(即ち、膨張動力)が、圧縮機構(20)の駆動動力として利用される。膨張機構(30)で膨張した冷媒は、室内熱交換器(13)で蒸発して室内の冷房に利用された後、圧縮膨張ユニット(C/E)の圧縮機構(20)に吸入される。
 一方、油分離器(60)で分離された油は、油クーラ(80)で冷却された後、油動力回収ユニット(O)の回収機構(40)へ流入する。回収機構(40)では、油室(49)の油によって出力軸(42)が回転駆動され、発電機(45)が駆動される。その結果、発電機(45)で電力が発生する。
 回収機構(40)で動力が回収されて減圧した油は、圧縮膨張ユニット(C/E)の圧縮機構(20)の油インジェクションポート(24)へ流入する。圧縮機構(20)では、圧縮途中の冷媒が油によって冷却されることで、冷媒が等温線に近づくように圧縮される。その結果、冷媒の圧縮に要する動力が軽減される。
 以上のように、本実施形態においても、油インジェクション量を比較的多めに設定することで、等温圧縮効果により、冷媒の圧縮動力が低減され、且つ昇圧後の油から回収される油の動力(即ち、油のエネルギー)も多くなる。その結果、実施形態2においても、空気調和装置(10)のCOPが効果的に向上する。
  《発明の実施形態3》
 本発明の実施形態3について説明する。実施形態3では、冷媒回路(11)の構成が上記各実施形態と異なっている。図10に示すように、実施形態3の冷媒回路(11)では、圧縮機構(20)が圧縮ユニット(C)に組み込まれ、膨張機構(30)と回収機構(40)とが一体的に油動力回収型膨張ユニット(E/O)に組み込まれている。
 具体的に、圧縮ユニット(C)は、圧縮機構(20)と駆動軸(21)と電動機(25)とがケーシング(図示省略)に収容されて構成されている。圧縮機構(20)と電動機(25)とは、駆動軸(21)を介して互いに連結している。つまり、圧縮ユニット(C)では、電動機(25)によって圧縮機構(20)が駆動される。
 また、油動力回収型膨張ユニット(E/O)は、膨張機構(30)と回収機構(40)と発電機(45)とがケーシング(図示省略)に収容されて構成されている。回収機構(40)の出力軸(42)には、その端部に上記膨張機構(30)が連結し、その中間部に発電機(45)が連結している。つまり、油動力回収型膨張ユニット(E/O)では、膨張機構(30)で冷媒のエネルギーが回収され、且つ回収機構(40)で油のエネルギーが回収される。これらのエネルギーは、出力軸(42)を介して発電機(45)の駆動動力として利用される。換言すると、発電機(45)は、回収機構(40)及び膨張機構(30)と出力軸(42)を介して連結して駆動される駆動対象を構成している。その結果、発電機(45)では、上記実施形態1の膨張ユニット(E)よりも多量の電力が発生する。発電機(45)で発生した電力は、圧縮機構(20)や他の要素機械の駆動動力として利用される。
 実施形態3の空気調和装置(10)の冷房運転時には、圧縮ユニット(C)の圧縮機構(20)で圧縮された冷媒が、油分離器(60)に流入する。油分離器(60)で油が分離された冷媒は、室外熱交換器(12)で放熱した後、油動力回収型膨張ユニット(E/O)の膨張機構(30)で膨張する。その結果、膨張機構(30)で膨張する冷媒により得られた動力は、発電機(45)の発電に利用される。膨張機構(30)で膨張した冷媒は、室内熱交換器(13)で蒸発して室内の冷房に利用された後、圧縮ユニット(C)の圧縮機構(20)に吸入される。
 一方、油分離器(60)で分離された油は、油クーラ(80)で冷却された後、油動力回収型膨張ユニット(E/O)の回収機構(40)へ流入する。回収機構(40)では、油室(49)の油の動力によって出力軸(42)が回転駆動され、発電機(45)が駆動される。その結果、発電機(45)で電力が発生する。
 回収機構(40)で動力が回収されて減圧した油は、油動力回収型膨張ユニット(E/O)を流出し、圧縮ユニット(C)の圧縮機構(20)の油インジェクションポート(24)へ流入する。圧縮機構(20)では、圧縮途中の冷媒が油によって冷却されることで、冷媒が等温線に近づくように圧縮される。その結果、冷媒の圧縮に要する動力が軽減される。以上のように、本実施形態においても、油インジェクション量を比較的多めに設定することで、等温圧縮効果により、冷媒の圧縮動力が低減され、且つ昇圧後の油から回収される油のエネルギーも多くなる。その結果、実施形態3においても、空気調和装置(10)のCOPが効果的に向上する。
  《発明の実施形態4》
 本発明の実施形態4について説明する。実施形態4では、冷媒回路(11)の構成が上記各実施形態と異なっている。図11に示すように、実施形態4の冷媒回路(11)では、圧縮機構(20)と膨張機構(30)と回収機構(40)とが一体的に油動力回収型膨張圧縮ユニット(C/E/O)に組み込まれている。
 具体的に、油動力回収型膨張圧縮ユニット(C/E/O)は、圧縮機構(20)と膨張機構(30)と回収機構(40)と電動機(25)とがケーシング(図示省略)に収容されて構成されている。回収機構(40)の出力軸(42)には、その端部に膨張機構(30)が連結し、その中間部に圧縮機構(20)が連結している。また、出力軸(42)には、膨張機構(30)と圧縮機構(20)との間に電動機(25)が連結している。以上のように、油動力回収型膨張圧縮ユニット(C/E/O)では、膨張機構(30)で冷媒のエネルギーが回収され、且つ回収機構(40)で油のエネルギーが回収される。これらの双方のエネルギーは、出力軸(42)を介して圧縮機構(20)を回転駆動する動力として利用される。換言すると、圧縮機構(20)は、回収機構(40)及び膨張機構(30)と出力軸(42)を介して連結して駆動される駆動対象を構成している。その結果、油動力回収型膨張圧縮ユニット(C/E/O)では、上記実施形態1の油動力回収型圧縮ユニット(C/O)と比較して、電動機(25)による圧縮機構(20)の駆動電力が軽減される。
 実施形態4の空気調和装置(10)の冷房運転時には、油動力回収型膨張圧縮ユニット(C/E/O)の圧縮機構(20)で圧縮された冷媒が、油分離器(60)に流入する。油分離器(60)で油が分離された冷媒は、室外熱交換器(12)で放熱した後、膨張機構(30)で膨張する。その結果、膨張機構(30)で膨張した冷媒のエネルギーは、出力軸(42)を介して圧縮機構(20)の駆動動力として利用される。膨張機構(30)で膨張した冷媒は、室内熱交換器(13)で蒸発して室内の冷房に利用された後、圧縮ユニット(C)の圧縮機構(20)に吸入される。
 一方、油分離器(60)で分離された油は、油クーラ(80)で冷却された後、回収機構(40)へ流入する。回収機構(40)では、油室(49)の油によって出力軸(42)が回転駆動され、この出力軸(42)の回転動力が圧縮機構(20)の駆動動力として利用される。
 回収機構(40)でエネルギーが回収されて減圧した油は、圧縮機構(20)の油インジェクションポート(24)へ流入する。圧縮機構(20)では、圧縮途中の冷媒が油によって冷却されることで、冷媒が等温線に近づくように圧縮される。その結果、冷媒の圧縮に要する動力が軽減される。以上のように、本実施形態においても、油インジェクション量を比較的多めに設定することで、等温圧縮効果により、冷媒の圧縮動力が低減され、且つ昇圧後の油から回収される油のエネルギーも多くなる。その結果、実施形態4においても、空気調和装置(10)のCOPが効果的に向上する。
  《発明の実施形態5》
 本発明の実施形態5について説明する。実施形態5の空気調和装置(10)は、上述した各実施形態について、油インジェクション機構(100)とコントローラ(95)とを付与したものである。
  〈圧縮機構及び油インジェクション機構の構成〉
 まず、実施形態5における圧縮機構(20)の概略構成と油インジェクション機構(100)の概要について説明する。なお、この例では、上述の実施形態1の空気調和装置(10)において、圧縮機構(20)に油インジェクション機構(100)を設けている。
 図12に示すように、この圧縮機構(20)は、上記回収機構(40)と同様に、揺動ピストン型のロータリ式流体機械で構成されている。圧縮機構(20)は、圧縮室(26)を有し、この圧縮室(26)へ作動流体である冷媒として二酸化炭素を吸入して、圧縮するように構成されている。また、油インジェクション機構(100)は、油インジェクションポート(24)を開閉可能に構成され、所定のタイミングで上記圧縮室(26)へ冷凍機油を供給するように構成されている。この圧縮機構(20)は、上述したように油動力回収型圧縮ユニット(C/O)のケーシング内に収納されている。
 この圧縮機構(20)は、圧縮室(26)を有するシリンダ(27)内でのピストン(28)の動作により冷媒を吸入して圧縮するように構成されている。また、この圧縮機構(20)は、圧縮室(26)が断面円形に形成されるとともに、ピストン(28)が該圧縮室(26)内で偏心回転運動をするように構成されている。
 上記ピストン(28)は、出力軸であるクランク軸(42)のクランクピン(42c)に嵌合して偏心回転運動をする環状部(28a)と、この環状部(28a)と一体に形成されたブレード(28b)とを有している。ブレード(28b)は、プレート状であって、環状部(28a)の径方向外側へ延在している。シリンダ(27)は、ブレード(28b)を摺動可能に保持する揺動ブッシュ(29)を有している。揺動ブッシュ(29)は、それぞれほぼ半円形の吸入側ブッシュ(29a)と吐出側ブッシュ(29b)とから構成されている。吸入側ブッシュ(29a)と吐出側ブッシュ(29b)は、一部で連結して一体にしてもよい。
 シリンダ(27)には、圧縮室(26)へ冷媒を吸入するように一端が圧縮室(26)に開口した吸入ポート(22a)が形成されている。この吸入ポート(22a)の他端は、上記吸入ライン(17)の吸入管(22)と連通している。また、シリンダ(27)は、上記回収機構(40)と同様に、軸方向の両端面を塞ぐ2枚の端板(27a,27b)(電動機側の端板(27a)をフロントヘッドといい、電動機と反対側の端板(27b)をリヤヘッドという)を有している。フロントヘッド(27a)とリヤヘッド(27b)の一方には、圧縮室(26)で圧縮された冷媒を油動力回収型圧縮ユニット(C/O)のケーシング内の空間へ吐出するための吐出ポート(23a)が形成されている。この吐出ポート(23a)には吐出弁としてリード弁(図示せず)が設けられていて、圧縮室(26)内の圧力と上記油動力回収型圧縮ユニット(C/O)のケーシング内の圧力との圧力差が所定値に達すると吐出ポート(23a)が開くようになっている。この油動力回収型圧縮ユニット(C/O)のケーシングには上記吐出管(23)が直に接続されており、吐出ポート(23a)を流出した冷媒は、吐出管(23)を経て冷媒回路(11)の吐出ライン(18)へ吐出される。
 上記吸入ポート(22a)は、図12において縦軸の上方向を0°の位置とすると、そこから横軸の右方向へθsだけ角度をとった位置に設けられている。また、上記油インジェクション機構(100)は、シリンダ(27)に設けられた噴射ノズル部(101)を有し、この噴射ノズル部(101)は角度がθiの位置に設けられていて、油インジェクションポート(24)を介して圧縮室(26)に連通している。以上の構成により、上記吸入ポート(22a)と油インジェクションポート(24)は、図13に示す吸入行程中には圧縮室(26)を介して互いに連通する位置に配置されていることになる。
 上記油インジェクション機構(100)の噴射ノズル部(101)は、円筒状のインジェクションケース(102)と、このインジェクションケース(102)の軸方向へスライド可能なスプール(103)と、このスプール(103)を駆動する駆動機構(104)とを有している。インジェクションケース(102)の一端には、上記油インジェクションポート(24)と連通する油噴射口(105)が形成されている。また、インジェクションケース(102)の他端には、上述の油導入路(70)の第2導油管(72)と繋がる油供給管(106)が接続されている。
 上記スプール(103)は、油噴射口(105)側の端部がテーパ状の弁部(107)として形成されている。油噴射口(105)は、インジェクションケース(102)の内面側が、スプール(103)の弁部(107)と同じ角度のテーパ面により形成された弁座(108)になっている。この構成において、スプール(103)が後退して弁部(107)の外周面がインジェクションケース(102)の弁座(108)の内周面から離れると(図12の状態)、油供給管(106)から供給されてきた冷凍機油が弁部(107)と弁座(108)の間の隙間を通って油インジェクションポート(24)から圧縮室(26)内へ噴射される。一方、スプール(103)が前進して弁部(107)の外周面がインジェクションケース(102)の弁座(108)の内周面に圧接すると(図13の状態)、油供給管(106)から供給されてきた冷凍機油は、インジェクションケース(102)内が密閉空間になるために、圧縮室(26)へは噴射されなくなる。
 スプール(103)を軸方向へ進退させる駆動機構(104)としては、ソレノイド機構(109)が用いられている。ソレノイド機構(109)は、スプール(103)に固定された鉄心(110)と、インジェクションケース(102)に固定されたコイル(111)とを有している。インジェクションケース(102)内には、スプール(103)を後退させる方向へバネ力を加えるコイルバネ(112)が設けられ、スプール(103)には、コイルバネ(112)の一端を受けるバネ受け(113)が固定されている。コイルバネ(112)の他端は、インジェクションケース(102)の油噴射口(105)側の端面に接している。
 上記ソレノイド機構(109)のコイル(111)に電流を流さない状態では、スプール(103)が可動範囲の後端まで後退する。このとき、鉄心(110)はコイル(111)の中心から外れており、スプール(103)の弁部(107)と油噴射口(105)の弁座(108)との間には隙間が形成されている(図12)。一方、ソレノイド機構(109)のコイル(111)に電流を流した状態では、コイルバネ(112)のバネ力に抗して鉄心(110)がスプール(103)の前方へに引っ張られ、スプール(103)の弁部(107)と油噴射口(105)の弁座(108)とが圧接する(図13)。このとき、上記の隙間がなくなり、インジェクションケース(102)の内部が密閉空間となる。
  〈コントローラの構成〉
 実施形態5の空気調和装置(10)は、上記油インジェクション機構(100)を制御する制御手段として、コントローラ(95)を有している。
 上記圧縮機構(20)を制御するコントローラ(制御手段)(95)は、図14のブロック図に示すように構成されている。コントローラ(95)は、入力値(諸元)読込部(96)と、測定値(または設定値)読込部(97)と、計算値決定部(98)とを有している。入力値読込部(96)と測定値読込部(97)は、計算値決定部(98)へ信号を送るように、この計算値決定部(98)と接続されている。計算値決定部(98)では、吸入ポート(22a)の位置θsと、油インジェクションポート(24)の位置θiと、クランク軸(42)の回転速度ωと、クランク軸(42)の回転角度の現在値θcとに基づいて、インジェクションタイミングが求められ、コントローラ(95)から油インジェクション機構(100)へ制御信号が送られる。そして、この制御信号に基づいてソレノイド機構(109)のオンとオフが制御され、油の噴射タイミングがコントロールされる。
 具体的には、圧縮機構(20)において吸入行程と圧縮行程と吐出行程とを1サイクルとする動作中に、吸入行程が終了する位置をインジェクション開始点とし、吐出行程が終了する前の位置(この実施形態ではピストン(28)が油インジェクションポート(24)を通過する位置に達した点)をインジェクション終了点として、コントローラ(95)が、インジェクション開始点からインジェクション終了点の範囲の少なくとも一部で油インジェクション動作を行うように上記油インジェクション機構(100)を制御する。特に、コントローラ(95)を、インジェクション開始点からインジェクション終了点の範囲の全体で油インジェクション動作を行うように構成することが、その範囲の全域にわたって等温圧縮を行えるようにするために好ましい。
  〈油インジェクション動作中の噴射ノズル部の開閉タイミング〉
 次に、油インジェクション動作中の噴射ノズル部(101)の開閉タイミングについて説明する。
 まず、コントローラ(95)には、入力値読込部(96)に、吸入ポート(22a)の位置θsと油インジェクション機構(100)の位置θiとが、予め設定された位置として入力されている。このコントローラ(95)では、運転中のクランク軸(42)の回転速度ωと、クランク軸(42)の回転角度の現在値θcとが、測定値読込部(97)で測定される。そして、計算値決定部(98)において、これらの値に基づいてインジェクションタイミングが求められる。
 このインジェクションタイミングは、吸入行程と圧縮行程と吐出行程とを1サイクルとする動作中に、吸入行程が終了する位置をインジェクション開始点θsとし、吐出行程が終了する前の位置(具体的にはピストン(28)が油インジェクションポート(24)を通過する位置に達した点)をインジェクション終了点θiとして、インジェクション開始点θsからインジェクション終了点θいの範囲の少なくとも一部か、またはその範囲の全部で油インジェクション動作を行うように定められる。この範囲の全部で油インジェクション動作を行う場合は、図12に示すようにピストン(28)がθsからθiの範囲に位置しているときに油インジェクション機構(100)の噴射ノズル部(101)のスプール(103)を後退させて油噴射口(105)を開口させ、図13に示すようにピストン(28)がθiからθsの範囲に位置しているときに油インジェクション機構(100)の噴射ノズル部(101)のスプール(103)を前進させて油噴射口(105)を閉塞することになる。
 そして、コントローラ(95)は、図14の計算値決定部(98)で求めたインジェクション時間Δtの間だけ油噴射口(105)が開口されるようにインジェクションタイミングを決定して、油インジェクション機構(100)の油噴射口(105)を開閉し、圧縮機構(20)への油インジェクション動作を制御する。
 ここで、従来の油インジェクション機構(100)では、油噴射口(105)が常に開口していたので、図25に示すようにピストン(28)がθiからθsの範囲に位置するときは、吸入ポート(22a)と油インジェクションポート(24)が圧縮室(26)を介して連通してしまい、油インジェクションポート(24)から圧縮室(26)に入った油が吸入ポート(22a)へ逆流してしまうことがあった。
 これに対して、本実施形態では、図12に示すように、ピストン(28)がθsからθiの範囲に位置しているときは油インジェクション機構(100)のスプール(103)を後退させて油噴射口(105)を開口させるようにしているので、その範囲では正常なインジェクション動作を行うことができるし、図13に示すようにピストン(28)がθiからθsの範囲に位置しているときは油インジェクション機構(100)のスプール(103)を前進させて油噴射口(105)を閉塞するようにしているので、その範囲では無駄な油インジェクション動作が行われない。
 以上のように、実施形態5では、吸入行程と圧縮行程と吐出行程とを1サイクルとするピストン(28)の動作中に、吸入ポート(22a)と油インジェクションポート(24)が連しない間は油インジェクションポート(24)を開くようにしているので、その間は油インジェクション動作をすることによって上述した等温圧縮の効果を充分に得ることができる。また、ピストン(28)の動作中に吸入ポート(22a)と油インジェクションポート(24)が連通する間は油インジェクションポート(24)を閉じるようにしているので、その間は油が圧縮室(26)に流入するのを防止できる。ピストン(28)の動作中に吸入ポート(22a)と油インジェクションポート(24)が連通する間に油インジェクションポート(24)が開いていると、油インジェクションポート(24)から圧縮室(26)に流入した冷凍機油が吸入ポート(22a)へ逆流して冷媒の吸入が妨げられるおそれがあるが、本実施形態では冷凍機油が吸入ポート(22a)へ逆流することはない。したがって、吸入損失が発生してしまうのを防止できる。
 また、この実施形態では、圧縮機回転速度、吸入圧力、吐出圧力、エンタルピ、冷媒循環量などの多くの値から必要な冷却量を計算して液冷媒噴射装置の開口時間やインジェクション量を算出したり、圧縮機入力を測定してそれが最小値になるようにするための計算ロジックをコントローラ(95)に実装したりする必要はなく、単純に吸入ポート(22a)位置をインジェクション開始点θsとし、油インジェクションポート(24)の位置をインジェクション終了点θiとして、その範囲内でタイミングをとって油インジェクション動作を行うようにしているため、油インジェクション機構(100)におけるインジェクションタイミングの算出が非常に容易になり、単純な計算ロジックを実装するだけで効果的な油インジェクションが可能となる。
 以上のことから、本実施形態によれば、油インジェクションによる等温圧縮を行う圧縮機において、吸入損失を増加させることなく冷却に必要な大量の油をインジェクションすることができるとともに、複雑な制御をしなくても効果的な等温圧縮の実現が可能となり、大幅なシステム性能の向上が可能となる。
  《発明の実施形態6》
 本発明の実施形態6について説明する。実施形態6の空気調和装置(10)は、上記実施形態5と同様の油インジェクション機構(100)を有する一方、実施形態5とコントローラ(95)の構成が異なるものである。
  〈コントローラの構成〉
 実施形態6のコントローラ(95)は、図15のブロック図に示すように構成されている。コントローラ(95)は、入力値(諸元)読込部(96)と、測定値(または設定値)読込部(97)と、計算値決定部(98)とを有している。入力値読込部(96)と測定値読込部(97)は、計算値決定部(98)へ信号を送るため、この計算値決定部(98)と接続されている。計算値決定部(98)では、シリンダ容積Vcと、吸入ポート位置θsと、油インジェクション位置θi(以上、入力値読込部(96)のデータ)と、クランク軸(42)の回転速度ωと、クランク軸(42)の回転角度の現在値θcと、吸入ガス温度Tsと、冷媒回路(11)の低圧圧力Lpと、冷媒回路(11)の高圧圧力Hpと、インジェクション油温度Toと、インジェクション油圧力Po(以上、測定値読込部(97)のデータ)とに基づいて、油インジェクション動作のタイミングが求められる。つまり、圧縮途中の冷媒ガス温度をTrとしたときに、Tr=Toとなるインジェクション開始位置θ1と、圧縮途中の冷媒ガス圧力をPrとしたときにPr=Poとなるインジェクション終了位置θ2と、θ1からθ2に達するまでのインジェクション時間Δtとが求められて、これらの値を表す制御信号がコントローラ(95)から油インジェクション機構(100)へ送られる。そして、この制御信号に基づいてソレノイド機構(109)のオンとオフが制御され、油の噴射タイミングがコントロールされる。なお,圧縮途中の冷媒ガス温度Trと圧縮途中の冷媒ガス圧力Prは,シリンダ容積Vcや吸入ポート位置θsなどの圧縮機諸元と、吸入ガス温度Tsや冷媒回路(11)の低圧圧力Lp、冷媒回路(11)の高圧圧力Hpなどの測定値と、予めコントローラに記録された冷媒物性データとから算出する。図15中のインジェクション開始位置θ1とインジェクション終了点θ2の計算には、圧縮途中の冷媒ガス温度Trと圧縮途中の冷媒ガス圧力Prの算出過程(冷媒温度検出手段と冷媒圧力検出手段)も含まれている。
 具体的には、吸入行程と圧縮行程と吐出行程とを1サイクルとする動作中に、上記圧縮室(26)内の冷媒の温度Trがインジェクションされる油の温度Toになる位置をインジェクション開始点θ1とし、圧縮室(26)内の冷媒の圧力Trが吐出圧力Hpに達する位置をインジェクション終了点θ2として、コントローラ(95)が、インジェクション開始点θ1からインジェクション終了点θ2の範囲の少なくとも一部で油インジェクション動作を行うように上記油インジェクション機構(100)を制御する。特に、コントローラ(95)を、インジェクション開始点θ1からインジェクション終了点θ2の範囲の全体で油インジェクション動作を行うように構成することが、その範囲の全域にわたって等温圧縮を行えるようにするために好ましい。
  〈油インジェクション動作中の噴射ノズル部の開閉タイミング〉
 次に、油インジェクション動作中の噴射ノズル部(101)の開閉タイミングについて説明する。
 まず、コントローラ(95)には、入力値読込部(96)に、シリンダ容積Vcと、吸入ポート位置θsと、油インジェクション位置θiとが、予め設定された位置として入力されている。このコントローラ(95)では、クランク軸(42)の回転速度ωと、クランク軸(42)の回転角度の現在値θcと、吸入ガス温度Tsと、冷媒回路(11)の低圧圧力Lpと、冷媒回路(11)の高圧圧力Hpと、インジェクション油温度Toと、インジェクション油圧力Poとが、測定値読込部(97)で測定される。そして、計算値決定部(98)において、これらの値に基づいて、インジェクションタイミングが求められる。具体的には、圧縮途中の冷媒ガス温度をTrとしたときにTr=Toとなるインジェクション開始位置θ1と、圧縮途中の冷媒ガス圧力をPrとしたときにPr=Hpとなるインジェクション終了位置θ2と、θ1からθ2に達するまでのインジェクション時間Δtとが求められて、これらの値を表す制御信号がコントローラ(95)から油インジェクション機構(100)へ送られる。そして、この制御信号に基づいてソレノイド機構(109)のオンとオフが制御され、油の噴射タイミングがコントロールされる。
 このインジェクションタイミングは、吸入行程と圧縮行程と吐出行程とを1サイクルとする動作中に、上記圧縮室(26)内の冷媒の温度Trがインジェクションされる油の温度Toになる位置をインジェクション開始点θ1とし、圧縮室(26)内の冷媒の圧力Prが吐出圧力Hpに達する位置をインジェクション終了点θ2として、コントローラ(95)が、インジェクション開始点θ1からインジェクション終了点θ2の範囲の少なくとも一部か、またはその範囲の全部で油インジェクション動作を行うように定められる。この範囲の全部で油インジェクション動作を行う場合は、図16においてθ1のポイントからθ2のポイントまでの範囲の全体で行われ、そのときに油インジェクション機構(100)のスプール(103)を後退させて油噴射口(105)を開口させる。また、図17に示すようにピストン(28)がθ2からθ1の範囲に位置しているときには、油インジェクション機構(100)のスプール(103)を前進させて油噴射口(105)を閉塞することになる。
 そして、コントローラ(95)は、計算値決定部(98)で求めたインジェクションタイミングに基づいて油インジェクション機構(100)の油噴射口(105)を開閉し、圧縮機構(20)への油インジェクション動作を制御する。
 ここで、従来の油インジェクション機構(100)では、油インジェクション動作時において、冷凍機油の温度Toが冷媒の温度Trよりも高いときは冷媒が過熱されてしまい、過熱圧縮による動力損失が生じてしまうことになる。
 これに対して、本実施形態では、図16に示すように、ピストン(28)がθ1からθ2の範囲に位置しているときは油インジェクション機構(100)のスプール(103)を後退させて油噴射口(105)を開口させるようにしているので、その範囲では冷媒の温度Trが冷凍機油の温度Toよりも高い領域がなく、等温圧縮により仕事量を十分に削減できる。また、図17に示すように、ピストン(28)がθ2を過ぎてθ1に至るまでの範囲では、油インジェクション機構(100)のスプール(103)を前進させて油噴射口(105)を閉塞するようにしているので、その範囲では、無駄な油インジェクション動作が行われず、過熱圧縮による動力損失は生じない。
 以上のように、実施形態6では、吸入行程と圧縮行程と吐出行程とを1サイクルとするピストン(28)の動作中に、上記圧縮室(26)内の冷媒の温度Trがインジェクションされる油の温度Toになる位置をインジェクション開始点θ1とし、圧縮室(26)内の冷媒の圧力が吐出圧力に達する位置をインジェクション終了点θ2として、インジェクション開始点θ1からインジェクション終了点θ2の範囲の少なくとも一部か、またはその範囲の全部で油インジェクション動作を行うようにしている。θsからθiの範囲の全体でインジェクションを行う場合は、図18に示すように等温圧縮により削減される仕事量を相殺するように作用する仕事量が過熱圧縮により発生していたのに対して、本実施形態によれば、θ1からθ2の範囲内でだけ油インジェクション動作を行うようにしたことにより、図19に示すように過熱圧縮による仕事量が発生しないようにしているので、等温圧縮による効果を高めることが可能となる。以上のことから、本実施形態によれば、冷却に必要な大量の油をインジェクションすることができるし、過熱圧縮による動力損失も生じないので、効果的な等温圧縮の実現が可能となり、大幅なシステム性能の向上が可能とな
  《その他の実施形態》
 上記の各実施形態については、上述した各構成以外にも以下のような変形例の構成とすることができる。
  〈変形例1〉
 上述した各実施形態において、油分離器(60)で冷媒中から分離した油を圧縮機構(20)の圧縮途中ではなく、圧縮機構(20)の吸入側(低圧側)へ供給するようにしても良い。即ち、例えば図20に示すように、上記各実施形態の油導入路(70)は、分離後の油を圧縮機構(20)の吸入側へ供給するように構成しても良い。なお、図20の例では、上述の実施形態1について、油導入路(70)の第2導油管(72)の終端を吸入ライン(17)に接続したものである。この変形例においても、油クーラ(80)で冷却した油により、圧縮機構(20)で圧縮される冷媒を同時に冷却することができ、上述のような等温圧縮の効果を得ることができる。
  〈変形例2〉
 上述した各実施形態において、油クーラ(80)で冷却した油を回収機構(40)へ供給するのではなく、回収機構(40)でエネルギーを回収した油を油クーラ(80)で冷却しても良い。即ち、例えば図21に示すように、上記各実施形態について、油導入路(70)において油クーラ(80)を回収機構(40)の下流側に配置しても良い。なお、図21の例では、上述の実施形態1について、回収機構(40)の下流側に油クーラ(80)を配置している。この変形例においても、回収機構(40)で油のエネルギーを回収でき、且つ油クーラ(80)で冷却した油を圧縮機構(20)へ供給することで、上述のような等温圧縮の効果を得ることができる。また、図21の変形例のようにすると、圧縮機構(20)へ供給される直前の油を油クーラ(80)で冷却することができるので、圧縮機構(20)へ安定して低温の油を供給できる。その結果、上記の等温圧縮の効果を更に向上させることができる。
  〈変形例3〉
 上述した各実施形態において、例えば図22に示すように、冷媒回路(11)に内部熱交換器(90)を付与するようにしても良い。なお、図22の例では、上述の変形例2(図21の例)について、冷媒回路(11)に内部熱交換器(90)を接続している。
 具体的に、内部熱交換器(90)は、第1流路(91)と第2流路(92)とを有し、両者の流路(91,92)を流れる冷媒同士を熱交換させるものである。第1流路(91)は、冷媒回路(11)で放熱器(例えば冷房運転時の室外熱交換器(12))で放熱した後、膨張機構(30)へ流入する前の冷媒が流れる高圧ライン(19)に接続されている。また、第2流路(92)は、吸入ライン(17)に接続されている。従って、内部熱交換器(90)では、第1流路(91)を高圧冷媒が、第2流路(92)を流れる低圧冷媒によって冷却される。その結果、この変形例の冷房運転時には、高圧側の冷媒の過冷却度が大きくなり、室内熱交換器(13)での冷房能力が向上する。また、第2流路(92)を流れる低圧冷媒は、第1流路(91)を流れる高圧冷媒によって過熱されるので、吸入過熱度が大きくなる。その結果、図22に示すように、低温の油を圧縮機構(20)の吸入側へ供給した場合にも、吸入冷媒を油よりも高温とすることができ、油による冷媒の冷却効果を充分に得ることができる。
  〈変形例4〉
 上述した各実施形態において、例えば図23に示すように、油分離器(60)を他の箇所に設けるようにしても良い。なお、図23の例は、上述の実施形態1について、変形例3で述べた高圧ライン(19)に油分離器(60)を配置している。この変形例においても、油分離器(60)には、圧縮機構(20)で昇圧された油が溜まり込むので、この油を回収機構(40)へ送ることで、この油のエネルギーを回収することができる。また、この変形例では、冷房運転時の油分離器(60)に溜まる油は、室外熱交換器(12)で放熱後の油となる。つまり、この変形例の油分離器(60)には、上記の各実施形態と比較して低温の油が溜まり込む。従って、この変形例の油インジェクション動作では、一層低温とした油を圧縮機構(20)へ供給でき、上述の等温圧縮の効果を更に向上させることができる。
  〈その他の変形例〉
 上述した各実施形態では、油分離器(60)で分離した油を圧縮機構(20)へ供給することで、圧縮機構(20)の圧縮行程で冷媒を等温圧縮させるようにしている(図4を参照)。ここで、図4に示す例では、圧縮行程の一部の期間(即ち、B点からC点に至るまでの間)において、冷媒を等温圧縮させているが、圧縮行程の全期間において、冷媒を等温圧縮させても良い。また、圧縮行程の一部の期間は、図4の例に限られるものではなく、異なるタイミングであっても良い。
 また、図4に示す等温圧縮は、圧縮行程中に冷媒がほぼ等温線に沿うように圧縮されている。しかしながら、図4は、上述のように理想的な等温圧縮を例示したものに過ぎず、本発明の等温圧縮は、必ずしも図4に示すような挙動でなくても良い。具体的には、例えば図24に示すように、本発明の等温圧縮は、油によって冷却される冷媒が等温線に対して少しずつ離れてしまうような挙動で圧縮されるものであっても良い。つまり、本発明の「等温圧縮」とは、圧縮行程中の冷媒が油によって冷却されることで、圧縮行程において、一般的な断熱圧縮と比較して冷媒が等温線に近づくように圧縮されること(つまり、いわゆる擬似的な等温圧縮)を含むものである。
 上述した各実施形態では、油分離器(60)で分離した油を積極的に圧縮機構(20)へ供給し、いわゆる等温圧縮を行うものについて、本発明の回収機構(40)を適用するようにしている。しかしながら、例えば圧縮機構(20)から流出した油を、油戻し管を介して圧縮機構(20)の吸入側へ返送し、圧縮機構(20)の潤滑不良を防止するような冷媒回路について、この油戻し管に本発明の回収機構(40)を適用しても良い。このようにしても、高圧の油の運動エネルギーを回収機構(40)によって回収することができ、冷凍装置のCOPを改善することができる。
 また、上述した各実施形態の回収機構(40)の本体部(41)は、ロータリ式の容積型流体機械で構成されている。しかしながら、上記本体部(41)を例えばスクロール式の容積型流体機械で構成しても良いし、例えば非容積型の流体機械(例えばタービン式の非容積型の流体機械)で構成するようにしても良い。また、上述の圧縮機構(20)や膨張機構(30)を他の形式の流体機械で構成しても良いのは勿論のことである。
 また、上述した各実施形態において、冷媒回路(11)に充填される冷媒として、他の冷媒を用いるようにしても良い。また、冷媒回路(11)の冷媒中に混在する油(冷凍機油)として他の油を用いるようにしても良い。
 また、上述した各実施形態では、室内の空調を行う空気調和装置(10)について本発明を適用しているが、例えば冷蔵庫や冷凍庫内を冷却する冷凍装置や、他の冷凍装置に本発明を適用しても良い。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、冷媒が循環して冷凍サイクルを行う冷媒回路を備えた冷凍装置について有用である。

Claims (10)

  1.  冷媒を圧縮する圧縮機構を有して冷媒が循環して冷凍サイクルを行う冷媒回路を備えた冷凍装置であって、
     上記冷媒回路には、上記圧縮機構で圧縮した高圧冷媒中から油を分離する油分離手段と、該油分離手段で分離された油のエネルギーを回収するための回収機構とが設けられていることを特徴とする冷凍装置。
  2.  請求項1において、
     上記冷媒回路には、上記回収機構でエネルギーを回収した油を上記圧縮機構へ供給するための油導入路が接続されていることを特徴とする冷凍装置。
  3.  請求項2において、
     上記冷媒回路には、上記油分離手段で分離した油を冷却する冷却手段が設けられていることを特徴とする冷凍装置。
  4.  請求項3において、
     上記冷媒回路は、上記圧縮機構によって冷媒を臨界圧力まで圧縮する冷凍サイクルを行うように構成されていることを特徴とする冷凍装置。
  5.  請求項3又は4において、
     上記油導入路は、上記圧縮機構の圧縮行程の途中に油を供給するように構成されていることを特徴とする冷凍装置。
  6.  請求項3又は4において、
     上記油導入路は、上記圧縮機構の吸入側に油を供給するように構成されていることを特徴とする冷凍装置。
  7.  請求項1乃至6のいずれか1つにおいて、
     上記回収機構は、油によって回転駆動される可動部と、該可動部に連結する出力軸とを有することを特徴とする冷凍装置。
  8.  請求項7において、
     上記圧縮機構は、上記回収機構の出力軸と連結して駆動されるように構成されていることを特徴とする冷凍装置。
  9.  請求項7又は8において、
     上記冷媒回路には、冷媒によって回転駆動されると共に上記回収機構の出力軸と連結する可動部を有する膨張機構が設けられていることを特徴とする冷凍装置。
  10.  請求項7乃至9のいずれか1つにおいて、
     上記回収機構の出力軸と連結して駆動される発電機を備えていることを特徴とする冷凍装置。
PCT/JP2009/000408 2008-02-06 2009-02-03 冷凍装置 WO2009098863A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-026873 2008-02-06
JP2008026873 2008-02-06
JP2008163246A JP2009210248A (ja) 2008-02-06 2008-06-23 冷凍装置
JP2008-163246 2008-06-23

Publications (1)

Publication Number Publication Date
WO2009098863A1 true WO2009098863A1 (ja) 2009-08-13

Family

ID=40951943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000408 WO2009098863A1 (ja) 2008-02-06 2009-02-03 冷凍装置

Country Status (2)

Country Link
JP (1) JP2009210248A (ja)
WO (1) WO2009098863A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252463A (zh) * 2011-05-27 2011-11-23 武汉新世界制冷工业有限公司 井下空调用螺杆式冷水机组
CN105444453A (zh) * 2015-12-18 2016-03-30 珠海格力电器股份有限公司 一种双温制冷及制热系统
CN107117019A (zh) * 2017-04-21 2017-09-01 内蒙古科技大学 一种无碳罐式车载油箱油气回收装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203764A (ja) * 1990-11-30 1992-07-24 Hitachi Ltd 冷凍装置
JP2001141315A (ja) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd 冷凍空調機
JP2003322421A (ja) * 2002-05-02 2003-11-14 Chubu Electric Power Co Inc 超臨界蒸気圧縮回路における高圧側圧力制御方法と回路装置
JP2004053199A (ja) * 2002-07-23 2004-02-19 Hokuetsu Kogyo Co Ltd 圧縮機における冷却媒体の供給方法及び供給機構
JP2007147212A (ja) * 2005-11-30 2007-06-14 Daikin Ind Ltd 冷凍装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231138A (ja) * 1987-03-19 1988-09-27 株式会社デンソー 冷凍装置
JP4233843B2 (ja) * 2002-10-31 2009-03-04 パナソニック株式会社 冷凍サイクル装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203764A (ja) * 1990-11-30 1992-07-24 Hitachi Ltd 冷凍装置
JP2001141315A (ja) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd 冷凍空調機
JP2003322421A (ja) * 2002-05-02 2003-11-14 Chubu Electric Power Co Inc 超臨界蒸気圧縮回路における高圧側圧力制御方法と回路装置
JP2004053199A (ja) * 2002-07-23 2004-02-19 Hokuetsu Kogyo Co Ltd 圧縮機における冷却媒体の供給方法及び供給機構
JP2007147212A (ja) * 2005-11-30 2007-06-14 Daikin Ind Ltd 冷凍装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102252463A (zh) * 2011-05-27 2011-11-23 武汉新世界制冷工业有限公司 井下空调用螺杆式冷水机组
CN105444453A (zh) * 2015-12-18 2016-03-30 珠海格力电器股份有限公司 一种双温制冷及制热系统
CN107117019A (zh) * 2017-04-21 2017-09-01 内蒙古科技大学 一种无碳罐式车载油箱油气回收装置
CN107117019B (zh) * 2017-04-21 2023-05-23 内蒙古科技大学 一种无碳罐式车载油箱油气回收装置

Also Published As

Publication number Publication date
JP2009210248A (ja) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5380987B2 (ja) 冷凍装置
JP5349686B2 (ja) 冷凍サイクル装置
KR100991345B1 (ko) 냉동장치
KR100990782B1 (ko) 냉동장치
JP5478715B2 (ja) 冷凍サイクル装置及びその運転方法
JP2006078087A (ja) 冷凍装置
WO2005090875A1 (ja) 冷凍装置
JP4622193B2 (ja) 冷凍装置
JP2009185680A (ja) 圧縮機
WO2009098863A1 (ja) 冷凍装置
JP2013139890A (ja) 冷凍装置
JP2009185681A (ja) 圧縮機
JP2007187332A (ja) 冷凍サイクル装置
JP2009063247A (ja) 冷凍サイクル装置およびそれに用いる流体機械
JP5326479B2 (ja) 空気調和装置
JP3966262B2 (ja) 冷凍冷蔵庫
JP5115355B2 (ja) 流体機械
JP2008075926A (ja) エジェクタ式冷凍サイクル
KR101170613B1 (ko) 차량용 에어컨의 냉방시스템
JP4618266B2 (ja) 冷凍装置
JPWO2020008916A1 (ja) 冷凍サイクル装置およびその制御方法
JP2005264829A (ja) 流体機械
JP2008223651A (ja) 流体機械
JP2009133319A (ja) 容積型膨張機及び流体機械
JP5418638B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09707599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09707599

Country of ref document: EP

Kind code of ref document: A1