WO2009096513A1 - 給湯機用ヒータ制御装置および給湯機用ヒータ装置 - Google Patents

給湯機用ヒータ制御装置および給湯機用ヒータ装置 Download PDF

Info

Publication number
WO2009096513A1
WO2009096513A1 PCT/JP2009/051553 JP2009051553W WO2009096513A1 WO 2009096513 A1 WO2009096513 A1 WO 2009096513A1 JP 2009051553 W JP2009051553 W JP 2009051553W WO 2009096513 A1 WO2009096513 A1 WO 2009096513A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
phase
terminal
power source
water heater
Prior art date
Application number
PCT/JP2009/051553
Other languages
English (en)
French (fr)
Inventor
Toshiaki Satou
Yuuichi Kita
Mitsuharu Uchida
Yasushi Wakai
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2009096513A1 publication Critical patent/WO2009096513A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • F24H9/2014Arrangement or mounting of control or safety devices for water heaters using electrical energy supply

Definitions

  • the present invention relates to a heater control device for a water heater and a heater device for a water heater.
  • a hot water storage type heater / water heater there is one provided with a heater unit for heating water in a hot water storage tank (see, for example, JP-A-2006-329581).
  • a control device that controls the heater is provided.
  • an object of the present invention is to provide a heater control device for a water heater that can cope with different power supply specifications with a simple configuration, has good workability, and can reduce costs, and a heater device for a water heater using the heater controller for the water heater. It is to provide.
  • a heater control device for a hot water heater of the present invention is: A heater controller for a water heater used in a water heater provided with three heater parts for three-phase AC power source for heating water or two heater parts for single-phase AC power source, A three-phase input terminal to which a three-phase AC power supply can be connected; A heater connection terminal to which the three heater parts for the three-phase AC power supply or the two heater parts for the single-phase AC power supply are connected; When the three-phase AC power supply is connected to the three-phase input terminal and the three heaters for the three-phase AC power supply having substantially the same resistance value are driven by a three-phase AC voltage, the three-phase input terminal The three-phase AC power supply connected to the three-phase AC power supply is switched between Y-connection and ⁇ -connection of the three heaters for the three-phase AC power supply, and two terminals of the three-phase input terminals are connected.
  • the single-phase AC power supply When a single-phase AC power supply is connected and the two heater units for the single-phase AC power supply are driven with a single-phase AC voltage, the single-phase AC power supply connected to the three-phase input terminal And a switching unit that switches between connecting two heater units for a single-phase AC power source in series or connecting one of the two heater units for the single-phase AC power source.
  • a single heater may be used as one heater unit, or a single heater unit may be configured by combining a plurality of heaters.
  • the switching unit when the three-phase AC power source is connected to the three-phase input terminal and the three heater units for the three-phase AC power source having substantially the same resistance value are driven by the three-phase AC voltage, the switching unit Thus, for the three-phase AC power source connected to the three-phase input terminal, the three heater units for the three-phase AC power source are switched between Y connection and ⁇ connection.
  • the single-phase AC power source connected to the input terminal is switched between two heater units for the single-phase AC power source connected in series or one of the two heater units.
  • the three-phase AC power source or the single phase is provided between the three-phase input terminal and the heater connection terminal and closer to the three-phase input terminal than the switching unit.
  • a shut-off device that shuts off the AC voltage from the AC power supply
  • the three-phase AC power source is detected by detecting an overheating state of the three heater units for the three-phase AC power source or the two heater units for the single-phase AC power source. And a safety device that cuts off the connection between the three heaters for the three-phase AC power supply or cuts off the connection between the single-phase AC power supply and the two heater parts for the single-phase AC power supply.
  • the three-phase AC power source (or the single-phase AC power source) is detected by the safety device that detects the overheating state of the three heater units for the three-phase AC power source (or the two heater units for the single-phase AC power source).
  • the safety device detects the overheating state of the three heater units for the three-phase AC power source (or the two heater units for the single-phase AC power source).
  • the safety device is disposed between the three-phase input terminal and the heater connection terminal and closer to the three-phase input terminal than the switching unit.
  • the safety device is disposed between the three-phase input terminal and the heater connection terminal and closer to the three-phase input terminal than the switching unit, thereby providing the three-phase input terminal, the heater connection terminal, and the switching unit.
  • the safety device can also be made into a common module, which can be used for both power specifications for a three-phase AC power source and a single-phase AC power source, thereby reducing costs while improving reliability.
  • any one of the above-mentioned heater control devices for a water heater Any one of the above-mentioned heater control devices for a water heater; Two heater parts for the single-phase AC power source connected to the heater connection terminal of the heater controller for the hot water heater, The two heater parts for the single-phase AC power supply have substantially the same resistance value.
  • a single-phase AC power source is connected to two of the three-phase input terminals, and two heater units for a single-phase AC power source having substantially the same resistance value are driven with a single-phase AC voltage.
  • two switching units are connected in series to the single-phase AC power source connected to the three-phase input terminal, or one of the two heater units is connected. Switch the connection.
  • the ratio of the power when two heater units for a single-phase AC power source are connected in series to the power when one of the two heater units is connected is 1: 2, and the ratio is 1: 2. Step control of the power ratio is possible.
  • any one of the above-mentioned heater control devices for a water heater Any one of the above-mentioned heater control devices for a water heater; Two heater parts for the single-phase AC power source connected to the heater connection terminal of the heater controller for the hot water heater, One of the two heater parts for the single-phase AC power supply is a heater pair in which two heaters having substantially the same resistance value and resistance value of the other heater part are connected in parallel,
  • the switching unit switches whether the heater pair and the other heater unit are connected in series or only the heater pair is connected to the single-phase AC power source connected to the three-phase input terminal. It is characterized by that.
  • any one of the above-mentioned heater control devices for a water heater Any one of the above-mentioned heater control devices for a water heater; Two heater parts for the single-phase AC power source connected to the heater connection terminal of the heater controller for the hot water heater, One of the two heater parts for the single-phase AC power source is a heater pair in which two heaters having substantially the same resistance value and resistance value of the other heater part are connected in parallel, Whether the switching unit connects the heater pair and the other heater unit in series or only the other heater unit to the single-phase AC power source connected to the three-phase input terminal. It is characterized by switching.
  • the switching unit when the single-phase AC power source is connected to two of the three-phase input terminals and the two heater units for the single-phase AC power source are driven by the single-phase AC voltage, the switching unit , For a single-phase AC power source connected to a three-phase input terminal, a heater pair that is one of two heater units for a single-phase AC power source (the resistance value and resistance value of the other heater unit are substantially the same, respectively) These two heaters are connected in parallel) and the other heater unit is connected in series or the other heater unit is connected. As a result, the ratio of the power when the heater pair and the other heater unit are connected in series to the power when the other heater unit is connected is 2: 3, and the step control of the power ratio of 2: 3 is performed. It becomes possible.
  • Two heater parts for the single-phase AC power source connected to the heater connection terminal of the heater controller for the hot water heater One of the two heater parts for the single-phase AC power source is a heater pair in which two heaters having substantially the same resistance value and resistance value of the other heater part are connected in parallel, Whether the switching unit connects the heater pair and the other heater unit in series or only one of the heater pairs to the single-phase AC power source connected to the three-phase input terminal. It is characterized by switching.
  • the switching unit when the single-phase AC power source is connected to two of the three-phase input terminals and the two heater units for the single-phase AC power source are driven by the single-phase AC voltage, the switching unit , For a single-phase AC power source connected to a three-phase input terminal, a heater pair that is one of two heater units for a single-phase AC power source (the resistance value and resistance value of the other heater unit are substantially the same, respectively) The two heaters are connected in parallel) and the other heater section are connected in series or only one of the heater pairs is connected. As a result, the ratio of the power when the heater pair and the other heater unit are connected in series to the power when only one of the heater pairs is connected is 2: 3, and the step control is performed at a power ratio of 2: 3. Is possible.
  • any one of the above-mentioned heater control devices for water heaters Any one of the above-mentioned heater control devices for water heaters; Three heater parts for the three-phase AC power source connected to the heater connection terminal of the heater control device for the hot water heater, The resistance value of the three heater parts for the three-phase AC power source used in the low voltage region where the AC voltage of the three-phase AC power source is at least 230V and the high voltage region where the AC voltage of the three-phase AC power source is at least 400V.
  • the ratio of the resistance values of the three heater units for the three-phase AC power supply is approximately 1: 3.
  • the three-phase AC power source 3 used in a low voltage region where the AC voltage of the three-phase AC power source is at least 230V.
  • the heater unit The power and step control are substantially the same.
  • the heating capacity for hot water supply is approximately equal by the two types of heaters having different resistance values. Can be.
  • the heater control device for hot water heater of the present invention it is possible to realize a heater control device for hot water heater that can cope with different power supply specifications with a simple configuration, has good workability, and can reduce costs. it can.
  • a three-phase AC power source is provided in the event of an abnormality by a shut-off device provided between the three-phase input terminal and the heater connection terminal and closer to the three-phase input terminal than the switching unit.
  • a shut-off device provided between the three-phase input terminal and the heater connection terminal and closer to the three-phase input terminal than the switching unit.
  • the safety device that detects the overheating state of the three heater parts for the three-phase AC power supply (or the two heater parts for the single-phase AC power supply) By cutting off the connection between the phase AC power supply (or single-phase AC power supply) and the heater section, deterioration and damage of the circuits such as the heater section and switching section can be prevented against abnormal overheating of the heater section, improving reliability. it can.
  • a safety device is disposed between the three-phase input terminal and the heater connection terminal and between the three-phase input terminal and the switching unit. This makes it possible to make a safety device as well as a three-phase input terminal, heater connection terminal, and switching unit into a common module, which can be used for both power specifications for three-phase AC power supplies and single-phase AC power supplies. The cost can be reduced while improving.
  • the heater control device for a hot water heater and two heater portions for a single-phase AC power source connected to the heater connection terminal of the heater control device for the hot water heater are provided.
  • the switching unit By switching whether the two heater units are connected in series or one of the two heater units to the single-phase AC power source connected to the three-phase input terminal, 1: 2 Step control of the power ratio is possible.
  • the heater control device for a hot water heater and two heater portions for a single-phase AC power source connected to the heater connection terminal of the heater control device for the hot water heater are provided.
  • a single-phase AC power source is connected to two of the three-phase input terminals, and two heater parts for a single-phase AC power source having substantially the same resistance value are connected with a single-phase AC voltage.
  • a switching unit connects a single-phase AC power source connected to a three-phase input terminal to a heater pair (two heaters having substantially the same resistance value and resistance value of the other heater unit are connected in parallel). 1) and the other heater part are connected in series or the heater pair is connected, and step control with a power ratio of 1: 3 becomes possible.
  • the heater control device for a hot water heater and two heater portions for a single-phase AC power source connected to the heater connection terminal of the heater control device for the hot water heater are provided.
  • a single-phase AC power source is connected to two of the three-phase input terminals, and two heater parts for a single-phase AC power source having substantially the same resistance value are connected with a single-phase AC voltage.
  • a switching unit connects a single-phase AC power source connected to a three-phase input terminal to a heater pair (two heaters having substantially the same resistance value and resistance value of the other heater unit are connected in parallel). 2) and the other heater section are connected in series or the other heater section is switched, step control of a power ratio of 2: 3 becomes possible.
  • the heater control device for a hot water heater and two heater portions for a single-phase AC power source connected to the heater connection terminal of the heater control device for the hot water heater are provided.
  • a single-phase AC power source is connected to two of the three-phase input terminals and the two heater units for the single-phase AC power source are driven with a single-phase AC voltage
  • the resistance value and resistance value of the other heater unit are respectively Switching between whether the two heaters are connected in series or only one of the heater pairs is connected.
  • the ratio of the power when the heater pair and the other heater unit are connected in series to the power when only one of the heater pairs is connected is 2: 3, and the step control is performed at a power ratio of 2: 3. Is possible.
  • the heater control device for the water heater and the three heater portions for the three-phase AC power source connected to the heater connection terminal of the heater controller for the water heater are provided.
  • the ratio of the resistance values of the heaters used in the high voltage region where the AC voltage of the three-phase AC power supply is at least 400V is set to approximately 1: 3, so that the AC voltage of the three-phase AC power source is a low voltage region such as 230V or 400V.
  • the heating capacity for hot water supply can be made substantially equal in any of the high voltage areas such as.
  • FIG. 1 is a circuit diagram of a heater device for a hot water heater in which a heater unit is driven by a three-phase AC power source using the heater controller for a hot water heater according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a heater device for a water heater that drives the heater unit with a single-phase AC power source using the heater controller for the water heater.
  • FIG. 3 is another circuit diagram of a heater device for a hot water heater in which the heater unit is driven by a single-phase AC power source using the heater controller for the hot water heater.
  • FIG. 4 is another circuit diagram of a heater device for a hot water heater in which the heater unit is driven by a single-phase AC power source using the heater controller for the hot water heater.
  • FIG. 1 is a circuit diagram of a heater device for a hot water heater in which a heater unit is driven by a three-phase AC power source using the heater controller for a hot water heater according to the first embodiment of the present invention.
  • FIG. 2
  • FIG. 5 is a circuit diagram of a heater device for a hot water heater in which a heater unit is driven by a three-phase AC power source using the heater controller for a hot water heater according to the second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing another example of the heater device for the hot water heater provided with the heater control device for the hot water heater of the second embodiment.
  • FIG. 7 is a circuit diagram of a heater device for a hot water heater in which a heater unit is driven by a three-phase AC power source using the heater controller for a hot water heater according to the third embodiment of the present invention.
  • FIG. 8 is a circuit diagram of a heater device for a hot water heater in which a heater unit is driven by a three-phase AC power source using the heater controller for a hot water heater according to the fourth embodiment of the present invention.
  • FIG. 9A is a circuit diagram illustrating another example of a heater device for a water heater provided with the heater controller for the water heater according to the fourth embodiment.
  • FIG. 9B is a circuit diagram of a heater device for a water heater in another example of the fourth embodiment.
  • FIG. 10A is a circuit diagram of a heater device for a hot water heater that drives a heater portion with a single-phase AC power source using the heater controller for a hot water heater according to a fifth embodiment of the present invention.
  • FIG. 10B is a circuit diagram of a heater device for a water heater in another example of the fifth embodiment.
  • FIG. 11A is a circuit diagram of a heater device for a water heater that drives a heater portion with a single-phase AC power source using the heater controller for a water heater according to the sixth embodiment of the present invention.
  • FIG. 11B is a circuit diagram of a heater device for a water heater in another example of the sixth embodiment.
  • FIG. 1 shows a circuit diagram of a heater device for a hot water heater in which a heater unit is driven by a three-phase AC power source using the heater controller for a hot water heater according to the first embodiment of the present invention.
  • the water heater heater device provided with this water heater heater control device is used in a water heater provided with a heater for heating water.
  • the heater controller for the hot water heater includes a three-phase AC power source heater unit that can be connected to a three-phase AC power source and a three-phase AC power source heater unit that has substantially the same resistance value.
  • the first and second heater connecting terminals 2 and 3 to which the heaters R1, R2 and R3 are connected, and the first and second heaters connected between the three-phase input terminal 1 and the second heater connecting terminal 3 are connected.
  • the first and second magnet switches M1 and M2 and the control unit 11 constitute a switching unit.
  • the three-phase input terminal 1, the first and second heater connection terminals 2 and 3, the first and second magnet switches M 1 and M 2, and the control unit 11 are integrated to form a common module 10 that is a heater control device for a water heater. Is forming.
  • the R-phase of the three-phase AC power supply is connected to the first terminal of the three-phase input terminal 1
  • the S-phase of the three-phase AC power supply is connected to the second terminal of the three-phase input terminal 1
  • the T-phase of the three-phase AC power supply is connected to the third terminal of the phase input terminal 1.
  • the first terminal of the three-phase input terminal 1 is connected to the first terminal of the first heater connection terminal 2
  • the second terminal of the three-phase input terminal 1 is connected to the second terminal of the first heater connection terminal 2
  • three The third terminal of the phase input terminal 1 is connected to the third terminal of the first heater connection terminal 2.
  • One end of the heater R1 is connected to the first terminal of the first heater connection terminal 2, and the other end of the heater R1 is connected to the first terminal of the second heater connection terminal 3.
  • One end of the heater R2 is connected to the second terminal of the first heater connection terminal 2, and the other end of the heater R2 is connected to the second terminal of the second heater connection terminal 3.
  • One end of the heater R3 is connected to the third terminal of the first heater connection terminal 2, and the other end of the heater R3 is connected to the third terminal of the second heater connection terminal 3.
  • the first and second magnet switches M1 and M2 each have three a contacts that open and close simultaneously.
  • the first terminal of the second heater connection terminal 3 is connected to the terminal 1 of the first a contact of the second magnet switch M2.
  • the second terminal of the second heater connection terminal 3 is connected to the terminal 3 of the second a contact of the second magnet switch M2.
  • the third terminal of the second heater connection terminal 3 is connected to the terminal 5 of the third a contact of the second magnet switch M2.
  • the terminal 2 and the terminal 4 of the second magnet switch M2 are connected, and the terminal 4 and the terminal 6 of the second magnet switch M2 are connected.
  • the terminal 1 of the first a contact of the second magnet switch M2 and the terminal 6 of the third a contact of the first magnet switch M1 are connected.
  • the terminal 3 of the second a contact of the second magnet switch M2 and the terminal 4 of the second a contact of the first magnet switch M1 are connected.
  • the terminal 5 of the third a contact of the second magnet switch M2 is connected to the terminal 2 of the first a contact of the first magnet switch M1.
  • the terminal 1 of the first a contact of the first magnet switch M1 is connected to the first terminal of the three-phase input terminal 1, and the terminal 3 of the second a contact of the first magnet switch M1 is connected to the three-phase input terminal 1.
  • the terminal 5 of the third a contact of the first magnet switch M1 is connected to the second terminal of the three-phase input terminal 1.
  • the control unit 11 includes a first drive circuit 11a that drives the first magnet switch M1 and a second drive circuit 11b that drives the second magnet switch M2.
  • the second magnet switch M2 is turned on by the second drive circuit 11b, while the first magnet switch M1 is turned off by the first drive circuit 11a.
  • the heaters R1, R2, and R3 are Y-connected to the three-phase AC power supply (R-phase, S-phase, and T-phase) connected to the three-phase input terminal 1.
  • the first drive circuit 11a turns on the first magnet switch M1, while the second drive circuit 11b turns off the second magnet switch M2, so that the three-phase AC power supply (R The heaters R1, R2, and R3 are ⁇ -connected to the (phase, S phase, T phase).
  • the switching unit 11 switches on the opposite magnet switch from the state in which one of the first and second magnet switches M1 and M2 is on and the other is off
  • the first and second magnet switches Control is performed so that both M1 and M2 are switched off after a predetermined time. Accordingly, both the first and second magnet switches M1 and M2 are not turned on at the same time, and it is possible to reliably prevent the occurrence of an abnormality such as a short circuit.
  • three three-phase AC power sources (R phase, S phase, T phase) connected to the three-phase input terminal 1 have three By switching whether the heaters R1, R2, R3 are Y-connected or ⁇ -connected, it is possible to cope with different power supply specifications with a simple configuration, and without preparing multiple types of heater control devices for hot water heaters, Workability is good and the cost can be reduced.
  • the resistance values of the heaters R1, R2, and R3 used when the AC voltage of the three-phase AC power source is 230V and the three-phase AC power source are 230V and the three-phase AC power source.
  • the ratio of the resistance values of the heaters R1, R2, and R3 used when the AC voltage of the power supply is 400V to about 1: 3 hot water supply is possible regardless of whether the AC voltage of the three-phase AC power supply is 230V or 400V.
  • the heating capacity for can be made substantially equal.
  • the AC voltage of the three-phase AC power source is not only a constant voltage region of 230V or a high voltage region of 400V, but also 200V, 220V, 240V, May be used in a low voltage area of 380V, a high voltage area such as 380V, 415V, or 460V.
  • the power of the three heaters R1, R2, and R3 in the ⁇ connection is r, where the resistance values of the heaters R1, R2, and R3 are r.
  • the power of the three heaters R1, R2, and R3 in the ⁇ connection is 3r when the resistance values of the heaters R1, R2, and R3 are 3r.
  • 400 2 / r 16,000 / r [W]
  • the heating capacity for hot water supply is substantially the same regardless of whether the AC voltage of the three-phase AC power supply is 230V or 400V.
  • FIG. 2 is a circuit diagram of a heater device for a water heater that drives the heater unit with a single-phase AC power source using the heater controller for the water heater.
  • the common module 10 shown in FIG. 1 is used.
  • the L side of the single-phase AC power supply is connected to the first terminal of the three-phase input terminal 1 of the common module 10, and the N side of the single-phase AC power supply is connected to the second terminal of the three-phase input terminal 1.
  • one end of a heater R11 as an example of a heater section for a single-phase AC power supply is connected to the first terminal of the first heater connection terminal 2, and the other end of the heater R11 is connected to the first terminal of the second heater connection terminal 3.
  • One end of a heater R12 as an example of a heater unit for a single-phase AC power supply is connected to the second terminal of the first heater connection terminal 2, and the other end of the heater R12 is connected to the second terminal of the second heater connection terminal 3. is doing.
  • the second magnet switch M2 is turned on by the second drive circuit 11b, while the first magnet switch M1 is turned off by the first drive circuit 11a.
  • the heaters R11 and R12 are connected in series to the single-phase AC power source connected to the. Further, by turning on the first magnet switch M1 by the first drive circuit 11a and turning off the second magnet switch M2 by the second drive circuit 11b, a single-phase AC power source connected to the three-phase input terminal 1 is supplied. Thus, only the heater R11 is connected.
  • the power of the heaters R11 and R12 is V 2 / (2r) It is represented by On the other hand, the power of only the heater R11 is V 2 / r It is represented by That is, the ratio between the power when the heaters R11 and R12 are connected in series and the power when only the heater R11 is connected is 1: 2.
  • a single-phase AC power source is connected to two of the three-phase input terminals 1, and two heaters having substantially the same resistance value.
  • the switching unit 11 connects two heaters R11 and R12 in series to the single-phase AC power source connected to the three-phase input terminal 1, or only the heater R11. By switching whether to connect, step control with a power ratio of 1: 2 becomes possible.
  • FIG. 3 shows another circuit diagram in which the heater unit is driven by a single-phase AC power supply using the heater control device for the water heater.
  • the heater controller for hot water heater shown in FIG. 3 has the same configuration as the heater controller for hot water heater shown in FIG. 2 except for the heater R13.
  • the heater device for a water heater provided with the heater controller for the water heater shown in FIG. 3 is formed by connecting a heater R13 to the heater R11 in parallel to form a heater pair as an example of a heater section for a single-phase AC power supply. This is different from the heater device for a water heater provided with the heater controller for the water heater shown in FIG.
  • the second magnet switch M2 is turned on by the second drive circuit 11b, while the first magnet switch M1 is turned off by the first drive circuit 11a.
  • the heater pair (R11, R13) and the heater R12 as an example of the heater unit for the single-phase AC power supply are connected in series to the single-phase AC power supply connected to the three-phase input terminal 1. Further, by turning on the first magnet switch M1 by the first drive circuit 11a and turning off the second magnet switch M2 by the second drive circuit 11b, a single-phase AC power source connected to the three-phase input terminal 1 is supplied. Thus, only the heater pair (R11, R13) is connected.
  • the heater device for a water heater provided with the heater controller for the water heater shown in FIG. 3 has three heaters having substantially the same resistance value by connecting a single-phase AC power source to two of the three-phase input terminals 1.
  • the switching unit 11 connects the heater pair (R11, R13) and the other heater R12 to the single-phase AC power source connected to the three-phase input terminal.
  • FIG. 4 shows a circuit diagram of another heater controller for the water heater that drives the heater unit with a single-phase AC power source using the heater controller for the water heater.
  • the heater device for a water heater provided with the heater controller for a water heater shown in FIG. 3 has the same configuration as the heater device for a water heater provided with the heater controller for a water heater shown in FIG. 2 except for the heater R13. Yes.
  • the heater device for a water heater provided with the heater controller for the water heater shown in FIG. 4 is formed by connecting a heater R13 to the heater R12 in parallel to form a heater pair as an example of a heater section for a single-phase AC power supply. This is different from the heater controller for the hot water heater shown in FIG.
  • the second magnet switch M2 is turned on by the second drive circuit 11b, while the first magnet switch M1 is turned off by the first drive circuit 11a.
  • the heater R11 and the heater pair (R12, R13) are connected in series to the single-phase AC power source connected to the three-phase input terminal 1.
  • a single-phase AC power source connected to the three-phase input terminal 1 is supplied.
  • only the heater R11 is connected.
  • the heater device for a water heater provided with the heater controller for the water heater shown in FIG. 4 has three heaters having substantially the same resistance value by connecting a single-phase AC power source to two of the three-phase input terminals 1.
  • the switching unit 11 connects the heater pair (R12, R13) and the other heater R11 to the single-phase AC power source connected to the three-phase input terminal.
  • FIG. 5 shows a circuit diagram of a heater device for a hot water heater in which the heater unit is driven by a three-phase AC power source using the heater controller for the hot water heater according to the second embodiment of the present invention.
  • the water heater heater device provided with this water heater heater control device is used in a water heater provided with a heater for heating water.
  • the heater control device for a hot water heater of the second embodiment has a three-phase AC power source heater unit that can be connected to a three-phase AC power source and a three-phase AC power source heater unit that has substantially the same resistance value.
  • a control unit 111 that controls M2 and an abnormality detection terminal 4 connected to the control unit 111 are provided.
  • the first to third magnet switches M1, M2, M3 and the control unit 111 constitute a switching unit.
  • the three-phase input terminal 1, the first and second heater connection terminals 2 and 3, the abnormality detection terminal 4, the first to third magnet switches M1, M2, and M3 and the control unit 111 are integrated to form a common module 110. Is forming.
  • the R-phase of the three-phase AC power supply is connected to the first terminal of the three-phase input terminal 1
  • the S-phase of the three-phase AC power supply is connected to the second terminal of the three-phase input terminal 1
  • the T-phase of the three-phase AC power supply is connected to the third terminal of the phase input terminal 1.
  • the first to third magnet switches M1, M2, and M3 each have three a contacts that open and close simultaneously.
  • the first terminal of the three-phase input terminal 1 is connected to the terminal 1 of the first a contact of the third magnet switch M3, and the terminal 2 of the first a contact of the third magnet switch M3 is connected to the first heater connection terminal. 2 is connected to the first terminal.
  • the second terminal of the three-phase input terminal 1 is connected to the terminal 3 of the second a contact of the third magnet switch M3, and the terminal 4 of the second a contact of the third magnet switch M3 is connected to the first heater connection terminal. 2 is connected to the second terminal.
  • the third terminal of the three-phase input terminal 1 is connected to the third a contact terminal 5 of the third magnet switch M3, and the third a contact terminal 6 of the third magnet switch M3 is connected to the first heater connection terminal. 2 is connected to the third terminal.
  • the first b contact of the first overheat detection device 21 is connected to the first terminal of the first heater connection terminal 2 by connecting the terminal 1 of the first b contact of the first overheat detection device 21 as an example of a safety device.
  • One end of the heater R 1 is connected to the terminal 2, and the other end of the heater R 1 is connected to the first terminal of the second heater connection terminal 3.
  • the second b-contact terminal 3 of the first overheat detection device 21 is connected to the second terminal of the first heater connection terminal 2, and the second b-contact terminal 4 of the first overheat detection device 21 is connected to the terminal 4 of the heater R2.
  • One end is connected, and the other end of the heater R2 is connected to the second terminal of the second heater connection terminal 3.
  • the first b contact of the second overheat detection device 22 is connected to the third terminal of the first heater connection terminal 2 by connecting the terminal 1 of the first b contact of the second overheat detection device 22 as an example of a safety device.
  • Terminal 2 is connected to one end of the heater R 3, and the other end of the heater R 3 is connected to the third terminal of the second heater connection terminal 3.
  • a bimetal thermostat is used for the first and second overheat detection devices 21 and 22, and the first and second contacts of each overheat detection device perform an opening operation in conjunction with overheating.
  • the first terminal of the second heater connection terminal 3 is connected to the terminal 1 of the first a contact of the second magnet switch M2.
  • the second terminal of the second heater connection terminal 3 is connected to the terminal 3 of the second a contact of the second magnet switch M2.
  • the third terminal of the second heater connection terminal 3 is connected to the terminal 5 of the third a contact of the second magnet switch M2.
  • the terminal 2 and the terminal 4 of the second magnet switch M2 are connected, and the terminal 4 and the terminal 6 of the second magnet switch M2 are connected.
  • the terminal 1 of the first a contact of the second magnet switch M2 and the terminal 6 of the third a contact of the first magnet switch M1 are connected.
  • the terminal 3 of the second a contact of the second magnet switch M2 and the terminal 4 of the second a contact of the first magnet switch M1 are connected.
  • the terminal 5 of the third a contact of the second magnet switch M2 is connected to the terminal 2 of the first a contact of the first magnet switch M1.
  • the terminal 1 of the first a contact of the first magnet switch M1 is connected to the second terminal of the third magnet switch M3, and the terminal 3 of the second a contact of the first magnet switch M1 is connected to the third magnet switch M3.
  • the terminal 5 of the third a contact of the first magnet switch M1 is connected to the fourth terminal of the third magnet switch M3.
  • the control unit 111 includes a first drive circuit 111a that drives the first magnet switch M1, a second drive circuit 111b that drives the second magnet switch M2, and a third drive circuit 111c that drives the third magnet switch M3. And an abnormality detection circuit 111d.
  • the first terminal of the abnormality detection terminal 4 is connected to one input of the abnormality detection circuit 111d, and the first terminal of the abnormality detection terminal 4 is connected to the terminal 3 of the second b contact of the second overheat detection device 22. is doing. Further, the second terminal of the abnormality detection terminal 4 is connected to the terminal 4 of the second b contact of the second overheat detection device 22, and the second terminal of the abnormality detection terminal 4 is connected to the other input of the abnormality detection circuit 111d. Connected.
  • the abnormality detection circuit 111d When the second overheat detection device 22 detects an overheat state and operates, the b contact between the terminals 1 and 2 and between the terminals 3 and 4 opens, and the b contact between the terminals 3 and 4 of the second overheat detection device 22 opens.
  • the abnormality detection circuit 111d outputs an abnormality signal to the third drive circuit 111c.
  • the third drive circuit 111c turns off the third magnet switch M3 to cut off the AC voltage from the three-phase AC power supply.
  • the first overheat detection device 21 When the first overheat detection device 21 operates by detecting an overheat state, the b contact between the terminals 1 and 2 and the terminals 3 and 4 of the first overheat detection device 21 is opened, and the voltage to the heaters R1 and R2 Supply is cut off.
  • the set value (overheat protection value) of the overheat detection temperature of the second overheat detection device 22 is set lower than the set value (overheat protection value) of the overheat detection temperature of the first overheat detection device 21, Since the second overheat detection device operates faster than the first overheat detection device and the voltage supply to all the heaters is cut off, a safer system can be provided for overheat protection.
  • the second drive circuit 111b and the third drive circuit 111c turn on the second and third magnet switches M2 and M3, while the first drive circuit.
  • the three-phase AC power heaters R1, R2 for the three-phase AC power supply (R-phase, S-phase, T-phase) connected to the three-phase input terminal 1 are used.
  • R3 is Y-connected.
  • the first drive circuit 111a and the third drive circuit 111c turn on the first and third magnet switches M1 and M3, while the second drive circuit 111b turns off the second magnet switch M2, thereby providing a three-phase input terminal.
  • the three-phase AC power heaters R1, R2, and R3 are ⁇ connected to the three-phase AC power source (R phase, S phase, and T phase) connected to 1.
  • the ratio of the power at the Y connection and the power at the ⁇ connection is 1: 3 as in the first embodiment.
  • the third magnet switch M3 provided between the three-phase input terminal 1 and the first heater connection terminal 2 and closer to the three-phase input terminal 1 than the magnet switches (M1, M2).
  • first and second overheat detecting devices 21 and 22 that detect the overheated state of the heaters R1, R2, and R3 disconnect the connection between the three-phase AC power source and the heaters R1, R2, and R3, so that the heater R1 , R2, R3 can be prevented from deterioration and damage to circuits such as the heaters R1, R2, R3 and the switching unit against abnormal overheating, and reliability can be improved.
  • the switching unit 111 switches on the opposite magnet switch from the state in which one of the first and second magnet switches M1 and M2 is on and the other is off
  • the first and second magnet switches Control is performed so that both M1 and M2 are switched off after a predetermined time. Accordingly, both the first and second magnet switches M1 and M2 are not turned on at the same time, and it is possible to reliably prevent the occurrence of an abnormality such as a short circuit.
  • the switching unit 111 turns off the third magnet switch M3 when turning on the opposite magnet switch from the state in which one of the first and second magnet switches M1 and M2 is on and the other is off. Control is performed so that the first and second magnet switches M1 and M2 are switched after a predetermined time has elapsed. Alternatively, when the switching unit 111 switches on the reverse magnet switch from the state in which one of the first and second magnet switches M1 and M2 is on and the other is off, Control is performed so that all of the magnet switches M1, M2, and M3 are switched to the OFF state after a predetermined time. Thereby, even when both the first and second magnet switches M1 and M2 are simultaneously turned on at the time of switching, it is possible to reliably prevent the occurrence of an abnormality such as a short circuit.
  • the heater device for a water heater provided with the heater controller for the hot water heater of the second embodiment is a heater device for a water heater provided with the heater controller for the water heater shown in FIGS. 2 to 4 of the first embodiment.
  • the heater unit can be driven by a single-phase AC power source.
  • FIG. 6 shows a circuit diagram of another example of a heater device for a water heater provided with the heater controller for the water heater of the second embodiment.
  • the heater device for a water heater provided with the heater controller for the water heater shown in FIG. 6 has the same configuration as the heater device for the water heater provided with the heater controller for the water heater shown in FIG. 5 except for the overheat detecting device. ing.
  • a first b-contact terminal 1 of a first overheat detection device 21 as an example of a safety device is connected to the first terminal of the first heater connection terminal 2, and the first overheat detection device 21 is connected.
  • One end of the heater R 1 is connected to the terminal 2 of the first b contact, and the other end of the heater R 1 is connected to the first terminal of the second heater connection terminal 3.
  • terminal 1 of the first b contact of the second overheat detection device 22 is connected to the second terminal of the first heater connection terminal 2, and the heater is connected to the terminal 2 of the first b contact of the second overheat detection device 22.
  • One end of R2 is connected, and the other end of the heater R2 is connected to the second terminal of the second heater connection terminal 3.
  • the terminal 1 of the first b contact of the third overheat detection device 23 as an example of a safety device is connected to the third terminal of the first heater connection terminal 2, and the first of the third overheat detection device 23 is connected.
  • the terminal 2 of the b contact is connected to one end of the heater R3, and the other end of the heater R3 is connected to the third terminal of the second heater connection terminal 3.
  • the first to third overheat detecting devices 21 to 23 detect the overheated state of the heaters R1, R2, and R3 using a bimetal thermostat. At the time of overheating, the first and second contacts of each overheat detecting device perform an opening operation in conjunction with each other.
  • the first terminal of the abnormality detection terminal 4 is connected to one input of the abnormality detection circuit 111d, and the first terminal of the abnormality detection terminal 4 is connected to the terminal 3 of the second b contact of the first overheat detection device 21. is doing.
  • the second b contact terminal 4 of the second overheat detection device 22 is connected to the second b contact terminal 4 of the second overheat detection device 22 and the second b contact terminal 3 of the second overheat detection device 22. 4 and the terminal 3 of the second b contact of the third overheat detecting device 23 are connected.
  • the second terminal of the abnormality detection terminal 4 is connected to the terminal 4 of the second b contact of the third overheat detection device 23, and the second terminal of the abnormality detection terminal 4 is connected to the other input of the abnormality detection circuit 111d.
  • the first to third overheat detection devices 21 to 23 detects an overheat state and operates
  • the b-contact between the terminals 1 and 2 and between the terminals 3 and 4 opens, and the first to third overheat detection devices 21
  • the abnormality detection circuit 111d outputs an abnormality signal to the third drive circuit 111c by the opening operation of the b contact between any of the terminals 3 and 4 of .about.23.
  • the water heater heater device provided with the water heater heater control device shown in FIG. 6 has the same effect as the water heater heater device provided with the water heater heater control device shown in FIG.
  • the third magnet switch M3 is turned off, and the AC voltage from the three-phase AC power source is reliably ensured in the event of an abnormality. Can be blocked.
  • FIG. 7 shows a circuit diagram of a heater device for a hot water heater in which the heater unit is driven by a three-phase AC power source using the heater controller for the hot water heater of the third embodiment of the present invention.
  • the heater device for a water heater provided with the heater controller for the water heater of the third embodiment is the heater controller for the water heater shown in FIG. 2 of the first embodiment except for the first and second magnet switches and the controller.
  • the same configuration as that of the heater device for a water heater provided with the same reference numerals is assigned to the same components, and the description thereof is omitted.
  • one end of the drive coil CL1 of the first magnet switch M11 is connected to one of the control outputs of the first drive circuit 211a, and the other end of the drive coil CL1 is connected to the terminal 8 of the b contact of the second magnet switch M12.
  • the terminal 7 of the b contact of the second magnet switch M12 is connected to the other control output of the first drive circuit 211a.
  • One end of the drive coil CL2 of the second magnet switch M12 is connected to one of the control outputs of the second drive circuit 211b, and the other end of the drive coil CL2 is connected to the terminal 8 of the b contact of the first magnet switch M11.
  • the terminal 7 of the b contact of the first magnet switch M11 is connected to the other control output of the second drive circuit 211b.
  • the circuits 211a and 211b cannot turn on the other of the first and second magnet switches M11 and M12. That is, one of the first and second magnet switches M11 and M12 is turned on unless both the first and second magnet switches M11 and M12 are off and the contact b between the terminals 7 and 8 is closed. I can't.
  • the first and second magnet switches M11 and M12 are not turned on at the same time, and a short circuit between the power supply lines can be reliably prevented.
  • the shut-off device for example, the third magnet switch M3 and the overheat detection device are not provided, but they may be provided.
  • FIG. 8 shows a circuit diagram of a heater device for a hot water heater in which the heater unit is driven by a three-phase AC power source using the heater controller for the hot water heater of the fourth embodiment of the present invention.
  • the heater control device for the hot water heater of the fourth embodiment has the same configuration as the heater control device for the hot water heater of the second embodiment except for the overheat detection device, and the same components are denoted by the same reference numerals. ing.
  • the water heater heater device provided with this water heater heater control device is used in a water heater provided with a heater for heating water.
  • the heater control device for a hot water heater of the fourth embodiment has a three-phase AC power source heater unit that can be connected to a three-phase AC power source and a three-phase AC power source heater unit that has substantially the same resistance value.
  • the control part 111 which controls M2, and the 1st, 2nd overheat detection apparatuses 21 and 22 as an example of the safety device connected between the 3rd magnet switch M3 and the 1st heater connection terminal 2 are provided.
  • the first to third magnet switches M1, M2, M3 and the control unit 111 constitute a switching unit.
  • the three-phase input terminal 1, the first and second heater connection terminals 2 and 3, the first to third magnet switches M1, M2, and M3, the first and second overheat detection devices 21 and 22, and the control unit 111 are integrated.
  • the common module 310 is formed.
  • the R-phase of the three-phase AC power supply is connected to the first terminal of the three-phase input terminal 1
  • the S-phase of the three-phase AC power supply is connected to the second terminal of the three-phase input terminal 1
  • the T-phase of the three-phase AC power supply is connected to the third terminal of the phase input terminal 1.
  • the first to third magnet switches M1, M2, and M3 each have three a contacts that open and close simultaneously.
  • the first terminal of the three-phase input terminal 1 is connected to the terminal 1 of the first a contact of the third magnet switch M3, and the terminal 2 of the first a contact of the third magnet switch M3 is connected to the first overheat detecting device.
  • 21 is connected to the terminal 1 of the first b contact.
  • the terminal 2 of the first b contact of the first overheat detection device 21 is connected to the first terminal of the first heater connection terminal 2.
  • the second terminal of the three-phase input terminal 1 is connected to the terminal 3 of the second a contact of the third magnet switch M3, and the terminal 4 of the second a contact of the third magnet switch M3 is connected to the first overheat detecting device.
  • the terminal 21 is connected to the terminal 3 of the second b contact.
  • the terminal 4 of the second b contact of the first overheat detection device 21 is connected to the second terminal of the first heater connection terminal 2.
  • the third terminal of the three-phase input terminal 1 is connected to the terminal 5 of the third a contact of the third magnet switch M3, and the terminal 6 of the third a contact of the third magnet switch M3 is connected to the second overheat. It is connected to the terminal 1 of the first b contact of the detection device 22.
  • the terminal 2 of the first b contact of the second overheat detection device 22 is connected to the third terminal of the first heater connection terminal 2.
  • One end of the heater R1 is connected to the first terminal of the first heater connection terminal 2, and the other end of the heater R1 is connected to the first terminal of the second heater connection terminal 3.
  • One end of the heater R2 is connected to the second terminal of the first heater connection terminal 2, and the other end of the heater R2 is connected to the second terminal of the second heater connection terminal 3.
  • One end of the heater R3 is connected to the third terminal of the first heater connection terminal 2, and the other end of the heater R3 is connected to the third terminal of the second heater connection terminal 3.
  • a bimetal thermostat is used for the first and second overheat detection devices 21 and 22, and the first and second contacts of each overheat detection device perform an opening operation in conjunction with overheating.
  • the first terminal of the second heater connection terminal 3 is connected to the terminal 1 of the first a contact of the second magnet switch M2.
  • the second terminal of the second heater connection terminal 3 is connected to the terminal 3 of the second a contact of the second magnet switch M2.
  • the third terminal of the second heater connection terminal 3 is connected to the terminal 5 of the third a contact of the second magnet switch M2.
  • the terminal 2 and the terminal 4 of the second magnet switch M2 are connected, and the terminal 4 and the terminal 6 of the second magnet switch M2 are connected.
  • the terminal 1 of the first a contact of the second magnet switch M2 and the terminal 6 of the third a contact of the first magnet switch M1 are connected.
  • the terminal 3 of the second a contact of the second magnet switch M2 and the terminal 4 of the second a contact of the first magnet switch M1 are connected.
  • the terminal 5 of the third a contact of the second magnet switch M2 is connected to the terminal 2 of the first a contact of the first magnet switch M1.
  • the terminal 1 of the first a contact of the first magnet switch M1 is connected to the terminal 2 of the first b contact of the first overheat detecting device 21.
  • the terminal 3 of the second a contact of the first magnet switch M1 is connected to the terminal 2 of the first b contact of the second overheat detection device 22.
  • the terminal 5 of the third a contact of the first magnet switch M1 is connected to the terminal 4 of the second b contact of the first overheat detection device 21.
  • the control unit 111 includes a first drive circuit 111a that drives the first magnet switch M1, a second drive circuit 111b that drives the second magnet switch M2, and a third drive circuit 111c that drives the third magnet switch M3. And an abnormality detection circuit 111d.
  • One input of the abnormality detection circuit 111d is connected to the terminal 3 of the second b contact of the second overheat detection device 22. Further, the terminal 4 of the second b contact of the second overheat detection device 22 is connected to the other input of the abnormality detection circuit 111d.
  • the abnormality detection circuit 111d When the second overheat detection device 22 detects an overheat state and operates, the b contact between the terminals 1 and 2 and between the terminals 3 and 4 opens, and the b contact between the terminals 3 and 4 of the second overheat detection device 22 opens.
  • the abnormality detection circuit 111d outputs an abnormality signal to the third drive circuit 111c.
  • the third drive circuit 111c turns off the third magnet switch M3 to cut off the AC voltage from the three-phase AC power supply.
  • the first overheat detection device 21 When the first overheat detection device 21 operates by detecting an overheat state, the b contact between the terminals 1 and 2 and the terminals 3 and 4 of the first overheat detection device 21 is opened, and the voltage to the heaters R1 and R2 Supply is cut off.
  • the set value (overheat protection value) of the overheat detection temperature of the second overheat detection device 22 is set lower than the set value (overheat protection value) of the overheat detection temperature of the first overheat detection device 21, Since the second overheat detection device operates faster than the first overheat detection device and the voltage supply to all the heaters is cut off, a safer system can be provided for overheat protection.
  • the second drive circuit 111b and the third drive circuit 111c turn on the second and third magnet switches M2 and M3, while the first drive circuit.
  • the three-phase AC power heaters R1, R2 for the three-phase AC power supply (R-phase, S-phase, T-phase) connected to the three-phase input terminal 1 are used.
  • R3 is Y-connected.
  • the first drive circuit 111a and the third drive circuit 111c turn on the first and third magnet switches M1 and M3, while the second drive circuit 111b turns off the second magnet switch M2, thereby providing a three-phase input terminal.
  • the three-phase AC power heaters R1, R2, and R3 are ⁇ connected to the three-phase AC power source (R phase, S phase, and T phase) connected to 1.
  • the water heater heater device provided with the water heater heater control device of the fourth embodiment has the same effect as the water heater heater device provided with the water heater heater control device of the second embodiment.
  • the heater device for a water heater provided with the heater controller for the water heater of the fourth embodiment is a heater device for a water heater provided with the heater controller for the water heater shown in FIGS. 2 to 4 of the first embodiment.
  • the heater unit can be driven by a single-phase AC power source.
  • FIG. 9A shows another circuit diagram of the heater controller for the water heater that drives the heater unit with a single-phase AC power source using the heater controller for the water heater.
  • the heater device for a water heater provided with the heater controller for the water heater shown in FIG. 9A has one end of the heater R11 connected to the first terminal of the first heater connection terminal 2 and the other end of the heater R11 connected to the second heater connection terminal. 3 to the first terminal.
  • One end of the heater R12 is connected to the second terminal of the first heater connection terminal 2, and the other end of the heater R12 is connected to the second terminal of the second heater connection terminal 3.
  • One end of the heater R12 is connected to one end of the heater R13, and the other end of the heater R13 is connected to the third terminal of the second heater connection terminal 3.
  • a heater pair as an example of a heater section for a single-phase AC power supply is formed by connecting a heater R13 in parallel with the heater R12.
  • the second drive circuit 111b and the third drive circuit 111c turn on the second and third magnet switches M2 and M3, while the first drive circuit.
  • the heater R11 and the heater pair (R12, R13) are connected in series to the single-phase AC power source connected to the three-phase input terminal 1 by turning off the first magnet switch M1 by 111a. Further, the first and third magnet switches M1 and M3 are turned on by the second drive circuit 111b and the third drive circuit 111c, while the second magnet switch M2 is turned off by the second drive circuit 111b, so that the three-phase input terminal is turned on. Only the heater R11 is connected to the single-phase AC power source connected to 1.
  • a heater device for a water heater provided with a heater controller for a water heater shown in FIG. 9A has three heaters having substantially the same resistance value by connecting a single-phase AC power source to two of the three-phase input terminals 1.
  • the switching unit 111 connects the heater pair (R12, R13) and the other heater R11 to the single-phase AC power source connected to the three-phase input terminal.
  • the second terminal of the first heater connection terminal 2 is connected to one end of the heater R13, and the other end of the heater R13 is the third terminal of the second heater connection terminal 3.
  • the heater R13 may be connected in parallel to the heater R11. In this case, step control with a power ratio of 1: 3 is possible.
  • FIG. 10A shows a circuit diagram of a heater device for a hot water heater in which the heater unit is driven by a single-phase AC power source using the heater controller for the hot water heater of the fifth embodiment of the present invention.
  • the heater device for a water heater provided with the heater controller for the hot water heater of the fifth embodiment is different from the heater controller for the hot water heater shown in FIG. 5 of the second embodiment except for the power supply side connection of the first overheat detecting device. It has the same configuration as the heater device for the hot water heater provided.
  • the water heater heater device provided with this water heater heater control device is used in a water heater provided with a heater for heating water.
  • the L side of the single-phase AC power supply is connected to the second terminal of the three-phase input terminal 1 of the common module 110, and the single-phase AC is connected to the third terminal of the three-phase input terminal 1.
  • the N side of the power supply is connected.
  • the difference from the heater controller for the hot water heater shown in FIG. 5 is that the first terminal of the first heater connection terminal 2 and the terminal 1 of the first b contact of the first overheat detecting device 21 are not connected.
  • the first b-contact terminal 1 of the first overheat detecting device 21 is connected to the second b-contact terminal 3.
  • a heater device for a water heater provided with a heater controller for a water heater shown in FIG. 10A has three heaters having substantially the same resistance value by connecting a single-phase AC power source to two of the three-phase input terminals 1.
  • the switching unit 111 connects the heater pair (R11, R12) and the other heater R13 to the single-phase AC power source connected to the three-phase input terminal.
  • the same effect as the heater device for a water heater of the second embodiment is obtained.
  • the heater device for a hot water heater of the fifth embodiment is used when the overheat detection device 21 is activated by connecting two wires connected to the heater pair (R11, R12) to one overheat detection device 21. Since energization to either of the pair of heaters connected in parallel is cut off, energization to all the heaters R11, R12, R13 can be cut off as a result.
  • the heater device for a water heater of the fifth embodiment is similarly applied to a heater connection with a power ratio of 1: 1 as shown in FIG. 2 and a heater connection with a power ratio of 2: 3 as shown in FIG. Is possible.
  • the other end of the heater R11 may be connected to the other end of the heater R12 without connecting the other end of the heater R11 to the first terminal of the second heater connection terminal 3.
  • step control with a power ratio of 1: 3 is possible.
  • FIG. 11A shows a circuit diagram of a heater device for a hot water heater in which a heater unit is driven by a single-phase AC power source using the heater controller for a hot water heater according to the sixth embodiment of the present invention.
  • the heater device for a water heater provided with the heater controller for the water heater of the sixth embodiment includes the heater controller for the water heater shown in FIG. 10A of the fifth embodiment, except for the connection of the heater pair and the overheat detecting device. It has the same configuration as the heater device for the hot water heater.
  • the water heater heater device provided with this water heater heater control device is used in a water heater provided with a heater for heating water.
  • the L side of the single-phase AC power supply is connected to the second terminal of the three-phase input terminal 1 of the common module 110, and the single-phase AC is connected to the third terminal of the three-phase input terminal 1.
  • the N side of the power supply is connected.
  • a heater device for a water heater provided with a heater controller for a water heater shown in FIG. 11A has three heaters having substantially the same resistance value by connecting a single-phase AC power source to two of the three-phase input terminals 1.
  • the switching unit 111 connects the heater pair (R11, R12) and the other heater R13 to the single-phase AC power source connected to the three-phase input terminal.
  • step control of a power ratio of 2: 3 becomes possible.
  • the same effect as the heater device for the water heater of the second embodiment is obtained.
  • the heater device for a hot water heater of the sixth embodiment when one of the first and second overheat detection devices 21 and 22 detects overheating, the third magnet switch M3 is in an open state.
  • the heaters R11, R12, and R13 are not energized.
  • the single-phase power supply is cut off on the most power supply side. Since no voltage is applied, there is no risk of electric shock.
  • the heater device for a hot water heater of the sixth embodiment is similarly applied to a heater connection with a power ratio of 1: 1 as shown in FIG. 2 and a heater connection with a power ratio of 2: 3 as shown in FIG. Is possible.
  • the other end of the heater R11 may be connected to the other end of the heater R12 without connecting the other end of the heater R11 to the first terminal of the second heater connection terminal 3.
  • step control with a power ratio of 1: 3 is possible.
  • each of the heater units is a single heater unit composed of a single heater R1, R2, R3, R11, R12, R13, or two heaters are connected in parallel to form a heater pair.
  • at least one heater unit may be configured by combining three or more heaters.
  • magnet switches M1, M2, M3
  • the present invention is not limited to the magnet switches, and for example, semiconductor switches may be used. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 三相交流電源が接続可能な三相入力端子1と、三相交流電源用の3つのヒータR1,R2,R3が接続されるヒータ接続端子2,3と、三相入力端子1に三相交流電源が接続されて、抵抗値が略同一のヒータR1,R2,R3を三相交流電圧で駆動するときは、三相入力端子1に接続された三相交流電源に対して、ヒータR1,R2,R3をY結線するかまたは△結線するかを切り換える切換部とを備える。また、三相入力端子のうちの2つの端子に単相交流電源が接続されて、単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、切換部によって、三相入力端子1に接続された単相交流電源に対して、単相交流電源用の2つのヒータ部を直列接続するかまたは2つのヒータ部のうちの1つを接続するかを切り換える。

Description

給湯機用ヒータ制御装置および給湯機用ヒータ装置
 この発明は、給湯機用ヒータ制御装置および給湯機用ヒータ装置に関する。
 従来、貯湯式暖房給湯器としては、貯湯タンク内に水を加熱するためのヒータ部を備えたものがある(例えば、特開2006-329581号公報参照)。このような貯湯式暖房給湯器では、省エネルギーの観点から能力制御を行うために、ヒータを制御する制御装置を備えている。
 ところで、ヨーロッパでは、地域の電源事情により単相/三相あるいは230V/400Vといった様々な電源仕様に対応するため、複数種類のヒータを準備する必要がある。このため、単相交流電源と三相交流電源では、制御回路を換える必要があり、ヒータを制御する制御装置を複数種類用意する必要があり、据付時の作業性が悪かったりコストが高くついたりするという問題がある。
 そこで、この発明の課題は、簡単な構成で異なる電源仕様に対応でき、作業性がよくコストを低減できる給湯機用ヒータ制御装置およびその給湯機用ヒータ制御装置を用いた給湯機用ヒータ装置を提供することにある。
 上記課題を解決するため、この発明の給湯機用ヒータ制御装置は、
 水を加熱する三相交流電源用の3つのヒータ部または単相交流電源用の2つのヒータ部を備えた給湯機に用いられる給湯機用ヒータ制御装置であって、
 三相交流電源が接続可能な三相入力端子と、
 上記三相交流電源用の3つのヒータ部または上記単相交流電源用の2つのヒータ部が接続されるヒータ接続端子と、
 上記三相入力端子に上記三相交流電源が接続されて、抵抗値が略同一の上記三相交流電源用の3つの上記ヒータ部を三相交流電圧で駆動するときは、上記三相入力端子に接続された上記三相交流電源に対して、上記三相交流電源用の3つのヒータ部をY結線するかまたは△結線するかを切り換えると共に、上記三相入力端子のうちの2つの端子に単相交流電源が接続されて、上記単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、上記三相入力端子に接続された上記単相交流電源に対して、上記単相交流電源用の2つのヒータ部を直列接続するかまたは上記単相交流電源用の2つのヒータ部のうちの1つを接続するかを切り換える切換部と
を備えたことを特徴とする。
 ここで、ヒータ部には、単一のヒータを1つのヒータ部として用いてもよいし、複数のヒータを組み合わせて1つのヒータ部を構成してもよい。
 上記構成によれば、三相入力端子に三相交流電源が接続されて、抵抗値が略同一の三相交流電源用の3つのヒータ部を三相交流電圧で駆動するときは、上記切換部によって、三相入力端子に接続された三相交流電源に対して、三相交流電源用の3つのヒータ部をY結線するかまたは△結線するかを切り換える。また、三相入力端子のうちの2つの端子に単相交流電源が接続されて、単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、上記切換部によって、三相入力端子に接続された単相交流電源に対して、単相交流電源用の2つのヒータ部を直列接続するかまたは2つのヒータ部のうちの1つを接続するかを切り換える。このように、電源仕様に応じて複数種類用意することなく、簡単な構成で異なる電源仕様に対応でき、据付時の作業性がよく、コストを低減できる。
 また、一実施形態の給湯機用ヒータ制御装置では、上記三相入力端子と上記ヒータ接続端子との間かつ上記切換部よりも上記三相入力端子側に、上記三相交流電源または上記単相交流電源からの交流電圧を遮断する遮断装置を備えた。
 上記実施形態によれば、三相入力端子とヒータ接続端子との間かつ切換部よりも三相入力端子側に備えた遮断装置により、異常時に三相交流電源または単相交流電源からの交流電圧を遮断することによって、ヒータ部や切換部などの回路の損傷を最小限にできる。
 また、一実施形態の給湯機用ヒータ制御装置では、上記三相交流電源用の3つのヒータ部または上記単相交流電源用の2つのヒータ部の過熱状態を検出して、上記三相交流電源と上記三相交流電源用の3つのヒータ部との接続を遮断するかまたは上記単相交流電源と上記単相交流電源用の2つのヒータ部との接続を遮断する安全装置を備えた。
 上記実施形態によれば、三相交流電源用の3つのヒータ部(または単相交流電源用の2つのヒータ部)の過熱状態を検出した安全装置により、三相交流電源(または単相交流電源)とヒータ部との接続を遮断することによって、ヒータ部の異常過熱に対してヒータ部と切換部などの回路の劣化や損傷を防止でき、信頼性を向上できる。
 また、一実施形態の給湯機用ヒータ制御装置では、上記安全装置は、上記三相入力端子と上記ヒータ接続端子との間かつ上記切換部よりも上記三相入力端子側に配置されている。
 上記実施形態によれば、上記三相入力端子とヒータ接続端子との間かつ切換部よりも三相入力端子側に安全装置を配置することによって、三相入力端子とヒータ接続端子と切換部と共に安全装置も共通モジュール化することが可能となり、三相交流電源用と単相交流電源用として両方の電源仕様に用いることができ、信頼性を向上しつつコストを低減できる。
 また、この発明の給湯機用ヒータ装置では、
 上記のいずれか1つの給湯機用ヒータ制御装置と、
 上記給湯機用ヒータ制御装置の上記ヒータ接続端子に接続された上記単相交流電源用の2つのヒータ部と
を備え、
 上記単相交流電源用の2つのヒータ部の抵抗値が略同一であることを特徴とする。
 上記実施形態によれば、三相入力端子のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、切換部によって、三相入力端子に接続された単相交流電源に対して、単相交流電源用の2つのヒータ部を直列接続するかまたは2つのヒータ部のうちの1つを接続するかを切り換える。これにより、単相交流電源用の2つのヒータ部を直列接続したときの電力と、2つのヒータ部のうちの1つを接続したときの電力との比が1:2となり、1:2の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置では、
 上記のいずれか1つの給湯機用ヒータ制御装置と、
 上記給湯機用ヒータ制御装置の上記ヒータ接続端子に接続された上記単相交流電源用の2つのヒータ部と
を備え、
 上記単相交流電源用の2つのヒータ部のうちの一方が、他方のヒータ部の抵抗値と抵抗値が夫々略同一の2つのヒータが並列に接続されたヒータ対であって、
 上記切換部は、上記三相入力端子に接続された上記単相交流電源に対して、上記ヒータ対と上記他方のヒータ部とを直列に接続するかまたは上記ヒータ対のみを接続するかを切り換えることを特徴とする。
 上記構成よれば、三相入力端子のうちの2つの端子に単相交流電源が接続されて、単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、切換部によって、三相入力端子に接続された単相交流電源に対して、単相交流電源用の2つのヒータ部のうちの一方であるヒータ対(他方のヒータ部の抵抗値と抵抗値が夫々略同一の2つのヒータが並列に接続されたもの)と他方のヒータ部とを直列に接続するかまたは上記ヒータ対を接続するかを切り換える。これにより、ヒータ対と他のヒータ部とを直列に接続したときの電力と、ヒータ対を接続したときの電力との比が1:3となり、1:3の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置では、
 上記のいずれか1つの給湯機用ヒータ制御装置と、
 上記給湯機用ヒータ制御装置の上記ヒータ接続端子に接続された上記単相交流電源用の2つのヒータ部と
を備え、
 上記単相交流電源用の2つのヒータ部のうちの一方が、他方のヒータ部の抵抗値と抵抗値が略同一の2つのヒータが並列に接続されたヒータ対であって、
 上記切換部は、上記三相入力端子に接続された上記単相交流電源に対して、上記ヒータ対と上記他方のヒータ部とを直列に接続するかまたは上記他方のヒータ部のみを接続するかを切り換えることを特徴とする。
 上記構成によれば、三相入力端子のうちの2つの端子に単相交流電源が接続されて、単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、切換部によって、三相入力端子に接続された単相交流電源に対して、単相交流電源用の2つのヒータ部のうちの一方であるヒータ対(他方のヒータ部の抵抗値と抵抗値が夫々略同一の2つのヒータが並列に接続されたもの)と他方のヒータ部とを直列に接続するかまたは上記他方のヒータ部を接続するかを切り換える。これにより、ヒータ対と他のヒータ部とを直列に接続したときの電力と、他方のヒータ部を接続したときの電力との比が2:3となり、2:3の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置では、
 上記給湯機用ヒータ制御装置の上記ヒータ接続端子に接続された上記単相交流電源用の2つのヒータ部と
を備え、
 上記単相交流電源用の2つのヒータ部のうちの一方が、他方のヒータ部の抵抗値と抵抗値が略同一の2つのヒータが並列に接続されたヒータ対であって、
 上記切換部は、上記三相入力端子に接続された上記単相交流電源に対して、上記ヒータ対と上記他方のヒータ部とを直列に接続するかまたは上記ヒータ対の一方のみを接続するかを切り換えることを特徴とする。
 上記構成によれば、三相入力端子のうちの2つの端子に単相交流電源が接続されて、単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、切換部によって、三相入力端子に接続された単相交流電源に対して、単相交流電源用の2つのヒータ部のうちの一方であるヒータ対(他方のヒータ部の抵抗値と抵抗値が夫々略同一の2つのヒータが並列に接続されたもの)と他方のヒータ部とを直列に接続するかまたは上記ヒータ対の一方のみを接続するかを切り換える。これにより、ヒータ対と他のヒータ部とを直列に接続したときの電力と、ヒータ対の一方のみを接続したときの電力との比が2:3となり、2:3の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置では、
 上記のいずれか1つ載の給湯機用ヒータ制御装置と、
 上記給湯機用ヒータ制御装置の上記ヒータ接続端子に接続された上記三相交流電源用の3つのヒータ部と
を備え、
 上記三相交流電源の交流電圧が少なくとも230Vの低電圧地域で用いる上記三相交流電源用の3つのヒータ部の抵抗値と上記三相交流電源の交流電圧が少なくとも400Vの高電圧地域で用いる上記三相交流電源用の3つのヒータ部の抵抗値の比を略1:3としたことを特徴とする。
 上記構成によれば、三相入力端子に三相交流電源が接続される三相交流電源駆動のとき、三相交流電源の交流電圧が少なくとも230Vの低電圧地域で用いる三相交流電源用の3つのヒータ部の抵抗値と三相交流電源の交流電圧が少なくとも400Vの高電圧地域で用いる三相交流電源用の3つのヒータ部の抵抗値の比を略1:3とすることによって、ヒータ部の電力やステップ制御が略同一になる。したがって、三相交流電源の交流電圧が230Vなどの低電圧地域または400Vなどの高電圧地域のどちらであっても、抵抗値の異なる2種類のヒータ部により、給湯のための加熱能力を略同等にできる。
 以上より明らかなように、この発明の給湯機用ヒータ制御装置によれば、簡単な構成で異なる電源仕様に対応でき、作業性がよくコストを低減できる給湯機用ヒータ制御装置を実現することができる。
 また、一実施形態の給湯機用ヒータ制御装置によれば、三相入力端子とヒータ接続端子との間かつ切換部よりも三相入力端子側に備えた遮断装置により、異常時に三相交流電源または単相交流電源からの交流電圧を遮断することによって、ヒータ部や制御回路などの損傷を最小限にできる。
 また、一実施形態の給湯機用ヒータ制御装置によれば、三相交流電源用の3つのヒータ部(または単相交流電源用の2つのヒータ部)の過熱状態を検出した安全装置により、三相交流電源(または単相交流電源)とヒータ部との接続を遮断することによって、ヒータ部の異常過熱に対してヒータ部と切換部などの回路の劣化や損傷を防止でき、信頼性を向上できる。
 また、一実施形態の給湯機用ヒータ制御装置によれば、三相入力端子と上記ヒータ接続端子との間、かつ、上記三相入力端子と上記切換部との間に安全装置を配置することによって、三相入力端子とヒータ接続端子と切換部と共に安全装置も共通モジュール化することが可能となり、三相交流電源用と単相交流電源用として両方の電源仕様に用いることができ、信頼性を向上しつつコストを低減できる。
 また、この発明の給湯機用ヒータ装置によれば、給湯機用ヒータ制御装置と、上記給湯機用ヒータ制御装置のヒータ接続端子に接続された単相交流電源用の2つのヒータ部とを備えた給湯機用ヒータ装置において、三相入力端子のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の2つのヒータ部を単相交流電圧で駆動するとき、切換部によって、三相入力端子に接続された単相交流電源に対して、2つのヒータ部を直列接続するかまたは2つのヒータ部のうちの1つを接続するかを切り換えることによって、1:2の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置によれば、給湯機用ヒータ制御装置と、上記給湯機用ヒータ制御装置のヒータ接続端子に接続された単相交流電源用の2つのヒータ部とを備えた給湯機用ヒータ装置において、三相入力端子のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の単相交流電源用の2つのヒータ部を単相交流電圧で駆動するとき、切換部によって、三相入力端子に接続された単相交流電源に対して、ヒータ対(他方のヒータ部の抵抗値と抵抗値が夫々略同一の2つのヒータが並列に接続されたもの)と他方のヒータ部とを直列に接続するかまたは上記ヒータ対を接続するかを切り換えることによって、1:3の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置によれば、給湯機用ヒータ制御装置と、上記給湯機用ヒータ制御装置のヒータ接続端子に接続された単相交流電源用の2つのヒータ部とを備えた給湯機用ヒータ装置において、三相入力端子のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の単相交流電源用の2つのヒータ部を単相交流電圧で駆動するとき、切換部によって、三相入力端子に接続された単相交流電源に対して、ヒータ対(他方のヒータ部の抵抗値と抵抗値が夫々略同一の2つのヒータが並列に接続されたもの)と他方のヒータ部とを直列に接続するかまたは上記他方のヒータ部を接続するかを切り換えることによって、2:3の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置によれば、給湯機用ヒータ制御装置と、上記給湯機用ヒータ制御装置のヒータ接続端子に接続された単相交流電源用の2つのヒータ部とを備えた給湯機用ヒータ装置において、三相入力端子のうちの2つの端子に単相交流電源が接続されて、単相交流電源用の2つのヒータ部を単相交流電圧で駆動するときは、切換部によって、三相入力端子に接続された単相交流電源に対して、単相交流電源用の2つのヒータ部のうちの一方であるヒータ対(他方のヒータ部の抵抗値と抵抗値が夫々略同一の2つのヒータが並列に接続されたもの)と他方のヒータ部とを直列に接続するかまたは上記ヒータ対の一方のみを接続するかを切り換える。これにより、ヒータ対と他のヒータ部とを直列に接続したときの電力と、ヒータ対の一方のみを接続したときの電力との比が2:3となり、2:3の電力比率のステップ制御が可能となる。
 また、この発明の給湯機用ヒータ装置によれば、給湯機用ヒータ制御装置と、上記給湯機用ヒータ制御装置のヒータ接続端子に接続された三相交流電源用の3つのヒータ部とを備えた給湯機用ヒータ装置において、三相入力端子に三相交流電源が接続される三相交流電源駆動のとき、三相交流電源の交流電圧が少なくとも230Vの低電圧地域で用いるヒータ部の抵抗値と三相交流電源の交流電圧が少なくとも400Vの高電圧地域で用いるヒータ部の抵抗値の比を略1:3とすることによって、三相交流電源の交流電圧が230Vなどの低電圧地域または400Vなどの高電圧地域のどちらであっても、給湯のための加熱能力を略同等にすることができる。
図1はこの発明の第1実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図である。 図2は上記給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の回路図である。 図3は上記給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の他の回路図である。 図4は上記給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の他の回路図である。 図5はこの発明の第2実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図である。 図6は上記第2実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置の他の例を示す回路図である。 図7はこの発明の第3実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図である。 図8はこの発明の第4実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図である。 図9Aは上記第4実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置の他の例を示す回路図である。 図9Bは上記第4実施形態の他の例の給湯機用ヒータ装置の回路図である。 図10Aはこの発明の第5実施形態の給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の回路図である。 図10Bは上記第5実施形態の他の例の給湯機用ヒータ装置の回路図である。 図11Aはこの発明の第6実施形態の給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の回路図である。 図11Bは上記第6実施形態の他の例の給湯機用ヒータ装置の回路図である。
 以下、この発明の給湯機用ヒータ制御装置および給湯機用ヒータ装置を図示の実施の形態により詳細に説明する。
 〔第1実施形態〕
 図1はこの発明の第1実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図を示している。この給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、水を加熱するヒータを備えた給湯機に用いられる。
 この第1実施形態の給湯機用ヒータ制御装置は、図1に示すように、三相交流電源が接続可能な三相入力端子1と、抵抗値が略同一の三相交流電源用のヒータ部の一例としてのヒータR1,R2,R3が接続される第1,第2ヒータ接続端子2,3と、三相入力端子1と第2ヒータ接続端子3との間に接続された第1,第2マグネットスイッチM1,M2と、上記第1,第2マグネットスイッチM1,M2を制御する制御部11とを備えている。上記第1,第2マグネットスイッチM1,M2と制御部11で切換部を構成している。また、三相入力端子1と第1,第2ヒータ接続端子2,3と第1,第2マグネットスイッチM1,M2および制御部11を一体化して、給湯機用ヒータ制御装置である共通モジュール10を形成している。
 図1に示すように、三相入力端子1の第1端子に三相交流電源のR相が接続され、三相入力端子1の第2端子に三相交流電源のS相が接続され、三相入力端子1の第3端子に三相交流電源のT相が接続されている。上記三相入力端子1の第1端子を第1ヒータ接続端子2の第1端子に接続し、三相入力端子1の第2端子を第1ヒータ接続端子2の第2端子に接続し、三相入力端子1の第3端子を第1ヒータ接続端子2の第3端子に接続している。
 上記第1ヒータ接続端子2の第1端子にヒータR1の一端を接続し、ヒータR1の他端を第2ヒータ接続端子3の第1端子に接続している。上記第1ヒータ接続端子2の第2端子にヒータR2の一端を接続し、ヒータR2の他端を第2ヒータ接続端子3の第2端子に接続している。上記第1ヒータ接続端子2の第3端子にヒータR3の一端を接続し、ヒータR3の他端を第2ヒータ接続端子3の第3端子に接続している。
 また、上記第1,第2マグネットスイッチM1,M2は夫々、同時に開閉動作する3つのa接点を有している。そして、第2ヒータ接続端子3の第1端子を、第2マグネットスイッチM2の第1のa接点の端子1に接続している。上記第2ヒータ接続端子3の第2端子を、第2マグネットスイッチM2の第2のa接点の端子3に接続している。上記第2ヒータ接続端子3の第3端子を、第2マグネットスイッチM2の第3のa接点の端子5に接続している。そして、上記第2マグネットスイッチM2の端子2と端子4を接続すると共に、第2マグネットスイッチM2の端子4と端子6を接続している。
 上記第2マグネットスイッチM2の第1のa接点の端子1と、第1マグネットスイッチM1の第3のa接点の端子6とを接続している。上記第2マグネットスイッチM2の第2のa接点の端子3と、第1マグネットスイッチM1の第2のa接点の端子4とを接続している。上記第2マグネットスイッチM2の第3のa接点の端子5と、第1マグネットスイッチM1の第1のa接点の端子2とを接続している。
 上記第1マグネットスイッチM1の第1のa接点の端子1を三相入力端子1の第1端子に接続し、第1マグネットスイッチM1の第2のa接点の端子3を三相入力端子1の第3端子に接続し、第1マグネットスイッチM1の第3のa接点の端子5を三相入力端子1の第2端子に接続している。
 上記制御部11は、第1マグネットスイッチM1を駆動する第1駆動回路11aと、第2マグネットスイッチM2を駆動する第2駆動回路11bとを有している。
 上記構成の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置において、第2駆動回路11bにより第2マグネットスイッチM2をオンする一方、第1駆動回路11aにより第1マグネットスイッチM1をオフすることにより、三相入力端子1に接続された三相交流電源(R相,S相,T相)に対して、ヒータR1,R2,R3をY結線する。また、第1駆動回路11aにより第1マグネットスイッチM1をオンする一方、第2駆動回路11bにより第2マグネットスイッチM2をオフすることにより、三相入力端子1に接続された三相交流電源(R相,S相,T相)に対して、ヒータR1,R2,R3を△結線する。
 上記切換部11は、第1,第2マグネットスイッチM1,M2のいずれか一方がオンして他方がオフしている状態から、逆のマグネットスイッチをオンに切り換えるとき、第1,第2マグネットスイッチM1,M2の両方をオフ状態に所定時間した後に切り換えるように制御する。これにより、第1,第2マグネットスイッチM1,M2の両方が同時にオン状態とならず、短絡などの異常の発生を確実に防止することができる。
 例えば、ヒータR1,R2,R3の各抵抗値をrとし、線間電圧をVとしたとき、Y結線における3つのヒータR1,R2,R3の電力は、
   (V/√3)/r×3=V/r
で表される。一方、△結線における3つのヒータR1,R2,R3の電力は、
   V/r×3
で表される。すなわち、Y結線のときの電力と△結線のときの電力との比は、1:3となる。
 上記構成の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置によれば、三相入力端子1に接続された三相交流電源(R相,S相,T相)に対して、3つのヒータR1,R2,R3をY結線するかまたは△結線するかを切り換えることによって、簡単な構成で異なる電源仕様に対応でき、給湯機用ヒータ制御装置を複数種類用意することがなく、据付時の作業性がよく、コストを低減することができる。
 また、三相入力端子1に三相交流電源が接続される三相交流電源駆動のとき、三相交流電源の交流電圧が230Vのときに用いるヒータR1,R2,R3の抵抗値と三相交流電源の交流電圧が400Vのときに用いるヒータR1,R2,R3の抵抗値の比を略1:3とすることによって、三相交流電源の交流電圧が230Vまたは400Vのどちらであっても、給湯のための加熱能力を略同等にすることができる。なお、この発明の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置において、三相交流電源の交流電圧が230Vの定電圧地域や400Vの高電圧地域だけでなく、200V,220V,240V等の低電圧地域や、380V,415V,460V等の高電圧地域で用いてもよい。
 例えば、三相交流電源の交流電圧が230Vのとき、△結線における3つのヒータR1,R2,R3の電力は、ヒータR1,R2,R3の各抵抗値をrとすると、
   230/r×3=52900×3/r=158700/r[W]
で表される。一方、三相交流電源の交流電圧が230Vのとき、△結線における3つのヒータR1,R2,R3の電力は、ヒータR1,R2,R3の各抵抗値を3rとすると、
   400/r=160000/r[W]
で表され、三相交流電源の交流電圧が230Vまたは400Vのどちらであっても、給湯のための加熱能力は略同等となる。
 また、図2は上記給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の回路図を示している。この図2では、図1に示す共通モジュール10を用いている。
 共通モジュール10の三相入力端子1の第1端子に単相交流電源のL側が接続され、三相入力端子1の第2端子に単相交流電源のN側が接続されている。また、上記第1ヒータ接続端子2の第1端子に、単相交流電源用のヒータ部の一例としてのヒータR11の一端を接続し、ヒータR11の他端を第2ヒータ接続端子3の第1端子に接続している。上記第1ヒータ接続端子2の第2端子に単相交流電源用のヒータ部の一例としてのヒータR12の一端を接続し、ヒータR12の他端を第2ヒータ接続端子3の第2端子に接続している。
 上記構成の給湯機用ヒータ制御装置において、上記第2駆動回路11bにより第2マグネットスイッチM2をオンする一方、第1駆動回路11aにより第1マグネットスイッチM1をオフすることにより、三相入力端子1に接続された単相交流電源に対して、ヒータR11,R12を直列に接続する。また、第1駆動回路11aにより第1マグネットスイッチM1をオンする一方、第2駆動回路11bにより第2マグネットスイッチM2をオフすることにより、三相入力端子1に接続された単相交流電源に対して、ヒータR11のみを接続する。
 上記ヒータR11,R12を直列に接続した場合、例えば、ヒータR11,R12の抵抗値をrとし、線間電圧をVとすると、ヒータR11,R12の電力は、
   V/(2r)
で表される。一方、ヒータR11のみの電力は、
   V/r
で表される。すなわち、ヒータR11,R12を直列に接続したときの電力と、ヒータR11のみのときの電力との比は、1:2となる。
 図2に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置では、三相入力端子1のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の2つのヒータR11,R12を単相交流電圧で駆動するとき、切換部11によって、三相入力端子1に接続された単相交流電源に対して、2つのヒータR11,R12を直列接続するかまたはヒータR11のみを接続するかを切り換えることによって、1:2の電力比率のステップ制御が可能となる。
 また、図3は上記給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する他の回路図を示している。図3に示す給湯機用ヒータ制御装置は、ヒータR13を除いて図2に示す給湯機用ヒータ制御装置と同一の構成をしている。
 図3に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、ヒータR11にヒータR13を並列に接続して、単相交流電源用のヒータ部の一例としてのヒータ対を形成している点が図2に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と異なる。
 上記構成の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置において、第2駆動回路11bにより第2マグネットスイッチM2をオンする一方、第1駆動回路11aにより第1マグネットスイッチM1をオフすることにより、三相入力端子1に接続された単相交流電源に対して、単相交流電源用のヒータ部の一例としてのヒータ対(R11,R13)とヒータR12を直列に接続する。また、第1駆動回路11aにより第1マグネットスイッチM1をオンする一方、第2駆動回路11bにより第2マグネットスイッチM2をオフすることにより、三相入力端子1に接続された単相交流電源に対して、ヒータ対(R11,R13)のみを接続する。
 上記ヒータ対(R11,R13)とヒータR12を直列に接続した場合、例えば、ヒータR11,R12,R13の各抵抗値をrとし、線間電圧をVとすると、ヒータR11,R12,R13の電力は、
   V/(r+r/2)
で表される。一方、ヒータ対(R11,R13)のみの電力は、
   V/(r/2)
で表される。すなわち、ヒータ対(R11,R13)とヒータR12を直列に接続したときの電力と、ヒータ対(R11,R13)のみのときの電力との比は、
   V/(r+r/2):V/(r/2) = 1:3
となる。
 図3に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、三相入力端子1のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の3つのヒータR11,R12,R13を単相交流電圧で駆動するとき、切換部11によって、三相入力端子に接続された単相交流電源に対して、ヒータ対(R11,R13)と他のヒータR12とを直列に接続するかまたはヒータ対(R11,R13)のみを接続するかを切り換えることによって、1:3の電力比率のステップ制御が可能となる。
 また、図4は上記給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ制御装置他の回路図を示している。図3に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、ヒータR13を除いて図2に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同一の構成をしている。
 図4に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、ヒータR12にヒータR13を並列に接続して、単相交流電源用のヒータ部の一例としてのヒータ対を形成している点が図2に示す給湯機用ヒータ制御装置と異なる。
 上記構成の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置において、第2駆動回路11bにより第2マグネットスイッチM2をオンする一方、第1駆動回路11aにより第1マグネットスイッチM1をオフすることにより、三相入力端子1に接続された単相交流電源に対して、ヒータR11とヒータ対(R12,R13)を直列に接続する。また、第1駆動回路11aにより第1マグネットスイッチM1をオンする一方、第2駆動回路11bにより第2マグネットスイッチM2をオフすることにより、三相入力端子1に接続された単相交流電源に対して、ヒータR11のみを接続する。
 上記ヒータR11とヒータ対(R12,R13)を直列に接続した場合、例えば、ヒータR11,R12,R13の各抵抗値をrとし、線間電圧をVとすると、ヒータR11,R12,R13の電力は、
   V/(r+r/2)
で表される。一方、ヒータR11のみの電力は、
   V/r
で表される。すなわち、ヒータR11とヒータ対(R12,R13)を直列に接続したときの電力と、ヒータR11のみのときの電力との比は、
   V/(r+r/2):V/r = 2:3
となる。
 図4に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、三相入力端子1のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の3つのヒータR11,R12,R13を単相交流電圧で駆動するとき、切換部11によって、三相入力端子に接続された単相交流電源に対して、ヒータ対(R12,R13)と他のヒータR11とを直列に接続するかまたは他のヒータR11のみを接続するかを切り換えることによって、2:3の電力比率のステップ制御が可能となる。
 〔第2実施形態〕
 図5はこの発明の第2実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図を示している。この給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、水を加熱するヒータを備えた給湯機に用いられる。
 この第2実施形態の給湯機用ヒータ制御装置は、図5に示すように、三相交流電源が接続可能な三相入力端子1と、抵抗値が略同一の三相交流電源用のヒータ部の一例としてのヒータR1,R2,R3が接続される第1,第2ヒータ接続端子2,3と、三相入力端子1と第1ヒータ接続端子2との間に接続された遮断装置の一例としての第3マグネットスイッチM3と、第3マグネットスイッチM3と第2ヒータ接続端子3との間に接続された第1,第2マグネットスイッチM1,M2と、上記第1,第2マグネットスイッチM1,M2を制御する制御部111と、上記制御部111と接続される異常検出用端子4とを備えている。上記第1~第3マグネットスイッチM1,M2,M3と制御部111で切換部を構成している。また、三相入力端子1と第1,第2ヒータ接続端子2,3と異常検出用端子4と第1~第3マグネットスイッチM1,M2,M3および制御部111を一体化して、共通モジュール110を形成している。
 図5に示すように、三相入力端子1の第1端子に三相交流電源のR相が接続され、三相入力端子1の第2端子に三相交流電源のS相が接続され、三相入力端子1の第3端子に三相交流電源のT相が接続されている。
 また、上記第1~第3マグネットスイッチM1,M2,M3は夫々、同時に開閉動作する3つのa接点を有している。上記三相入力端子1の第1端子を、第3マグネットスイッチM3の第1のa接点の端子1に接続し、第3マグネットスイッチM3の第1のa接点の端子2を第1ヒータ接続端子2の第1端子に接続している。上記三相入力端子1の第2端子を、第3マグネットスイッチM3の第2のa接点の端子3に接続し、第3マグネットスイッチM3の第2のa接点の端子4を第1ヒータ接続端子2の第2端子に接続している。上記三相入力端子1の第3端子を、第3マグネットスイッチM3の第3のa接点の端子5に接続し、第3マグネットスイッチM3の第3のa接点の端子6を第1ヒータ接続端子2の第3端子に接続している。
 上記第1ヒータ接続端子2の第1端子に、安全装置の一例としての第1過熱検出装置21の第1のb接点の端子1を接続し、第1過熱検出装置21の第1のb接点の端子2にヒータR1の一端を接続し、ヒータR1の他端を第2ヒータ接続端子3の第1端子に接続している。上記第1ヒータ接続端子2の第2端子に第1過熱検出装置21の第2のb接点の端子3を接続し、第1過熱検出装置21の第2のb接点の端子4にヒータR2の一端を接続し、ヒータR2の他端を第2ヒータ接続端子3の第2端子に接続している。上記第1ヒータ接続端子2の第3端子に、安全装置の一例としての第2過熱検出装置22の第1のb接点の端子1を接続し、第2過熱検出装置22の第1のb接点の端子2をヒータR3の一端を接続し、ヒータR3の他端を第2ヒータ接続端子3の第3端子に接続している。
 上記第1,第2過熱検出装置21,22には、バイメタルサーモスタットを用いており、過熱時には各過熱検出装置の第1,第2接点が連動して開動作を行う。
 また、上記第2ヒータ接続端子3の第1端子を、第2マグネットスイッチM2の第1のa接点の端子1に接続している。上記第2ヒータ接続端子3の第2端子を、第2マグネットスイッチM2の第2のa接点の端子3に接続している。上記第2ヒータ接続端子3の第3端子を、第2マグネットスイッチM2の第3のa接点の端子5に接続している。そして、上記第2マグネットスイッチM2の端子2と端子4を接続すると共に、第2マグネットスイッチM2の端子4と端子6を接続している。
 上記第2マグネットスイッチM2の第1のa接点の端子1と、第1マグネットスイッチM1の第3のa接点の端子6とを接続している。上記第2マグネットスイッチM2の第2のa接点の端子3と、第1マグネットスイッチM1の第2のa接点の端子4とを接続している。上記第2マグネットスイッチM2の第3のa接点の端子5と、第1マグネットスイッチM1の第1のa接点の端子2とを接続している。
 上記第1マグネットスイッチM1の第1のa接点の端子1を第3マグネットスイッチM3の第2端子に接続し、第1マグネットスイッチM1の第2のa接点の端子3を第3マグネットスイッチM3の第6端子に接続し、第1マグネットスイッチM1の第3のa接点の端子5を第3マグネットスイッチM3の第4端子に接続している。
 上記制御部111は、第1マグネットスイッチM1を駆動する第1駆動回路111aと、第2マグネットスイッチM2を駆動する第2駆動回路111bと、第3マグネットスイッチM3を駆動する第3駆動回路111cと、異常検出回路111dとを有している。
 上記異常検出回路111dの一方の入力に異常検出用端子4の第1端子を接続し、異常検出用端子4の第1端子を第2過熱検出装置22の第2のb接点の端子3に接続している。また、第2過熱検出装置22の第2のb接点の端子4に異常検出用端子4の第2端子を接続し、異常検出用端子4の第2端子を異常検出回路111dの他方の入力に接続している。
 上記第2過熱検出装置22が過熱状態を検出して動作すると、端子1,2間および端子3,4間のb接点が開き、第2過熱検出装置22の端子3,4間のb接点の開動作により異常検出回路111dは、第3駆動回路111cに異常信号を出力する。上記異常検出回路111dからの異常信号を受けて、第3駆動回路111cは、第3マグネットスイッチM3をオフして三相交流電源からの交流電圧を遮断する。
 上記第1過熱検出装置21が過熱状態を検出して動作した場合は、第1過熱検出装置21の端子1,2間および端子3,4間のb接点が開き、ヒータR1,R2への電圧供給が遮断される。
 ここで、第2過熱検出装置22の過熱検出温度の設定値(過熱保護値)を、第1過熱検出装置21の過熱検出温度の設定値(過熱保護値)よりも低く設定しておけば、第2過熱検出装置が第1過熱検出装置よりも早く動作し、全ヒータへの電圧供給が遮断されるため、過熱保護に関してより安全なシステムとすることができる。
 上記構成の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置において、第2駆動回路111bおよび第3駆動回路111cにより第2,第3マグネットスイッチM2,M3をオンする一方、第1駆動回路111aにより第1マグネットスイッチM1をオフすることにより、三相入力端子1に接続された三相交流電源(R相,S相,T相)に対して、三相交流電源用のヒータR1,R2,R3をY結線する。また、第1駆動回路111aおよび第3駆動回路111cにより第1,第3マグネットスイッチM1,M3をオンする一方、第2駆動回路111bにより第2マグネットスイッチM2をオフすることにより、三相入力端子1に接続された三相交流電源(R相,S相,T相)に対して、三相交流電源用のヒータR1,R2,R3を△結線する。
 上記給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置では、第1実施形態と同様、Y結線のときの電力と△結線のときの電力との比は、1:3となる。
 さらに、上記給湯機用ヒータ制御装置では、三相入力端子1と第1ヒータ接続端子2との間かつマグネットスイッチ(M1,M2)よりも三相入力端子1側に備えた第3マグネットスイッチM3を、異常時に三相交流電源からの交流電圧を遮断することによって、ヒータR1,R2,R3や切換部などの回路の損傷を最小限に抑えることができる。
 また、上記ヒータR1,R2,R3の過熱状態を検出した第1,第2過熱検出装置21,22により、三相交流電源とヒータR1,R2,R3との接続を遮断することによって、ヒータR1,R2,R3の異常過熱に対してヒータR1,R2,R3と切換部などの回路の劣化や損傷を防止でき、信頼性を向上できる。
 上記切換部111は、第1,第2マグネットスイッチM1,M2のいずれか一方がオンして他方がオフしている状態から、逆のマグネットスイッチをオンに切り換えるとき、第1,第2マグネットスイッチM1,M2の両方をオフ状態に所定時間した後に切り換えるように制御する。これにより、第1,第2マグネットスイッチM1,M2の両方が同時にオン状態とならず、短絡などの異常の発生を確実に防止することができる。
 上記切換部111は、第1,第2マグネットスイッチM1,M2のいずれか一方がオンして他方がオフしている状態から、逆のマグネットスイッチをオンに切り換えるとき、第3マグネットスイッチM3をオフ状態に所定時間した後に第1,第2マグネットスイッチM1,M2を切り換えるように制御する。あるいは、上記切換部111は、第1,第2マグネットスイッチM1,M2のいずれか一方がオンして他方がオフしている状態から、逆のマグネットスイッチをオンに切り換えるとき、第1~第3マグネットスイッチM1,M2,M3のすべてをオフ状態に所定時間した後に切り換えるように制御する。これにより、切換時に第1,第2マグネットスイッチM1,M2の両方が同時にオン状態となっても、短絡などの異常の発生を確実に防止することができる。
 なお、上記第2実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、第1実施形態の図2~図4に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同様に単相交流電源によりヒータ部を駆動する場合にも用いることができる。
 図6は上記第2実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置の他の例の回路図を示している。図6に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、過熱検出装置を除いて図5に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同様の構成をしている。
 図6に示すように、第1ヒータ接続端子2の第1端子に、安全装置の一例としての第1過熱検出装置21の第1のb接点の端子1を接続し、第1過熱検出装置21の第1のb接点の端子2にヒータR1の一端を接続し、ヒータR1の他端を第2ヒータ接続端子3の第1端子に接続している。
 また、上記第1ヒータ接続端子2の第2端子に第2過熱検出装置22の第1のb接点の端子1を接続し、第2過熱検出装置22の第1のb接点の端子2にヒータR2の一端を接続し、ヒータR2の他端を第2ヒータ接続端子3の第2端子に接続している。
 また、上記第1ヒータ接続端子2の第3端子に、安全装置の一例としての第3過熱検出装置23の第1のb接点の端子1を接続し、第3過熱検出装置23の第1のb接点の端子2をヒータR3の一端を接続し、ヒータR3の他端を第2ヒータ接続端子3の第3端子に接続している。
 上記第1~第3過熱検出装置21~23は、バイメタルサーモスタットを用いてヒータR1,R2,R3の過熱状態を検出する。過熱時には、各過熱検出装置の第1,第2接点が連動して開動作を行う。
 上記異常検出回路111dの一方の入力に異常検出用端子4の第1端子を接続し、異常検出用端子4の第1端子を第1過熱検出装置21の第2のb接点の端子3に接続している。上記第1過熱検出装置21の第2のb接点の端子4と第2過熱検出装置22の第2のb接点の端子3を接続し、第2過熱検出装置22の第2のb接点の端子4と第3過熱検出装置23の第2のb接点の端子3を接続している。そして、第3過熱検出装置23の第2のb接点の端子4に異常検出用端子4の第2端子を接続し、異常検出用端子4の第2端子を異常検出回路111dの他方の入力に接続している。第1~第3過熱検出装置21~23の少なくとも1つが過熱状態を検出して動作すると、端子1,2間および端子3,4間のb接点が開き、第1~第3過熱検出装置21~23のいずれかの端子3,4間のb接点の開動作により、異常検出回路111dは、第3駆動回路111cに異常信号を出力する。
 この図6に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、図5に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同様の効果を有すると共に、第1~第3過熱検出装置21~23の少なくとも1つがヒータR1,R2,R3の過熱状態を検出して動作すると、第3マグネットスイッチM3がオフして、異常時に三相交流電源からの交流電圧を確実に遮断することができる。
 〔第3実施形態〕
 図7はこの発明の第3実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図を示している。この第3実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、第1,第2マグネットスイッチおよび制御部を除いて第1実施形態の図2に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同一の構成をしており、同一構成部は同一参照番号を付して説明を省略する。
 図7に示す給湯機用ヒータ制御装置は、第1,第2マグネットスイッチM11,M12を駆動する回路が図2に示す給湯機用ヒータ制御装置と異なる。
 すなわち、第1駆動回路211aの制御出力の一方に第1マグネットスイッチM11の駆動コイルCL1の一端を接続し、その駆動コイルCL1の他端を第2マグネットスイッチM12のb接点の端子8に接続し、第2マグネットスイッチM12のb接点の端子7を第1駆動回路211aの制御出力の他方に接続している。
 また、第2駆動回路211bの制御出力の一方に第2マグネットスイッチM12の駆動コイルCL2の一端を接続し、その駆動コイルCL2の他端を第1マグネットスイッチM11のb接点の端子8に接続し、第1マグネットスイッチM11のb接点の端子7を第2駆動回路211bの制御出力の他方に接続している。
 これにより、第1,第2マグネットスイッチM11,M12の一方がオン動作中の場合は、オン動作している側の端子7,8間のb接点が開いているので、第1,第2駆動回路211a,211bにより第1,第2マグネットスイッチM11,M12の他方をオン動作することができない。すなわち、第1,第2マグネットスイッチM11,M12の両方がオフ状態で端子7,8間のb接点が閉じていない限り、第1,第2マグネットスイッチM11,M12のいずれか一方をオンすることができない。
 したがって、第1,第2マグネットスイッチM11,M12が同時にオンすることがなく、電源線間の短絡を確実に防止することができる。
 上記第3実施形態では、遮断装置(一例としては第3マグネットスイッチM3)と過熱検出装置を設けていないが、それらを設けてもよい。
 〔第4実施形態〕
 図8はこの発明の第4実施形態の給湯機用ヒータ制御装置を用いてヒータ部を三相交流電源で駆動する給湯機用ヒータ装置の回路図を示している。この第4実施形態の給湯機用ヒータ制御装置は、過熱検出装置を除いて第2実施形態の給湯機用ヒータ制御装置と同一の構成をしており、同一構成部は同一参照番号を付している。この給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、水を加熱するヒータを備えた給湯機に用いられる。
 この第4実施形態の給湯機用ヒータ制御装置は、図8に示すように、三相交流電源が接続可能な三相入力端子1と、抵抗値が略同一の三相交流電源用のヒータ部の一例としてのヒータR1,R2,R3が接続される第1,第2ヒータ接続端子2,3と、三相入力端子1と第1ヒータ接続端子2との間に接続された遮断装置の一例としての第3マグネットスイッチM3と、第3マグネットスイッチM3と第2ヒータ接続端子3との間に接続された第1,第2マグネットスイッチM1,M2と、上記第1,第2マグネットスイッチM1,M2を制御する制御部111と、第3マグネットスイッチM3と第1ヒータ接続端子2との間に接続された安全装置の一例としての第1,第2過熱検出装置21,22とを備えている。上記第1~第3マグネットスイッチM1,M2,M3と制御部111で切換部を構成している。また、三相入力端子1と第1,第2ヒータ接続端子2,3と第1~第3マグネットスイッチM1,M2,M3と第1,第2過熱検出装置21,22および制御部111を一体化して、共通モジュール310を形成している。
 図8に示すように、三相入力端子1の第1端子に三相交流電源のR相が接続され、三相入力端子1の第2端子に三相交流電源のS相が接続され、三相入力端子1の第3端子に三相交流電源のT相が接続されている。
 また、上記第1~第3マグネットスイッチM1,M2,M3は夫々、同時に開閉動作する3つのa接点を有している。上記三相入力端子1の第1端子を、第3マグネットスイッチM3の第1のa接点の端子1に接続し、第3マグネットスイッチM3の第1のa接点の端子2を第1過熱検出装置21の第1のb接点の端子1に接続している。上記第1過熱検出装置21の第1のb接点の端子2を第1ヒータ接続端子2の第1端子に接続している。上記三相入力端子1の第2端子を、第3マグネットスイッチM3の第2のa接点の端子3に接続し、第3マグネットスイッチM3の第2のa接点の端子4を第1過熱検出装置21の第2のb接点の端子3に接続している。上記第1過熱検出装置21の第2のb接点の端子4を第1ヒータ接続端子2の第2端子に接続している。また、上記三相入力端子1の第3端子を、第3マグネットスイッチM3の第3のa接点の端子5に接続し、第3マグネットスイッチM3の第3のa接点の端子6を第2過熱検出装置22の第1のb接点の端子1に接続している。上記第2過熱検出装置22の第1のb接点の端子2を第1ヒータ接続端子2の第3端子に接続している。
 上記第1ヒータ接続端子2の第1端子にヒータR1の一端を接続し、ヒータR1の他端を第2ヒータ接続端子3の第1端子に接続している。上記第1ヒータ接続端子2の第2端子にヒータR2の一端を接続し、ヒータR2の他端を第2ヒータ接続端子3の第2端子に接続している。また、上記第1ヒータ接続端子2の第3端子にヒータR3の一端を接続し、ヒータR3の他端を第2ヒータ接続端子3の第3端子に接続している。
 上記第1,第2過熱検出装置21,22には、バイメタルサーモスタットを用いており、過熱時には各過熱検出装置の第1,第2接点が連動して開動作を行う。
 また、上記第2ヒータ接続端子3の第1端子を、第2マグネットスイッチM2の第1のa接点の端子1に接続している。上記第2ヒータ接続端子3の第2端子を、第2マグネットスイッチM2の第2のa接点の端子3に接続している。上記第2ヒータ接続端子3の第3端子を、第2マグネットスイッチM2の第3のa接点の端子5に接続している。そして、上記第2マグネットスイッチM2の端子2と端子4を接続すると共に、第2マグネットスイッチM2の端子4と端子6を接続している。
 上記第2マグネットスイッチM2の第1のa接点の端子1と、第1マグネットスイッチM1の第3のa接点の端子6とを接続している。上記第2マグネットスイッチM2の第2のa接点の端子3と、第1マグネットスイッチM1の第2のa接点の端子4とを接続している。上記第2マグネットスイッチM2の第3のa接点の端子5と、第1マグネットスイッチM1の第1のa接点の端子2とを接続している。
 上記第1マグネットスイッチM1の第1のa接点の端子1を、第1過熱検出装置21の第1のb接点の端子2に接続している。上記第1マグネットスイッチM1の第2のa接点の端子3を、第2過熱検出装置22の第1のb接点の端子2に接続している。また、上記第1マグネットスイッチM1の第3のa接点の端子5を、第1過熱検出装置21の第2のb接点の端子4に接続している。
 上記制御部111は、第1マグネットスイッチM1を駆動する第1駆動回路111aと、第2マグネットスイッチM2を駆動する第2駆動回路111bと、第3マグネットスイッチM3を駆動する第3駆動回路111cと、異常検出回路111dとを有している。
 上記異常検出回路111dの一方の入力を、第2過熱検出装置22の第2のb接点の端子3に接続している。また、第2過熱検出装置22の第2のb接点の端子4を、異常検出回路111dの他方の入力に接続している。
 上記第2過熱検出装置22が過熱状態を検出して動作すると、端子1,2間および端子3,4間のb接点が開き、第2過熱検出装置22の端子3,4間のb接点の開動作により異常検出回路111dは、第3駆動回路111cに異常信号を出力する。上記異常検出回路111dからの異常信号を受けて、第3駆動回路111cは、第3マグネットスイッチM3をオフして三相交流電源からの交流電圧を遮断する。
 上記第1過熱検出装置21が過熱状態を検出して動作した場合は、第1過熱検出装置21の端子1,2間および端子3,4間のb接点が開き、ヒータR1,R2への電圧供給が遮断される。
 ここで、第2過熱検出装置22の過熱検出温度の設定値(過熱保護値)を、第1過熱検出装置21の過熱検出温度の設定値(過熱保護値)よりも低く設定しておけば、第2過熱検出装置が第1過熱検出装置よりも早く動作し、全ヒータへの電圧供給が遮断されるため、過熱保護に関してより安全なシステムとすることができる。
 上記構成の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置において、第2駆動回路111bおよび第3駆動回路111cにより第2,第3マグネットスイッチM2,M3をオンする一方、第1駆動回路111aにより第1マグネットスイッチM1をオフすることにより、三相入力端子1に接続された三相交流電源(R相,S相,T相)に対して、三相交流電源用のヒータR1,R2,R3をY結線する。また、第1駆動回路111aおよび第3駆動回路111cにより第1,第3マグネットスイッチM1,M3をオンする一方、第2駆動回路111bにより第2マグネットスイッチM2をオフすることにより、三相入力端子1に接続された三相交流電源(R相,S相,T相)に対して、三相交流電源用のヒータR1,R2,R3を△結線する。
 上記第4実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、第2実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同様の効果を有する。
 なお、上記第4実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、第1実施形態の図2~図4に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同様に単相交流電源によりヒータ部を駆動する場合にも用いることができる。
 また、図9Aは上記給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ制御装置他の回路図を示している。
 図9Aに示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、第1ヒータ接続端子2の第1端子にヒータR11の一端を接続し、ヒータR11の他端を第2ヒータ接続端子3の第1端子に接続している。上記第1ヒータ接続端子2の第2端子にヒータR12の一端を接続し、ヒータR12の他端を第2ヒータ接続端子3の第2端子に接続している。そして、上記ヒータR12の一端をヒータR13の一端に接続し、ヒータR13の他端を第2ヒータ接続端子3の第3端子に接続している。上記ヒータR12にヒータR13を並列に接続して、単相交流電源用のヒータ部の一例としてのヒータ対を形成している。
 上記構成の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置において、第2駆動回路111bおよび第3駆動回路111cにより第2,第3マグネットスイッチM2,M3をオンする一方、第1駆動回路111aにより第1マグネットスイッチM1をオフすることにより、三相入力端子1に接続された単相交流電源に対して、ヒータR11とヒータ対(R12,R13)を直列に接続する。また、第2駆動回路111bおよび第3駆動回路111cにより第1,第3マグネットスイッチM1,M3をオンする一方、第2駆動回路111bにより第2マグネットスイッチM2をオフすることにより、三相入力端子1に接続された単相交流電源に対して、ヒータR11のみを接続する。
 図9Aに示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、三相入力端子1のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の3つのヒータR11,R12,R13を単相交流電圧で駆動するとき、切換部111によって、三相入力端子に接続された単相交流電源に対して、ヒータ対(R12,R13)と他のヒータR11とを直列に接続するかまたは他のヒータR11のみを接続するかを切り換えることによって、2:3の電力比率のステップ制御が可能となる。
 なお、上記第4実施形態の給湯機用ヒータ装置では、第1ヒータ接続端子2の第2端子をヒータR13の一端に接続し、ヒータR13の他端を第2ヒータ接続端子3の第3端子に接続したが、図9Bに示すように、ヒータR13をヒータR11に並列に接続してもよい。この場合、電力比率1:3のステップ制御が可能となる。
 〔第5実施形態〕
 図10Aはこの発明の第5実施形態の給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の回路図を示している。この第5実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、第1過熱検出装置の電源側接続を除いて第2実施形態の図5に示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同様の構成をしている。この給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、水を加熱するヒータを備えた給湯機に用いられる。
 この第5実施形態の給湯機用ヒータ装置では、共通モジュール110の三相入力端子1の第2端子に単相交流電源のL側が接続され、三相入力端子1の第3端子に単相交流電源のN側が接続されている。また、図5に示す給湯機用ヒータ制御装置との違いは、第1ヒータ接続端子2の第1端子と第1過熱検出装置21の第1のb接点の端子1との接続をせずに、第1過熱検出装置21の第1のb接点の端子1と第2のb接点の端子3とを接続している点である。
 図10Aに示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、三相入力端子1のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の3つのヒータR11,R12,R13を単相交流電圧で駆動するとき、切換部111によって、三相入力端子に接続された単相交流電源に対して、ヒータ対(R11,R12)と他のヒータR13とを直列に接続するかまたはヒータR12のみを接続するかを切り換えることによって、2:3の電力比率のステップ制御が可能となる。
 上記第5実施形態の給湯機用ヒータ装置によれば、第2実施形態の給湯機用ヒータ装置と同様の効果を有する。
 上記第5実施形態の給湯機用ヒータ装置は、ヒータ対(R11,R12)に接続される2本の線を1つの過熱検出装置21に接続することにより、過熱検出装置21が働いた場合に、並列接続されているヒータ対のどちらへの通電も遮断されるため、結果として全てのヒータR11,R12,R13への通電を遮断することができる。
 また、第5実施形態の給湯機用ヒータ装置は、図2のような電力比率1:1のヒータ結線や、図4のような電力比率2:3のヒータ結線の場合も同様に適用することが可能である。
 また、図10Bに示すように、ヒータR11の他端を第2ヒータ接続端子3の第1端子に接続せずに、ヒータR11の他端をヒータR12の他端に接続してもよい。この場合、電力比率1:3のステップ制御が可能となる。
 〔第6実施形態〕
 図11Aはこの発明の第6実施形態の給湯機用ヒータ制御装置を用いてヒータ部を単相交流電源で駆動する給湯機用ヒータ装置の回路図を示している。この第6実施形態の給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、ヒータ対および過熱検出装置の接続を除いて第5実施形態の図10Aに示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置と同様の構成をしている。この給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、水を加熱するヒータを備えた給湯機に用いられる。
 この第6実施形態の給湯機用ヒータ装置では、共通モジュール110の三相入力端子1の第2端子に単相交流電源のL側が接続され、三相入力端子1の第3端子に単相交流電源のN側が接続されている。また、図10Aに示す給湯機用ヒータ制御装置との違いは次の点である。
 (i) 第1ヒータ接続端子2の第1端子と第1過熱検出装置21の第1のb接点の端子1との接続をせずに、第1ヒータ接続端子2の第2端子と第1過熱検出装置21の第1のb接点の端子1とを接続している点。
 (ii) ヒータR12の一端を第1過熱検出装置21の第2のb接点の端子4に接続せずに、第1過熱検出装置21の第1のb接点の端子2に接続している点。
 (iii) 異常検出用端子4の第1端子と第1過熱検出装置21の第2のb接点の端子3とを接続し、第1過熱検出装置21の第2のb接点の端子4と第2過熱検出装置22の第2のb接点の端子3とを接続している点。
 図11Aに示す給湯機用ヒータ制御装置を備えた給湯機用ヒータ装置は、三相入力端子1のうちの2つの端子に単相交流電源が接続されて、抵抗値が略同一の3つのヒータR11,R12,R13を単相交流電圧で駆動するとき、切換部111によって、三相入力端子に接続された単相交流電源に対して、ヒータ対(R11,R12)と他のヒータR13とを直列に接続するかまたはヒータ対の一方(ヒータR12)のみを接続するかを切り換えることによって、2:3の電力比率のステップ制御が可能となる。
 上記第6実施形態の給湯機用ヒータ装置によれば、第2実施形態の給湯機用ヒータ装置と同様の効果を有する。
 また、上記第6実施形態の給湯機用ヒータ装置によれば、第1,第2過熱検出装置21,22のいずれか一方が過熱を検知すると、第3マグネットスイッチM3が開状態となるため、ヒータR11,R12,R13への通電が行われない。これにより、最も電源側で単相電源が遮断されるため、ヒータR11,R12,R13、第1,第2過熱検出装置21,22、共通モジュール110の第3マグネットスイッチM3の後段のいずれにも電圧が印加されないため、感電の恐れがない。
 また、第6実施形態の給湯機用ヒータ装置は、図2のような電力比率1:1のヒータ結線や、図4のような電力比率2:3のヒータ結線の場合も同様に適用することが可能である。
 また、図11Bに示すように、ヒータR11の他端を第2ヒータ接続端子3の第1端子に接続せずに、ヒータR11の他端をヒータR12の他端に接続してもよい。この場合、電力比率1:3のステップ制御が可能となる。
 上記第1~第6実施形態では、ヒータ部の夫々を、単一のヒータR1,R2,R3,R11,R12,R13からなる1つのヒータ部としたり、2つのヒータを並列接続してヒータ対としたりして用いたが、少なくとも1つのヒータ部を3以上のヒータを組み合わせて構成してもよい。
 また、上記第1~第6実施形態では、切換部としてマグネットスイッチ(M1,M2,M3)を用いた例を示しているが、マグネットスイッチに限る必要はなく、例えば半導体スイッチを用いてもよい。
符号の説明
 1…三相入力端子
 2…第1ヒータ接続端子
 3…第2ヒータ接続端子
 4…異常検出用端子
 M1,M11…第1マグネットスイッチ
 M2,M12…第2マグネットスイッチ
 M3…第3マグネットスイッチ
 11,111,211…制御部
 11a,111a,211a…第1駆動回路
 11b,111b,211b…第2駆動回路
 111c…第3駆動回路
 111d…異常検出回路
 10,110,210,310…共通モジュール
 21…第1過熱検出装置
 22…第2過熱検出装置
 23…第3過熱検出装置
 R1,R2,R3,R11,R12,R13…ヒータ

Claims (9)

  1.  水を加熱する三相交流電源用の3つのヒータ部(R1,R2,R3)または単相交流電源用の2つのヒータ部(R11,R12,R13)を備えた給湯機に用いられる給湯機用ヒータ制御装置であって、
     三相交流電源が接続可能な三相入力端子(1)と、
     上記三相交流電源用の3つのヒータ部(R1,R2,R3)または上記単相交流電源用の2つのヒータ部(R11,R12,R13)が接続されるヒータ接続端子(2,3)と、
     上記三相入力端子(1)に上記三相交流電源が接続されて、抵抗値が略同一の上記三相交流電源用の3つの上記ヒータ部(R1,R2,R3)を三相交流電圧で駆動するときは、上記三相入力端子(1)に接続された上記三相交流電源に対して、上記三相交流電源用の3つのヒータ部(R1,R2,R3)をY結線するかまたは△結線するかを切り換えると共に、上記三相入力端子のうちの2つの端子に単相交流電源が接続されて、上記単相交流電源用の2つのヒータ部(R11,R12,R13)を単相交流電圧で駆動するときは、上記三相入力端子(1)に接続された上記単相交流電源に対して、上記単相交流電源用の2つのヒータ部(R11,R12,R13)を直列接続するかまたは上記単相交流電源用の2つのヒータ部(R11,R12,R13)のうちの1つを接続するかを切り換える切換部(M1,M2,M11,M12,11,111,211)と
    を備えたことを特徴とする給湯機用ヒータ制御装置。
  2.  請求項1に記載の給湯機用ヒータ制御装置において、
     上記三相入力端子(1)と上記ヒータ接続端子(2,3)との間かつ上記切換部(M1,M2,111)よりも上記三相入力端子(1)側に、上記三相交流電源または上記単相交流電源からの交流電圧を遮断する遮断装置(M3)を備えたことを特徴とする給湯機用ヒータ制御装置。
  3.  請求項1または2に記載の給湯機用ヒータ制御装置において、
     上記三相交流電源用の3つのヒータ部(R1,R2,R3)または上記単相交流電源用の2つのヒータ部(R11,R12,R13)の過熱状態を検出して、上記三相交流電源と上記三相交流電源用の3つのヒータ部(R1,R2,R3)との接続を遮断するかまたは上記単相交流電源と上記単相交流電源用の2つのヒータ部(R11,R12,R13)との接続を遮断する安全装置(21,22,23)を備えたことを特徴とする給湯機用ヒータ制御装置。
  4.  請求項3に記載の給湯機用ヒータ制御装置において、
     上記安全装置(21,22)は、上記三相入力端子(1)と上記ヒータ接続端子(2,3)との間かつ上記切換部(M1,M2,111)よりも上記三相入力端子(1)側に配置されていることを特徴とする給湯機用ヒータ制御装置。
  5.  請求項1または2に記載の給湯機用ヒータ制御装置と、
     上記給湯機用ヒータ制御装置の上記ヒータ接続端子(2,3)に接続された上記単相交流電源用の2つのヒータ部(R11,R12)と
    を備え、
     上記単相交流電源用の2つのヒータ部(R11,R12)の抵抗値が略同一であることを特徴とする給湯機用ヒータ装置。
  6.  請求項1または2に記載の給湯機用ヒータ制御装置と、
     上記給湯機用ヒータ制御装置の上記ヒータ接続端子(2,3)に接続された上記単相交流電源用の2つのヒータ部(R11,R12,R13)と
    を備え、
     上記単相交流電源用の2つのヒータ部(R11,R12,R13)のうちの一方が、他方のヒータ部(R12)の抵抗値と抵抗値が略同一の2つのヒータが並列に接続されたヒータ対(R11,R13)であって、
     上記切換部(M1,M2,11)は、上記三相入力端子(1)に接続された上記単相交流電源に対して、上記ヒータ対(R11,R13)と上記他方のヒータ部(R12)とを直列に接続するかまたは上記ヒータ対(R11,R13)のみを接続するかを切り換えることを特徴とする給湯機用ヒータ装置。
  7.  請求項1または2に記載の給湯機用ヒータ制御装置と、
     上記給湯機用ヒータ制御装置の上記ヒータ接続端子(2,3)に接続された上記単相交流電源用の2つのヒータ部(R11,R12,R13)と
    を備え、
     上記単相交流電源用の2つのヒータ部(R11,R12,R13)のうちの一方が、他方のヒータ部(R11)の抵抗値と抵抗値が略同一の2つのヒータが並列に接続されたヒータ対(R12,R13)であって、
     上記切換部(M1,M2,11)は、上記三相入力端子(1)に接続された上記単相交流電源に対して、上記ヒータ対(R12,R13)と上記他方のヒータ部(R11)とを直列に接続するかまたは上記他方のヒータ部(R11)のみを接続するかを切り換えることを特徴とする給湯機用ヒータ装置。
  8.  請求項1または2に記載の給湯機用ヒータ制御装置と、
     上記給湯機用ヒータ制御装置の上記ヒータ接続端子(2,3)に接続された上記単相交流電源用の2つのヒータ部(R11,R12,R13)と
    を備え、
     上記単相交流電源用の2つのヒータ部(R11,R12,R13)のうちの一方が、他方のヒータ部(R13)の抵抗値と抵抗値が略同一の2つのヒータが並列に接続されたヒータ対(R11,R12)であって、
     上記切換部(M1,M2,111)は、上記三相入力端子(1)に接続された上記単相交流電源に対して、上記ヒータ対(R11,R12)と上記他方のヒータ部(R13)とを直列に接続するかまたは上記ヒータ対(R11,R12)の一方のみを接続するかを切り換えることを特徴とする給湯機用ヒータ装置。
  9.  請求項1または2に記載の給湯機用ヒータ制御装置と、
     上記給湯機用ヒータ制御装置の上記ヒータ接続端子(2,3)に接続された上記三相交流電源用の3つのヒータ部(R1,R2,R3)と
    を備え、
     上記三相交流電源の交流電圧が少なくとも230Vの低電圧地域で用いる上記三相交流電源用の3つのヒータ部(R1,R2,R3)の抵抗値と上記三相交流電源の交流電圧が少なくとも400Vの高電圧地域で用いる上記三相交流電源用の3つのヒータ部(R1,R2,R3)の抵抗値の比を略1:3としたことを特徴とする給湯機用ヒータ装置。
PCT/JP2009/051553 2008-02-01 2009-01-30 給湯機用ヒータ制御装置および給湯機用ヒータ装置 WO2009096513A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008023073 2008-02-01
JP2008-023073 2008-02-01
JP2008110469A JP2009204295A (ja) 2008-02-01 2008-04-21 給湯機用ヒータ制御モジュールおよび給湯機用ヒータ装置
JP2008-110469 2008-04-21

Publications (1)

Publication Number Publication Date
WO2009096513A1 true WO2009096513A1 (ja) 2009-08-06

Family

ID=40912856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051553 WO2009096513A1 (ja) 2008-02-01 2009-01-30 給湯機用ヒータ制御装置および給湯機用ヒータ装置

Country Status (2)

Country Link
JP (1) JP2009204295A (ja)
WO (1) WO2009096513A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048761A1 (fr) * 2016-03-14 2017-09-15 Cotherm Sa Dispositif d'economie d'energie autonome pour chauffe-eau

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102192008B1 (ko) * 2020-06-03 2020-12-16 주식회사 액트 개방형 이온 전극보일러

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376564U (ja) * 1976-11-30 1978-06-26
JPS5725491U (ja) * 1980-07-17 1982-02-09
JPH02111088U (ja) * 1989-02-23 1990-09-05
JPH05247907A (ja) * 1992-03-05 1993-09-24 Agency Of Ind Science & Technol 融雪装置
JPH07199702A (ja) * 1993-12-28 1995-08-04 Canon Inc 加熱装置および画像形成装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250042A (en) * 1975-10-20 1977-04-21 Sumitomo Bakelite Co Ltd Temperature control system for electric heaters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376564U (ja) * 1976-11-30 1978-06-26
JPS5725491U (ja) * 1980-07-17 1982-02-09
JPH02111088U (ja) * 1989-02-23 1990-09-05
JPH05247907A (ja) * 1992-03-05 1993-09-24 Agency Of Ind Science & Technol 融雪装置
JPH07199702A (ja) * 1993-12-28 1995-08-04 Canon Inc 加熱装置および画像形成装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048761A1 (fr) * 2016-03-14 2017-09-15 Cotherm Sa Dispositif d'economie d'energie autonome pour chauffe-eau
WO2017158258A1 (fr) * 2016-03-14 2017-09-21 Cotherm Dispositif d'economie d'energie pour chauffe-eau

Also Published As

Publication number Publication date
JP2009204295A (ja) 2009-09-10

Similar Documents

Publication Publication Date Title
JP6184391B2 (ja) 空気調和機
EP2889978B1 (en) Phase sequence switching device for three-phase power supply
CN100576679C (zh) 三相电动机的相位切换装置
WO2009096513A1 (ja) 給湯機用ヒータ制御装置および給湯機用ヒータ装置
US10944350B2 (en) Motor drive device
JP2005304129A (ja) 三相欠相検出回路及びそれを用いた空気調和機
JP3745264B2 (ja) 電源装置およびそれを用いた空気調和機
JP2008252967A (ja) モータ制御装置
JPH11144590A (ja) 負荷制御回路
JP2007244019A (ja) 空気調和機の制御装置
JP2007155256A (ja) 空気調和機の制御装置
JP2008187819A (ja) 三相電動機の位相切換え装置
JP6421663B2 (ja) 空気調和機
JP2005117788A (ja) 三相欠相検出回路及びこの三相欠相検出回路を用いた空気調和機
JP2010252567A (ja) 電源回路
JPH0819265A (ja) 空気調和機のインバータ
JPH06313609A (ja) 空気調和機
JP5042928B2 (ja) ヒートポンプ式給湯機
KR100883506B1 (ko) 삼상유도전동기의 리액터식 절전구동장치
KR200464408Y1 (ko) 멀티형 공기조화기
CN220229592U (zh) 加热系统以及电热水器
JPS60129813A (ja) 電気レンジ
JP2006262660A (ja) 空気調和機の制御装置
JP2019146339A (ja) 漏電安全装置およびそれを備えた給湯装置
JPH09191575A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09705700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09705700

Country of ref document: EP

Kind code of ref document: A1