WO2009096477A1 - セラミックヒータおよびグロープラグ - Google Patents

セラミックヒータおよびグロープラグ Download PDF

Info

Publication number
WO2009096477A1
WO2009096477A1 PCT/JP2009/051484 JP2009051484W WO2009096477A1 WO 2009096477 A1 WO2009096477 A1 WO 2009096477A1 JP 2009051484 W JP2009051484 W JP 2009051484W WO 2009096477 A1 WO2009096477 A1 WO 2009096477A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
area
lead
ceramic heater
ceramic
Prior art date
Application number
PCT/JP2009/051484
Other languages
English (en)
French (fr)
Inventor
Norimitsu Hiura
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to US12/864,864 priority Critical patent/US20110068091A1/en
Priority to JP2009551571A priority patent/JP5166451B2/ja
Priority to KR1020107018491A priority patent/KR101195918B1/ko
Priority to CN200980103487.3A priority patent/CN101933392B/zh
Priority to EP09704964.7A priority patent/EP2247156B1/en
Publication of WO2009096477A1 publication Critical patent/WO2009096477A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/027Heaters specially adapted for glow plug igniters

Definitions

  • the present invention includes, for example, a heater for ignition of a combustion-type in-vehicle heating device or a flame detection heater, a heater for ignition of various combustion devices such as an oil fan heater, a heater for glow plugs, a heater for various sensors such as an oxygen sensor,
  • the present invention relates to a ceramic heater used for a heater for heating a measuring instrument.
  • the ceramic heating element As a ceramic heater used for a glow plug or the like of an automobile engine, for example, a ceramic base and a ceramic heating element that generates resistance by being energized through electrode portions embedded in the ceramic base and connected to both ends thereof, there is known a ceramic heater provided with In such a ceramic heater, the ceramic heating element has a U-shaped direction changing portion extending from one base end portion and changing the direction at the tip end portion to the other base end portion, and the direction changing portion. It has a configuration including two linear lead portions extending in the same direction from each base end portion (see, for example, Patent Documents 1 and 2).
  • the lead part of the ceramic heating element is made thinner than the tip part, and since the lead part is thin, the lead part and the electrode formed on the surface of the ceramic substrate are connected. Since the electrode extraction part to be made is also thinner, for example, ceramic heaters mounted on glow plugs, in recent years, are required to be further rapidly raised in temperature and to be durable at higher temperatures. When used under such a harsh environment for a long period of time, there has been a problem that the electrode lead-out portion connecting the lead portion and the electrode formed on the surface is likely to be deteriorated as compared with the ceramic heating element.
  • the reason is that, since the electrode extraction part is thin, its own resistance value is large, and further, the contact resistance value between the electrode extraction part and the lead part and the contact resistance value between the electrode extraction part and the electrode formed on the surface are It becomes large and it becomes easy to generate heat.
  • Patent Document 3 an electrode extraction portion is formed in a direction perpendicular to the ceramic heating element so that the sectional area of the electrode extraction portion is larger than the sectional area of the ceramic heating element.
  • a glow plug is disclosed.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a ceramic heater having higher durability at a low cost.
  • the ceramic heater of the present invention includes a heating resistor, a first lead portion and a second lead portion that are electrically connected to both ends of the heating resistor, an end portion of the first lead portion, and the first lead portion, respectively.
  • a first electrode extraction portion and a second electrode extraction portion each of which is electrically connected to an end portion on the opposite side of the end portion connected to the heating resistor among the end portions of the second lead portion;
  • the area of the connection portion with one electrode is the first It is characterized in that larger than the area of the connecting portion between the over de section.
  • the area of the cross section perpendicular to this direction increases as the first electrode extraction portion moves from the first lead portion side to the first electrode side. It has the area increase part which becomes.
  • the area of the cross section perpendicular to this direction increases as the first electrode extraction portion moves from the first lead portion side to the first electrode side. It has the area increase part which becomes.
  • the area of the cross section perpendicular to this direction decreases as the first electrode extraction portion moves from the first lead portion side to the first electrode side in the above configuration.
  • vertical to this direction does not change is provided.
  • the area of the connection portion with the first electrode in the first electrode extraction portion is larger than the area of the connection portion with the first lead portion.
  • the resistance value of the electrode extraction portion can be reduced, and heat generated in the first electrode extraction portion and the first electrode during use Can be suppressed.
  • the connection area between the first electrode extraction portion and the first electrode is increased, the contact resistance value between the first electrode extraction portion and the first electrode can also be decreased, thereby further generating heat. Can be suppressed. Therefore, the durability of the first electrode extraction portion and the first electrode can be improved.
  • the first electrode extraction portion has a circular or elliptical cross section perpendicular to the direction from the first lead portion side to the first electrode side. Therefore, it is possible to suppress local heat generation by making the contour of the cross section a smooth curve.
  • the area of the cross section perpendicular to this direction increases as the first electrode extraction portion moves from the first lead portion side to the first electrode side.
  • the resistance does not change abruptly inside the first electrode extraction portion, so that the risk of abnormal heat generation can be reduced.
  • the volume of the first electrode extraction portion continuously increases from the first lead portion side to the first electrode side even in the case of a volume change such as shrinkage in the degreasing step or the firing step. Therefore, the occurrence of cracks can be effectively suppressed, and as a result, the reliability and durability of the ceramic heater as a product can be improved.
  • the area of the cross section perpendicular to this direction does not change as the first electrode extraction portion moves from the first lead portion side to the first electrode side.
  • the same area portion it is possible to secure a connection area with the first electrode in the first electrode extraction portion to reduce the contact resistance value, and in the same area portion, the first area Since an increase in the volume of the electrode extraction portion can be suppressed, the amount of expensive noble metal used can be reduced, and the manufacturing cost can be reduced.
  • the first electrode extraction portion includes an area reduction portion in which the area of the cross section perpendicular to the direction decreases from the first lead portion side toward the first electrode side, It is possible to secure a connection area to be connected to the first electrode in the electrode lead-out portion to suppress the contact resistance value to be low, and to secure a connection area to be connected to the first lead portion to suppress the contact resistance to be low. This also makes it possible to suppress heat generation at the first electrode extraction portion. Furthermore, since an increase in volume can be suppressed in the central portion of the first electrode extraction portion, the amount of expensive noble metal used can be reduced, and the manufacturing cost can be reduced.
  • FIG. 1 is a longitudinal sectional view of a ceramic heater according to an embodiment of the present invention.
  • FIG. 2 is an enlarged plan view of the vicinity of a first electrode of the ceramic heater shown in FIG.
  • hatching indicating a cross section of the ceramic base is omitted. As shown in FIG.
  • the ceramic heater 11 includes a heating resistor 13, a first lead portion 15 and a second lead portion 17 electrically connected to both ends of the heating resistor 13, respectively, The first electrode lead-out portion 19 electrically connected to the end portion of the lead portion 15 and the end portion of the second lead portion 17 opposite to the end portion connected to the heating resistor 13 respectively. And the second electrode lead-out part 21, the heating resistor 13, the first lead part 15 and the second lead part 17, and the first electrode lead-out part 19 and the second electrode lead-out part 21 embedded therein
  • the ceramic base 23 is provided.
  • the heating resistor 13 is embedded on the first end 12 side of the ceramic base 23.
  • a first electrode 25 and a second electrode 27 electrically connected to the first electrode extraction portion 19 and the second electrode extraction portion 21 are formed on the surface of the ceramic substrate 23.
  • the first electrode 25 is formed on the side surface of the ceramic substrate 23.
  • FIG. 3 is an enlarged cross-sectional view of the vicinity of the first electrode extraction portion 19 in FIG. 1
  • FIG. 4 is an enlarged cross-sectional view showing another embodiment
  • the first electrode lead-out portions 19, 31, and 32 have an area S ⁇ b> 1 of a connection portion with the first electrode 25 larger than an area S ⁇ b> 2 of a connection portion with the first lead portion 15. This point is important in the present invention.
  • the resistance value of the first electrode extraction part 19 can be reduced. Heat generation generated in the portion 19 and the first electrode 25 can be suppressed. Further, if the connection area between the first electrode extraction portion 19 and the first electrode 25 is increased, the contact resistance value between the first electrode extraction portion 19 and the first electrode 25 can also be reduced. Thus, heat generation can be further suppressed. Therefore, the durability of the first electrode extraction part 19 and the first electrode 25 can be improved.
  • the heat dissipation from the first electrode extraction portion 19 through the first electrode 25 is also improved, and the ceramic base 23 Temperature rise near the surface of the can be suppressed.
  • the deterioration of the first electrode extraction portion 19 can be suppressed, and the occurrence of cracks in the ceramic base 23 that may have occurred due to the heat generation of the first electrode extraction portion 19 can be suppressed.
  • the occurrence of cracks on the surface of the ceramic substrate 23 can be satisfactorily suppressed.
  • the ratio (S1 / S2) of the area S1 of the connection portion with the first electrode 25 and the area S2 of the connection portion with the first lead portion 15 in the first electrode extraction portion 19 is the first lead portion.
  • it is preferably 1.1 or more. More preferably, it is more preferably 1.5 or more.
  • the upper limit of the ratio (S1 / S2) is not particularly limited, and may be appropriately determined in consideration of the dimensions, arrangement, etc. of other members such as the ceramic substrate 23.
  • the first electrode extraction part 19 preferably has a circular or elliptical cross section perpendicular to the direction from the first lead part 15 side to the first electrode 25 side.
  • the contour of the cross section becomes a smooth curve, and local heat generation can be suppressed.
  • the first electrode extraction part 19 it is preferable to form the first electrode extraction part 19 by adopting an injection molding method as shown in a manufacturing method described later, for example.
  • the cross section of the first electrode extraction portion 19 can be easily made circular or elliptical as compared with the case where it is formed by a printing method. .
  • the first electrode extraction part 19 is formed by the printing method, it is difficult to secure a sufficient thickness by one printing, and it is necessary to perform a plurality of printings. Therefore, it takes time, and it is easy to cause misalignment between a plurality of prints, and it tends to be difficult to form a cross section in a smooth circle or ellipse.
  • the first electrode extraction part 19 when the first electrode extraction part 19 is formed by an injection molding method, it can be formed by a single molding using a mold, so the cross section of the first electrode extraction part 19 is It can be easily and accurately formed into a circle or an ellipse.
  • the first electrode extraction portion 19 has an area increasing portion in which the area of the cross section perpendicular to this direction increases from the first lead portion 15 side toward the first electrode 25 side. is doing. That is, the first electrode extraction part 19 in this example has a shape that is obtained by cutting the tip of a cone.
  • the resistance value of the first electrode lead-out portion 19 can be reduced as compared with the case where the cross-sectional area from the connection portion to the first lead portion 15 to the connection portion of the first electrode portion 25 is the same. It is possible to reduce the temperature, and heat generated in the first electrode extraction portion 19 and the first electrode 25 during use can be suppressed.
  • connection area between the first electrode lead-out portion 19 and the first lead portion 15 is increased, the contact resistance value between the first electrode lead-out portion 19 and the first lead portion 15 can be reduced. Thereby, heat generation can be further suppressed. Therefore, the durability of the first electrode extraction part 19 and the first electrode 25 can be improved.
  • the first electrode extraction portion 19 has an area increasing portion in which the area of the cross section perpendicular to this direction increases as it goes from the first lead portion side to the first electrode side.
  • the risk of abnormal heat generation can be reduced.
  • the volume of the first electrode extraction portion 19 is also between the first lead portion 15 side and the first electrode 25 side in the area increasing portion even during shrinkage in the degreasing step and the firing step. Therefore, the occurrence of cracks can be effectively suppressed, and as a result, the reliability and durability of the ceramic heater as a product can be improved. Furthermore, since it is possible to suppress the occurrence of defects such as cracks in the molded body, the yield can also be improved.
  • the first electrode extraction part 31 has the same area in which the area of the cross section perpendicular to the arrow direction D1 does not change in the arrow direction D1 from the first lead part 15 side to the first electrode 25 side.
  • An area increasing portion 31b having a cross-sectional area that increases toward the portion 31a and the arrow direction D1 is provided.
  • the 1st electrode extraction part 31 is provided with the same area part 31a from which the area of a cross section perpendicular
  • vertical to this direction does not change toward the 1st electrode 25 side from the 1st lead part 15 side
  • the contact resistance value low by setting the connection area between the first electrode extraction portion 31 and the first electrode 25 to a large area, and in the same area portion 31a, the first electrode extraction portion 31 Since the increase in volume can be suppressed, the amount of expensive noble metal used in the first electrode extraction portion 31 can be reduced, and the manufacturing cost can be reduced.
  • the area increasing portion 31b and the same area portion 31a are combined in this way, there is a portion where the inclination direction of the side surface of the first electrode extraction portion 31 changes at the boundary between them, so that the ceramic heater 11 is When molding or firing, or when an external stress is applied, a portion where the inclination direction of the side surface of the first electrode extraction portion 31 changes inside the ceramic base 23 becomes a catch, and the first electrode extraction portion It is also possible to prevent the movement and misalignment of 31 inside the ceramic substrate 23.
  • the first electrode extraction part 32 has an area reduction part 32a in which the area of the cross section perpendicular to the arrow direction D1 decreases as it goes in the arrow direction D1, and the same area where the cross-sectional area does not change in the arrow direction D1.
  • the area 32b and the area increasing part 32c having a cross-sectional area that increases in the direction of the arrow D1 are provided.
  • the ceramic base body has one or more portions where the inclination direction of the conductor side surface changes at the conductor boundary. A portion in which the inclination direction of the side surface of the first electrode extraction portion 32 changes in the inside of 23 becomes a catch, and the movement and displacement of the first electrode extraction portion 32 inside the ceramic base 23 can be prevented. .
  • connection area between the first electrode extraction portion 32 and the first electrode 25 and the connection area between the first electrode extraction portion 32 and the first lead portion 15 can be reduced. Since the increase portion 32c and the area decrease portion 32a are secured to keep the contact resistance value at the connection portion low, an increase in the volume of the first electrode extraction portion 32 can be suppressed in the same area portion 32b where the area of the cross section does not change. The amount of expensive noble metal used in the first electrode extraction portion 32 can be reduced, and the manufacturing cost can be reduced.
  • the second electrode 27 is formed so as to cover the end face 14 a and the side face 14 b in the second end portion 14 of the ceramic base 23.
  • FIG. 1 and FIG. 1 is an enlarged cross-sectional view of the vicinity of the second electrode extraction portion 27 in the ceramic heater shown in FIG. 1 and FIG. 1, when the ceramic heater shown in FIG. 1 is viewed from a direction H indicated by an arrow in FIG.
  • FIG. 7 which is a front view
  • FIG. 8 which is a cross-sectional view taken along line AA in FIG. 1
  • the second electrode extraction portion 21 has an area of a connection portion with the second electrode 27 as the second area.
  • the second electrode lead-out portion 21 is larger than the area of the connecting portion with the second electrode portion 27.
  • the resistance value of the second electrode lead-out portion 21 can be suppressed during use, whereby the heat generated in the second electrode lead-out portion 21 during use can be suppressed, and the deterioration of the second electrode lead-out portion 21 can be suppressed.
  • the ratio (S3 / S4) of the area S3 of the connection portion with the second electrode 27 and the area S4 of the connection portion with the second lead portion 17 in the second electrode extraction portion 21 is the second lead portion.
  • it is preferably 1.3 or more. Is preferably 3.7 or more.
  • the upper limit of the ratio (S3 / S4) is not particularly limited, and may be determined as appropriate in consideration of the dimensions and arrangement of other members such as the ceramic substrate 23.
  • the second electrode extraction part 21 preferably has a circular or elliptical cross section perpendicular to the direction from the second lead part 17 side to the second electrode 27 side. Since the cross section is circular or elliptical in this way, local heat generation can be suppressed. Further, since the cross section is circular or elliptical, heat generation at the connection portion with the second electrode 27 and the connection portion with the second lead portion 17 can be further reduced.
  • the area of the cross section perpendicular to the arrow direction D2 of the second electrode extraction portion 21 increases from the second lead portion 17 side to the second electrode 27 side in the arrow direction D2. It has an area increasing portion 21a.
  • the volume of the second electrode extraction portion 21 is continuously between the second lead portion 17 side and the second electrode 27 side even during shrinkage in the degreasing step and the firing step. Therefore, the occurrence of cracks in the ceramic substrate 23 can be effectively suppressed, and as a result, the reliability and durability of the ceramic heater as a product can be improved. Furthermore, since it is possible to suppress the occurrence of defects such as cracks in the formed body of the ceramic substrate 23, the yield can also be improved.
  • the second electrode extraction portion 21 includes an area decreasing portion 21 b that is closer to the arrow direction D2 than the area increasing portion 21 a and further decreases in cross-sectional area toward the arrow direction D2. Yes.
  • the outer diameter of the second end portion 14 decreases toward the end face 14a of the second end portion 14 (hereinafter referred to as the narrow diameter portion 14).
  • the area increasing portion 21 a and the area decreasing portion 21 b in the second electrode extraction portion 21 are embedded in the small diameter portion 14, and the area decreasing portion 21 b is disposed along the small diameter portion 14.
  • an area increasing portion 21a and an area decreasing portion 21b are arranged in this order from the second lead portion 17 side toward the second electrode 27 side.
  • the cross-sectional area sufficient to allow electricity to flow is secured. Since the product strength near the second electrode extraction portion 21 can be further improved by reducing the volume of the electrode extraction material that is a low-hardness material, a highly reliable product can be obtained.
  • FIG. 9 which is an enlarged sectional view showing another embodiment in the vicinity of the second electrode extraction portion 33 in the ceramic heater 11, the second electrode extraction portion 33 is formed from the second lead portion 17 side.
  • An area increasing portion 33a in which the area of the cross section perpendicular to the direction increases toward the second end portion 14, an area portion 33b in which the area of the cross section does not change, and an area decreasing portion 33c in which the area of the cross section decreases. It is good also as the structure which carried out.
  • the volume of the electrode extraction material that is a low hardness material can be further reduced, and the product strength of the ceramic heater 11 near the second electrode extraction portion 21 can be further improved.
  • the second electrode 27 is formed on the end surface 14a of the second end portion 14 and the side surface 14b of the second end portion 14 connected to the end surface 14a. Then, as shown in FIG. 10, which is a side view showing a state in which the metal fitting portion 35 is fitted to the second end portion 14 of the ceramic heater 11 shown in FIG. 1, the second electrode 27 is covered. Thus, a metal fitting portion 35 having a recess is fitted to the small diameter portion (second end portion) 14. Thereby, it can suppress that the 2nd electrode 27 oxidizes.
  • FIG. 11 which is a side view showing another embodiment of the connection structure between the second end portion 14 and the metal fitting portion 35, the metal fitting portion 35 has the entire surface of the second electrode 27. It is preferable to cover. As a result, the effect of suppressing oxidation of the second electrode 27 can be further increased, and the contact area between the metal fitting portion 35 and the second electrode 27 is increased, so that the electrical resistance at this portion is reduced. Heat generation can be further suppressed.
  • the heating resistor 13 it is possible to use a material mainly composed of carbides such as W, Mo and Ti, nitrides and silicides.
  • carbides such as W, Mo and Ti, nitrides and silicides.
  • WC is excellent as a material for the heating resistor 13 in terms of thermal expansion coefficient, heat resistance, and specific resistance.
  • the heating resistor 13 is mainly composed of WC, which is an inorganic conductor.
  • the ratio of silicon nitride added to the heating resistor 13 is 20%. It is preferable to adjust so that it may become mass% or more.
  • the conductor component that becomes the heating resistor 13 has a higher coefficient of thermal expansion than silicon nitride, and therefore is usually in a state where tensile stress is applied.
  • the coefficient of thermal expansion is brought close to that of the base silicon nitride, and the stress due to the difference in thermal expansion during temperature rise and fall of the ceramic heater 11 is alleviated. can do.
  • the addition amount of silicon nitride is 40% by mass or less, the resistance value can be satisfactorily stabilized.
  • the amount of silicon nitride added is 25 to 35% by mass.
  • 4 to 12% by mass of boron nitride can be added as an additive to the heating resistor 13 instead of silicon nitride.
  • the same material as the heating resistor 13 can be used for the first lead portion 15 and the second lead portion 17.
  • WC is excellent as a material for the lead portions 15 and 17 in terms of thermal expansion coefficient, heat resistance and specific resistance.
  • the first lead portion 15 and the second lead portion 17 are mainly composed of WC of an inorganic conductor, and the ceramic base 23 is manufactured using silicon nitride ceramics, similar to the heating resistor 13 described above, It is preferable to adjust the ratio of silicon nitride added to the first lead portion 15 and the second lead portion 17 to be 15% by mass or more.
  • the thermal expansion coefficients of the first lead portion 15 and the second lead portion 17 can be made closer to that of the base material silicon nitride.
  • the addition amount of silicon nitride is 40% by mass or less, the resistance value is stabilized. Therefore, the addition amount of silicon nitride is preferably 40% by mass or less. More preferably, the amount of silicon nitride added is 20 to 35% by mass.
  • ceramics having insulating properties such as oxide ceramics, nitride ceramics or carbide ceramics can be used.
  • oxide ceramics nitride ceramics or carbide ceramics
  • silicon nitride ceramics it is preferable to use silicon nitride ceramics. This is because silicon nitride ceramics is superior in terms of high strength, high toughness, high insulation, and heat resistance.
  • This silicon nitride ceramic is, for example, 3 to 12% by mass of a rare earth element oxide such as Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 as a sintering aid with respect to silicon nitride as a main component, 0.5 to 3% by mass of Al 2 O 3 and further SiO 2 are mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, and molded into a predetermined shape, and thereafter 1650 to 1780 ° C. It can be obtained by hot press firing.
  • a rare earth element oxide such as Y 2 O 3 , Yb 2 O 3 , Er 2 O 3
  • Al 2 O 3 and further SiO 2 are mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, and molded into a predetermined shape, and thereafter 1650 to 1780 ° C. It can be obtained by hot press firing.
  • the ceramic substrate 23 when silicon nitride is used as the ceramic substrate 23, it is preferable to disperse MoSiO 2 or WSi 2 . This is because the durability of the ceramic heater 11 can be improved by bringing the thermal expansion coefficient of the base material close to the thermal expansion coefficient of the heating resistor 13.
  • the area of the connection portion between the first electrode extraction portion 19 and the first electrode 25 is larger than the area of the connection portion with the first lead portion 15. It can be molded by adopting an injection molding method using the mold manufactured in the above.
  • a mixture for a current-carrying part containing conductive ceramic powder and a binder and a mixture for a substrate containing insulating ceramics and a binder are prepared.
  • an injection molding method is adopted to form a molded body for a heating resistor.
  • the mixture for current-carrying part is filled in the mold to mold a lead part molding.
  • the current-carrying part molded body composed of the heating resistor molded body and the lead part molded body is held in the mold.
  • a part of the mold is replaced with a part for molding the ceramic base, and then the base mixture is filled in the mold.
  • an element molded body in which the current-carrying part molded body is covered with the ceramic substrate molded body is obtained.
  • a ceramic heater can be obtained by firing the obtained element molded body. Firing is preferably performed in a non-oxidizing atmosphere.
  • FIG. 12 is a cross-sectional view showing a glow plug according to an embodiment of the present invention
  • the glow plug 51 has a ceramic heater 11 inserted in a cylindrical fitting 53.
  • the cylindrical fitting 53 is used as a cathode fitting, and is electrically connected to the first electrode 25 exposed on the side surface of the ceramic heater 11.
  • An anode fitting 55 that is electrically connected to the second electrode 27 is disposed in the cylindrical fitting 53. Then, by energizing the cylindrical fitting 53 and the anode fitting 55, the glow plug of the present embodiment can function as a heat source for starting the engine, for example.
  • a ceramic heater according to an embodiment of the present invention was produced as follows. First, a raw material mainly composed of WC and silicon nitride was injected into a mold and molded to produce a molded body for a heating resistor. Next, with the molded body for the heating resistor held in the injection molding die, the molded body for the lead portion and the molded body for the lead portion are filled with the molded body for the lead portion in the mold. Were integrated in a mold to obtain a molded part for a current-carrying part. No. shown in Table 1 and Table 2. Each of the samples 1 to 16 is a sample molded using a mold having electrode extraction portions of various shapes. The electrode extraction part of each sample was formed such that the cross section perpendicular to the direction from the lead part side to the electrode side was elliptical. The molding yield of each sample was evaluated, and each shape was compared.
  • the silicon nitride (Si 3 N 4 ) powder is mixed with a sintering aid composed of an oxide of ytterbium (Yb), a heating resistor,
  • a sintering aid composed of an oxide of ytterbium (Yb), a heating resistor
  • MoSi 2 for bringing the coefficient of thermal expansion closer to the lead portion
  • the obtained molded body was put into a cylindrical carbon mold and then fired in a reducing atmosphere at a temperature of 1650 ° C. to 1780 ° C. and a pressure of 10 to 50 MPa by using a hot press method.
  • a metal heater was brazed to the first electrode extraction portion and the second electrode extraction portion exposed on the surface of the sintered body thus obtained to obtain a ceramic heater.
  • K thermocouples were affixed to these metal fittings, and the temperature at the time when the electrode extraction portion was saturated with current was measured.
  • the electrode temperature is 300 ° C. or lower, and therefore, it is considered that the durability of the electrode portion is excellent if the temperature is lower than this temperature.
  • a cooling / heating cycle test was performed using the above ceramic heater.
  • the conditions of the cooling / heating cycle test were set to 10,000 cycles in which the ceramic heater was energized, the applied voltage was set so that the electrode temperature was 400 ° C., and one cycle was energized for 5 minutes / 2 minutes not energized.
  • the resistance change of the ceramic heater before and after energization was evaluated, and when the resistance change was 5% or more, it was determined as NG. In these samples determined to be NG, cracks occurred in the electrode or the electrode extraction portion. The results are shown in Tables 1 and 2.
  • FIG. 2 is an enlarged plan view when the vicinity of a first electrode in the ceramic heater shown in FIG. 1 is viewed from the direction of an alternate long and short dash line V shown in FIG. 1. It is sectional drawing to which the 1st electrode extraction part vicinity in FIG. 1 was expanded. It is an expanded sectional view showing other embodiments near the 1st electrode extraction part in a ceramic heater. It is an expanded sectional view showing other embodiments near the 1st electrode extraction part in a ceramic heater. It is sectional drawing to which the 2nd electrode extraction part vicinity in the ceramic heater shown in FIG. 1 was expanded. It is a front view when the ceramic heater shown in FIG.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is an expanded sectional view showing other embodiments near the 2nd electrode extraction part in a ceramic heater. It is a side view which shows the state which fitted the metal fitting part to the 2nd end part of the ceramic heater shown in FIG. It is a side view which shows other embodiment of the connection structure of a 2nd edge part and a metal fitting part. It is sectional drawing which shows the glow plug concerning one Embodiment of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

 【課題】 グロープラグなどに搭載されるセラミックヒータは、過酷な環境下で用いられるため、さらなる耐久性の向上が求められている。  【解決手段】 発熱抵抗体13と、第1のリード部15および第2のリード部17と、これらリード部15,17の端部にそれぞれ電気的に接続された第1の電極取出部19および第2の電極取出部21と、発熱抵抗体13、第1のリード部15および第2のリード部17、ならびに第1の電極取出部19および第2の電極取出部21が埋設されたセラミック基体23と、セラミック基体23の表面に形成された第1の電極25および第2の電極27と、を備えたセラミックヒータ11であり、第1の電極取出部19は、第1の電極25との接続部分の面積S1が第1のリード部15との接続部分の面積S2よりも大きい。

Description

セラミックヒータおよびグロープラグ
 本発明は、例えば燃焼式車載暖房装置の点火用もしくは炎検知用のヒータ、石油ファンヒータ等の各種燃焼機器の点火用のヒータ、グロープラグ用のヒータ、酸素センサ等の各種センサ用のヒータ、測定機器の加熱用のヒータ等に利用されるセラミックヒータに関する。
 自動車エンジンのグロープラグ等に用いられるセラミックヒータとして、例えば、セラミック基体と、そのセラミック基体に埋設され、その両端に接続された電極部を介して通電されることにより抵抗発熱するセラミック発熱体と、を備えたセラミックヒータが知られている。このようなセラミックヒータにおいて、セラミック発熱体は、一方の基端部から延び先端部で方向変換して他方の基端部へ至るU字状等の形状の方向変換部と、その方向変換部の各基端部から同方向に延びる2本の直線状のリード部とを備えた構成となっている(例えば、特許文献1,2を参照)。
 しかしながら、セラミックヒータの強度を保つためにセラミック発熱体のリード部を先端部に比べて細くしていること、およびリード部が細いためにリード部とセラミック基体の表面に形成された電極とを接続する電極取出部も細くなっていることから、例えば、グロープラグに搭載されるセラミックヒータは、近年、さらなる急速昇温が求められるとともに、より高温での耐久性が求められているのに対して、このような過酷な環境下で長期間使用されると、リード部と表面に形成された電極とを接続する電極取出部がセラミック発熱体と比べて劣化し易いという課題があった。その理由として、電極取出部が細いために、それ自体の抵抗値が大きく、さらに、電極取出部とリード部との接触抵抗値および電極取出部と表面に形成された電極との接触抵抗値が大きくなってしまい、発熱しやすくなってしまうということが挙げられる。
 このような課題を解決するために、例えば特許文献3には、セラミック発熱体に対して垂直方向に電極取出部を形成して、電極取出部の断面積をセラミック発熱体の断面積より大きくしたグロープラグが開示されている。
特開平9-184626号公報 特開平9-184622号公報 特開2006-49279号公報
 しかしながら、特許文献3に記載されたように、セラミック発熱体に対して垂直方向に電極取出部を形成して、電極取出部の断面積をセラミック発熱体の断面積より大きくした場合には、電極取出部の断面積を大きくすれば大きくするほど、それ自体の抵抗値を小さくでき、電極取出部とリード部との接触抵抗値および電極取出部と表面に形成された電極との接触抵抗値を小さくできるものの、セラミックスに比べて強度が低い電極取出部の体積を増加させていることにより、セラミックヒータの強度が低下してしまうという課題を有していた。また、電極取出部には高価な貴金属が使用されていることから、セラミックヒータの製作コストが増加してしまうという課題を有していた。
 本発明は、上記の課題に鑑みてなされたものであり、より高い耐久性を有するセラミックヒータを安価に提供することを目的とする。
 本発明のセラミックヒータは、発熱抵抗体と、この発熱抵抗体の両端にそれぞれ電気的に接続された第1のリード部および第2のリード部と、前記第1のリード部の端部および前記第2のリード部の端部のうち、前記発熱抵抗体と接続された端部と反対側の端部にそれぞれ電気的に接続された第1の電極取出部および第2の電極取出部と、前記発熱抵抗体、前記第1のリード部および前記第2のリード部、ならびに前記第1の電極取出部および前記第2の電極取出部が埋設されたセラミック基体と、このセラミック基体の表面に形成され、前記第1の電極取出部および前記第2の電極取出部にそれぞれ電気的に接続された第1の電極および第2の電極と、を備え、前記第1の電極取出部は、前記第1の電極との接続部分の面積が前記第1のリード部との接続部分の面積よりも大きいことを特徴とするものである。
 また、本発明のセラミックヒータは、上記構成において、前記第1の電極取出部は、前記第1のリード部側から前記第1の電極側に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部を有していることを特徴とするものである。
 さらに、本発明のセラミックヒータは、上記構成において、前記第1の電極取出部は、前記第1のリード部側から前記第1の電極側に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部を有していることを特徴とするものである。
 また、本発明のセラミックヒータは、上記構成において、前記第1の電極取出部が、前記第1のリード部側から前記第1の電極側に向かうほど、この方向に垂直な断面の面積が小さくなる面積減少部、またはこの方向に垂直な断面の面積が変化しない同面積部を備えていることを特徴とする。
 本発明のセラミックヒータによれば、第1の電極取出部における第1の電極との接続部分の面積が第1のリード部との接続部分の面積よりも大きいので、第1のリード部との接続部分から第1の電極部の接続部分までの断面積が同じ場合に比べて電極取出部の抵抗値を低下させることができ、使用時に第1の電極取出部および第1の電極で生じる発熱を抑制することができる。また、第1の電極取出部と第1の電極との接続面積を大きくすれば、第1の電極取出部と第1の電極との接触抵抗値も小さくすることができ、これにより、さらに発熱を抑制することができる。従って、第1の電極取出部および第1の電極の耐久性を向上させることができる。
 また、本発明のセラミックヒータによれば、上記構成において、第1の電極取出部は、第1のリード部側から第1の電極側に向かう方向に垂直な断面が円形ないし楕円形である場合には、断面の輪郭が滑らかな曲線となることによって、局部的に発熱することを抑制することができる。
 さらに、本発明のセラミックヒータによれば、上記構成において、第1の電極取出部が、第1のリード部側から第1の電極側に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部を有している場合には、第1の電極取出部の内部において抵抗が急激に変化することがないので、異常発熱のリスクを低減することができる。また、製造するに当たって、脱脂工程や焼成工程における収縮等の体積変化の際にも、第1の電極取出部の体積が第1のリード部側から第1の電極側にかけて連続して増加しているので、クラックの発生を効果的に抑制することができ、その結果、セラミックヒータの製品としての信頼性や耐久性を向上することができる。
 また、本発明のセラミックヒータによれば、上記構成において、第1の電極取出部が、第1のリード部側から第1の電極側に向かうほど、この方向に垂直な断面の面積が変化しない同面積部を備えている場合には、第1の電極取出部における第1の電極との接続面積を確保して接触抵抗値を低く抑えることが可能になるとともに、同面積部では第1の電極取出部の体積の増加を抑えられるので、高価な貴金属の使用量を低減することができ、製作コストを低減することができる。
 さらに、第1の電極取出部が、第1のリード部側から第1の電極側に向かうほど、この方向に垂直な断面の面積が小さくなる面積減少部を備えている場合には、第1の電極取出部における第1の電極と接続する接続面積を確保して接触抵抗値を低く抑えることが可能になるとともに、第1のリード部と接続する接続面積を確保して接触抵抗を低く抑えることも可能となり、第1の電極取出部での発熱を抑制することが可能となる。またさらに、第1の電極取出部の中央部分では体積の増加を抑えられるので、高価な貴金属の使用量を低減することができ、製作コストを低減することができる。
 以下、本発明の一実施形態にかかるセラミックヒータについて、添付の図面を参照して詳細に説明する。図1は本発明の一実施形態にかかるセラミックヒータの縦断面図、図2は図1に示すセラミックヒータの第1の電極付近を、矢印Vの方向から見たときの拡大平面図である。なお、これらの図を含めて以下の図において、セラミック基体の断面を示すハッチングは省略して図示する。図1に示すように、セラミックヒータ11は、発熱抵抗体13と、この発熱抵抗体13の両端にそれぞれ電気的に接続された第1のリード部15および第2のリード部17と、第1のリード部15の端部および第2のリード部17の端部の、発熱抵抗体13と接続された端部と反対側の端部にそれぞれ電気的に接続された第1の電極取出部19および第2の電極取出部21と、発熱抵抗体13、第1のリード部15および第2のリード部17、ならびに第1の電極取出部19および第2の電極取出部21が埋設された棒状のセラミック基体23と、を備えている。なお、発熱抵抗体13はセラミック基体23の第1の端部12側に埋設されている。
 セラミック基体23の表面には、第1の電極取出部19および第2の電極取出部21にそれぞれ電気的に接続された第1の電極25および第2の電極27が形成されている。また、第1の電極25はセラミック基体23の側面に形成されている。
 そして、図1における第1の電極取出部19付近を拡大した断面図である図3や、他の実施形態を示す拡大断面図である図4、さらに他の実施形態を示す拡大断面図である図5に示すように、第1の電極取出部19,31,32は、第1の電極25との接続部分の面積S1が第1のリード部15との接続部分の面積S2よりも大きい。そして、本発明においては、この点が重要である。
 本発明によれば、第1の電極取出部19における第1の電極25との接続部分の面積S1が第1のリード部15との接続部分の面積S2よりも大きいので、第1のリード部15との接続部分から第1の電極部25との接続部分までの断面積が同じ場合に比べて第1の電極取出部19の抵抗値を低下させることができ、使用時に第1の電極取出部19および第1の電極25で生じる発熱を抑制することができる。また、第1の電極取出部19と第1の電極25との接続面積を大きくすれば、第1の電極取出部19と第1の電極25との接触抵抗値も小さくすることができ、これにより、さらに発熱を抑制することができる。従って、第1の電極取出部19および第1の電極25の耐久性を向上させることができる。
 特に、第1の電極取出部19のセラミック基体23の表面に近い部分の面積S1を広くしたので、第1の電極取出部19から第1の電極25を通しての放熱性も良好となり、セラミック基体23の表面付近での温度上昇を抑制できる。その結果、第1の電極取出部19の劣化を抑制できるとともに、第1の電極取出部19の発熱に起因して生じることがあったセラミック基体23のクラック発生を抑制することができる。特に、セラミック基体23の表面においてクラックが生じるのを良好に抑制することができる。
 第1の電極取出部19における、第1の電極25との接続部分の面積S1と第1のリード部15との接続部分の面積S2との比率(S1/S2)は、第1のリード部15との接続部分から第1の電極部25との接続部分までの面積が同じ場合に対して第1の電極取出部19の抵抗値を低下させるには、1.1以上であることが好ましく、1.2以上であることがより好ましく、さらには1.5以上であることが好ましい。なお、比率(S1/S2)の上限は特に限定されるものではなく、セラミック基体23などの他の部材の寸法、配置等を考慮して適宜決定すればよい。
 次に、第1の電極取出部19は、第1のリード部15側から第1の電極25側に向かう方向に垂直な断面が円形ないし楕円形であることが好ましい。このように断面が円形ないし楕円形であることで、断面の輪郭が滑らかな曲線となり局部的に発熱することを抑制できる。
 このような第1の電極取出部19の形成は、例えば後述する製造方法で示すような、射出成形法を採用して行なうのが好ましい。第1の電極取出部19を射出成形法により形成する場合には、プリント法により形成する場合と比較して、第1の電極取出部19の断面を容易に円形ないし楕円形にすることができる。第1の電極取出部19をプリント法により形成する場合には、1回のプリントでは十分な厚みを確保することが困難なため複数回のプリントを行なう必要があるが、プリント毎の位置を正確に定めてプリントする必要があるため時間を要するとともに、複数のプリントの間で位置ずれが発生し易く、断面を滑らかな円形や楕円形に形成することが困難となる傾向がある。これに対して、第1の電極取出部19を射出成形法により形成する場合には、金型を用いて1回の成型で形成することができるので、第1の電極取出部19の断面を精度よく容易に、円形ないし楕円形に形成することができる。
 図3に示す例では、第1の電極取出部19は、第1のリード部15側から第1の電極25側に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部を有している。すなわち、この例の第1の電極取出部19は、円錐の先端を切り取ったような形状である。このような構造とすることにより、第1のリード部15との接続部分から第1の電極部25の接続部分までの断面積が同じ場合に比べて第1の電極取出部19の抵抗値を低下させることができ、使用時に第1の電極取出部19および第1の電極25で生じる発熱を抑制することができる。また、第1の電極取出部19と第1のリード部15との接続面積を大きくすれば、第1の電極取出部19と第1のリード部15との接触抵抗値を小さくすることができ、これにより、さらに発熱を抑制することができる。従って、第1の電極取出部19および第1の電極25の耐久性を向上させることができる。
 また、図3に示すように、第1の電極取出部19が、第1のリード部側から第1の電極側に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部を有している場合には、第1の電極取出部19の内部において抵抗が急激に変化することがないので、異常発熱のリスクを低減することができる。また、製造するに当たって、脱脂工程や焼成工程における収縮の際にも、第1の電極取出部19の体積が、面積増加部では第1のリード部15側と第1の電極25側との間で連続して増加あるいは減少しているので、クラックの発生を効果的に抑制することができ、その結果、セラミックヒータの製品としての信頼性や耐久性を向上することができる。さらに、成形体にクラックが入るなどの不具合が生じることも抑制できるので、歩留まりを向上させることもできる。
 図4に示す例では、第1の電極取出部31が、第1のリード部15側から第1の電極25側の矢印方向D1において、矢印方向D1に垂直な断面の面積が変化しない同面積部31aおよび矢印方向D1に向かうに従って断面積が大きくなる面積増加部31bを備えている。
 このように第1の電極取出部31が、第1のリード部15側から第1の電極25側に向かって、この方向に垂直な断面の面積が変化しない同面積部31aを備えている場合には、第1の電極取出部31と第1の電極25との接続面積を大きな面積として接触抵抗値を低く抑えることが可能になるとともに、同面積部31aでは第1の電極取出部31の体積の増加を抑えられるので、第1の電極取出部31での高価な貴金属の使用量を低減することができ、製作コストを低減することができる。
 また、このように面積増加部31bと同面積部31aとを組み合わせた場合には、これらの境界において第1の電極取出部31の側面の傾斜方向が変わる部分があることで、セラミックヒータ11を成型・焼成する際に、あるいは外部応力が印加された場合に、セラミック基体23の内部において第1の電極取出部31の側面の傾斜方向が変わる部分が引っ掛かりとなって、第1の電極取出部31についてセラミック基体23の内部での移動および位置ずれを防止することもできる。
 図5に示す例では、第1の電極取出部32は、矢印方向D1に向かうに従って矢印方向D1に垂直な断面の面積が小さくなる面積減少部32a、矢印方向D1で断面積が変化しない同面積部32bおよび矢印方向D1に向かうに従って断面積が大きくなる面積増加部32cを備えている。このように面積減少部32aと同面積部32bと面積増加部32cとを組み合わせた形態の場合、あるいは面積減少部32aと面積増加部32cとを組み合わせた形態の場合は、いずれの場合でも、これらの導体の境界において導体側面の傾斜方向が変わる部分が1箇所または複数箇所あることで、セラミックヒータ11を成型・焼成する際に、あるいはセラミックヒータ11に外部応力が印加された場合に、セラミック基体23の内部において第1の電極取出部32の側面の傾斜方向が変わる部分が引っ掛かりとなって、第1の電極取出部32についてセラミック基体23の内部での移動および位置ずれを防止することができる。
 また、このような構成とすることにより、第1の電極取出部32の第1の電極25との接続面積および第1の電極取出部32と第1のリード部15との接続面積を、面積増加部32cおよび面積減少部32aでそれぞれ確保して接続部における接触抵抗値を低く抑えるとともに、断面の面積が変化しない同面積部32bでは第1の電極取出部32の体積の増加を抑えられるので、第1の電極取出部32での高価な貴金属の使用量を低減することができ、製作コストを低減することができる。
 第2の電極27は、図1に示すように、セラミック基体23の第2の端部14における端面14aおよび側面14bを覆うように形成されている。図1、図1に示すセラミックヒータにおける第2の電極取出部27付近を拡大した断面図である図6、図1に示すセラミックヒータを図1中に矢印で示した方向Hから見たときの正面図である図7、および図1におけるA-A線断面図である図8に示すように、第2の電極取出部21は、第2の電極27との接続部分の面積が第2のリード部17との接続部分の面積よりも大きいので、第2のリード部17の接続部分から第2の電極部27の接続部分までの断面積が同じ場合に比べて第2の電極取出部21の抵抗値を低下させることができ、これにより、使用時に第2の電極取出部21で生じる発熱を抑制することが可能となり、第2の電極取出部21の劣化を抑制することができる。
 第2の電極取出部21における、第2の電極27との接続部分の面積S3と第2のリード部17との接続部分の面積S4との比率(S3/S4)は、第2のリード部17との接続部分から第2の電極部27との接続部分までの面積が同じ場合に対して第2の電極取出部21の抵抗値を低下させるには、1.3以上であることが好ましく、さらには3.7以上であることが好ましい。なお、比率(S3/S4)の上限は特に限定されるものではなく、セラミック基体23などの他の部材の寸法、配置等を考慮して適宜決定すればよい。
 第2の電極取出部21は、第2のリード部17側から第2の電極27側に向かう方向に垂直な断面が円形ないし楕円形であることが好ましい。このように断面が円形ないし楕円形であることで、局部的に発熱することを抑制できる。また、断面が円形ないし楕円形であることで、第2の電極27との接続部分および第2のリード部17との接続部分における発熱をより低減することができる。
 図6に示すように、第2の電極取出部21は、第2のリード部17側から第2の電極27側の、矢印方向D2に向かうに従って、矢印方向D2に垂直な断面の面積が大きくなる面積増加部21aを有している。これにより、第2の電極取出部21において急激な抵抗変化が起こらないので、第2の電極取出部21での発熱をさらに抑制できる。また、セラミックヒータを製造するに当たって、脱脂工程や焼成工程における収縮の際にも、第2の電極取出部21の体積が第2のリード部17側と第2の電極27側との間で連続して増加あるいは減少するので、セラミック基体23におけるクラックの発生を効果的に抑制することができ、その結果、セラミックヒータの製品としての信頼性や耐久性を向上することができる。さらに、セラミック基体23の成形体にクラックが入るなどの不具合が生じるのも抑制できるので、歩留まりを向上させることもできる。
 また、図6に示す例では、第2の電極取出部21は、面積増加部21aよりも矢印方向D2側に、さらに、矢印方向D2に向かうに従って断面積が小さくなる面積減少部21bを備えている。第2の端部14は、この第2の端部14の端面14aに向かうほど外径が細くなっている(以下、細径部14という)。第2の電極取出部21における面積増加部21aおよび面積減少部21bは、細径部14に埋設されており、また、面積減少部21bは、細径部14に沿って配置されている。そして、第2の電極取出部21は、第2のリード部17側から第2の電極27側に向かって面積増加部21aおよび面積減少部21bが、この順に配置されている。このように矢印方向D2に向かうに従って断面積が大きくなる面積増加部21aと断面積が小さくなる面積減少部21bとを備えている場合には、電気を流すのに十分な断面積を確保しつつ、低硬度材料である電極取出材の体積を小さくすることにより、第2の電極取出部21付近の製品強度をより向上させることができるので、信頼性の高い製品にする事ができる。
 また、セラミックヒータ11における第2の電極取出部33付近の他の実施形態を示す拡大断面図である図9に示すように、第2の電極取出部33は、第2のリード部17側から第2の端部14に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部33a、断面の面積が変化しない同面積部33b、そして、断面の面積が小さくなる面積減少部33cとした構成としてもよい。このような構成とすることにより、低硬度材料である電極取出材の体積をより小さくすることができ、セラミックヒータ11について第2の電極取出部21付近の製品強度をより向上させることができる。
 第2の電極27は、第2の端部14の端面14aと、この端面14aにつながる第2の端部14の側面14bに形成されている。そして、図1に示すセラミックヒータ11の第2の端部14に金属嵌合部35を嵌合した状態を示す側面図である図10に示すように、この第2の電極27を覆うようにして、凹部を有する金属嵌合部35が細径部(第2の端部)14に嵌合されている。これにより、第2の電極27が酸化することを抑制できる。特に、第2の端部14と金属嵌合部35との接続構造の他の実施形態を示す側面図である図11に示すように、金属嵌合部35が第2の電極27の表面全体を覆っていることが好ましい。これにより、第2の電極27の酸化抑制効果をより高めることができるとともに、金属嵌合部35と第2の電極27との接触面積が大きくなるので、この部分での電気抵抗を低下させて発熱をより抑制することができる。
 発熱抵抗体13としては、W,MoおよびTiなどの炭化物,窒化物および珪化物などを主成分とするものを使用することが可能である。上記の材料の中でも、WCが熱膨張率,耐熱性および比抵抗の面から発熱抵抗体13の材料として優れている。発熱抵抗体13は無機導電体のWCを主成分とし、例えば後述するようにセラミック基体23を、窒化珪素質セラミックスを用いて製作する場合は、発熱抵抗体13に添加する窒化珪素の比率が20質量%以上となるように調整することが好ましい。窒化珪素セラミックス中で、発熱抵抗体13となる導体成分は窒化珪素と比較して熱膨張率が大きいため、通常は引張応力が加わった状態にある。これに対して、窒化珪素自身を共材として発熱抵抗体13に添加することにより、熱膨張率を母材の窒化珪素に近づけ、セラミックヒータ11の昇温降温時の熱膨張差による応力を緩和することができる。
 なお、窒化珪素の添加量が40質量%以下であるときには、抵抗値を良好に安定させることができる。なお、好ましくは、窒化珪素の添加量は25~35質量%とするのがよい。また、発熱抵抗体13への添加物として、窒化珪素の代わりに窒化硼素を4~12質量%添加することも可能である。
 第1のリード部15および第2のリード部17としては、発熱抵抗体13と同様の材料を使用することが可能である。中でもWCが熱膨張率、耐熱性および比抵抗の面からリード部15,17の材料として優れている。第1のリード部15および第2のリード部17は無機導電体のWCを主成分とし、上述した発熱抵抗体13と同様に、セラミック基体23を窒化珪素質セラミックスを用いて製作する場合は、第1のリード部15および第2のリード部17に添加する窒化珪素の比率が15質量%以上となるように調整することが好ましい。窒化珪素の添加量を増すにつれ、第1のリード部15および第2のリード部17の熱膨張率を母材の窒化珪素に近づけることができる。なお、窒化珪素の添加量が40質量%以下であるときには、抵抗値が安定するので、窒化珪素の添加量は、40質量%以下とすることが好ましい。さらに好ましくは、窒化珪素の添加量は、20~35質量%とするのがよい。
 セラミック基体23としては、酸化物セラミックス,窒化物セラミックスあるいは炭化物セラミックス等の絶縁性を備えたセラミックスを用いることができる。特に、窒化珪素質セラミックスを用いるのが好適である。窒化珪素質セラミックスは、主成分である窒化珪素が高強度,高靱性,高絶縁性および耐熱性の観点で優れているからである。この窒化珪素質セラミックスは、例えば、主成分の窒化珪素に対して、焼結助剤として3~12質量%のY,Yb,Er等の希土類元素酸化物、0.5~3質量%のAl、さらに焼結体に含まれるSiO量として1.5~5質量%となるようにSiOを混合し、所定の形状に成形し、その後、1650~1780℃でホットプレス焼成することにより得ることができる。
 また、セラミック基体23として窒化珪素を用いる場合には、MoSiOやWSiを分散させることが好ましい。母材の熱膨張率を発熱抵抗体13の熱膨張率に近づけることにより、セラミックヒータ11の耐久性を向上させることができるからである。
 次に、上記実施形態にかかるセラミックヒータ11を製造するための方法について説明する。本実施形態にかかるセラミックヒータ11は、例えば、第1の電極取出部19が、第1の電極25との接続部分の面積が第1のリード部15との接続部分の面積よりも大きくなるように製作された金型を用いて射出成形法を採用することにより成形できる。
 まず、導電性セラミックス粉末およびバインダーを含む通電部用混合物、ならびに絶縁性セラミックスおよびバインダーを含む基体用混合物を準備する。この通電部用混合物を原料として、射出成形法を採用して発熱抵抗体用成形体を成形する。得られた発熱抵抗体用成形体を射出成形用金型内に保持した状態で、通電部用混合物を金型内に充填してリード部用成形体を成形する。これにより、発熱抵抗体用成形体およびリード部用成形体からなる通電部用成形体が金型内に保持された状態となる。
 次に、金型内に通電部用成形体を保持した状態で、金型の一部をセラミック基体成形用の部品に取り替えた後、金型内に基体用混合物を充填する。これにより、通電部用成形体がセラミック基体用成形体で覆われた素子成形体が得られる。次に、得られた素子成形体を焼成することによりセラミックヒータを得ることができる。焼成は非酸化雰囲気で行なうことが好ましい。
 <グロープラグ>
 次に、本発明の一実施形態にかかるグロープラグについて説明する。本発明の一実施形態にかかるグロープラグを示す断面図である図12に示すように、グロープラグ51は、筒状金具53にセラミックヒータ11が挿入されている。筒状金具53は陰極金具として用いられ、セラミックヒータ11の側面に露出した第1の電極25と電気的に接続される。筒状金具53内には第2の電極27と電気的に接続される陽極金具55が配設されている。そして、筒状金具53および陽極金具55に通電することで、本実施形態のグロープラグは、例えばエンジン始動用の熱源として機能させることができる。
 本発明の一実施形態にかかるセラミックヒータを以下のようにして作製した。まず、WCと窒化珪素とを主成分とする原料を金型内に射出して成形を行ない、発熱抵抗体用成形体を製作した。次に、この発熱抵抗体用成形体を射出成形用金型内に保持した状態で、リード部用成形体を金型内に充填することにより、発熱抵抗体用成形体とリード部用成形体とを金型内で一体化して通電部用成形体を得た。表1および表2に示すNo.1~16の各試料は、種々の形状の電極取出部を有した金型を用いて成型したサンプルである。各試料の電極取出部は、リード部側から電極側に向かう方向に垂直な断面が楕円形になるように成形した。各試料の成形歩留まりを評価し、各形状の比較を行なった。
 次に、通電部用成形体を射出成形用金型内に保持した状態で、窒化珪素(Si)粉末に、イッテルビウム(Yb)の酸化物からなる焼結助剤と発熱抵抗体やリード部に熱膨張率を近づけるためのMoSiとを添加したセラミック原料を用いて、射出成形法を採用して成型した。これにより、セラミック基体用成形体中に通電部用成形体を埋設した構造を得た。
 得られた成形体を円筒の炭素型に入れた後、還元雰囲気下、1650℃~1780℃の温度、10~50MPaの圧力でホットプレス法を採用して焼成した。このようにして得られた焼結体の表面に露出した第1の電極取出部および第2の電極取出部に金具をロウ付けしてセラミックヒータを得た。これらの金具にK熱電対を貼り付けて、電極取出部の通電飽和時の温度を測定した。通常、電極温度は300℃以下になる設計が望ましいため、この温度以下であれば電極部の耐久性にも優れていると考えられる。
 また、上記のセラミックヒータを用いて冷熱サイクル試験を行なった。冷熱サイクル試験の条件は、セラミックヒータに通電し、電極部温度が400℃になるように印加電圧を設定し、5分間通電/2分非通電を1サイクルとする、1万サイクルとした。通電前後のセラミックヒータの抵抗変化を評価し、抵抗変化が5%以上である場合はNGと判定した。これらNGと判定した試料には、電極あるいは電極取出部にクラックが発生していた。結果を表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2から判るように、面積増加部を有しないNo.7,8,14~16の試料では、成型歩留りも40~70%と低かった。
本発明の一実施形態にかかるセラミックヒータを示す縦断面図である。 図1に示すセラミックヒータにおける第1の電極付近を、図1に示す一点鎖線Vの方向から見たときの拡大平面図である。 図1における第1の電極取出部付近を拡大した断面図である。 セラミックヒータにおける第1の電極取出部付近の他の実施形態を示す拡大断面図である。 セラミックヒータにおける第1の電極取出部付近のさらに他の実施形態を示す拡大断面図である。 図1に示すセラミックヒータにおける第2の電極取出部付近を拡大した断面図である。 図1に示すセラミックヒータを、図1中に矢印で示した方向Hから見たときの正面図である。 図1におけるA-A線断面図である。 セラミックヒータにおける第2の電極取出部付近の他の実施形態を示す拡大断面図である。 図1に示すセラミックヒータの第2の端部に金属嵌合部を嵌合した状態を示す側面図である。 第2の端部およびと金属嵌合部の接続構造の他の実施形態を示す側面図である。 本発明の一実施形態にかかるグロープラグを示す断面図である。
符号の説明
11・・・・・・・・・・・・セラミックヒータ
12・・・・・・・・・・・・第1の端部
13・・・・・・・・・・・・発熱抵抗体
14・・・・・・・・・・・・第2の端部(細径部)
14a・・・・・・・・・・・端面
14b・・・・・・・・・・・側面
15・・・・・・・・・・・・第1のリード部
17・・・・・・・・・・・・第2のリード部
19・31・・・・・・・・・・第1の電極取出部
21・33・・・・・・・・・・第2の電極取出部
21a・31b・32c・33a・・面積増加部
21b・32a・33c・・・・・面積減少部
23・・・・・・・・・・・・セラミック基体
25・・・・・・・・・・・・第1の電極
27・33・・・・・・・・・・第2の電極
31a・32b・33b・・・・・同面積部
35・37・・・・・・・・・・金属嵌合部
51・・・・・・・・・・・・グロープラグ

Claims (15)

  1.  発熱抵抗体と、
    この発熱抵抗体の両端にそれぞれ電気的に接続された第1のリード部および第2のリード部と、
    前記第1のリード部の端部および前記第2のリード部の端部のうち、前記発熱抵抗体と接続された端部と反対側の端部にそれぞれ電気的に接続された第1の電極取出部および第2の電極取出部と、
    前記発熱抵抗体、前記第1のリード部および前記第2のリード部、ならびに前記第1の電極取出部および前記第2の電極取出部が埋設されたセラミック基体と、
    このセラミック基体の表面に形成され、前記第1の電極取出部および前記第2の電極取出部にそれぞれ電気的に接続された第1の電極および第2の電極と、を備え、
    前記第1の電極取出部は、前記第1の電極との接続部分の面積が前記第1のリード部との接続部分の面積よりも大きいことを特徴とするセラミックヒータ。
  2.  前記第1の電極取出部は、前記第1のリード部側から前記第1の電極側に向かう方向に垂直な断面が円形ないし楕円形であることを特徴とする請求項1に記載のセラミックヒータ。
  3.  前記第1の電極取出部は、前記第1のリード部側から前記第1の電極側に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部を有していることを特徴とする請求項2に記載のセラミックヒータ。
  4.  前記第1の電極取出部は、前記第1のリード部側から前記第1の電極側に向かうほど、この方向に垂直な断面の面積が小さくなる面積減少部、またはこの方向に垂直な断面の面積が変化しない同面積部を備えていることを特徴とする請求項3に記載のセラミックヒータ。
  5.  前記セラミック基体が棒状であり、このセラミック基体の第1の端部側に前記発熱抵抗体が埋設され、前記セラミック基体の側面に前記第1の電極が形成され、前記セラミック基体の第2の端部における少なくとも端面に前記第2の電極が形成されており、
    前記第2の電極取出部は、前記第2の電極との接続部分の面積が前記第2のリード部との接続部分の面積よりも大きいことを特徴とする請求項1に記載のセラミックヒータ。
  6.  前記第2の電極取出部は、前記第2のリード部側から前記第2の電極側に向かう方向に垂直な断面が円形ないし楕円形であることを特徴とする請求項5に記載のセラミックヒータ。
  7.  前記第2の電極取出部は、前記第2のリード部側から前記第2の電極側に向かうほど、この方向に垂直な断面の面積が大きくなる面積増加部を有していることを特徴とする請求項6に記載のセラミックヒータ。
  8.  前記第2の電極取出部は、前記第2のリード部側から前記第2の電極側に向かうほど、この方向に垂直な断面の面積が小さくなる面積減少部、またはこの方向に垂直な断面の面積が変化しない同面積部を備えていることを特徴とする請求項7に記載のセラミックヒータ。
  9.  前記第2の端部は、この第2の端部の端面に向かうほど外径が細くなる細径部を有しており、前記第2の電極取出部における前記面積増加部が前記細径部に埋設されていることを特徴とする請求項7に記載のセラミックヒータ。
  10.  前記第2の端部は、この第2の端部の端面に向かうほど外径が細くなる細径部を有しており、前記第2の電極取出部は、前記第2のリード部側から前記第2の電極側に向かうほど、この方向に垂直な断面の面積が小さくなる面積減少部を有しており、この面積減少部が前記細径部に埋設されていることを特徴とする請求項8に記載のセラミックヒータ。
  11.  前記第2の電極取出部は、前記第2のリード部側から前記第2の電極側に向かって前記面積増加部および前記面積減少部がこの順に配置されていることを特徴とする請求項10に記載のセラミックヒータ。
  12.  前記第2の端部は、この第2の端部の端面に向かうほど外径が細くなる細径部を有しており、この細径部に沿って前記面積減少部が配置されていることを特徴とする請求項10に記載のセラミックヒータ。
  13.  前記第2の電極は、前記第2の端部の端面と、この端面につながる前記第2の端部の側面の少なくとも一部とに形成されており、凹部を有する金属嵌合部が前記第2の電極を覆っていることを特徴とする請求項6~12のいずれかに記載のセラミックヒータ。
  14.  前記金属嵌合部が前記第2の電極の表面全体を覆っていることを特徴とする請求項13に記載のセラミックヒータ。
  15.  請求項1~14のいずれかに記載のセラミックヒータを備えたことを特徴とするグロープラグ。
PCT/JP2009/051484 2008-01-29 2009-01-29 セラミックヒータおよびグロープラグ WO2009096477A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/864,864 US20110068091A1 (en) 2008-01-29 2009-01-29 Ceramic Heater and Glow Plug
JP2009551571A JP5166451B2 (ja) 2008-01-29 2009-01-29 セラミックヒータおよびグロープラグ
KR1020107018491A KR101195918B1 (ko) 2008-01-29 2009-01-29 세라믹 히터 및 글로우 플러그
CN200980103487.3A CN101933392B (zh) 2008-01-29 2009-01-29 陶瓷加热器以及电热塞
EP09704964.7A EP2247156B1 (en) 2008-01-29 2009-01-29 Ceramic heater and glow plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-018207 2008-01-29
JP2008018207 2008-01-29

Publications (1)

Publication Number Publication Date
WO2009096477A1 true WO2009096477A1 (ja) 2009-08-06

Family

ID=40912821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051484 WO2009096477A1 (ja) 2008-01-29 2009-01-29 セラミックヒータおよびグロープラグ

Country Status (6)

Country Link
US (1) US20110068091A1 (ja)
EP (1) EP2247156B1 (ja)
JP (1) JP5166451B2 (ja)
KR (1) KR101195918B1 (ja)
CN (1) CN101933392B (ja)
WO (1) WO2009096477A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042941A1 (ja) * 2010-09-27 2012-04-05 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
WO2013031728A1 (ja) * 2011-08-29 2013-03-07 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
WO2014073267A1 (ja) * 2012-11-08 2014-05-15 ボッシュ株式会社 セラミックスヒータ型グロープラグ
JP2014231940A (ja) * 2013-05-29 2014-12-11 京セラ株式会社 ヒータおよびグロープラグ
JP2015026564A (ja) * 2013-07-29 2015-02-05 日本特殊陶業株式会社 ヒータユニットおよびそれを備えたグロープラグ
WO2015064598A1 (ja) * 2013-10-28 2015-05-07 京セラ株式会社 ヒータおよびグロープラグ
JP2015125947A (ja) * 2013-12-27 2015-07-06 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
WO2015129722A1 (ja) * 2014-02-26 2015-09-03 京セラ株式会社 ヒータおよびグロープラグ
EP2635090A4 (en) * 2010-10-27 2018-01-17 Kyocera Corporation Heater, and glow plug provided with same
JP2021125326A (ja) * 2020-02-04 2021-08-30 京セラ株式会社 ヒータおよびこれを備えたグロープラグ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057597A1 (ja) * 2007-10-29 2009-05-07 Kyocera Corporation セラミックヒータおよびこれを備えたグロープラグ
US8378273B2 (en) * 2008-02-20 2013-02-19 Ngk Spark Plug Co., Ltd. Ceramic heater and glow plug
FR2998948B1 (fr) * 2012-12-04 2015-01-30 Bosch Gmbh Robert Bougie de prechauffage de moteur diesel a electrode tubulaire
JP6619127B2 (ja) * 2013-10-30 2019-12-11 サンドビック株式会社 加熱装置および加熱炉
DE102014226433A1 (de) * 2014-12-18 2016-06-23 Robert Bosch Gmbh Elektrisches Heizelement und Kontaktierung mit verbesserter Haltbarkeit
KR101888746B1 (ko) * 2015-09-10 2018-08-14 니혼도꾸슈도교 가부시키가이샤 세라믹 히터 및 글로 플러그
JP6370754B2 (ja) * 2015-09-10 2018-08-08 日本特殊陶業株式会社 セラミックヒータおよびグロープラグ
CN207869432U (zh) * 2018-03-07 2018-09-14 东莞市国研电热材料有限公司 一种多温区陶瓷发热体
JP7000222B2 (ja) * 2018-03-23 2022-01-19 Koa株式会社 ガスセンサおよびその製造方法
US20210310656A1 (en) * 2018-09-28 2021-10-07 Kyocera Corporation Heater and glow-plug provided therewith
CN111592363A (zh) * 2020-04-17 2020-08-28 北京中材人工晶体研究院有限公司 一种陶瓷加热器及其制备方法
JP7212006B2 (ja) * 2020-06-12 2023-01-24 日本碍子株式会社 熱電対ガイド及びセラミックヒータ
CN116963326B (zh) * 2023-08-02 2024-06-21 南通通杰照明有限公司 陶瓷加热器和电热塞

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184626A (ja) 1995-12-29 1997-07-15 Ngk Spark Plug Co Ltd セラミックヒータ及びその製造方法
JPH09184622A (ja) 1995-12-29 1997-07-15 Ngk Spark Plug Co Ltd グロープラグ
JP2006049279A (ja) 2004-06-29 2006-02-16 Ngk Spark Plug Co Ltd セラミックヒータ、グロープラグ及びセラミックヒータの製造方法
JP2007227063A (ja) * 2006-02-22 2007-09-06 Kyocera Corp セラミックヒータ
JP2007240080A (ja) * 2006-03-09 2007-09-20 Ngk Spark Plug Co Ltd セラミックヒータ及びグロープラグ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4475029A (en) * 1982-03-02 1984-10-02 Nippondenso Co., Ltd. Ceramic heater
US4499366A (en) * 1982-11-25 1985-02-12 Nippondenso Co., Ltd. Ceramic heater device
US4671058A (en) * 1983-11-21 1987-06-09 Nippondenso Co., Ltd. Heating device
US4804823A (en) * 1986-07-31 1989-02-14 Kyocera Corporation Ceramic heater
US4810853A (en) * 1986-10-28 1989-03-07 Hitachi Metals Ltd. Glow plug for diesel engines
US5750958A (en) * 1993-09-20 1998-05-12 Kyocera Corporation Ceramic glow plug
JP2828575B2 (ja) * 1993-11-12 1998-11-25 京セラ株式会社 窒化珪素質セラミックヒータ
JPH10208853A (ja) * 1996-11-19 1998-08-07 Ngk Spark Plug Co Ltd セラミックヒータ、およびその製造方法
JPH10332149A (ja) * 1997-03-31 1998-12-15 Ngk Spark Plug Co Ltd セラミックヒータ
JP4553529B2 (ja) * 2001-08-28 2010-09-29 日本特殊陶業株式会社 セラミックヒータ及びそれを用いたグロープラグ
US7138604B2 (en) * 2003-05-02 2006-11-21 Delphi Technologies, Inc. Ceramic device, sensor device, method of making the same, and method for sensing gas
EP2570726B1 (en) * 2004-04-07 2018-01-17 Ngk Spark Plug Co., Ltd. Ceramic heater, method of producing the same, and glow plug using this ceramic heater
EP1768456B1 (en) * 2004-05-27 2013-06-26 Kyocera Corporation Ceramic heater, and glow plug using the same
US7223942B2 (en) * 2004-06-29 2007-05-29 Ngk Spark Plug Co., Ltd. Ceramic heater, glow plug, and ceramic heater manufacturing method
US20080116192A1 (en) * 2006-10-02 2008-05-22 Saint-Gobain Ceramics & Plastics, Inc. Injection molding of ceramic elements
CN101647314B (zh) * 2007-02-22 2012-05-23 京瓷株式会社 陶瓷加热器、采用该陶瓷加热器的热线引火塞及陶瓷加热器的制造方法
WO2009085311A1 (en) * 2007-12-29 2009-07-09 Saint-Gobain Ceramics & Plastics, Inc. Ceramic heating elements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184626A (ja) 1995-12-29 1997-07-15 Ngk Spark Plug Co Ltd セラミックヒータ及びその製造方法
JPH09184622A (ja) 1995-12-29 1997-07-15 Ngk Spark Plug Co Ltd グロープラグ
JP2006049279A (ja) 2004-06-29 2006-02-16 Ngk Spark Plug Co Ltd セラミックヒータ、グロープラグ及びセラミックヒータの製造方法
JP2007227063A (ja) * 2006-02-22 2007-09-06 Kyocera Corp セラミックヒータ
JP2007240080A (ja) * 2006-03-09 2007-09-20 Ngk Spark Plug Co Ltd セラミックヒータ及びグロープラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2247156A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623866A4 (en) * 2010-09-27 2015-07-29 Kyocera Corp HEATING ELEMENT AND PREHEATING PLUG COMPRISING SAME
JP5436687B2 (ja) * 2010-09-27 2014-03-05 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
WO2012042941A1 (ja) * 2010-09-27 2012-04-05 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
EP2635090A4 (en) * 2010-10-27 2018-01-17 Kyocera Corporation Heater, and glow plug provided with same
WO2013031728A1 (ja) * 2011-08-29 2013-03-07 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
JPWO2013031728A1 (ja) * 2011-08-29 2015-03-23 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
KR101514974B1 (ko) 2011-08-29 2015-04-24 쿄세라 코포레이션 히터 및 이것을 구비한 글로우 플러그
US9400109B2 (en) 2011-08-29 2016-07-26 Kyocera Corporation Heater and glow plug including the same
WO2014073267A1 (ja) * 2012-11-08 2014-05-15 ボッシュ株式会社 セラミックスヒータ型グロープラグ
JPWO2014073267A1 (ja) * 2012-11-08 2016-09-08 ボッシュ株式会社 セラミックスヒータ型グロープラグ
JP2014231940A (ja) * 2013-05-29 2014-12-11 京セラ株式会社 ヒータおよびグロープラグ
JP2015026564A (ja) * 2013-07-29 2015-02-05 日本特殊陶業株式会社 ヒータユニットおよびそれを備えたグロープラグ
WO2015064598A1 (ja) * 2013-10-28 2015-05-07 京セラ株式会社 ヒータおよびグロープラグ
JP6075810B2 (ja) * 2013-10-28 2017-02-08 京セラ株式会社 ヒータおよびグロープラグ
JP2015125947A (ja) * 2013-12-27 2015-07-06 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
WO2015129722A1 (ja) * 2014-02-26 2015-09-03 京セラ株式会社 ヒータおよびグロープラグ
JPWO2015129722A1 (ja) * 2014-02-26 2017-03-30 京セラ株式会社 ヒータおよびグロープラグ
JP2021125326A (ja) * 2020-02-04 2021-08-30 京セラ株式会社 ヒータおよびこれを備えたグロープラグ
JP7369633B2 (ja) 2020-02-04 2023-10-26 京セラ株式会社 ヒータおよびこれを備えたグロープラグ

Also Published As

Publication number Publication date
EP2247156A1 (en) 2010-11-03
EP2247156A4 (en) 2015-03-11
JP5166451B2 (ja) 2013-03-21
JPWO2009096477A1 (ja) 2011-05-26
CN101933392B (zh) 2013-04-17
KR20100106589A (ko) 2010-10-01
CN101933392A (zh) 2010-12-29
EP2247156B1 (en) 2016-12-28
KR101195918B1 (ko) 2012-10-30
US20110068091A1 (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5166451B2 (ja) セラミックヒータおよびグロープラグ
JP6247375B2 (ja) ヒータおよびこれを備えたグロープラグ
EP2600688B1 (en) Heater and glow plug provided with same
JP6337046B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5289462B2 (ja) セラミックヒータ
JP5827247B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5766282B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5876566B2 (ja) ヒータおよびこれを備えたグロープラグ
JP5726311B2 (ja) ヒータおよびこれを備えたグロープラグ
JP2014099320A (ja) ヒータおよびこれを備えたグロープラグ
JP6952395B2 (ja) ヒータ
JP5829691B2 (ja) ヒータおよびこれを備えたグロープラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103487.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009551571

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107018491

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009704964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009704964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12864864

Country of ref document: US