WO2009096582A1 - 配線、及び、複合配線 - Google Patents

配線、及び、複合配線 Download PDF

Info

Publication number
WO2009096582A1
WO2009096582A1 PCT/JP2009/051729 JP2009051729W WO2009096582A1 WO 2009096582 A1 WO2009096582 A1 WO 2009096582A1 JP 2009051729 W JP2009051729 W JP 2009051729W WO 2009096582 A1 WO2009096582 A1 WO 2009096582A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
wiring
pair
tem
core wires
Prior art date
Application number
PCT/JP2009/051729
Other languages
English (en)
French (fr)
Inventor
Kanji Otsuka
Tamotsu Usami
Chihiro Ueda
Yutaka Akiyama
Original Assignee
Ibiden Co., Ltd.
Nec Corporation
Fujitsu Microelectronics Limited
Fuji Xerox Co., Ltd.
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd., Nec Corporation, Fujitsu Microelectronics Limited, Fuji Xerox Co., Ltd., Kyocera Corporation filed Critical Ibiden Co., Ltd.
Priority to CN200980103717.6A priority Critical patent/CN101952905B/zh
Priority to US12/865,555 priority patent/US20110042120A1/en
Publication of WO2009096582A1 publication Critical patent/WO2009096582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type

Definitions

  • the present invention relates to a wiring suitable for transmitting a high frequency signal in the gigahertz band and a composite wiring.
  • the attenuation of the signal due to the evanescent wave is comparable to the attenuation due to the DC resistance (R 0 ) and the dielectric loss (G 0 ). Furthermore, when a signal is transmitted through this transmission line, there is crosstalk in which electromagnetic waves from the outside are mixed in the signal transmission line.
  • Patent Document 1 discloses a technique for avoiding crosstalk by modifying the structure of a transistor included in a memory circuit connected to a transmission line.
  • Patent Document 2 discloses a technique for preventing signal attenuation due to an evanescent wave by shielding a transmission line.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a wiring and a composite wiring suitable for transmitting a high-frequency signal in the gigahertz band.
  • the wiring according to the first aspect of the present invention provides: Wiring for transmitting signals in the gigahertz band, A pair of cords twisted together, A pair of first insulating covering materials covering each of the core wires; A second insulating coating covering the pair of first insulating coatings; A shielding material that covers the second insulating covering material and contains an evanescent wave radiated from the pair of core wires;
  • the pair of core wires is a twisted wire having a characteristic impedance of the wiring of 100 ⁇ to 200 ⁇ and matching the phase of a TEM (Transverse Electro-Magnetic) wave and an evanescent wave radiated from the pair of core wires. Having a matching pitch, diameter, and spacing; Wiring characterized by that.
  • the twisting pitch of the core wires may be set so that the effective length of the TEM wave is ⁇ 2 times the line length of the pair of core wires.
  • twisting pitch of the core wires is 10.3 mm.
  • the diameter of the core wire is 0.3 mm.
  • the distance between the core wires is 1.36 mm.
  • the composite wiring according to the second aspect of the present invention provides: A plurality of the wirings are provided.
  • a high frequency signal in a gigahertz band can be transmitted.
  • (A) is the schematic which showed only a pair of core wire in the twisted pair cable which concerns on embodiment of this invention.
  • B) is a figure which shows the cross section of a twisted pair cable.
  • (A) is a figure explaining generation
  • (B) is the figure seen from the side of (a).
  • (A) is a figure explaining the transmission process of the TEM wave and evanescent wave in the conventional cable.
  • (B) is a figure explaining the transmission process of the TEM wave and evanescent wave in the twisted pair cable which concerns on this embodiment.
  • A) is a figure explaining the relationship between the input waveform and reception waveform in the conventional cable.
  • (B) is a figure explaining the relationship between the input waveform and reception waveform in the twisted pair cable which concerns on this embodiment.
  • a wiring (twisted pair cable) 10 according to an embodiment of the present invention will be described with reference to FIG.
  • the twisted pair cable 10 includes a core wire 11, a first covering material 12, a second covering material 13, a shield material 14, And an outer skin material 15.
  • the characteristic impedance of the twisted pair cable 10 is formed to be about 135 ⁇ or more, preferably 200 ⁇ .
  • the core wire 11 is made of an electrically conductive material such as copper, for example, and is formed in a twisted shape in which two wires are twisted together.
  • the diameter D1 of the core wire 11 is about 0.2 mm to 0.4 mm, preferably 0.3 mm.
  • the pitch D2 of the core wire 11 is about 9 mm to 11 mm, preferably 10.3 mm.
  • the distance D3 between the two core wires 11 is about 1.2 mm to 1.4 mm, preferably 1.36 mm.
  • the pitch D2 of the core wire 11 is 10.3 mm ⁇ 0.4 mm.
  • the length of the twisted pair cable 10 is 200 m or more, it is preferable that the length is 10.3 mm ⁇ 0.2 mm.
  • the first covering material 12 is made of, for example, an insulating material such as polyvinyl chloride, fluororesin, or Teflon (registered trademark), covers the two core wires 11, and separates the two core wires from each other. Formed.
  • the first covering material 12 is preferably a material having a dielectric constant of 3 or less and a low transmission loss due to the dielectric.
  • the characteristic impedance of the twisted pair cable 10 can be increased by changing the thickness (wall thickness) of the first covering material 12 to widen the distance D3 between the core wires 11.
  • the second covering material 13 is made of an insulating material like the first covering material 12 and is formed so as to cover the first covering material 12 covering the core wire 11. Due to the insulation by the second covering material 13, the twisted pair cable 10 can maintain the TEM mode transmission described later. In addition, the characteristic impedance can be increased by adjusting the distance D3 between the core wires only by the second covering material 13 without forming the first covering material 12. In addition, although the 2nd coating
  • the shield material 14 is made of, for example, a metal material that shields electromagnetic waves such as copper, and is formed so as to cover the second covering material 13.
  • the shield material 14 shields the evanescent wave radiated from the core wire 11, thereby confining the energy of the evanescent wave in the shield material 14 and reducing transmission loss.
  • the thickness (thickness) of the shielding material 14 is arbitrary as long as the evanescent wave can be shielded.
  • the outer skin material 15 is made of, for example, a flexible insulating material such as rubber or glass fiber, and is formed to cover and protect the shield material 14 or the like.
  • the thickness (wall thickness) of the outer skin material 15 is arbitrary.
  • the outer skin material 15 can be formed in a shape that seals the shield material 14 and the like in order to prevent water, oil, and the like from entering the outer skin material 15.
  • the TEM wave travels at the speed of light simultaneously in the signal traveling direction and the direction perpendicular to the traveling direction, so that the TEM wave has a cone shape (conical shape) having a solid angle of 45 degrees as shown in FIG. Occurs and progresses. Further, since the TEM wave is constantly generated from the signal traveling path, a subsequent wave of the TEM wave is also generated. In the present embodiment, since the signal traveling path is the core wire 11, the TEM wave is generated from the core wire 11.
  • the evanescent wave is generated when the phases of the TEM wave and the subsequent wave of the TEM wave are shifted and interfere with each other.
  • the evanescent wave is generated in a direction orthogonal to the TEM wave. That is, the evanescent wave is radiated in the air at a solid angle of 45 degrees with respect to the traveling direction of the signal. Since evanescent waves are generated one after another in the process of traveling TEM waves, the accumulated energy of the evanescent waves cannot be ignored compared to the attenuation of the signal being transmitted.
  • the evanescent wave is amplified when the coupling of the core wire 11 is weakened.
  • FIG. 3 shows the progress of TEM waves and evanescent waves in a normal twisted pair cable (for example, a 0.5 mm ⁇ copper wire LAN cable of category 6) which is a transmission path and the twisted pair cable 10 of the present embodiment.
  • the core wire 11 is simply shown as a parallel line.
  • the dielectric constant around the pair transmission line is uniform. Therefore, the generated electromagnetic field is formed in a direction perpendicular to the traveling direction of the transmission wave. In this case, since the spread of the electromagnetic field does not collapse, the transmission wave travels at the speed of light. This state is called TEM mode transmission.
  • the TEM wave travels along the core 11 as shown in FIGS. 3 (a) and 3 (b).
  • the evanescent wave radiated hollowly at a solid angle of 45 degrees with respect to the traveling direction of the TEM wave travels while being repeatedly reflected by 45 degrees by the shielding effect.
  • the characteristic impedance of a normal twisted pair cable is 100 ⁇ or less, and the coupling between the core wires 11 becomes strong. Accordingly, as shown in FIG. 3A, the evanescent wave is weakened. Moreover, since the 2nd coating
  • the characteristic impedance of the twisted pair cable 10 of the present embodiment is 135 ⁇ or more, and the coupling between the core wires 11 is weakened. Therefore, as shown in FIG. 3B, the evanescent wave is strengthened.
  • the twisted pair cable 10 includes the second covering material 13, TEM mode transmission is performed. In TEM mode transmission, the phases are matched by matching the effective lengths of the TEM wave and the evanescent wave.
  • the waveform of the evanescent wave changes at the receiving end depending on whether or not the phase of the evanescent wave matches that of the TEM wave.
  • the time at which the TEM wave reaches the receiving end is T1
  • the time at which the slowest evanescent wave generated at the starting end of the transmission line reaches the receiving end is T2max
  • the voltage at the receiving end of the evanescent wave Is V2.
  • the accumulated voltage of the evanescent wave is V2 / (T2max ⁇ T1). Accordingly, when T2max comes after the falling timing of the next input waveform (input signal), the evanescent wave becomes a noise source.
  • the combined wave is a combination of a TEM wave and an evanescent wave, the attenuation of the combined wave is small when the attenuation of the evanescent wave is small.
  • the reception waveform of the evanescent wave generated in the normal twisted pair cable is not accumulated (superimposed) because there is no shielding effect, and is observed as a low rectangular wave at the receiving end. For this reason, the combined waveform of the TEM wave and the evanescent wave is also an attenuated waveform.
  • the evanescent wave generated in the twisted pair cable 10 of this embodiment is compared with a normal twisted pair cable due to the shielding effect by the shielding material 14 and the phase matching with the TEM wave, as shown in FIG. Less attenuation. That is, the received waveform of the evanescent wave is accumulated in the course of the transmission path and rises up with little attenuation. For this reason, there is little attenuation of a synthetic wave.
  • L L 0 (1+ (1 / D2) ⁇ ⁇ ⁇ D3) (1)
  • the unit of length is m (meters).
  • the line length (cable length) L 0 100 m
  • the core wire diameter D1 0.5 mm
  • the core wire pitch D2 8.25 mm to 12.85 mm
  • the core wire spacing D3 1 mm.
  • the effective length L of the TEM wave is 124.4 m to 138 m.
  • the line length (cable length) L 0 100 m
  • the diameter D1 of the core wire 11 0.3 mm
  • the pitch D2 of the core wire 11 10.3 mm
  • the effective lengths of the TEM wave and the evanescent wave coincide with each other, so that the phases match. Further, since the effective lengths of the TEM wave and the evanescent wave match, the transmission times also match. Therefore, in the twisted pair cable 10 of the present embodiment, the evanescent wave does not become noise.
  • one clock is 1 ns when a 1 GHz signal is transmitted.
  • the pitch D2 of the core wire needs to be 10.3 mm ⁇ 0.4 mm.
  • D2 10.3 mm ⁇ 0.2 mm.
  • the attenuation of the evanescent wave is prevented by the shielding effect, and the attenuation of the transmission is reduced by matching the phase of the TEM wave and the evanescent wave to transmit the high frequency signal in the gigahertz band. be able to.
  • the characteristic impedance of the twisted pair cable 10 can be formed to about 200 ⁇ , the diameter D1 and the like of the core wire 11 may be arbitrarily changed.
  • the characteristic impedance of the twisted pair cable 10 may be 200 ⁇ or more.
  • a buffer material for softening the buffer from an external force may be provided on the inner side or the outer side of the outer skin material 15.

Abstract

 ギガヘルツ帯の信号を伝送する配線(ツイストペアケーブル)(10)であって、互いに撚り合わされた一対の心線(11)と、第1の絶縁性被覆材(12)と、第2の絶縁性被覆材(13)と、前記一対の心線(11)から放射されるエバーネッセント波を封じ込めるシールド材(14)と、を備え、前記一対の心線(11)は、この配線(10)の特性インピーダンスを100Ωから200Ωとし、かつ、前記一対の心線から放射されるTEM波とエバーネッセント波との位相を整合させる、撚り合わせピッチと、直径と、間隔とを有する。

Description

配線、及び、複合配線
 本発明は、ギガヘルツ帯の高周波信号を伝送するのに好適な配線、及び、複合配線に関する。
 TEM波(Transverse Electro-Magnetic Wave)の伝送線路として、同軸線路やツイストペア線路等が知られている。
 しかし、伝送線路には直流抵抗(R)や誘電損失(G)が存在するため、伝送中の信号は減衰する。特にギガヘルツ帯の高周波信号を伝送する場合には、直流抵抗(R)と誘電損失(G)とを合成した特性インピーダンス(Z)は周波数特性を持つため、信号は大きく減衰する。
 また、高周波信号の伝送線路において電磁波伝送状態を精査すると、エバーネッセント波(Evanescent Wave)としてサイドローブ的な電磁放射が認められる。よって、100m以上の伝送線路になると、このエバーネッセント波による信号の減衰は直流抵抗(R)や誘電損失(G)による減衰と同程度となる。
 さらに、この伝送線路で信号を伝送する場合、当該信号伝送線路に外部からの電磁波が混入するクロストークが存在する。
 そこで、特許文献1は、伝送線路に接続されるメモリ回路が備えるトランジスタの構造を変形することにより、クロストークを回避する技術を開示している。
 また、特許文献2は、伝送線路をシールドすることにより、エバーネッセント波による信号の減衰を防ぐ技術を開示している。
特開2003-224462号公報 特開2005-244733号公報
 しかしながら、特許文献1及び2に開示されている構成では、TEM波とエバーネッセント波との2つの波の伝送時間がずれるため、信号として解像度が劣化するおそれがあった。従って、ギガヘルツ帯の高周波信号を伝送するのに好適な配線が求められている。
 本発明は、上記問題に鑑みてなされたものであり、ギガヘルツ帯の高周波信号を伝送するのに好適な配線、及び、複合配線を提供することを目的とする。
 上記目的を達成するため、本発明の第1の観点に係る配線は、
 ギガヘルツ帯の信号を伝送する配線であって、
 互いに撚り合わされた一対の心線と、
 各前記心線を被覆する一対の第1の絶縁性被覆材と、
 前記一対の第1の絶縁性被覆材を被覆する第2の絶縁性被覆材と、
 前記第2の絶縁性被覆材を覆い、前記一対の心線から放射されるエバーネッセント波を封じ込めるシールド材と、を備え、
 前記一対の心線は、この配線の特性インピーダンスを100Ωから200Ωとし、かつ、前記一対の心線から放射されるTEM(Transverse Electro-Magnetic)波とエバーネッセント波との位相を整合させる、撚り合わせピッチと、直径と、間隔とを有する、
 ことを特徴とする配線。
 前記心線の撚り合わせピッチは、前記TEM波の実効長が前記一対の心線の線路長の√2倍となるように設定されている、ことも可能である。
 前記心線の撚り合わせピッチが10.3mmである、ことも可能である。
 前記心線の直径が0.3mmである、ことも可能である。
 前記心線の間隔が1.36mmである、ことも可能である。
 前記シールド材の外側に、外力からの緩衝を和らげるための緩衝材を備える、ことも可能である。
 上記目的を達成するため、本発明の第2の観点に係る複合配線は、
 前記配線を複数備えることを特徴とする。
 本発明によれば、ギガヘルツ帯の高周波信号を伝送することができる。
(a)は、本発明の実施形態に係るツイストペアケーブルにおける一対の心線のみを示した概略図である。(b)は、ツイストペアケーブルの断面を示す図である。 (a)は、TEM波及びエバーネッセント波の発生を説明する図である。(b)は、(a)の側面側から見た図である。 (a)は、従来のケーブルにおける、TEM波及びエバーネッセント波の伝送工程を説明する図である。(b)は、本実施形態に係るツイストペアケーブルにおける、TEM波及びエバーネッセント波の伝送工程を説明する図である。 (a)は、従来のケーブルにおける入力波形と受信波形との関係を説明する図である。(b)は、本実施形態に係るツイストペアケーブルにおける入力波形と受信波形との関係を説明する図である。
符号の説明
10 ツイストペアケーブル
11 心線
12 第1の被覆材
13 第2の被覆材
14 シールド材
15 外皮材
 本発明の実施形態に係る配線(ツイストペアケーブル)10について図1を参照して説明する。
 本実施形態に係るツイストペアケーブル10は、図1(a)及び(b)に示すように、心線11と、第1の被覆材12と、第2の被覆材13と、シールド材14と、外皮材15と、から構成される。本ツイストペアケーブル10の特性インピーダンスは、約135Ω以上となるよう形成され、好ましくは200Ωに形成される。
 心線11は、例えば、銅などの電気伝導性素材から構成され、2本の線を撚り合わせたツイスト状に形成される。心線11の直径D1は、約0.2mm~0.4mmであり、好ましくは0.3mmである。心線11のピッチD2は、約9mm~11mmであり、好ましくは10.3mmである。2本の心線11の間隔D3は、約1.2mm~1.4mmであり、好ましくは1.36mmである。
 なお、ツイストペアケーブル10の長さが100m程度の場合には、心線11のピッチD2は10.3mm±0.4mmとすることが好ましい。また、ツイストペアケーブル10の長さが200m以上の場合には、10.3mm±0.2mmとすることが好ましい。
 第1の被覆材12は、例えば、ポリ塩化ビニル、フッ素樹脂、テフロン(登録商標)などの絶縁性素材から構成され、2本の心線11をそれぞれ覆い、2本の心線をそれぞれ離間させるよう形成される。第1の被覆材12の被誘電率は3以下であって、誘電体による伝送損失の低い素材であることが好ましい。第1の被覆材12の厚さ(肉厚)を変化させて心線11の間隔D3を広げることにより、ツイストペアケーブル10の特性インピーダンスを高くすることができる。
 第2の被覆材13は、第1の被覆材12と同様に絶縁性素材から構成され、心線11を被覆した第1の被覆材12を覆うように形成される。第2の被覆材13による絶縁により、ツイストペアケーブル10は、後述するTEMモード伝送を維持することができる。また、第1の被覆材12を形成せずに第2の被覆材13のみによって心線の間隔D3を調節することにより、特性インピーダンスを高くすることもできる。なお、第2の被覆材13と第1の被覆材12とは同一の絶縁性素材であるが、異なる絶縁性素材とすることもできる。
 シールド材14は、例えば、銅などの電磁波を遮蔽する金属素材から構成され、第2の被覆材13を覆うように形成される。シールド材14は、心線11から中空に放射されるエバーネッセント波を遮蔽することにより、当該エバーネッセント波のエネルギーをシールド材14内に閉じ込め、伝送損失を減少させる。シールド材14の厚さ(肉厚)は、エバーネッセント波を遮蔽することができれば、任意である。
 外皮材15は、例えば、ゴム、ガラス繊維などの可撓性を有する絶縁性素材から構成され、シールド材14等を覆い保護するために形成される。外皮材15の厚さ(肉厚)は任意である。また、外皮材15は、水、油などが外皮材15内に浸入するのを防ぐために、シールド材14等を密閉する形状とすることもできる。
 次に、TEM波及びエバーネッセント波の発生原理について図2を参照して説明する。
 TEM波は、電磁波が信号の進行方向とその進行方向に垂直な方向とに同時に光速で進行するため、図2(a)に示すように、45度の立体角を有するコーン状(円錐状)に発生し、進行する。また、TEM波は、信号の進行経路から絶え間なく発生するため、TEM波の後続波も発生する。本実施形態において、信号の進行経路は心線11であるため、TEM波は心線11から発生する。
 エバーネッセント波は、図2(b)に示すように、TEM波とTEM波の後続波との位相がずれて干渉することにより発生する。エバーネッセント波は、TEM波に直交する方向に発生する。つまり、エバーネッセント波は、信号の進行方向に対して立体角45度で中空に放射される。エバーネッセント波はTEM波の進行工程において次々と発生するため、当該エバーネッセント波の累積エネルギーは、伝送中の信号の減衰に比べて無視できないものとなる。なお、エバーネッセント波は心線11のカップリングが弱まることにより増幅される。
 次に、伝送経路である通常のツイストペアケーブル(例えば、カテゴリ6の0.5mmφの銅線LANケーブル)と本実施形態のツイストペアケーブル10におけるTEM波及びエバーネッセント波の進行工程を図3に示す。図3では、心線11を簡易的に並行線路として示す。まず、伝送波(TEM波)が進行するモード(状態)について説明する。
 伝送線路周辺が空気で満たされた理想的なペア伝送線路では、当該ペア伝送線路周辺の誘電率は均質となる。よって、発生する電磁界は、伝送波の進行方向に対して直角方向に形成される。この場合、電磁界の広がりが崩れないため、伝送波は光速で進行する。この状態をTEMモード伝送という。
 一方、ペア伝送線路の間に比誘電率が1以上の絶縁物が挟まれた場合には、電磁界の広がりが崩れる。よって、空気中に比べ伝送波の進行が遅れることにより、遅延波が発生する。この状態を疑似TEMモード伝送という。TEM波は疑似TEMモード伝送では大きく減衰する。
 TEM波は、図3(a)及び(b)に示すように、心線11に沿って進行する。
 一方、TEM波の進行方向に対して立体角45度で中空に放射されたエバーネッセント波は、シールド効果によって45度反射を繰り返しながら進行する。
 通常のツイストペアケーブルの特性インピーダンスは100Ω以下であり、心線11の間のカップリングは強くなる。従って、図3(a)に示すように、エバーネッセント波は弱められる。また、通常のツイストペアケーブルには第2の被覆材13がないため、疑似TEMモード伝送となる。疑似TEMモード伝送の場合、TEM波とエバーネッセント波との位相がずれる。
 一方、本実施形態のツイストペアケーブル10の特性インピーダンスは135Ω以上であり、心線11の間のカップリングは弱められている。従って、図3(b)に示すように、エバーネッセント波は強められる。また、ツイストペアケーブル10は第2の被覆材13を備えるため、TEMモード伝送となる。TEMモード伝送において、TEM波とエバーネッセント波との実効長を一致させることにより、位相が整合する。
 次に、伝送経路における入力波(入力信号)と受信波(受信信号)との関係について図4を参照して説明する。
 まず、入力波(入力信号)が出発端から伝送経路に供給されることにより、TEM波とエバーネッセント波とが発生する。そして、波形の伝搬に要する一定の時間が経過した後、TEM波とエバーネッセント波とが受信端で受信波(受信信号)として観測される。
 TEM波は伝送経路で減衰するため、受信波形の立ち上がりはなだらかとなる。
 一方、エバーネッセント波はTEM波と位相が整合するか否かにより、受信端での波形は変化する。TEM波が受信端に到達する時刻をT1とし、伝送線路の出発端で発生した最も到達の遅いエバーネッセント波が受信端に到達する時刻をT2maxとし、エバーネッセント波の受信端での電圧をV2とする。エバーネッセント波の累積電圧は、V2/(T2max-T1)となる。従って、T2maxが次の入力波形(入力信号)の立ち下がりのタイミング以降となると、エバーネッセント波は雑音源となる。
 合成波は、TEM波とエバーネッセント波との合成であるため、エバーネッセント波の減衰が少ない場合には、合成波の減衰も少なくなる。
 通常のツイストペアケーブルにおいて発生したエバーネッセント波の受信波形は、図4(a)に示すように、シールド効果がないため累積(重畳)されず、受信端で低い矩形波として観測される。このため、TEM波とエバーネッセント波との合成波形も減衰した波形となる。
 一方、本実施形態のツイストペアケーブル10において発生したエバーネッセント波は、図4(b)に示すように、シールド材14等によるシールド効果及びTEM波との位相整合により、通常のツイストペアケーブルに比べ減衰が少ない。つまり、エバーネッセント波の受信波形は、伝送経路の進行過程において積算され、ほとんど減衰しないで立ち上がる。このため、合成波の減衰も少ない。
 以下に、TEM波とエバーネッセント波との実効長を一致させる(位相を整合させる)方法について、具体例を示して説明する。
 実効長Lと線路長Lとの関係式を以下の式(1)に示す。
L=L(1+(1/D2)×π×D3) (1)
ただし、長さの単位はm(メートル)とする。
 通常のツイストペアケーブルにおいて、線路長(ケーブル長)L=100m、心線の直径D1=0.5mm、心線のピッチD2=8.25mmから12.85mm、心線の間隔D3=1mmとする。式(1)よりTEM波の実効長Lは、124.4mから138mとなる。また、エバーネッセント波の実効長は、図3(a)に示すように45度の多重反射を繰り返すため、141.4m(=100m×√2)となる。従って、通常のツイストペアケーブルでは、TEM波とエバーネッセント波との実効長が異なるため位相は異なる。
 さらに、絶縁物の比誘電率=2.2とした場合、伝送速度=2.0×10m/s(=3.0×10/√2.2)となる。従って、発信端から受信端までのTEM波の伝送時間T1は、622nsから690nsとなる。また、エバーネッセント波の伝送時間T2は、T1から707nsとなる。従って、TEM波とエバーネッセント波との伝送時間の最小差は、17nsとなる。
 つまり、ギガヘルツ帯の高周波信号を伝送する場合には、100ps程度以内のスキューが問題となるため、通常のツイストペアケーブルではエバーネッセント波がノイズとなる。
 一方、本実施形態に係るツイストペアケーブル10において、線路長(ケーブル長)L=100m、心線11の直径D1=0.3mm、心線11のピッチD2=10.3mm、及び、心線11の間隔D3=1.36mmに設定されている。従って、式(1)より、ツイストペアケーブル10におけるTEM波の実効長Lは、141.4m(=L×√2)なる。また、ツイストペアケーブル10におけるエバーネッセント波の実効長は、図3(b)に示すように45度の多重反射を繰り返すため、141.4mとなる。従って、本実施形態に係るツイストペアケーブル10では、TEM波とエバーネッセント波との実効長が一致するため、位相は整合する。
 また、TEM波とエバーネッセント波の実効長が一致するため、伝送時間も一致する。従って、本実施形態のツイストペアケーブル10では、エバーネッセント波がノイズとなることはない。
 なお、1GHzの信号を伝送する場合には1クロックは1nsである。このためツイストペアケーブル10が100mの線路では、心線のピッチD2=10.3mm±0.4mmとする必要がある。また、200mの線路では、D2=10.3mm±0.2mmとする必要がある。
 以上説明したように、シールド効果によりエバーネッセント波の減衰を防ぎ、また、TEM波とエバーネッセント波との位相を整合させることにより、伝送の減衰を減らし、ギガヘルツ帯の高周波信号を伝送することができる。
 なお、本発明は上記実施の形態に限定されず、種々の変形及び応用が可能である。
 例えば、ツイストペアケーブル10の特性インピーダンスを約200Ωに形成できれば、心線11の直径D1等を任意に変更してよい。また、ツイストペアケーブル10の特性インピーダンスは200Ω以上とすることもできる。
 また、外力からの緩衝を和らげるための緩衝材を外皮材15の内側又は外側に設けてもよい。
 また、ツイストペアケーブル10を複数本撚り合わせることにより、2本より多い心線11(銅線)を備えたケーブルとしてもよい。
 また、本出願は、2008年1月31日にされた日本国特許出願特願2008-20869号に基づく。本明細書中に、それらの明細書、特許請求の範囲、図面全体を参照として取り込むものとする。

Claims (7)

  1.  ギガヘルツ帯の信号を伝送する配線であって、
     互いに撚り合わされた一対の心線と、
     各前記心線を被覆する一対の第1の絶縁性被覆材と、
     前記一対の第1の絶縁性被覆材を被覆する第2の絶縁性被覆材と、
     前記第2の絶縁性被覆材を覆い、前記一対の心線から放射されるエバーネッセント波を封じ込めるシールド材と、を備え、
     前記一対の心線は、この配線の特性インピーダンスを100Ωから200Ωとし、かつ、前記一対の心線から放射されるTEM(Transverse Electro-Magnetic)波とエバーネッセント波との位相を整合させる、撚り合わせピッチと、直径と、間隔とを有する、
     ことを特徴とする配線。
  2.  前記心線の撚り合わせピッチは、前記TEM波の実効長が前記一対の心線の線路長の√2倍となるように設定されている、
     ことを特徴とする請求項1に記載の配線。
  3.  前記心線の撚り合わせピッチが10.3mmである、
     ことを特徴とする請求項1に記載の配線。
  4.  前記心線の直径が0.3mmである、
     ことを特徴とする請求項1に記載の配線。
  5.  前記心線の間隔が1.36mmである、
     ことを特徴とする請求項1に記載の配線。
  6.  前記シールド材の外側に、外力からの緩衝を和らげるための緩衝材を備える、
     ことを特徴とする請求項1に記載の配線。
  7.  請求項1乃至6のいずれか1項に記載の配線を複数備えることを特徴とする複合配線。
PCT/JP2009/051729 2008-01-31 2009-02-02 配線、及び、複合配線 WO2009096582A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980103717.6A CN101952905B (zh) 2008-01-31 2009-02-02 布线以及复合布线
US12/865,555 US20110042120A1 (en) 2008-01-31 2009-02-02 Wiring and composite wiring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008020869A JP4722950B2 (ja) 2008-01-31 2008-01-31 配線
JP2008-020869 2008-01-31

Publications (1)

Publication Number Publication Date
WO2009096582A1 true WO2009096582A1 (ja) 2009-08-06

Family

ID=40912924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051729 WO2009096582A1 (ja) 2008-01-31 2009-02-02 配線、及び、複合配線

Country Status (4)

Country Link
US (1) US20110042120A1 (ja)
JP (1) JP4722950B2 (ja)
CN (1) CN101952905B (ja)
WO (1) WO2009096582A1 (ja)

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617626B2 (ja) * 2010-12-28 2014-11-05 ソニー株式会社 表示装置
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9954287B2 (en) * 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) * 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
JP6760392B2 (ja) * 2016-11-28 2020-09-23 株式会社オートネットワーク技術研究所 通信用シールドケーブル
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10389419B2 (en) * 2017-12-01 2019-08-20 At&T Intellectual Property I, L.P. Methods and apparatus for generating and receiving electromagnetic waves
JP6955530B2 (ja) * 2019-05-20 2021-10-27 矢崎総業株式会社 耐屈曲通信ケーブル及びワイヤハーネス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155559A (ja) * 1999-11-26 2001-06-08 Furukawa Electric Co Ltd:The 通信ケーブル
JP2003224462A (ja) * 2002-01-31 2003-08-08 Kanji Otsuka 信号伝送システム
JP2005244733A (ja) * 2004-02-27 2005-09-08 Fujikura Ltd GHz帯伝送の中距離配線構造、GHz帯伝送の中距離配線構造に接続するドライバ回路およびレシーバ回路
JP2007280666A (ja) * 2006-04-04 2007-10-25 Nissei Electric Co Ltd 高速信号伝送用ハーネス

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3315025A (en) * 1964-12-30 1967-04-18 Anaconda Wire & Cable Co Electric cable with improved resistance to moisture penetration
JPS5120471Y2 (ja) * 1972-09-05 1976-05-28
US7154043B2 (en) * 1997-04-22 2006-12-26 Belden Technologies, Inc. Data cable with cross-twist cabled core profile
CN2587044Y (zh) * 2002-10-22 2003-11-19 乐荣工业股份有限公司 对绞线
KR100726530B1 (ko) * 2005-08-30 2007-06-11 엘에스전선 주식회사 비대칭형 세퍼레이터 및 이를 구비하는 통신용 케이블

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001155559A (ja) * 1999-11-26 2001-06-08 Furukawa Electric Co Ltd:The 通信ケーブル
JP2003224462A (ja) * 2002-01-31 2003-08-08 Kanji Otsuka 信号伝送システム
JP2005244733A (ja) * 2004-02-27 2005-09-08 Fujikura Ltd GHz帯伝送の中距離配線構造、GHz帯伝送の中距離配線構造に接続するドライバ回路およびレシーバ回路
JP2007280666A (ja) * 2006-04-04 2007-10-25 Nissei Electric Co Ltd 高速信号伝送用ハーネス

Also Published As

Publication number Publication date
US20110042120A1 (en) 2011-02-24
JP2009181855A (ja) 2009-08-13
JP4722950B2 (ja) 2011-07-13
CN101952905A (zh) 2011-01-19
CN101952905B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
JP4722950B2 (ja) 配線
JP5141660B2 (ja) 差動信号用ケーブル及びこれを用いた伝送ケーブル、並びに差動信号用ケーブルの製造方法
JP5454648B2 (ja) 差動信号用ケーブル及びこれを用いた伝送ケーブル、並びに差動信号用ケーブルの製造方法
US9136044B2 (en) Shielded pair cable and a method for producing such a cable
JP5669033B2 (ja) 差動信号用ケーブル及びこれを用いた伝送ケーブル、並びにダイレクトアタッチケーブル
US8285095B2 (en) Optical-electrical hybrid transmission cable
JP5092213B2 (ja) 2心平衡ケーブル
US20100258333A1 (en) High speed data cable with shield connection
CN108885925B (zh) 用于传输电信号的线缆
US20070044994A1 (en) Communication cable having spacer integrated with separator therein
JP2015505634A (ja) データケーブル
TWI636465B (zh) 用於高速數據傳輸的數據電纜
US20070144763A1 (en) Communication cable having spacer formed in jacket
JP5277661B2 (ja) 遮蔽層付きケーブル
US9672957B2 (en) Shielded electrical cable
US7531749B2 (en) Cable for high speed data communications
JP2004146354A (ja) シールドケーブル
JP5347166B2 (ja) Lan配線システムにおける最大リンク長を延長するlan用平衡ケーブルの発明
KR20150021181A (ko) 비연속차폐테이프를 포함하는 통신케이블 및 비연속차폐테이프
JP2012018764A (ja) 差動信号伝送用ケーブル
US20170372818A1 (en) Differential signal transmission cable and multi-core differential signal transmission cable
JP6604222B2 (ja) 差動信号伝送用ケーブル
JP2005166560A (ja) ケーブルコア及び伝送ケーブル
JP2011187290A (ja) シールドケーブル及びその接続構造
CN113924690B (zh) 由多个介电波导制成的多缆线

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103717.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12865555

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09705500

Country of ref document: EP

Kind code of ref document: A1