WO2009085311A1 - Ceramic heating elements - Google Patents

Ceramic heating elements Download PDF

Info

Publication number
WO2009085311A1
WO2009085311A1 PCT/US2008/014094 US2008014094W WO2009085311A1 WO 2009085311 A1 WO2009085311 A1 WO 2009085311A1 US 2008014094 W US2008014094 W US 2008014094W WO 2009085311 A1 WO2009085311 A1 WO 2009085311A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
zone
conductive zone
conductive
length
Prior art date
Application number
PCT/US2008/014094
Other languages
French (fr)
Inventor
Ara Vartabedian
Suresh Annavarapu
Original Assignee
Saint-Gobain Ceramics & Plastics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Ceramics & Plastics, Inc. filed Critical Saint-Gobain Ceramics & Plastics, Inc.
Priority to JP2010540675A priority Critical patent/JP2011508950A/en
Priority to EP08867380A priority patent/EP2232144A1/en
Priority to CN2008801263736A priority patent/CN101939592A/en
Priority to CA2711015A priority patent/CA2711015A1/en
Priority to BRPI0821671-1A priority patent/BRPI0821671A2/en
Priority to MX2010007139A priority patent/MX2010007139A/en
Publication of WO2009085311A1 publication Critical patent/WO2009085311A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/22Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/001Glowing plugs for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • F23Q7/06Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs structurally associated with fluid-fuel burners
    • F23Q7/10Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs structurally associated with fluid-fuel burners for gaseous fuel, e.g. in welding appliances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material

Definitions

  • ceramic heating elements are provided that have a recessed portion for receiving an electrical lead. Such ceramic heating elements can more secure engagement of the heating element with an electrical lead.
  • ceramic heating elements are provided that have a conductive zone of substantially equal or increasing cross-section along a length of the element. The present heating elements are useful in a variety of application, including e.g. for fuel ignition for gas cooking appliances as well as vehicular glow plugs that have strict space constraints.
  • Ceramic materials have enjoyed great success as heating elements (includes igniters) in e.g. gas-fired furnaces, stoves and clothes dryers. Ceramic heating element production includes constructing an electrical circuit through a ceramic component a portion of which is highly resistive and rises in temperature when electrified by a wire lead. See, for instance, U.S. Patent Publication 2006/0131295 and U.S. Patents 6,028,292; 5,801,361 ; 5,405,237; and 5,191,508.
  • Typical igniters have been generally rectangular-shaped elements with a highly resistive "hot zone” at the heating element tip with one or more conductive “cold zones” providing to the hot zone from the opposing heating element end.
  • each of its ends must be electrically connected to a conductive lead, typically a copper wire lead.
  • Ceramic heating elements have been connected to electrical contact by direct welding or brazing to wire or by brazing to an intermediate metal lead frame which is then welded or brazed to wire. See U.S. Patents 7,241,975 and 6,933,471.
  • ceramic heating elements are provided that have a recessed portion for receiving an electrical lead.
  • Such ceramic heating elements can provide a reduced cross-sectional dimension across element regions that interface with electrical lead(s) as well as a more secure engagement of the lead(s) to the heating device. Consequently, heating elements can be highly useful in a variety of applications, including e.g. for fuel ignition for gas cooking appliances as well as vehicular glow plugs.
  • a heating element may comprise at least one recess (e.g. hole) that can receive an electrical lead, where the recess is positioned at a bottom face of the heating element, although the recess also suitably may be situated in other regions of a heating element, such as a side portion of an element.
  • recess e.g. hole
  • the recess may be tapered, e.g. inwardly tapered (decreasing cross-sectional area), which can further secure an engagement of an electrical lead with the heating element.
  • a conductive zone (i.e. region of relatively low resistivity) of the heating element forms at least a portion of the wall surface of the recess.
  • power from an electrical lead nested within the recess can flow through the heating element via such conductive zone.
  • ceramic heating elements are provided that have a conductive zone of substantially equal or increasing cross-section from a proximal end of the heating element along the element length.
  • the cross-sectional dimension of the conductive zone that forms at least a portion of the wall surface of the recess for receiving an electrical lead will have a cross-sectional dimension at a portion that contacts the recess that is substantially equal to or greater than the cross-section dimension of that same conductive zone further along that conductive zone's length.
  • Preferred heating elements of the invention have an outer or substantially U- shaped or L-shaped electrical path, i.e. where the electrical path extends from (i) an outer conductive zone to (ii) an hot or ignition zone and then through (iii) a second outer conductive zone.
  • Such an outer or U-shaped or L-shaped electrical path is different than and distinguished from a co-axial path that contains an interior first conductive zone that is encased by an outer conductive zone.
  • Particularly preferred heating elements of the invention may have cylindrical or other non-rectangular cross-section configurations.
  • preferred heating elements of the invention have a rounded cross-sectional shape along at least a portion of the heating element length (e.g., the length extending from where an electrical lead is affixed to the heating element to a resistive hot zone). More particularly, preferred heating elements may have a substantially oval, circular or other rounded cross- sectional shape for at least a portion of the heating element length, e.g. at least about 10 percent, 40 percent, 60 percent, 80 percent or 90 percent of the heating element length, or the entire heating element length. A substantially circular cross-sectional shape that provides a rod-shaped heating element is particularly preferred.
  • the invention also provides heating elements that have non-rounded or non-circular cross-sectional shapes for at least a portion of the heating element length.
  • Preferred heating elements comprise multiple regions of differing electrical resistivity, i.e. preferred ceramic heating elements may comprise a first conductive zone, a resistive hot zone, and a second conductive zone, all in electrical sequence. Heating elements of the invention may have a variety of electrical configurations. As discussed, in preferred systems, the heating element may have a substantially U-shaped electrical path, e.g. where opposing conductive zones are separated by an interposed hot or ignition zone.
  • Ceramic heating elements of the invention can be employed at a wide variety of nominal voltages, including nominal voltages of 6, 8, 10, 12, 24, 120, 220, 230 and 240 volts.
  • heating elements of the invention are useful for ignition in a variety of devices and heating systems. More particularly, heating systems are provided that comprise a sintered ceramic heating element as described herein. Specific heating systems include appliances such as gas cooking units, heating units for commercial and residential buildings. Vehicular (e.g. automotive, watercraft) glow plugs also provided that comprise a sintered ceramic heating element as described herein.
  • appliances such as gas cooking units, heating units for commercial and residential buildings.
  • Vehicular (e.g. automotive, watercraft) glow plugs also provided that comprise a sintered ceramic heating element as described herein.
  • FIGS. 1 through 4 show schematically preferred heating element systems
  • FIG. 5 shows in a cut-away view a further preferred heating element
  • FIG. 6 (which includes FIGS. 6A-6C) shows plan views of a further preferred heating element.
  • FIG. 6B is a view sliced along line B-B of FIG. 6A
  • Fig. 6C is a view sliced along line C-C of FIG. 6A.
  • ceramic heating element systems are provided that include new configurations for mating of electrical lead components.
  • ceramic heating element systems are provided that include conductive region(s) that can provide notable benefits, including reduced warpage upon sintering.
  • Preferred ceramic heating elements of the invention having a substantially outer or U-shaped or L- shaped electrical path.
  • FIGS. 1 through 4 show in a schematic cut-away view a preferred heating element 10 where conductive zones 12A and 12B mate with interposed hot (ignition) zone 14 to thereby form an electrical pathway.
  • outer conductive zones 12A and 12B together with interposed hot (ignition) zone form a substantially U-shaped or L-shaped electrical pathway that traverses an outer or perimeter portion of the heating element 10.
  • Conductive zone 12A defines in part recess 16 that engages with electrical lead 18 during use of element 10.
  • heating element 10 may be encased with a metal fixture 20 and affixed therethrough, e.g. via a metal braze 22.
  • the interior region 24 encased by conductive zones 12 A, 12B and ignition zone 14 may be void or may have an insulative (heat sink) composition.
  • an exterior insulative layer 25 on heating element portions that contact metal fixture 20.
  • Such an exterior insulative layer may be suitably formed by dip coating or other application of an insulative ceramic composition.
  • FIG. 5 shows in a partial cut-away view a particularly preferred heating element where conductive zone 12A forms a portion of walls 16A of recess 16 that receives an electrical lead.
  • conductive zone 12A and 12B mate with interposed hot (ignition) zone 14 to thereby form an electrical pathway.
  • the heating element also includes central insulator region 24 with outer insulator 25 A that encases at least a portion of the first conductive zone 12A as well as insulator 25B that encases at least a portion of conductive zone 12B.
  • recess 16 contacts conductive zone 12A whereby walls 16A of the recess are formed by conductive zone 12 A.
  • the entire surface of the walls that define recess 16 are part of the conductive zone 12 A.
  • the cross-section dimension of conductive zone 12A at the element proximal end is substantially the same as or less than the cross-sectional dimension of that conductive zone for the substantial portion of that zone's length (length y as depicted in FIG. 5), e.g. for at least about 50, 60, 70, 80, 90, 95 or even 100 percent of that zone's length y as shown in FIG. 5.
  • the cross-section dimension of conductive zone 12A at the element proximal end is substantially the same as or less than the cross-sectional dimension of that conductive zone for the substantial portion of that zone's length (length y as depicted in FIG. 5), e.g. for at least about 50, 60, 70, 80, 90, 95 or even 100 percent of that zone's length y as shown in FIG. 5.
  • dimension a will be the about the same as or less than the depicted dimensions a' or a".
  • references to the first conductive zone having "substantially the same” or “about the same” (or other similar phrase) cross-section along its length means that the cross-section dimension (such as a relative to a' and a" as shown in FIG. 5) does not vary by more than 5, 10 or 20 percent.
  • references to the cross- section dimension of the conductive zone does not include the interface of that conductive zone and the mating ignition zone.
  • this configuration of the first conductive zone cross-sectional dimension has provided notable benefits, including reduced undesired warpage upon sintering of the heating element.
  • FIG. 5 also shows a preferred configuration of recess 16, where recess 16 inwardly tapers, i.e. recess 16 has a decreased cross-section along its length. Such a tapered configuration can provide more secure engagement of an electrical lead nested within the recess.
  • an electrical lead is nested within recess 16 and provides power through the depicted electrical pathway (see pathway as shown by arrows in FIG. 5) that extends from conductive zone 12A to hot (ignition) zone 14.
  • ulterior ceramic insulator 24 can provide further mechanical strength to the heating element.
  • FIGS. 6 A through 6C show a further heating element 10 in a preferred configuration where only a portion of recess 16 contacts conductive zone 12 A. That is, only a portion of the surface that defines recess 16 is a component of conductive zone 12 A.
  • the balance of the walls defining recess 16 is a component of insulator region 24.
  • up to about 20, 30, 40, 50, 60, 70, 80 or 90 percent of the surface area of the walls of recess 16 may be a component of the component of conductive zone 12 A, with the balance of the surface area of the walls of recess 16A being a component of the central or interior insulator region 24.
  • an electrical lead is nested within recess 16 and provides power through the depicted electrical pathway from conductive zone 12 A, through hot (ignition) zone 14 and then through conductive zone 12B to provide a substantially U-shaped or L-shaped outer electrical pathway.
  • the length of first conductive zone 12A that contacts recess 16 is greater than the length of second conductive zone 12B that is on the distal side of resistive (ignition) zone 14.
  • the length of second conductive zone 12B (shown as y' in FIG. 5) is no more than 90, 80, 70, 60, 50, 40, 30, 20 or even 10 percent the length of the first conductive zone 12A (length y is FIG. 5).
  • second conductive zone 12B does not contain or contact recess 16, as shown in FIGS. 5, 6A and 6B.
  • FIGS. 5 and 6 depict a particularly preferred configuration where heating element 10 has a substantially circular cross-sectional shape for about the entire length of the heating element to provide a rod-shaped heating element.
  • preferred systems also include those where only a portion of the heating element has a rounded cross-sectional shape, such as where up to about 10, 20, 30, 40, 50, 60, 70 80 or 90 percent of the heating element length, e.g. where in such designs, the balance of the heating element length may have a profile with exterior edges.
  • preferred heating elements of the invention also may have a non-rounded or non-circular cross-sectional shape for at least a portion of the heating element length, e.g. where up to or at least about 10, 20, 30, 40, 50, 60, 70 80 or 90 percent of the heating element length (as exemplified by heating element length a in FIG. 6A) has a cross-sectional shape that is non-rounded or non-circular, or where the entire heating element length (as a heating element length is exemplified by length a in FIG. 6A) has a cross-sectional shape that is non-rounded or non-circular.
  • heating elements of the invention may vary widely and may be selected based on intended use of the heating element.
  • length of a preferred heating element (length a in FIG. 6A) suitably may be from about 0.5 to about 5 cm, more preferably from about 1 about 3 cm, and the heating element maximum cross- sectional width may suitably be from about (width b in FIG. 6A) suitably may be from about 0.2 to about 3 cm.
  • the lengths of the conductive and hot zone regions also may suitably vary.
  • the length of first conductive zone (length c in FIG. 6 A and y in FIG. 5) of a heating element depicted in FIG. 6A may be from 0.2 cm to 2, 3, 4, or 5 more cm. More typical lengths of the first conductive zone will be from about 0.5 to about 5 cm.
  • the height of a hot zone (length d in FIG. 6A) may be from about 0.1 to about 2, 3, 4 or 5 cm, with a total hot zone electrical path length (shown as the dashed line in FIG. 6A) of about 0.5 to 5 or more cm, with a total hot zone path length of up to about 0.5 to 1 , 2 or 3 cm generally preferred.
  • the hot or resistive zone of a heating element of the invention will heat to a maximum temperature of less than about 1450°C at nominal voltage; and a maximum temperature of less than about 1550°C at high-end line voltages that are about 110 percent of nominal voltage; and a maximum temperature of less than about 135O 0 C at low-end line voltages that are about 85 percent of nominal voltage.
  • compositions may be employed to form a heating element of the invention.
  • Generally preferred hot zone compositions comprise at least three components of 1) conductive material; 2) semiconductive material; and 3) insulating material.
  • Conductive (cold) and insulative (heat sink) regions may be comprised of the same components, but with the components present in differing proportions.
  • Typical conductive materials include e.g. molybdenum disilicide, tungsten disilicide, nitrides such as titanium nitride, and carbides such as titanium carbide.
  • Typical semiconductors include carbides such as silicon carbide (doped and undoped) and boron carbide.
  • Typical insulating materials include metal oxides such as alumina or a nitride such as AlN and/or Si 3 N 4 .
  • the term electrically insulating material indicates a material having a room temperature resistivity of at least about 10 10 ohms-cm.
  • the electrically insulating material component of heating elements of the invention may be comprised solely or primarily of one or more metal nitrides and/or metal oxides, or alternatively, the insulating component may contain materials in addition to the metal oxide(s) or metal nitride(s).
  • the insulating material component may additionally contain a nitride such as aluminum nitride (AIN), silicon nitride, or boron nitride; a rare earth oxide (e.g. yttria); or a rare earth oxynitride.
  • a preferred added material of the insulating component is aluminum nitride (AlN).
  • a semiconductor ceramic is a ceramic having a room temperature resistivity of between about 10 and 10 ohm-cm. If the semiconductive component is present as more than about 45 v/o of a hot zone composition (when the conductive ceramic is in the range of about 6-10 v/o), the resultant composition becomes too conductive for high voltage applications (due to lack of insulator). Conversely, if the semiconductor material is present as less than about 10 v/o (when the conductive ceramic is in the range of about 6-10 v/o), the resultant composition becomes too resistive (due to too much insulator).
  • the semiconductor is a carbide from the group consisting of silicon carbide (doped and undoped), and boron carbide. Silicon carbide is generally preferred.
  • a conductive material is one which has a room temperature resistivity of less than about 10 " ohm-cm. If the conductive component is present in an amount of more than 35 v/o of the hot zone composition, the resultant ceramic of the hot zone composition, the resultant ceramic can become too conductive.
  • the conductor is selected from the group consisting of molybdenum disilicide, tungsten disilicide, and nitrides such as titanium nitride, and carbides such as titanium carbide. Molybdenum disilicide is generally preferred.
  • preferred hot (resistive) zone compositions include (a) between about 50 and about 80 v/o of an electrically insulating material having a resistivity of at least about 10 10 ohm-cm; (b) between about 5 and about 45 v/o of a semiconductive material having a resistivity of between about 10 and about 10 ohm-cm; and (c) between about 5 and about 35 v/o of a metallic conductor having a resistivity of less than about 10 " ohm- cm.
  • the hot zone comprises 50-70 v/o electrically insulating ceramic, 10-45 v/o of the semiconductive ceramic, and 6-16 v/o of the conductive material.
  • a specifically preferred hot zone composition for use in heating elements of the invention contains 10 v/o MoSi 2 , 20 v/o SiC and balance AIN or Al 2 O 3 .
  • heating elements of the invention contain a relatively low resistivity cold zone region in electrical connection with the hot (resistive) zone and which allows for attachment of wire leads to the heating element.
  • Preferred cold zone regions include those that are comprised of e.g. AlN and/or Al 2 O 3 or other insulating material; SiC or other semiconductor material; and MoSi 2 or other conductive material.
  • cold zone regions will have a significantly higher percentage of the conductive and semiconductive materials (e.g., SiC and MoSi 2 ) than the hot zone.
  • a preferred cold zone composition comprises about 15 to 65 v/o aluminum oxide, aluminum nitride or other insulator material; and about 20 to 70 v/o MoSi 2 and SiC or other conductive and semiconductive material in a volume ratio of from about 1 :1 to about 1 :3.
  • the cold zone comprises about 15 to 50 v/o AlN and/or Al 2 O 3 , 15 to 30 v/o SiC and 30 to 70 v/o MoSi 2 .
  • the cold zone composition is formed of the same materials as the hot zone composition, with the relative amounts of semiconductive and conductive materials being greater.
  • a specifically preferred cold zone composition for use in heating elements of the invention contains 20 to 35 v/o MoSi 2 , 45 to 60 v/o SiC and balance either AIN and/or Al 2 O 3 .
  • the ceramic compositions may comprise one or more different ceramic materials (e.g. SiC, metal oxides such as Al 2 O 3 , nitrides such as AlN, Mo 2 Si 2 and other Mo-containing materials, SiAlON, Ba-containing material, and the like).
  • distinct ceramic compositions i.e. distinct compositions that serve as insulator, conductor and resistive (ignition) zones in a single heating element
  • may comprise the same blend of ceramic materials e.g. a binary, ternary or higher order blend of distinct ceramic materials), but where the relative amounts of those blend members differ, e.g. where one or more blend members differ by at least 5, 10, 20, 25 or 30 volume percent between the respective distinct ceramic compositions.
  • a heat sink or insulator may suitably mate with a conductive zone or a hot zone, or both.
  • a sintered insulator region has a resistivity of at least about 10 14 ohm-cm at room temperature and a resistivity of at least 10 4 ohm-cm at operational temperatures and has a strength of at least 150 MPa.
  • an insulator region has a resistivity at operational (ignition) temperatures that is at least 2 orders of magnitude greater than the resistivity of the hot zone region.
  • Suitable insulator compositions comprise at least about 90 v/o of one or more aluminum nitride, alumina and boron nitride.
  • a specifically preferred insulator composition of an heating element of the invention consists of 60 v/o AlN; 10 v/o Al 2 O 3 ; and balance SiC.
  • Another preferred heat sink (insulator) composition for use with an heating element of the invention contains 80 v/o AlN and 20 v/o SiC.
  • booster zones of intermediate resistance are described in U.S. Patent application Publication 2002/0150851 to Willkens.
  • booster zones will have a positive temperature coefficient of resistance (PTCR) and an intermediate resistance that will permit i) effective current flow to a hot zone, and ii) some resistance heating of the booster region during use of the igniter, although preferably the booster zone will not heat to as high temperatures as the hot zone during use of the heating element.
  • PTCR positive temperature coefficient of resistance
  • preferred booster zone compositions may comprise the same materials as the conductive and hot zone region compositions, e.g. preferred booster zone compositions may comprise e.g. AIN and/or Al 2 O 3 , or other insulating material; SiC or other semiconductor material; and MoSi 2 or other conductive material.
  • a booster zone composition typically will have a relative percentage of the conductive and semiconductive materials (e.g., SiC and MoSi 2 ) that is intermediate between the percentage of those materials in the hot and cold zone compositions.
  • a preferred booster zone composition comprises about 60 to 70 v/o aluminum nitride, aluminum oxide, or other insulator material; and about 10 to 20 v/o MoSi 2 or other conductive material, and balance a semiconductive material such as SiC.
  • a specifically preferred booster zone composition for use in igniters of the invention contains 14 v/o MoSi 2 , 20 v/o SiC and balance v/o Al 2 O 3 .
  • a specifically preferred booster zone composition for use in igniters of the invention contains 17 v/o MoSi 2 , 20 v/o SiC and balance Al 2 O 3 .
  • a further specifically preferred booster zone composition for use in igniters of the invention contains 14 v/o MoSi 2 , 20 v/o SiC and balance v/o AIN.
  • a still farther specifically preferred booster zone composition for use in igniters of the invention contains 17 v/o MoSi 2 , 20 v/o SiC and balance AIN.
  • the processing of the ceramic component i.e. green body and sintering conditions
  • the preparation of the heating element from the densified ceramic can be done by conventional methods and as discussed above. See U.S. Patent 5,786,565 to Wilkens and U.S. Patent 5,191,508 to Axelson et al.
  • a preferred fabrication method includes use of injection molding techniques.
  • a base element may be formed by injection introduction of a ceramic material having a first resistivity (e.g. ceramic material that can function as an insulator or heat sink region) into a mold element that defines a desired base shape such as a rod shape.
  • the base element may be removed from such first mold and positioned in a second, distinct mold element and ceramic material having differing resistivity - e.g. a conductive ceramic material - can be injected into the second mold to provide conductive region(s) of the igniter element.
  • the base element may be removed from such second mold and positioned in a yet third, distinct mold element and ceramic material having differing resistivity - e.g. a resistive hot zone ceramic material - can be injected into the third mold to provide resistive hot or ignition region(s) of the igniter element.
  • ceramic materials of differing resistivities may be sequentially advanced or injected into the same mold element.
  • a predetermined volume of a first ceramic material e.g. ceramic material that can function as an insulator or heat sink region
  • a second ceramic material of differing resistivity may be applied to the formed base.
  • Ceramic material may be advanced (injected) into a mold element as a fluid formulation that comprises one or more ceramic materials such as one or more ceramic powders.
  • a slurry or paste-like composition of ceramic powders may be prepared, such as a paste provided by admixing one or more ceramic powders with an aqueous solution or an aqueous solution that contains one or more miscible organic solvents such as alcohols and the like.
  • a preferred ceramic slurry composition for extrusion may be prepared by admixing one or more ceramic powders such as MoSi 2 , Al 2 O 3 , and/or AlN in a fluid composition of water optionally together with one or more organic solvents such as one or more aqueous-miscible organic solvents such as a cellulose ether solvent, an alcohol, and the like.
  • the ceramic slurry also may contain other materials e.g. one or more organic plasticizer compounds optionally together with one or more polymeric binders.
  • a wide variety of shape-forming or inducing elements may be employed to form an igniter element, with the element of a configuration corresponding to desired shape of the formed igniter.
  • a ceramic powder paste may be injected into a cylindrical die element.
  • a rectangular die may be employed.
  • the defined ceramic part suitably may be dried e.g. in excess of 5O 0 C or 6O 0 C for a time sufficient to remove any solvent (aqueous and/or organic) carrier.
  • the heating element may be further densified (e.g. to greater than 95, 96, 97, 98 or 99 percent) by thermal treatment such as in excess of 1500 0 C, 1600 0 C, 1700 0 C or 1800 0 C.
  • thermal treatment such as in excess of 1500 0 C, 1600 0 C, 1700 0 C or 1800 0 C.
  • a single or multiple thermal treatments may be conducted as desired to achieve final densities.
  • Heating elements of the invention may be used in many applications, including gas phase fuel ignition applications such as furnaces and cooking appliances, baseboard heaters, boilers, and stove tops.
  • gas phase fuel ignition applications such as furnaces and cooking appliances, baseboard heaters, boilers, and stove tops.
  • an heating element of the invention may be used as an ignition source for stove top gas burners as well as gas furnaces.
  • heating elements of the invention will be particularly useful where rapid ignition is beneficial or required, such as in ignition of a heating fuel (gas) for an instantaneous water heater and the like. Heating elements also may be employed as glow plug in a variety of vehicles (automotive, watercraft).
  • EXAMPLE 1 Heating element fabrication. Powders of a resistive composition (20 vol% MoSi 2 , 5 vol% SiC, 74vol% Al 2 O 3 and 1 vol% Gd 2 O 3 ), a conductive composition (28 vol% MoSi 2 , 7 vol% SiC , 64vol% Al 2 O 3 and 1 vol% Gd 2 O3) and an insulating composition (10 vol% MoSi 2 , 89 vol% Al 2 O 3 and 1 vol% Gd 2 O 3 ) are mixed with 10-16 wt% organic binder (about 6-8 wt% vegetable shortening, 2-4 wt% polystyrene and 2-4 wt% polyethylene) to form three pastes with about 62-64 vol% solids loading.
  • a resistive composition (20 vol% MoSi 2 , 5 vol% SiC, 74vol% Al 2 O 3 and 1 vol% Gd 2 O 3
  • a conductive composition 28 vol% MoSi 2 , 7 vol% SiC , 64vol% Al 2
  • the three pastes are loaded into the barrels of a co-injection molder.
  • a first shot filled a cavity that has an hour-glass shaped cross- section with the insulating paste forming the supporting base.
  • the part is removed from the first cavity and placed in a second cavity.
  • a second shot fills the bottom half of the volume bounded by the first shot and the cavity wall with the conductive paste.
  • the part is removed from the second cavity and placed in a third cavity.
  • a third shot filled the volume bounded by the first shot, second shot and the cavity wall with resistive paste forming a hair-pin shaped resistor separated by the insulator and connected to conductive legs and having the configuration shown in FIG. 5.
  • the part is then thermally debindered in Ar or N 2 at 50O 0 C for 24h to remove the remaining binder and densified to 95-97% of theoretical at 175O 0 C in Argon at 1 atm pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

New ceramic heating elements are provided that have a recessed portion for receiving an electrical lead. Such ceramic heating elements can provide a reduced cross-sectional dimension across element regions that interface with electrical lead(s) as well as a more secure engagement of an electrical lead. Heating elements can be highly useful in a variety of application, including e.g. for fuel ignition for gas cooking appliances as well as vehicular glow plugs.

Description

CERAMIC HEATING ELEMENTS
The present application claims the benefit of U.S. provisional application number 61/009,381 filed December 29, 2007, which is incorporated by reference herein in its entirety.
BACKGROUND
1. Field of the Invention
In one aspect, ceramic heating elements are provided that have a recessed portion for receiving an electrical lead. Such ceramic heating elements can more secure engagement of the heating element with an electrical lead. In a further aspect, ceramic heating elements are provided that have a conductive zone of substantially equal or increasing cross-section along a length of the element. The present heating elements are useful in a variety of application, including e.g. for fuel ignition for gas cooking appliances as well as vehicular glow plugs that have strict space constraints.
2. Background.
Ceramic materials have enjoyed great success as heating elements (includes igniters) in e.g. gas-fired furnaces, stoves and clothes dryers. Ceramic heating element production includes constructing an electrical circuit through a ceramic component a portion of which is highly resistive and rises in temperature when electrified by a wire lead. See, for instance, U.S. Patent Publication 2006/0131295 and U.S. Patents 6,028,292; 5,801,361 ; 5,405,237; and 5,191,508.
Typical igniters have been generally rectangular-shaped elements with a highly resistive "hot zone" at the heating element tip with one or more conductive "cold zones" providing to the hot zone from the opposing heating element end. One currently available igniter, the Mini-Heating element, available from Norton Igniter Products of Milford, N.H., is designed for 12 volt through 120 volt applications and has a composition comprising aluminum nitride ("AIN"), molybdenum disilicide ("MoSi2"), and silicon carbide ("SiC").
Since these heating elements are resistively heated, each of its ends must be electrically connected to a conductive lead, typically a copper wire lead. Ceramic heating elements have been connected to electrical contact by direct welding or brazing to wire or by brazing to an intermediate metal lead frame which is then welded or brazed to wire. See U.S. Patents 7,241,975 and 6,933,471.
For heating elements that have cylindrical or other non-rectangular cross-section configurations, such attachment of electrical contacts can result in an increase in the diameter of the insulating section (where the electrical leads interface with the heating element). Such increased dimensions can be problematic for a number of applications, such as appliances or automotive environments where tight specifications may exists for the outer dimensions of the heating element block of the heating element. Additionally, separation of the electrical lead from the heating element can result in device failure.
It thus would be desirable to have new heating element systems. It would be particularly desirable to have new heating elements that have cylindrical or other non- rectangular cross-sectional configurations and that have comparatively narrow cross- sectional dimensions across regions that interface with electrical contacts. It would be further desirable to have new heating elements that have secure engagement of an electrical lead to the heating element.
SUMMARY
In one aspect, ceramic heating elements are provided that have a recessed portion for receiving an electrical lead. Such ceramic heating elements can provide a reduced cross-sectional dimension across element regions that interface with electrical lead(s) as well as a more secure engagement of the lead(s) to the heating device. Consequently, heating elements can be highly useful in a variety of applications, including e.g. for fuel ignition for gas cooking appliances as well as vehicular glow plugs.
In a preferred aspect, a heating element may comprise at least one recess (e.g. hole) that can receive an electrical lead, where the recess is positioned at a bottom face of the heating element, although the recess also suitably may be situated in other regions of a heating element, such as a side portion of an element.
In certain aspects, the recess may be tapered, e.g. inwardly tapered (decreasing cross-sectional area), which can further secure an engagement of an electrical lead with the heating element.
Preferably, a conductive zone (i.e. region of relatively low resistivity) of the heating element forms at least a portion of the wall surface of the recess. As a consequence, power from an electrical lead nested within the recess can flow through the heating element via such conductive zone.
In a further aspect, ceramic heating elements are provided that have a conductive zone of substantially equal or increasing cross-section from a proximal end of the heating element along the element length. In particular, the cross-sectional dimension of the conductive zone that forms at least a portion of the wall surface of the recess for receiving an electrical lead will have a cross-sectional dimension at a portion that contacts the recess that is substantially equal to or greater than the cross-section dimension of that same conductive zone further along that conductive zone's length.
It has been found that such conductive zone configurations can avoid undesired warpage upon sintering of the heating element.
Preferred heating elements of the invention have an outer or substantially U- shaped or L-shaped electrical path, i.e. where the electrical path extends from (i) an outer conductive zone to (ii) an hot or ignition zone and then through (iii) a second outer conductive zone. Such an outer or U-shaped or L-shaped electrical path is different than and distinguished from a co-axial path that contains an interior first conductive zone that is encased by an outer conductive zone.
Particularly preferred heating elements of the invention may have cylindrical or other non-rectangular cross-section configurations. In a preferred aspect, preferred heating elements of the invention have a rounded cross-sectional shape along at least a portion of the heating element length (e.g., the length extending from where an electrical lead is affixed to the heating element to a resistive hot zone). More particularly, preferred heating elements may have a substantially oval, circular or other rounded cross- sectional shape for at least a portion of the heating element length, e.g. at least about 10 percent, 40 percent, 60 percent, 80 percent or 90 percent of the heating element length, or the entire heating element length. A substantially circular cross-sectional shape that provides a rod-shaped heating element is particularly preferred. The invention also provides heating elements that have non-rounded or non-circular cross-sectional shapes for at least a portion of the heating element length.
Preferred heating elements comprise multiple regions of differing electrical resistivity, i.e. preferred ceramic heating elements may comprise a first conductive zone, a resistive hot zone, and a second conductive zone, all in electrical sequence. Heating elements of the invention may have a variety of electrical configurations. As discussed, in preferred systems, the heating element may have a substantially U-shaped electrical path, e.g. where opposing conductive zones are separated by an interposed hot or ignition zone.
Ceramic heating elements of the invention can be employed at a wide variety of nominal voltages, including nominal voltages of 6, 8, 10, 12, 24, 120, 220, 230 and 240 volts.
As mentioned, the heating elements of the invention are useful for ignition in a variety of devices and heating systems. More particularly, heating systems are provided that comprise a sintered ceramic heating element as described herein. Specific heating systems include appliances such as gas cooking units, heating units for commercial and residential buildings. Vehicular (e.g. automotive, watercraft) glow plugs also provided that comprise a sintered ceramic heating element as described herein.
Other aspects of the invention are disclosed infra.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1 through 4 show schematically preferred heating element systems;
FIG. 5 shows in a cut-away view a further preferred heating element; and
FIG. 6 (which includes FIGS. 6A-6C) shows plan views of a further preferred heating element. FIG. 6B is a view sliced along line B-B of FIG. 6A, and Fig. 6C is a view sliced along line C-C of FIG. 6A.
DETAILED DESCRIPTION
As discussed above, in one aspect, ceramic heating element systems are provided that include new configurations for mating of electrical lead components. In a further aspect, ceramic heating element systems are provided that include conductive region(s) that can provide notable benefits, including reduced warpage upon sintering. Preferred ceramic heating elements of the invention having a substantially outer or U-shaped or L- shaped electrical path.
Referring now to the drawings, FIGS. 1 through 4 show in a schematic cut-away view a preferred heating element 10 where conductive zones 12A and 12B mate with interposed hot (ignition) zone 14 to thereby form an electrical pathway. As can be seen, outer conductive zones 12A and 12B together with interposed hot (ignition) zone form a substantially U-shaped or L-shaped electrical pathway that traverses an outer or perimeter portion of the heating element 10. Conductive zone 12A defines in part recess 16 that engages with electrical lead 18 during use of element 10. In preferred systems, heating element 10 may be encased with a metal fixture 20 and affixed therethrough, e.g. via a metal braze 22. The interior region 24 encased by conductive zones 12 A, 12B and ignition zone 14 may be void or may have an insulative (heat sink) composition.
It also may be preferred to include an exterior insulative layer 25 on heating element portions that contact metal fixture 20. Such an exterior insulative layer may be suitably formed by dip coating or other application of an insulative ceramic composition.
FIG. 5 shows in a partial cut-away view a particularly preferred heating element where conductive zone 12A forms a portion of walls 16A of recess 16 that receives an electrical lead. In this preferred configuration, conductive zone 12A and 12B mate with interposed hot (ignition) zone 14 to thereby form an electrical pathway. The heating element also includes central insulator region 24 with outer insulator 25 A that encases at least a portion of the first conductive zone 12A as well as insulator 25B that encases at least a portion of conductive zone 12B.
As depicted in FIG. 5, in a preferred configuration, recess 16 contacts conductive zone 12A whereby walls 16A of the recess are formed by conductive zone 12 A. In other less preferred embodiments, the entire surface of the walls that define recess 16 are part of the conductive zone 12 A.
In the depicted preferred configuration, by only a portion of the walls that define recess 16 being part of the conductive zone 12 A, that conductive zone 12A can have a substantially equal or increasing cross-section along a length of the element. Thus, as shown in FIG. 5, the cross-section dimension of conductive zone 12A at the element proximal end (as shown by dimension a) is substantially the same as or less than the cross-sectional dimension of that conductive zone for the substantial portion of that zone's length (length y as depicted in FIG. 5), e.g. for at least about 50, 60, 70, 80, 90, 95 or even 100 percent of that zone's length y as shown in FIG. 5. Thus, as shown in FIG. 5, dimension a will be the about the same as or less than the depicted dimensions a' or a". As referred to herein, references to the first conductive zone having "substantially the same" or "about the same" (or other similar phrase) cross-section along its length means that the cross-section dimension (such as a relative to a' and a" as shown in FIG. 5) does not vary by more than 5, 10 or 20 percent. In certain aspects, references to the cross- section dimension of the conductive zone does not include the interface of that conductive zone and the mating ignition zone.
As discussed above, this configuration of the first conductive zone cross-sectional dimension has provided notable benefits, including reduced undesired warpage upon sintering of the heating element.
FIG. 5 also shows a preferred configuration of recess 16, where recess 16 inwardly tapers, i.e. recess 16 has a decreased cross-section along its length. Such a tapered configuration can provide more secure engagement of an electrical lead nested within the recess.
In use, an electrical lead is nested within recess 16 and provides power through the depicted electrical pathway (see pathway as shown by arrows in FIG. 5) that extends from conductive zone 12A to hot (ignition) zone 14. ulterior ceramic insulator 24 can provide further mechanical strength to the heating element.
FIGS. 6 A through 6C show a further heating element 10 in a preferred configuration where only a portion of recess 16 contacts conductive zone 12 A. That is, only a portion of the surface that defines recess 16 is a component of conductive zone 12 A. In the system depicted in FIG. 6, the balance of the walls defining recess 16 is a component of insulator region 24. In exemplary preferred systems, up to about 20, 30, 40, 50, 60, 70, 80 or 90 percent of the surface area of the walls of recess 16 may be a component of the component of conductive zone 12 A, with the balance of the surface area of the walls of recess 16A being a component of the central or interior insulator region 24. As with the element of FIG. 5, in use, an electrical lead is nested within recess 16 and provides power through the depicted electrical pathway from conductive zone 12 A, through hot (ignition) zone 14 and then through conductive zone 12B to provide a substantially U-shaped or L-shaped outer electrical pathway.
As shown in FIGS. 5 and 6 A, in preferred systems, the length of first conductive zone 12A that contacts recess 16 is greater than the length of second conductive zone 12B that is on the distal side of resistive (ignition) zone 14. For example, in certain preferred configurations, the length of second conductive zone 12B (shown as y' in FIG. 5) is no more than 90, 80, 70, 60, 50, 40, 30, 20 or even 10 percent the length of the first conductive zone 12A (length y is FIG. 5). hi certain preferred configurations, second conductive zone 12B does not contain or contact recess 16, as shown in FIGS. 5, 6A and 6B.
As discussed above, and exemplified in FIGS. 5 and 6, preferably, at least a substantial portion of the heating element length has a rounded cross-sectional shape along at least a portion of the heating element length, such as length a shown in FIG. 6A. FIGS. 5 and 6 depict a particularly preferred configuration where heating element 10 has a substantially circular cross-sectional shape for about the entire length of the heating element to provide a rod-shaped heating element. However, as discussed above, preferred systems also include those where only a portion of the heating element has a rounded cross-sectional shape, such as where up to about 10, 20, 30, 40, 50, 60, 70 80 or 90 percent of the heating element length, e.g. where in such designs, the balance of the heating element length may have a profile with exterior edges.
Also, while a rounded cross-sectional shape is preferred for many applications, preferred heating elements of the invention also may have a non-rounded or non-circular cross-sectional shape for at least a portion of the heating element length, e.g. where up to or at least about 10, 20, 30, 40, 50, 60, 70 80 or 90 percent of the heating element length (as exemplified by heating element length a in FIG. 6A) has a cross-sectional shape that is non-rounded or non-circular, or where the entire heating element length (as a heating element length is exemplified by length a in FIG. 6A) has a cross-sectional shape that is non-rounded or non-circular.
Dimensions of heating elements of the invention may vary widely and may be selected based on intended use of the heating element. For instance, the length of a preferred heating element (length a in FIG. 6A) suitably may be from about 0.5 to about 5 cm, more preferably from about 1 about 3 cm, and the heating element maximum cross- sectional width may suitably be from about (width b in FIG. 6A) suitably may be from about 0.2 to about 3 cm.
Similarly, the lengths of the conductive and hot zone regions also may suitably vary. Preferably, the length of first conductive zone (length c in FIG. 6 A and y in FIG. 5) of a heating element depicted in FIG. 6A may be from 0.2 cm to 2, 3, 4, or 5 more cm. More typical lengths of the first conductive zone will be from about 0.5 to about 5 cm. The height of a hot zone (length d in FIG. 6A) may be from about 0.1 to about 2, 3, 4 or 5 cm, with a total hot zone electrical path length (shown as the dashed line in FIG. 6A) of about 0.5 to 5 or more cm, with a total hot zone path length of up to about 0.5 to 1 , 2 or 3 cm generally preferred.
In preferred systems, the hot or resistive zone of a heating element of the invention will heat to a maximum temperature of less than about 1450°C at nominal voltage; and a maximum temperature of less than about 1550°C at high-end line voltages that are about 110 percent of nominal voltage; and a maximum temperature of less than about 135O0C at low-end line voltages that are about 85 percent of nominal voltage.
A variety of compositions may be employed to form a heating element of the invention. Generally preferred hot zone compositions comprise at least three components of 1) conductive material; 2) semiconductive material; and 3) insulating material. Conductive (cold) and insulative (heat sink) regions may be comprised of the same components, but with the components present in differing proportions. Typical conductive materials include e.g. molybdenum disilicide, tungsten disilicide, nitrides such as titanium nitride, and carbides such as titanium carbide. Typical semiconductors include carbides such as silicon carbide (doped and undoped) and boron carbide. Typical insulating materials include metal oxides such as alumina or a nitride such as AlN and/or Si3N4.
As referred to herein, the term electrically insulating material indicates a material having a room temperature resistivity of at least about 1010 ohms-cm. The electrically insulating material component of heating elements of the invention may be comprised solely or primarily of one or more metal nitrides and/or metal oxides, or alternatively, the insulating component may contain materials in addition to the metal oxide(s) or metal nitride(s). For instance, the insulating material component may additionally contain a nitride such as aluminum nitride (AIN), silicon nitride, or boron nitride; a rare earth oxide (e.g. yttria); or a rare earth oxynitride. A preferred added material of the insulating component is aluminum nitride (AlN).
As referred to herein, a semiconductor ceramic (or "semiconductor") is a ceramic having a room temperature resistivity of between about 10 and 10 ohm-cm. If the semiconductive component is present as more than about 45 v/o of a hot zone composition (when the conductive ceramic is in the range of about 6-10 v/o), the resultant composition becomes too conductive for high voltage applications (due to lack of insulator). Conversely, if the semiconductor material is present as less than about 10 v/o (when the conductive ceramic is in the range of about 6-10 v/o), the resultant composition becomes too resistive (due to too much insulator). Again, at higher levels of conductor, more resistive mixes of the insulator and semiconductor fractions are needed to achieve the desired voltage. Typically, the semiconductor is a carbide from the group consisting of silicon carbide (doped and undoped), and boron carbide. Silicon carbide is generally preferred.
As referred to herein, a conductive material is one which has a room temperature resistivity of less than about 10" ohm-cm. If the conductive component is present in an amount of more than 35 v/o of the hot zone composition, the resultant ceramic of the hot zone composition, the resultant ceramic can become too conductive. Typically, the conductor is selected from the group consisting of molybdenum disilicide, tungsten disilicide, and nitrides such as titanium nitride, and carbides such as titanium carbide. Molybdenum disilicide is generally preferred.
In general, preferred hot (resistive) zone compositions include (a) between about 50 and about 80 v/o of an electrically insulating material having a resistivity of at least about 1010 ohm-cm; (b) between about 5 and about 45 v/o of a semiconductive material having a resistivity of between about 10 and about 10 ohm-cm; and (c) between about 5 and about 35 v/o of a metallic conductor having a resistivity of less than about 10" ohm- cm. Preferably, the hot zone comprises 50-70 v/o electrically insulating ceramic, 10-45 v/o of the semiconductive ceramic, and 6-16 v/o of the conductive material. A specifically preferred hot zone composition for use in heating elements of the invention contains 10 v/o MoSi2, 20 v/o SiC and balance AIN or Al 2O3.
As discussed, heating elements of the invention contain a relatively low resistivity cold zone region in electrical connection with the hot (resistive) zone and which allows for attachment of wire leads to the heating element. Preferred cold zone regions include those that are comprised of e.g. AlN and/or Al2O3 or other insulating material; SiC or other semiconductor material; and MoSi2 or other conductive material. However, cold zone regions will have a significantly higher percentage of the conductive and semiconductive materials (e.g., SiC and MoSi2) than the hot zone. A preferred cold zone composition comprises about 15 to 65 v/o aluminum oxide, aluminum nitride or other insulator material; and about 20 to 70 v/o MoSi2 and SiC or other conductive and semiconductive material in a volume ratio of from about 1 :1 to about 1 :3. For many applications, more preferably, the cold zone comprises about 15 to 50 v/o AlN and/or Al2O3, 15 to 30 v/o SiC and 30 to 70 v/o MoSi2. For ease of manufacture, preferably the cold zone composition is formed of the same materials as the hot zone composition, with the relative amounts of semiconductive and conductive materials being greater. A specifically preferred cold zone composition for use in heating elements of the invention contains 20 to 35 v/o MoSi2, 45 to 60 v/o SiC and balance either AIN and/or Al2O3.
For any of the ceramic compositions (e.g. insulator, conductive material, semiconductor material, resistive material), the ceramic compositions may comprise one or more different ceramic materials (e.g. SiC, metal oxides such as Al2O3, nitrides such as AlN, Mo2Si2 and other Mo-containing materials, SiAlON, Ba-containing material, and the like). Alternatively, distinct ceramic compositions (i.e. distinct compositions that serve as insulator, conductor and resistive (ignition) zones in a single heating element) may comprise the same blend of ceramic materials (e.g. a binary, ternary or higher order blend of distinct ceramic materials), but where the relative amounts of those blend members differ, e.g. where one or more blend members differ by at least 5, 10, 20, 25 or 30 volume percent between the respective distinct ceramic compositions.
A heat sink or insulator may suitably mate with a conductive zone or a hot zone, or both. Preferably, a sintered insulator region has a resistivity of at least about 1014 ohm-cm at room temperature and a resistivity of at least 104 ohm-cm at operational temperatures and has a strength of at least 150 MPa. Preferably, an insulator region has a resistivity at operational (ignition) temperatures that is at least 2 orders of magnitude greater than the resistivity of the hot zone region. Suitable insulator compositions comprise at least about 90 v/o of one or more aluminum nitride, alumina and boron nitride. A specifically preferred insulator composition of an heating element of the invention consists of 60 v/o AlN; 10 v/o Al2O3; and balance SiC. Another preferred heat sink (insulator) composition for use with an heating element of the invention contains 80 v/o AlN and 20 v/o SiC.
For certain systems, it may be desirable to include a power booster or enhancement zone of intermediate resistance in the electrical circuit pathway between the most conductive portions of that pathway and the highly resistive (hot) regions of that pathway. Such booster zones of intermediate resistance are described in U.S. Patent application Publication 2002/0150851 to Willkens. Generally, booster zones will have a positive temperature coefficient of resistance (PTCR) and an intermediate resistance that will permit i) effective current flow to a hot zone, and ii) some resistance heating of the booster region during use of the igniter, although preferably the booster zone will not heat to as high temperatures as the hot zone during use of the heating element.
If employed in a heating element, preferred booster zone compositions may comprise the same materials as the conductive and hot zone region compositions, e.g. preferred booster zone compositions may comprise e.g. AIN and/or Al2O3, or other insulating material; SiC or other semiconductor material; and MoSi2 or other conductive material. A booster zone composition typically will have a relative percentage of the conductive and semiconductive materials (e.g., SiC and MoSi2) that is intermediate between the percentage of those materials in the hot and cold zone compositions. A preferred booster zone composition comprises about 60 to 70 v/o aluminum nitride, aluminum oxide, or other insulator material; and about 10 to 20 v/o MoSi2 or other conductive material, and balance a semiconductive material such as SiC. A specifically preferred booster zone composition for use in igniters of the invention contains 14 v/o MoSi2, 20 v/o SiC and balance v/o Al2O3. A specifically preferred booster zone composition for use in igniters of the invention contains 17 v/o MoSi2, 20 v/o SiC and balance Al2O3. A further specifically preferred booster zone composition for use in igniters of the invention contains 14 v/o MoSi2, 20 v/o SiC and balance v/o AIN. A still farther specifically preferred booster zone composition for use in igniters of the invention contains 17 v/o MoSi2, 20 v/o SiC and balance AIN.
The processing of the ceramic component (i.e. green body and sintering conditions) and the preparation of the heating element from the densified ceramic can be done by conventional methods and as discussed above. See U.S. Patent 5,786,565 to Wilkens and U.S. Patent 5,191,508 to Axelson et al.
A preferred fabrication method includes use of injection molding techniques.
Thus, for instance, a base element may be formed by injection introduction of a ceramic material having a first resistivity (e.g. ceramic material that can function as an insulator or heat sink region) into a mold element that defines a desired base shape such as a rod shape. The base element may be removed from such first mold and positioned in a second, distinct mold element and ceramic material having differing resistivity - e.g. a conductive ceramic material - can be injected into the second mold to provide conductive region(s) of the igniter element. In similar fashion, the base element may be removed from such second mold and positioned in a yet third, distinct mold element and ceramic material having differing resistivity - e.g. a resistive hot zone ceramic material - can be injected into the third mold to provide resistive hot or ignition region(s) of the igniter element.
Alternatively, rather than such use of a plurality of distinct mold elements, ceramic materials of differing resistivities may be sequentially advanced or injected into the same mold element. For instance, a predetermined volume of a first ceramic material (e.g. ceramic material that can function as an insulator or heat sink region) may be introduced into a mold element that defines a desired base shape and thereafter a second ceramic material of differing resistivity may be applied to the formed base.
Ceramic material may be advanced (injected) into a mold element as a fluid formulation that comprises one or more ceramic materials such as one or more ceramic powders.
For instance, a slurry or paste-like composition of ceramic powders may be prepared, such as a paste provided by admixing one or more ceramic powders with an aqueous solution or an aqueous solution that contains one or more miscible organic solvents such as alcohols and the like. A preferred ceramic slurry composition for extrusion may be prepared by admixing one or more ceramic powders such as MoSi2, Al2O3, and/or AlN in a fluid composition of water optionally together with one or more organic solvents such as one or more aqueous-miscible organic solvents such as a cellulose ether solvent, an alcohol, and the like. The ceramic slurry also may contain other materials e.g. one or more organic plasticizer compounds optionally together with one or more polymeric binders.
A wide variety of shape-forming or inducing elements may be employed to form an igniter element, with the element of a configuration corresponding to desired shape of the formed igniter. For instance, to form a rod-shaped element, a ceramic powder paste may be injected into a cylindrical die element. To form a stilt-like or rectangular-shaped igniter element, a rectangular die may be employed.
After advancing ceramic material(s) into a mold element, the defined ceramic part suitably may be dried e.g. in excess of 5O0C or 6O0C for a time sufficient to remove any solvent (aqueous and/or organic) carrier.
Thereafter, the heating element may be further densified (e.g. to greater than 95, 96, 97, 98 or 99 percent) by thermal treatment such as in excess of 15000C, 16000C, 17000C or 18000C. A single or multiple thermal treatments may be conducted as desired to achieve final densities.
Heating elements of the invention may be used in many applications, including gas phase fuel ignition applications such as furnaces and cooking appliances, baseboard heaters, boilers, and stove tops. In particular, an heating element of the invention may be used as an ignition source for stove top gas burners as well as gas furnaces.
As discussed above, heating elements of the invention will be particularly useful where rapid ignition is beneficial or required, such as in ignition of a heating fuel (gas) for an instantaneous water heater and the like. Heating elements also may be employed as glow plug in a variety of vehicles (automotive, watercraft).
The following non-limiting examples are illustrative of the invention. All documents mentioned herein are incorporated herein by reference in their entirety.
EXAMPLE 1 : Heating element fabrication. Powders of a resistive composition (20 vol% MoSi2, 5 vol% SiC, 74vol% Al2O3 and 1 vol% Gd2O3), a conductive composition (28 vol% MoSi2, 7 vol% SiC , 64vol% Al2O3 and 1 vol% Gd2O3) and an insulating composition (10 vol% MoSi2, 89 vol% Al2O3 and 1 vol% Gd2O3) are mixed with 10-16 wt% organic binder (about 6-8 wt% vegetable shortening, 2-4 wt% polystyrene and 2-4 wt% polyethylene) to form three pastes with about 62-64 vol% solids loading. The three pastes are loaded into the barrels of a co-injection molder. A first shot filled a cavity that has an hour-glass shaped cross- section with the insulating paste forming the supporting base. The part is removed from the first cavity and placed in a second cavity. A second shot fills the bottom half of the volume bounded by the first shot and the cavity wall with the conductive paste. The part is removed from the second cavity and placed in a third cavity. A third shot filled the volume bounded by the first shot, second shot and the cavity wall with resistive paste forming a hair-pin shaped resistor separated by the insulator and connected to conductive legs and having the configuration shown in FIG. 5. The part is then thermally debindered in Ar or N2 at 50O0C for 24h to remove the remaining binder and densified to 95-97% of theoretical at 175O0C in Argon at 1 atm pressure.
The invention has been described in detail with reference to particular embodiments thereof. However, it will be appreciated that those skilled in the art, upon consideration of this disclosure, may make modification and improvements within the spirit and scope of the invention.

Claims

What is claimed is:
1. A ceramic heating element comprising an outer electrical path and a recessed portion to receive an electrical lead.
2. The ceramic heating element of claim 1 wherein the conductive zone has a cross-section for a substantial length of the heating element that is approximately equal to or greater than the cross-section of the conductive zone at the base portion of the heating element.
3. The heating element of claim 1 or 2 wherein the heating element has a rounded cross-sectional shape for at least a portion of the heating element length.
4. The heating element of any one of claims 1 through 3 wherein the heating element comprises multiple regions of differing electrical resistivity.
5. The heating element of any one of claims 1 through 4 wherein the heating element comprises in electrical sequence, a first conductive zone, a resistive hot zone, and a second conductive zone.
6. The heating element of any one of claims 1 through 5 wherein the heating element has a substantially constant width for at least a substantial portion of the heating element length.
7. The heating element of any one of claims 1 through 6 wherein walls of the recessed portion comprise portions of a conductive zone and insulator zone.
8. The heating element of claim 7 wherein up to 10, 20, 30, 40, 50, 60, 70, 80 or 90 percent of the surface area of the recessed portion walls are formed by the conductive zone, with the balance of the surface area of the recessed portion walls being formed by the insulator zone.
9. The heating element of any one of claims 1 through 8 wherein the recessed portion is inwardly tapered.
10. The heating element of any one of claims 1 through 9 wherein the heating element comprises a first conductive zone and a second conductive zone with a more resistive ignition zone interposed therebetween, and the first conductive zone has a greater length than the second conductive zone.
11. The heating element of claim 10 wherein the length of second conductive zone is no more than 90, 80, 70, 60, 50, 40, 30, 20 or 10 percent the length of the first conductive zone.
12. The heating element of claim 10 or 11 wherein the heating element electrical path extends in sequence from the first conductive zone to the ignition zone and then to the second conductive zone.
13. The heating element of any one of claims 1 through 12 wherein the first conductive zone but not the second conductive zone contacts the recessed portion.
14. A method of igniting gaseous fuel, comprising applying an electric current across a heating element of any one of claims 1 through 13.
15. A method of claim 14 wherein the current has a nominal voltage of 6, 8 , 10, 12, 24, 120, 220, 230 or 240 volts.
16. A heating apparatus comprising a heating element of any one of claims 1 through 13.
17. The apparatus of claim 16 wherein the apparatus is cooking unit that comprises an igniter element.
18. The apparatus of claim 16 wherein the apparatus is a glow plug.
19. The apparatus of claim 16 wherein the apparatus is a vehicular glow plug.
PCT/US2008/014094 2007-12-29 2008-12-29 Ceramic heating elements WO2009085311A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010540675A JP2011508950A (en) 2007-12-29 2008-12-29 Ceramic heating element
EP08867380A EP2232144A1 (en) 2007-12-29 2008-12-29 Ceramic heating elements
CN2008801263736A CN101939592A (en) 2007-12-29 2008-12-29 Ceramic heating elements
CA2711015A CA2711015A1 (en) 2007-12-29 2008-12-29 Ceramic heating elements
BRPI0821671-1A BRPI0821671A2 (en) 2007-12-29 2008-12-29 Ceramic Heating Elements
MX2010007139A MX2010007139A (en) 2007-12-29 2008-12-29 Ceramic heating elements.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US938107P 2007-12-29 2007-12-29
US61/009,381 2007-12-29

Publications (1)

Publication Number Publication Date
WO2009085311A1 true WO2009085311A1 (en) 2009-07-09

Family

ID=40824611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/014094 WO2009085311A1 (en) 2007-12-29 2008-12-29 Ceramic heating elements

Country Status (9)

Country Link
US (1) US20090173729A1 (en)
EP (1) EP2232144A1 (en)
JP (1) JP2011508950A (en)
KR (1) KR20100093598A (en)
CN (1) CN101939592A (en)
BR (1) BRPI0821671A2 (en)
CA (1) CA2711015A1 (en)
MX (1) MX2010007139A (en)
WO (1) WO2009085311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2613158A1 (en) * 2012-01-04 2013-07-10 General Electric Company Ceramic heating device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101195918B1 (en) * 2008-01-29 2012-10-30 쿄세라 코포레이션 Ceramic heater and glow plug
EP2496051B1 (en) * 2009-10-27 2017-01-04 Kyocera Corporation Ceramic heater
US9113501B2 (en) * 2012-05-25 2015-08-18 Watlow Electric Manufacturing Company Variable pitch resistance coil heater
WO2019191272A1 (en) 2018-03-27 2019-10-03 Scp Holdings, Llc. Hot surface igniters for cooktops
CN112573926A (en) * 2020-12-28 2021-03-30 无锡海古德新技术有限公司 Aluminum nitride conductor material and aluminum nitride full-ceramic heating structure device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070295709A1 (en) * 2006-05-09 2007-12-27 Saint-Gobain Ceramics & Plastics, Inc. Ceramic heating elements

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2421370A (en) * 1944-04-29 1947-06-03 Herman Nelson Corp Combustion chamber structure for heat exchangers
US3307529A (en) * 1964-10-23 1967-03-07 Fostoria Fannon Inc Radiant heater arrangement
US3926172A (en) * 1974-10-29 1975-12-16 Raytheon Co Electric igniter for gas burners
CH624509A5 (en) * 1980-05-30 1981-07-31 Espada Anstalt
JPS60216484A (en) * 1984-04-09 1985-10-29 株式会社日本自動車部品総合研究所 Ceramic heater
CH681186A5 (en) * 1989-11-09 1993-01-29 Battelle Memorial Institute
US5191508A (en) * 1992-05-18 1993-03-02 Norton Company Ceramic igniters and process for making same
US5498855A (en) * 1992-09-11 1996-03-12 Philip Morris Incorporated Electrically powered ceramic composite heater
JP3228581B2 (en) * 1992-12-24 2001-11-12 京セラ株式会社 Ceramic heater
JP3269253B2 (en) * 1994-04-04 2002-03-25 株式会社デンソー Ceramic heater
US6351060B1 (en) * 1999-07-26 2002-02-26 Uwe Harneit Moisture-resistant igniter for a gas burner
US6664514B1 (en) * 2000-07-10 2003-12-16 Saint-Gobain Ceramics & Plastics, Inc. Igniter shock mounting device and methods related thereto
JP4597352B2 (en) * 2000-12-01 2010-12-15 日本特殊陶業株式会社 Ceramic heater
AU2002247252A1 (en) * 2001-03-05 2002-09-19 Saint-Gobain Ceramics & Plastics, Inc. Ceramic igniters
US6610964B2 (en) * 2001-03-08 2003-08-26 Stephen J. Radmacher Multi-layer ceramic heater
US6933471B2 (en) * 2001-08-18 2005-08-23 Saint-Gobain Ceramics & Plastics, Inc. Ceramic igniters with sealed electrical contact portion
JP4553530B2 (en) * 2001-08-28 2010-09-29 日本特殊陶業株式会社 Manufacturing method of ceramic heater
US7106167B2 (en) * 2002-06-28 2006-09-12 Heetronix Stable high temperature sensor system with tungsten on AlN
JP4153849B2 (en) * 2003-08-27 2008-09-24 京セラ株式会社 Ceramic heater and glow plug using the same
JP4761723B2 (en) * 2004-04-12 2011-08-31 日本碍子株式会社 Substrate heating device
KR20070089136A (en) * 2004-10-28 2007-08-30 셍-고벵 코포레이션 Ceramic igniters
CA2596006A1 (en) * 2005-02-05 2006-08-17 Saint-Gobain Ceramics & Plastics, Inc. Ceramic igniters
US20070107642A1 (en) * 2005-11-14 2007-05-17 Johnson J E Fuel ignition systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070295709A1 (en) * 2006-05-09 2007-12-27 Saint-Gobain Ceramics & Plastics, Inc. Ceramic heating elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2613158A1 (en) * 2012-01-04 2013-07-10 General Electric Company Ceramic heating device
US9097734B2 (en) 2012-01-04 2015-08-04 Amphenol Thermometrics, Inc. Ceramic heating device

Also Published As

Publication number Publication date
JP2011508950A (en) 2011-03-17
BRPI0821671A2 (en) 2015-06-16
EP2232144A1 (en) 2010-09-29
CN101939592A (en) 2011-01-05
KR20100093598A (en) 2010-08-25
US20090173729A1 (en) 2009-07-09
MX2010007139A (en) 2010-08-11
CA2711015A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
US7772525B2 (en) Ceramic igniters
US20070295708A1 (en) Ceramic heating elements
US20090179023A1 (en) Ceramic heating elements having open-face structure and methods of fabrication thereof
US20090173729A1 (en) Ceramic heating elements
JP2009536780A (en) Ceramic heating element
US7675005B2 (en) Ceramic igniter
US20080116192A1 (en) Injection molding of ceramic elements
US20090179027A1 (en) Coaxial ceramic igniter and methods of fabrication
US20060186107A1 (en) Ceramic igniters
US20090206069A1 (en) Heating element systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126373.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540675

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/007139

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2711015

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107015505

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008867380

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0821671

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100629