WO2009093282A1 - 冷媒センサの取付構造および冷媒センサの取付方法 - Google Patents

冷媒センサの取付構造および冷媒センサの取付方法 Download PDF

Info

Publication number
WO2009093282A1
WO2009093282A1 PCT/JP2008/000071 JP2008000071W WO2009093282A1 WO 2009093282 A1 WO2009093282 A1 WO 2009093282A1 JP 2008000071 W JP2008000071 W JP 2008000071W WO 2009093282 A1 WO2009093282 A1 WO 2009093282A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
sensor
thermistor
pipe
shaped joint
Prior art date
Application number
PCT/JP2008/000071
Other languages
English (en)
French (fr)
Inventor
Teruyuki Takeda
Yoshirou Kuroiwa
Tsuyoshi Maruyama
Seitarou Sugimoto
Original Assignee
Ubukata Industries Co., Ltd.
Orion Machinery Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ubukata Industries Co., Ltd., Orion Machinery Company Limited filed Critical Ubukata Industries Co., Ltd.
Priority to CN2008801254987A priority Critical patent/CN101970956A/zh
Priority to PCT/JP2008/000071 priority patent/WO2009093282A1/ja
Priority to JP2009550373A priority patent/JPWO2009093282A1/ja
Publication of WO2009093282A1 publication Critical patent/WO2009093282A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser

Definitions

  • the present invention relates to a refrigerant sensor mounting structure and a refrigerant sensor mounting method for detecting a physical quantity related to a refrigerant flowing in a pipe of a refrigeration cycle.
  • the sensor When detecting a physical quantity such as the temperature, pressure, or flow rate of the refrigerant flowing in the piping of the refrigeration cycle, the sensor (detector) is directly brought into contact with the refrigerant in the piping. It is preferable to detect automatically.
  • a hole is provided in the pipe wall of the straight line or the straight connection pipe, and the sensor detection element is provided in the hole so as to protrude into the pipe or the connection pipe.
  • Provided so as to be located in the back of the road for example, refer to Patent Document 1
  • JP 59-182315 Fig. 3
  • JP 59-37419 FIG. 2
  • the detection element of the sensor is provided so as to protrude into the pipe (in the refrigerant flow path), the flow of the refrigerant flowing through the pipe may be hindered.
  • the detection element of the sensor is provided in a part deeper from the flow path of the pipe, among the refrigerants flowing in layers in the pipe, the influence of the refrigerant passing near the detection element is large, It is difficult to detect an average physical quantity, and there is a drawback that the detection accuracy is not enough.
  • oil contained in the refrigerant flowing in the pipe or liquid refrigerant in liquid form may accumulate in the detection element portion. There is a risk that accuracy will be significantly reduced.
  • a first object of the present invention is to provide a refrigerant sensor mounting structure that can prevent the flow of a refrigerant as much as possible while having a configuration that directly detects the physical quantity of the refrigerant and that has a high detection accuracy.
  • the second object of the present invention is to provide an attachment method of the refrigerant sensor that can favorably attach the refrigerant sensor to the T-shaped joint to be attached.
  • the present invention provides a refrigerant sensor mounting structure for detecting a physical quantity related to a refrigerant flowing in a pipe of a refrigeration cycle, and has a cylindrical main pipe portion having both ends opened. And a cylindrical branch pipe part branched from the axial middle part of the main pipe part and having an open end, and formed in a T-shape as a whole, and one end of the main pipe part is connected to the pipe A thermistor, and a thermistor.
  • the thermistor includes a T-shaped joint having a second connection portion for connecting the other end portion of the main pipe portion to the pipe and the branch pipe portion to the pipe.
  • a refrigerant sensor hermetically attached to the sensor attachment portion so as to fit in the sensor attachment portion, and the first connection portion and the second connection portion of the T-shaped joint are connected to the pipe.
  • the serial sensor attachment portion side characterized in that disposed higher than the first connecting portion.
  • the present invention forms a cylindrical main tube portion having both ends opened, and a cylindrical shape branched from an intermediate portion in the axial direction of the main tube portion and having a tip portion opened.
  • a step of fixing a cylindrical metal adapter to the sensor attachment portion by brazing, and a base substrate Lee A step of hermetically fixing the lead terminal to the base substrate via glass in a state of penetrating the terminal, and a step of unitizing the thermistor to the base substrate by connecting the terminal of the thermistor to the lead terminal And fixing the base substrate obtained by unitizing the thermistor to the opening of the adapter by laser welding in a state where the thermistor is inserted into the sensor mounting portion.
  • the refrigerant sensor mounting structure of the present invention the following effects can be obtained. Since the refrigerant sensor is configured to be attached to the sensor attachment portion facing the first connection portion of the main pipe portion in the T-shaped joint, the thermistor that is the detection element can be brought into direct contact with the refrigerant, and the physical quantity of the refrigerant can be directly Can be detected. Since the thermistor is disposed so as to be accommodated in the sensor mounting portion, it is possible to prevent the thermistor from obstructing the flow of the refrigerant flowing through the T-shaped joint.
  • the thermistor is arranged in a portion where the refrigerant turns 90 degrees between the first connection portion and the second connection portion, turbulence is likely to occur there, and the average physical quantity of the refrigerant Can be detected as accurately as possible, and the detection accuracy can be increased.
  • the refrigerant sensor can be disposed at a position where the oil or liquid refrigerant in the refrigerant does not accumulate, whereby the thermistor Can be hardly affected by the oil or liquid refrigerant, and can prevent the detection accuracy from being lowered. Since the sensor mounting portion to which the refrigerant sensor is attached has a cylindrical shape, the thermistor can be disposed relatively easily at the center of the sensor mounting portion.
  • the step of airtightly fixing the lead terminal to the base substrate through glass with the lead terminal penetrating through the base substrate is performed in a high temperature atmosphere.
  • the thermistor can be prevented from being damaged.
  • the thermistor terminal is connected to the lead terminal fixed to the base substrate, and the thermistor is unitized into the base substrate.
  • the base substrate is inserted into the sensor mounting portion in the state where the thermistor is inserted into the sensor mounting portion.
  • the thermistor which is a detection element can be satisfactorily attached by fixing by laser welding.
  • FIG. 1 shows an embodiment of the present invention and is a diagram showing a schematic configuration during cooling of a refrigeration cycle.
  • FIG. 2 is a diagram showing a schematic configuration during heating of the refrigeration cycle.
  • FIG. 3 is an enlarged cross-sectional view showing the refrigerant sensor mounting structure.
  • FIG. 4 is an exploded cross-sectional view for explaining a method of attaching the refrigerant sensor.
  • 1 is a compressor
  • 2a to 2l are pipes
  • 3 is a T-shaped joint
  • 4 is a 4-way valve
  • 5 is a first heat exchanger
  • 7 is a second heat exchanger
  • 8 is a T-shaped joint
  • 10A is for cooling.
  • Refrigerant circuit, 10B is a heating refrigerant circuit
  • 12 is a T-shaped joint
  • 14 is a T-shaped joint
  • 20 is a main pipe part
  • 21 is a branch pipe part
  • 22 is a first connection part
  • 23 is a sensor attachment part
  • 24 is a first 2
  • 26 a refrigerant sensor
  • 30 an adapter
  • 30a an opening, 31 a filter, 32 a base substrate, 33 a through hole, 34 a lead terminal, 35 a glass
  • C represents a refrigeration cycle
  • R represents a refrigerant.
  • FIG. 1 shows a schematic configuration diagram of the refrigeration cycle C during cooling
  • FIG. 2 shows a schematic configuration diagram of the refrigeration cycle C during heating.
  • the refrigeration cycle C can be switched between a cooling refrigerant circuit 10A shown in FIG. 1 and a heating refrigerant circuit 10B shown in FIG.
  • a schematic configuration of the refrigeration cycle C will be described mainly using the cooling refrigerant circuit 10A of FIG.
  • the refrigerant R is indicated by a broken-line arrow indicating the flow direction.
  • a first pipe 2 a, a T-shaped joint 3, and a second pipe 2 b are connected in series to the discharge port 1 a of the compressor 1, and the tip of the second pipe 2 b is connected to the first port 4 a of the four-way valve 4. Yes.
  • the four-way valve 4 is provided with a first port 4a, a second port 4b, a third port 4c, and a fourth port 4d.
  • the four-way valve 4 is in communication between the first port 4a and the second port 4b, and in communication with the third port 4c and the fourth port 4d.
  • the first port 4a and the third port 4c are in communication with each other, and the second port 4b and the fourth port 4d are switched in communication.
  • the second port 4b of the four-way valve 4 includes a third pipe 2c, a first heat exchanger 5, a fourth pipe 2d, an expansion valve 6, a fifth pipe 2e, a second heat exchanger 7, and a sixth pipe. 2f is connected in series, and the tip of the sixth pipe 2f is connected to the third port 4c of the four-way valve 4.
  • the fourth port 4d that is in communication with the third port 4c connects the seventh pipe 2g, the T-shaped joint 8, the eighth pipe 2h, and the accumulator 9 in series. It is connected to the inlet 1b.
  • the 8th pipe 2h and the accumulator 9 are connected in order to constitute a loop-shaped cooling refrigerant circuit 10A in which the refrigerant R circulates.
  • the second heat exchanger 7 is arranged in a room used by the user.
  • a first bypass circuit 11 is provided between the middle part of the second pipe 2b and the middle part of the first heat exchanger 5.
  • the first bypass circuit 11 is configured by connecting in series a ninth pipe 2i, a T-shaped joint 12, and a tenth pipe 2j whose one end is connected to the middle part of the second pipe 2b.
  • a second bypass circuit 13 is provided between the middle portion of the second heat exchanger 7 and the sixth pipe 2f.
  • the second bypass circuit 13 is configured by connecting an eleventh pipe 2k, a T-shaped joint 14, and a twelfth pipe 21 connected in series at one end to the middle portion of the second heat exchanger 7.
  • the T-shaped joint 3 has a cylindrical shape with a cylindrical main body 20 having both ends opened and a branching from an axial intermediate portion of the main pipe 20, and a distal end opened. And a branch pipe portion 21 that forms a T-shape as a whole.
  • the T-shaped joint 3 is made of metal, for example, copper.
  • One end portion of the main pipe portion 20 is a first connection portion 22, the other end portion of the main pipe portion 20 is a sensor attachment portion 23, and the branch pipe portion 21 is a second connection portion 24.
  • the main pipe portion 20 and the branch pipe portion 21 are substantially orthogonal to each other, and the first connection portion 22 and the second connection portion 24 are substantially different in direction by 90 degrees.
  • coolant sensor 26 which has the thermistor 25 as a detection element is attached to the sensor attachment part 23.
  • FIG. A refrigerant sensor 26 having a thermistor 25 as a detection element is also attached to each sensor attachment portion 23 of the T-shaped joints 8, 12, and 14 with the same attachment structure as the T-shaped joint 3.
  • the detection signal of each refrigerant sensor 26 (thermistor 25) is output to a control device (not shown).
  • An adapter 30 having a cylindrical shape made of metal, for example, iron is fixed to the sensor mounting portion 23 in an inserted state.
  • a filter 31 for protecting the thermistor 25 is attached to the distal end of the adapter 30 on the insertion side.
  • the adapter 30 is fixed to the sensor mounting portion 23 by brazing the peripheral edge of the opening 23 a of the sensor mounting portion 23 with the adapter 30 provided with the filter 31 inserted in the sensor mounting portion 23. is doing.
  • a base substrate 32 having a disk shape is fixed to the inner peripheral portion of the opening 30a of the adapter 30 by laser welding so as to close the opening 30a.
  • Two through holes 33 are formed in the base substrate 32, and lead terminals 34 each having a pin shape are fixed to each through hole 33 through a glass 35.
  • Each lead terminal 34 penetrates the base substrate 32.
  • the two terminals 25a of the thermistor 25 are connected to the two lead terminals 34 by, for example, laser welding.
  • the thermistor 25 is disposed between the filter 31 and the base substrate 32 in the adapter 30.
  • the thermistor 25 is disposed so as to be accommodated in the sensor mounting portion 23 in the T-shaped joint 3. Therefore, the refrigerant sensor 26 is airtightly attached to the sensor attachment portion 23 so that the thermistor 25 fits in the sensor attachment portion 23.
  • the adapter 30 is fitted into the sensor attachment portion 23 so as to be inserted into the opening portion 23a of the sensor attachment portion 23 from the filter 31 side. At this time, a part of the adapter 30 slightly protrudes outward from the opening 23 a of the sensor mounting portion 23. In this state, the adapter 30 is fixed to the sensor mounting portion 23 by brazing the peripheral edge portion of the opening 23 a of the sensor mounting portion 23.
  • a flange that projects laterally is integrally provided on the outer peripheral portion of the end of the adapter 30 so that the flange contacts the opening end of the sensor mounting portion 23, so that the sensor mounting
  • the adapter 30 can be positioned with respect to the portion 23.
  • the base substrate 32 and the lead terminals 34 and the glass 35 are set on the jigs (not shown) so as to be positioned in the two through holes 33 of the base substrate 32 and fired in a firing furnace (not shown).
  • the lead terminal 34 is airtightly fixed to the base substrate 32 through the glass 35.
  • the thermistor 25 is fixed to the lead terminal 34 by laser welding, so that the thermistor 25 is unitized with the base substrate 32.
  • the base substrate 32 in which the thermistor 25 is unitized is disposed in the opening 30a of the adapter 30 in a state where the thermistor 25 is inserted into the sensor mounting portion 23 so as to close the outer periphery of the base substrate 32.
  • the part is fixed to the adapter 30 by laser welding.
  • the attachment of the refrigerant sensor 26 to the sensor attachment portion 23 is completed.
  • a stepped portion projecting inward is integrally provided on the inner peripheral portion of the adapter 30, and the base substrate 32 is inserted when the base substrate 32 is inserted into the opening 30 a of the adapter 30 so as to close it.
  • the base substrate 32 can be positioned with respect to the adapter 30 by making it hit the stepped portion.
  • the T-shaped joint 3 to which the refrigerant sensor 26 is attached is connected to the first pipe 2a with the first connection portion 22 facing downward, and the second connection portion 24 is turned sideways to the second pipe 2b.
  • the refrigerant sensor 26 sensor mounting portion 23
  • the sensor mounting part 23 side of the main pipe part 20 is arranged to be higher than the first connection part 22 side.
  • the refrigerant sensor 26 thermoistor 25 provided in the T-shaped joint 3 is used to detect the discharge temperature of the refrigerant R discharged from the compressor 1 and to estimate the discharge pressure from the temperature.
  • the T-shaped joint 8 to which the refrigerant sensor 26 is attached is connected to the seventh pipe 2g with the first connection portion 22 facing downward, and connected to the eighth pipe 2h with the second connection portion 24 facing sideways.
  • the refrigerant sensor 26 (sensor mounting portion 23) is disposed in the upper part. Also in this case, the sensor attachment part 23 side of the main pipe part 20 is arranged to be higher than the first connection part 22 side.
  • the refrigerant sensor 26 (thermistor 25) provided in the T-shaped joint 8 is used to detect the liquid return of the refrigerant R returning to the compressor 1.
  • the refrigerant sensor 26 is self-heated by passing an electric current through the thermistor 25 and detects liquid return based on the degree of decrease in the temperature detected by the thermistor 25.
  • the T-shaped joint 12 to which the refrigerant sensor 26 is attached is connected to the ninth pipe 2i with the first connecting portion 22 facing downward and connected to the tenth pipe 2j with the second connecting portion 24 facing sideways.
  • the refrigerant sensor 26 (sensor mounting portion 23) is disposed in the upper part. Also in this case, the sensor attachment part 23 side of the main pipe part 20 is arranged to be higher than the first connection part 22 side.
  • the refrigerant sensor 26 (thermistor 25) provided in the T-shaped joint 12 diverts a part of the refrigerant flowing through the third pipe 2c during cooling, detects the flow rate of the divided refrigerant, and passes the third pipe 2c through the third pipe 2c. Used to estimate the flow rate of flowing refrigerant.
  • the refrigerant sensor 26 is also self-heated by passing an electric current through the thermistor 25, and the flow rate of the refrigerant is estimated by the degree of decrease in the temperature detected by the thermistor 25.
  • the T-shaped joint 14 to which the refrigerant sensor 26 is attached is connected to the eleventh pipe 2k with the first connection portion 22 facing downward, and connected to the twelfth pipe 21 with the second connection portion 24 facing sideways.
  • the refrigerant sensor 26 (sensor mounting portion 23) is disposed in the upper part. Also in this case, the sensor attachment part 23 side of the main pipe part 20 is arranged to be higher than the first connection part 22 side.
  • the refrigerant sensor 26 (thermistor 25) provided in the T-shaped joint 14 divides a part of the refrigerant flowing through the sixth pipe 2f during heating in FIG. 2, detects the flow rate of the divided refrigerant, It is used to estimate the flow rate of the refrigerant flowing through the pipe 2f.
  • the refrigerant sensor 26 is also self-heated by passing an electric current through the thermistor 25, and the flow rate of the refrigerant is estimated by the degree of decrease in the temperature detected by the thermistor 25.
  • the thermistor 25 of the refrigerant sensor 26 attached to the sensor attachment portion 23 of the T-shaped joint 3 outputs a detection signal corresponding to the discharge temperature of the refrigerant R discharged from the compressor 1 to the control device.
  • the control device detects the discharge temperature based on the detection signal and estimates the discharge pressure from the temperature.
  • the refrigerant R flowing through the T-shaped joint 3 changes its direction by 90 degrees when flowing from the first connecting portion 22 to the second connecting portion 24, and turbulent flow is likely to occur at the bent portion. .
  • the control device can detect the average temperature of the refrigerant R flowing through the T-shaped joint 3 as accurately as possible by the thermistor 25.
  • a part of the refrigerant R flowing through the third pipe 2c is branched to the ninth pipe 2i side of the first bypass circuit 11.
  • the divided refrigerant R flows into the first heat exchanger 5 through the T-shaped joint 12 and the tenth pipe 2j.
  • the self-heating is performed by passing a current through the thermistor 25 of the refrigerant sensor 26 attached to the sensor attachment portion 23 of the T-shaped joint 12, the degree of decrease in the detected temperature of the thermistor 25 is detected, and the detection signal is sent to the control device. Output to.
  • the control device estimates the flow rate of the refrigerant R flowing through the first bypass circuit 11 based on the detection signal, and thus estimates the flow rate of the refrigerant R flowing through the third pipe 2c.
  • the control device can accurately measure the degree of temperature decrease due to the refrigerant R flowing through the T-shaped joint 12 with the thermistor 25, and can estimate the flow rate of the refrigerant R from the detected value as accurately as possible. It becomes possible.
  • the refrigerant R that has flowed into the first heat exchanger 5 dissipates heat and liquefies (condenses) in the course of flowing therethrough.
  • the first heat exchanger 5 functions as a condenser (condenser).
  • the liquefied refrigerant R flows into the second heat exchanger 7 through the fourth pipe 2d, the expansion valve 6, and the fifth pipe 2e.
  • the refrigerant R flowing into the second heat exchanger 7 evaporates here, and at that time, the surrounding heat is taken away and the surrounding is cooled.
  • the second heat exchanger 7 functions as an evaporator (evaporator).
  • the user uses the second heat exchanger 7 as a cooler.
  • the refrigerant R evaporated and gasified in the second heat exchanger 7 is the sixth port 2f, the third port 4c of the four-way valve 4, the fourth port 4d, the seventh port 2g, the T-shaped joint 8, the eighth port 8c. It passes through the pipe 2h and the accumulator 9, flows into the compressor 1 from the inlet 1b of the compressor 1, is compressed again, and is discharged from the discharge port 1a as high-temperature and high-pressure gas.
  • the control device estimates whether or not liquid refrigerant is contained in the refrigerant R flowing through the T-shaped joint 8 based on the detection signal, and detects the liquid return of the refrigerant R returning to the compressor 1. Also at this time, the refrigerant R flowing through the T-shaped joint 8 changes its direction by 90 degrees when flowing from the first connecting portion 22 to the second connecting portion 24, and turbulent flow is likely to occur at the bent portion. Become. For this reason, the control device can detect the temperature of the refrigerant R flowing through the T-shaped joint 8 with the thermistor 25 as accurately as possible, and thus can detect the liquid return as accurately as possible.
  • the physical quantity of the refrigerant R is not detected for the refrigerant sensor 26 of the T-shaped joint 14 provided in the second bypass circuit 13.
  • the first port 4a and the third port 4c of the four-way valve 4 are in communication with each other, and the second port 4b and the second port 4b are connected to each other. It is switched so that the 4 ports 4d are in communication.
  • the compressor 1 is started in this state, the refrigerant R that has become a high-temperature and high-pressure gas in the compressor 1 is discharged from the discharge port 1a.
  • the refrigerant R discharged from the discharge port 1a passes through the first pipe 2a, the T-shaped joint 3, the second pipe 2b, the first port 4a, the third port 4c, and the sixth pipe 2f of the four-way valve 4 for the second.
  • the thermistor 25 of the refrigerant sensor 26 attached to the sensor attachment portion 23 of the T-shaped joint 3 outputs a detection signal corresponding to the discharge temperature of the refrigerant R discharged from the compressor 1 in the same manner as during cooling. Output to.
  • the control device detects the discharge temperature based on the detection signal and estimates the discharge pressure from the temperature.
  • a part of the refrigerant R flowing through the sixth pipe 2f is diverted to the twelfth pipe 21 side of the second bypass circuit 13.
  • the separated refrigerant R flows into the second heat exchanger 7 through the T-shaped joint 14 and the eleventh pipe 2k.
  • Self-heating is performed by passing a current through the thermistor 25 of the refrigerant sensor 26 attached to the sensor attachment portion 23 of the T-shaped joint 14, the degree of decrease in the detected temperature of the thermistor 25 is detected, and the detection signal is sent to the control device. Output to.
  • the control device estimates the flow rate of the refrigerant R flowing through the second bypass circuit 13 based on the detection signal, and thus estimates the flow rate of the refrigerant R flowing through the sixth pipe 2f.
  • the control device can accurately measure the degree of temperature decrease due to the refrigerant R flowing through the T-shaped joint 14 with the thermistor 25, and can estimate the flow rate of the refrigerant R from the detected value as accurately as possible. It becomes possible.
  • the refrigerant R that has flowed into the second heat exchanger 7 dissipates heat and liquefies (condenses) in the course of flowing therethrough.
  • the second heat exchanger 7 functions as a condenser (condenser).
  • the user uses the second heat exchanger 7 as a heater.
  • the liquefied refrigerant R flows into the first heat exchanger 5 through the fifth pipe 2e, the expansion valve 6, and the fourth pipe 2d.
  • the refrigerant R that has flowed into the first heat exchanger 5 evaporates here, and takes away the surrounding heat.
  • the first heat exchanger 5 functions as an evaporator (evaporator).
  • the refrigerant R evaporated and gasified in the first heat exchanger 5 is the third port 2c, the second port 4b of the four-way valve 4, the fourth port 4d, the seventh port 2g, the T-shaped joint 8, the eighth port. It passes through the pipe 2h and the accumulator 9, flows into the compressor 1 from the inlet 1b of the compressor 1, is compressed again, and is discharged from the discharge port 1a as high-temperature and high-pressure gas.
  • self-heating is carried out by passing a current through the thermistor 25 of the refrigerant sensor 26 attached to the sensor attachment portion 23 of the T-shaped joint 8, and the degree of decrease in the detected temperature of the thermistor 25 is detected, and the detection signal Is output to the control device.
  • the control device estimates whether or not liquid refrigerant is contained in the refrigerant R flowing through the T-shaped joint 8 based on the detection signal, and detects the liquid return of the refrigerant R returning to the compressor 1.
  • the refrigerant sensor 26 having the thermistor 25 is configured to be attached to the sensor attachment portion 23 facing the first connection portion 22 of the main pipe portion 20 in each of the T-shaped joints 3, 8, 12, 14, the thermistor that is a detection element 25 can be brought into direct contact with the refrigerant R, and the physical quantity of the refrigerant R can be directly detected. Since the thermistor 25 is disposed so as to be accommodated in the sensor mounting portion 23, it is possible to prevent the thermistor 25 from obstructing the flow of the refrigerant R flowing through each of the T-shaped joints 3, 8, 12, and 14.
  • the thermistor 25 is disposed between the first connecting portion 22 and the second connecting portion 24 at a portion where the refrigerant R changes its direction by 90 degrees. It is possible to detect an average physical quantity as accurately as possible, and the detection accuracy can be increased.
  • the sensor attachment portion 23 side to which the refrigerant sensor 26 is attached is arranged so as to be higher than the first connection portion 22 side.
  • the oil or liquid refrigerant in the refrigerant R can be prevented from accumulating.
  • the thermistor 25 of the refrigerant sensor 26 can be hardly affected by the oil or liquid refrigerant, and the detection accuracy can be prevented from being lowered.
  • the thermistor 25 that is a detection element can be relatively easily arranged at the center of the sensor mounting portion 23. This also makes it possible to increase the detection accuracy of the refrigerant sensor 26.
  • the thermistor 25 can be protected.
  • the flow of the refrigerant R is in the direction along the extending direction of the terminal 25a. It is difficult to apply a load and it is difficult to cause a disconnection.
  • a force that shakes the thermistor 25 from the side is generated, and there is a possibility that disconnection is likely to occur. Can be prevented.
  • the lead terminal 34 is inserted through the glass 35 in a state where the lead terminal 34 is passed through the base substrate 32.
  • the step of hermetically fixing to the base substrate 32 is performed in a high-temperature firing furnace. By performing this process in a state where the thermistor 25 is not attached, it is possible to prevent the thermistor 25 from being damaged.
  • the thermistor 25 By brazing only the adapter 30 to the sensor mounting portion 23, it is possible to prevent the thermistor 25 from being damaged by heat during brazing. Then, the terminal 25a of the thermistor 25 is connected to the lead terminal 34 fixed to the base substrate 32, and the thermistor 25 is unitized into the base substrate 32. Thereafter, the base substrate 32 is connected to the thermistor 25 in the sensor mounting portion 23.
  • the thermistor 25 which is a detection element can be satisfactorily attached by being fixed to the opening 30a of the adapter 30 by laser welding while being inserted into the adapter 30.
  • the present invention is not limited to the above-described embodiment, and can be modified or expanded as follows.
  • the refrigeration cycle C is configured to be switchable between the cooling refrigerant circuit 10A and the heating refrigerant circuit 10B, but it is not always necessary to be able to switch.
  • the refrigerant sensor 26 is provided at four locations, only one location may be used.
  • the refrigerant sensor mounting structure according to the present invention is useful for detecting physical quantities (temperature, flow rate, liquid return) related to the refrigerant flowing in the piping of the refrigeration cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 本発明は、主管部(20)の一端部を第1の接続部(22)とするとともに他端部をセンサ取付部(23)とし、主管部(20)から分岐した分岐管部(21)を第2の接続部(24)としたT字形継手(3,8,12,14)と、サーミスタ(25)がセンサ取付部(23)内に納まるようにしてセンサ取付部に気密に取り付けた冷媒センサ(26)とを備え、T字形継手(3,8,12,14)の第1の接続部(22)および第2の接続部(24)を冷凍サイクル(C)の配管に接続した状態で、主管部(20)のセンサ取付部(23)側を第1の接続部(22)側より高くなるように配置したことを特徴とする冷媒センサ(26)の取付構造である。

Description

冷媒センサの取付構造および冷媒センサの取付方法
 本発明は、冷凍サイクルの配管中を流れる冷媒に係る物理量を検出するための冷媒センサの取付構造および冷媒センサの取付方法に関する。
 冷凍サイクルの配管中を流れる冷媒の温度や圧力、或いは流量などの物理量を検出しようとする場合、センサ(検出器)の検出素子を、配管中の冷媒に直接接触させるようにすることで、直接的に検出するようにすることが好ましい。この場合、直線状をなす配管または直線状をなす接続管の管壁に穴を設け、その穴に、センサの検出素子を配管内または接続管内に突出するように設けたり、管壁中の流路から奥まったところに位置するように設けたり(例えば、特許文献1参照)、配管のコーナー部に開口部を設け、その開口部に、センサの検出素子を配管内に突出するように設けたりすることが考えられる(例えば、特許文献2参照)。
特開昭59-182315号公報(第3図) 特開昭59-37419号公報(第2図)
 センサの検出素子を配管内(冷媒の流路内)に突出するように設けた場合には、配管内を流れる冷媒の流れを妨げるおそれがある。また、センサの検出素子を、配管の流路から奥まった部位に設けるようにした場合には、配管内を層状に流れる冷媒のうち、検出素子の近くを通る冷媒の影響が大きくて、冷媒の平均的な物理量を検出することが難しく、検出精度がいま一つであるという欠点がある。さらに、センサの検出素子を配管の下部側に設けた場合、その検出素子部分に、配管内を流れる冷媒に含まれたオイルや液状となった液冷媒が溜まることがあり、このようになると検出精度が著しく低下するおそれがある。
 本発明の第1の目的は、冷媒の物理量を直接的に検出する構成でありながら、冷媒の流れを妨げることを極力防止でき、しかも検出精度の良い冷媒センサの取付構造を提供することにある。本発明の第2の目的は、冷媒センサを、取付対象のT字形継手に対して良好に取り付けることができる冷媒センサの取付方法を提供することにある。
 本発明は、上記した第1の目的を達成するために、冷凍サイクルの配管中を流れる冷媒に係る物理量を検出するための冷媒センサの取付構造において、円筒状をなし両端部が開口した主管部と、この主管部の軸方向の中間部から分岐し先端部が開口した円筒状をなす分岐管部とを有して全体としてT字形に形成され、前記主管部の一端部を前記配管に接続する第1の接続部とし、前記主管部の他端部をセンサ取付部とし、前記分岐管部を前記配管に接続する第2の接続部とするT字形継手と、サーミスタを有し、このサーミスタが前記センサ取付部内に納まるようにして当該センサ取付部に気密に取り付けられた冷媒センサとを備え、前記T字形継手の前記第1の接続部および前記第2の接続部を前記配管に接続した状態で、前記主管部の前記センサ取付部側を前記第1の接続部側より高く配置したことを特徴とする。
 上記構成において、冷媒センサに、サーミスタ保護用のフィルタを設けることが好ましい。
 本発明は、上記した第2の目的を達成するために、円筒状をなし両端部が開口した主管部と、この主管部の軸方向の中間部から分岐し先端部が開口した円筒状をなす分岐管部とを有して全体としてT字形に形成され、前記主管部の一端部を冷凍サイクルの配管に接続する第1の接続部とし、前記主管部の他端部をセンサ取付部とし、前記分岐管部を前記配管に接続する第2の接続部とする金属製のT字形継手と、サーミスタを有し、このサーミスタが前記センサ取付部内に納まるようにして当該センサ取付部に気密に取り付けられる冷媒センサとを備え、前記冷媒センサを前記T字形継手の前記センサ取付部に取り付ける方法において、前記センサ取付部に円筒状をなす金属製のアダプタをろう付けにより固着する工程と、ベース基板にリード端子を貫通させた状態で、このリード端子をガラスを介して前記ベース基板に気密に固着する工程と、前記リード端子に前記サーミスタの端子を接続して前記サーミスタを前記ベース基板にユニット化する工程と、前記サーミスタをユニット化した前記ベース基板を、前記サーミスタを前記センサ取付部内に挿入する状態で前記アダプタの開口部にレーザー溶接により固着する工程とを含むことを特徴とする。
 本発明の冷媒センサの取付構造によれば、次のような効果を得ることができる。冷媒センサを、T字形継手において主管部の第1の接続部と対向するセンサ取付部に取り付ける構成としているので、検出素子であるサーミスタを冷媒と直接接触させることができ、冷媒の物理量を直接的に検出することができる。サーミスタを、センサ取付部内に納まるように配置しているので、そのサーミスタが、T字形継手内を流れる冷媒の流れを妨げることを防止できる。前記サーミスタは、第1の接続部と第2の接続部との間で、冷媒が90度向きを変える部分に配置されているので、そこでは乱流が発生し易く、冷媒の平均的な物理量を極力正確に検出することが可能になり、検出精度を高くできる。主管部のセンサ取付部側を第1の接続部側より高く配置することで、冷媒センサを、冷媒中のオイル或いは液冷媒が溜まらない位置となるように配置することができ、これにより、サーミスタはそれらオイルや液冷媒の影響を受け難くでき、検出精度が低下することを防止できる。冷媒センサを取り付けるセンサ取付部は円筒状をなしているから、サーミスタを、そのセンサ取付部の中心部に比較的容易に配置することが可能となる。
 本発明の冷媒センサの取付方法によれば、次のような効果を得ることができる。ベース基板にリード端子を貫通させた状態で、このリード端子をガラスを介して前記ベース基板に気密に固着する工程は、高温雰囲気で行うことになる。この工程を、サーミスタを取り付けない状態で行うことで、サーミスタが損傷することを防止できる。また、T字形継手のセンサ取付部に、アダプタのみをろう付けすることにより、ろう付けの際の熱でサーミスタが損傷することを防止できる。そして、ベース基板に固着したリード端子にサーミスタの端子を接続して、サーミスタをベース基板にユニット化し、この後、前記ベース基板を、サーミスタを前記センサ取付部内に挿入する状態で前記アダプタの開口部にレーザー溶接により固着することで、検出素子であるサーミスタを良好に取り付けることができる。
図1は本発明の一実施形態を示すもので、冷凍サイクルの冷房時の概略構成を示す図である。 図2は冷凍サイクルの暖房時の概略構成を示す図である。 図3は冷媒センサの取付構造を示す拡大断面図である。 図4は冷媒センサの取付方法を説明するための分解断面図である。
符号の説明
 1はコンプレッサ、2a~2lは配管、3はT字形継手、4は4方向弁、5は第1の熱交換器、7は第2の熱交換器、8はT字形継手、10Aは冷房用冷媒回路、10Bは暖房用冷媒回路、12はT字形継手、14はT字形継手、20は主管部、21は分岐管部、22は第1の接続部、23はセンサ取付部、24は第2の接続部、25はサーミスタ、25aは端子、26は冷媒センサ、30はアダプタ、30aは開口部、31はフィルタ、32はベース基板、33は貫通孔、34はリード端子、35はガラス、Cは冷凍サイクル、Rは冷媒を示す。
 以下、本発明の一実施形態について図面を参照して説明する。
 図面のうち、図1には冷房時における冷凍サイクルCの概略構成図を示し、図2には暖房時の冷凍サイクルCの概略構成図を示している。冷凍サイクルCは、図1に示す冷房用冷媒回路10Aと、図2に示す暖房用冷媒回路10Bとに切り替えが可能となっている。まず、主に図1の冷房用冷媒回路10Aを用いて冷凍サイクルCの概略構成を説明する。図1中、冷媒Rは、流通方向を示す破線の矢印で示す。
 コンプレッサ1の吐出口1aに、第1配管2a、T字形継手3、第2配管2bを直列に接続し、第2配管2bの先端部を、4方向弁4の第1ポート4aに接続している。4方向弁4には、第1ポート4a、第2ポート4b、第3ポート4c、第4ポート4dが設けられている。4方向弁4は、図1に示す冷房時には、第1ポート4aと第2ポート4bとが連通状態とされるとともに、第3ポート4cと第4ポート4dとが連通状態とされ、図2に示す暖房時には、第1ポート4aと第3ポート4cとが連通状態とされるとともに、第2ポート4bと第4ポート4dとが連通状態とされるように切り替えられるようになっている。
 4方向弁4の第2ポート4bには、第3配管2c、第1の熱交換器5、第4配管2d、膨張弁6、第5配管2e、第2の熱交換器7、第6配管2fを直列に接続し、第6配管2fの先端部を4方向弁4の第3ポート4cに接続している。第3ポート4cに連通状態とされた第4ポート4dは、第7配管2g、T字形継手8、第8配管2h、アキュムレータ9を直列に接続し、アキュムレータ9の吐出口を前記コンプレッサ1の流入口1bに接続している。
 ここで、コンプレッサ1、第1配管2a、T字形継手3、第2配管2b、4方向弁4の第1ポート4a、第2ポート4b、第3配管2c、第1の熱交換器5、第4配管2d、膨張弁6、第5配管2e、第2の熱交換器7、第6配管2f、4方向弁4の第3ポート4c、第4ポート4d、第7配管2g、T字形継手8、第8配管2h、アキュムレータ9を順に接続して、冷媒Rが循環するループ状の冷房用冷媒回路10Aを構成している。また、図2に示すように、4方向弁4の第1ポート4aと第3ポート4cとを連通させるとともに、第2ポート4bと第4ポート4dとを連通させた状態では、コンプレッサ1、第1配管2a、T字形継手3、第2配管2b、4方向弁4の第1ポート4a、第3ポート4c、第6配管2f、第2の熱交換器7、第5配管2e、膨張弁6、第4配管2d、第1の熱交換器5、第3配管2c、4方向弁4の第2ポート4b、第4ポート4d、第7配管2g、T字形継手8、第8配管2h、アキュムレータ9を順に接続して、冷媒Rが循環するループ状の暖房用冷媒回路10Bを構成している。この場合、第2の熱交換器7を、使用者が使用する部屋などに配置する。
 前記第2配管2bの途中部と第1の熱交換器5の途中部との間には、第1のバイパス回路11を設けている。第1のバイパス回路11は、一端部が第2配管2bの途中部に接続された第9配管2i、T字形継手12、第10配管2jを直列に接続して構成されている。
 前記第2の熱交換器7の途中部と第6配管2fとの間には、第2のバイパス回路13を設けている。第2のバイパス回路13は、一端部が第2の熱交換器7の途中部に接続された第11配管2k、T字形継手14、第12配管2lを直列に接続して構成されている。
 ここで、前記T字形継手3、8、12、および14は同一の構成であるので、それらの構成について、T字形継手3を代表して説明する。T字形継手3は、詳細には図3に示すように、円筒状をなし両端部が開口した主管部20と、この主管部20の軸方向の中間部から分岐し先端部が開口した円筒状をなす分岐管部21とを有して全体としてT字形に形成されている。T字形継手3は、金属、例えば銅により構成されている。主管部20の一端部を第1の接続部22とし、主管部20の他端部をセンサ取付部23とし、分岐管部21を第2の接続部24としている。主管部20と分岐管部21とはほぼ直交していて、第1の接続部22と第2の接続部24とは、ほぼ90度向きが異なっている。そして、センサ取付部23に、検出素子としてサーミスタ25を有する冷媒センサ26を取り付けている。T字形継手8、12、14の各センサ取付部23にも、検出素子としてサーミスタ25を有する冷媒センサ26をT字形継手3と同様な取付構造にて取り付けている。各冷媒センサ26(サーミスタ25)の検出信号は、図示しない制御装置に出力されるようになっている。
 次に、センサ取付部23に対する冷媒センサ26の取付構造について、図3を参照して説明する。センサ取付部23には、金属、例えば鉄製の円筒状をなすアダプタ30を挿入状態で固着している。アダプタ30の挿入側の先端部には、前記サーミスタ25を保護するためのフィルタ31を取り付けている。この場合、センサ取付部23内に、フィルタ31を設けたアダプタ30を挿入した状態で、センサ取付部23の開口部23aの周縁部をろう付けすることにより、センサ取付部23にアダプタ30を固着している。
 アダプタ30の開口部30aの内周部には、当該開口部30aを閉鎖するように円盤状をなすベース基板32がレーザー溶接により固着されている。ベース基板32には、2個の貫通孔33が形成されていて、各貫通孔33にピン状をなすリード端子34がガラス35を介して気密に固着されている。各リード端子34は、ベース基板32を貫通している。アダプタ30内において、2本のリード端子34に、前記サーミスタ25の2本の端子25aを例えばレーザー溶接により接続している。
 サーミスタ25は、アダプタ30内において、フィルタ31とベース基板32との間に配置されている。サーミスタ25は、T字形継手3におけるセンサ取付部23内に納まるようにして配置されている。したがって、冷媒センサ26は、サーミスタ25がセンサ取付部23内に納まるようにして当該センサ取付部23に気密に取り付けられている。
 次に、センサ取付部23に対する冷媒センサ26の取付方法について図4も参照して説明する。まず、アダプタ30の先端部にフィルタ31を取り付けた状態で、アダプタ30を、フィルタ31側からセンサ取付部23の開口部23aに挿入するようにしてセンサ取付部23に嵌合させる。このとき、アダプタ30の一部が、センサ取付部23の開口部23aから外方へ少し突出している。この状態で、センサ取付部23の開口部23aの周縁部をろう付けすることにより、センサ取付部23にアダプタ30を固着する。なお、この場合、アダプタ30の端部の外周部に、側方へ張り出す鍔部を一体に設けておき、その鍔部がセンサ取付部23の開口端部に当たるようにすることで、センサ取付部23に対するアダプタ30の位置決めをすることができる。
 一方、図示しない治具に、ベース基板32と、このベース基板32の2個の貫通孔33に位置させてそれぞれリード端子34とガラス35をセットし、図示しない焼成炉において焼成する。これにより、リード端子34をガラス35を介してベース基板32に気密に固着する。次に、サーミスタ25の端子25aを、前記リード端子34にレーザー溶接により固着することにより、サーミスタ25をベース基板32にユニット化する。
 この後、サーミスタ25をユニット化したベース基板32を、サーミスタ25をセンサ取付部23内に挿入する状態で前記アダプタ30の開口部30aに、これを塞ぐように配置して、ベース基板32の外周部をレーザー溶接することによりアダプタ30に固着する。これにより、センサ取付部23に対する冷媒センサ26の取り付けが完了する。なお、この場合、アダプタ30の内周部に内方へ突出する段部を一体に設けておき、ベース基板32をアダプタ30の開口部30aにこれを塞ぐように挿入した際に、ベース基板32が前記段部に当たるようにすることで、アダプタ30に対するベース基板32の位置決めをすることができる。
 図1において、冷媒センサ26を取り付けたT字形継手3は、第1の接続部22を下向きにして第1配管2aに接続するとともに、第2の接続部24を横向きにして第2配管2bに接続した状態で、冷媒センサ26(センサ取付部23)を上部に位置させた状態で配設されている。従って、主管部20のセンサ取付部23側を第1の接続部22側より高くなるように配置している。このT字形継手3に設けた冷媒センサ26(サーミスタ25)は、コンプレッサ1から吐出される冷媒Rの吐出温度を検出するとともに、その温度から吐出圧力を推測するために用いられる。
 冷媒センサ26を取り付けたT字形継手8は、第1の接続部22を下向きにして第7配管2gに接続するとともに、第2の接続部24を横向きにして第8配管2hに接続した状態で、冷媒センサ26(センサ取付部23)を上部に位置させた状態で配設されている。この場合も、主管部20のセンサ取付部23側を第1の接続部22側より高くなるように配置している。このT字形継手8に設けた冷媒センサ26(サーミスタ25)は、コンプレッサ1に戻る冷媒Rの液戻りを検出するために用いられる。この冷媒センサ26においては、サーミスタ25に電流を流すことで自己加熱しておき、サーミスタ25の検出温度の低下度合で液戻りを検出する。
 冷媒センサ26を取り付けたT字形継手12は、第1の接続部22を下向きにして第9配管2iに接続するとともに、第2の接続部24を横向きにして第10配管2jに接続した状態で、冷媒センサ26(センサ取付部23)を上部に位置させた状態で配設されている。この場合も、主管部20のセンサ取付部23側を第1の接続部22側より高くなるように配置している。このT字形継手12に設けた冷媒センサ26(サーミスタ25)は、冷房時において第3配管2cを流れる冷媒の一部を分流させ、その分流した冷媒の流量を検出して、第3配管2cを流れる冷媒の流量を推測するために用いられる。この冷媒センサ26においてもサーミスタ25に電流を流すことで自己加熱しておき、サーミスタ25の検出温度の低下度合で冷媒の流量を推測する。
 冷媒センサ26を取り付けたT字形継手14は、第1の接続部22を下向きにして第11配管2kに接続するとともに、第2の接続部24を横向きにして第12配管2lに接続した状態で、冷媒センサ26(センサ取付部23)を上部に位置させた状態で配設されている。この場合も、主管部20のセンサ取付部23側を第1の接続部22側より高くなるように配置している。このT字形継手14に設けた冷媒センサ26(サーミスタ25)は、図2の暖房時において第6配管2fを流れる冷媒の一部を分流させ、その分流した冷媒の流量を検出して、第6配管2fを流れる冷媒の流量を推測するために用いられる。この冷媒センサ26においてもサーミスタ25に電流を流すことで自己加熱しておき、サーミスタ25の検出温度の低下度合で冷媒の流量を推測する。
 次に、上記構成の作用を説明する。
 冷凍サイクルCを冷房として使用する場合には、図1に示すように、4方向弁4の第1ポート4aと第2ポート4bとが連通状態とされるとともに、第3ポート4cと第4ポート4dとが連通状態とされる。この状態で、コンプレッサ1が起動されると、コンプレッサ1において高温高圧のガスとなった冷媒Rが吐出口1aから吐出される。吐出口1aから吐出された冷媒Rは、第1配管2a、T字形継手3、第2配管2b、4方向弁4の第1ポート4a、第2ポート4b、第3配管2cを通って第1の熱交換器5に流れ込む。
 T字形継手3のセンサ取付部23に取り付けた冷媒センサ26のサーミスタ25は、コンプレッサ1から吐出される冷媒Rの吐出温度に応じた検出信号を前記制御装置に出力する。制御装置は、その検出信号に基づき吐出温度を検出するとともに、その温度から吐出圧力を推測する。このとき、T字形継手3を流れる冷媒Rは、第1の接続部22から第2の接続部24へ流れる際に90度向きを変えることになり、その折れ曲がり部分で乱流が発生し易くなる。このため、制御装置は、サーミスタ25により、T字形継手3を流れる冷媒Rの平均的な温度を極力正確に検出することが可能になる。
 前記第3配管2cを流れる冷媒Rの一部は、第1のバイパス回路11の第9配管2i側に分流する。その分流した冷媒Rは、T字形継手12、第10配管2jを通って第1の熱交換器5へ流れ込む。T字形継手12のセンサ取付部23に取り付けた冷媒センサ26のサーミスタ25に電流を流すことで自己加熱しておき、そのサーミスタ25の検出温度の低下度合を検出し、その検出信号を前記制御装置に出力する。制御装置は、その検出信号に基づき第1のバイパス回路11を流れる冷媒Rの流量を推測し、ひいては第3配管2cを流れる冷媒Rの流量を推測する。
 このときも、T字形継手12を流れる冷媒Rは、第1の接続部22から第2の接続部24へ流れる際に90度向きを変えることになり、その折れ曲がり部分で乱流が発生し易くなる。このため、制御装置は、サーミスタ25により、T字形継手12を流れる冷媒Rによる温度低下度合を極力正確に計測することができ、ひいてはその検出値から冷媒Rの流量を極力正確に推測することが可能になる。
 前記第1の熱交換器5に流れ込んだ冷媒Rは、ここを流れる過程で放熱して液化(凝縮)する。この場合、第1の熱交換器5は、コンデンサ(凝縮器)として機能する。液化した冷媒Rは、第4配管2d、膨張弁6、第5配管2eを通って第2の熱交換器7に流れ込む。第2の熱交換器7に流れ込んだ冷媒Rは、ここで蒸発し、その際に周囲の熱を奪い、周囲を冷却する。この場合、第2の熱交換器7は、エバポレータ(蒸発器)として機能する。使用者は、第2の熱交換器7を冷却器として利用する。
 第2の熱交換器7において蒸発してガス化した冷媒Rは、第6配管2f、4方向弁4の第3ポート4c、第4ポート4d、第7配管2g、T字形継手8、第8配管2h、アキュムレータ9を通り、コンプレッサ1の流入口1bからコンプレッサ1内に流入し、再び圧縮されて高温高圧のガスとなって吐出口1aから吐出されるようになる。
 このとき、T字形継手8のセンサ取付部23に取り付けた冷媒センサ26のサーミスタ25に電流を流すことで自己加熱しておき、そのサーミスタ25の検出温度の低下度合を検出し、その検出信号を前記制御装置に出力する。制御装置は、その検出信号に基づきT字形継手8を流れる冷媒Rに液冷媒が含まれているか否かを推測し、ひいてはコンプレッサ1に戻る冷媒Rの液戻りを検出する。このときも、T字形継手8を流れる冷媒Rは、第1の接続部22から第2の接続部24へ流れる際に90度向きを変えることになり、その折れ曲がり部分で乱流が発生し易くなる。このため、制御装置は、サーミスタ25により、T字形継手8を流れる冷媒Rの温度を極力正確に検出することができ、ひいては液戻りを極力正確に検出することが可能になる。
 なお、この冷房の場合には、第2のバイパス回路13に設けられたT字形継手14の冷媒センサ26については、冷媒Rの物理量は検出しない。
 一方、冷凍サイクルCを暖房として使用する場合には、図2に示すように、4方向弁4の第1ポート4aと第3ポート4cとが連通状態とされるとともに、第2ポート4bと第4ポート4dとが連通状態とされるように切り替えられる。この状態で、コンプレッサ1が起動されると、コンプレッサ1において高温高圧のガスとなった冷媒Rが吐出口1aから吐出される。吐出口1aから吐出された冷媒Rは、第1配管2a、T字形継手3、第2配管2b、4方向弁4の第1ポート4a、第3ポート4c、第6配管2fを通って第2の熱交換器7に流れ込む。
 このときも、T字形継手3のセンサ取付部23に取り付けた冷媒センサ26のサーミスタ25は、冷房時と同様に、コンプレッサ1から吐出される冷媒Rの吐出温度に応じた検出信号を前記制御装置に出力する。制御装置は、その検出信号に基づき吐出温度を検出するとともに、その温度から吐出圧力を推測する。
 前記第6配管2fを流れる冷媒Rの一部は、第2のバイパス回路13の第12配管2l側に分流する。その分流した冷媒Rは、T字形継手14、第11配管2kを通って第2の熱交換器7へ流れ込む。T字形継手14のセンサ取付部23に取り付けた冷媒センサ26のサーミスタ25に電流を流すことで自己加熱しておき、そのサーミスタ25の検出温度の低下度合を検出し、その検出信号を前記制御装置に出力する。制御装置は、その検出信号に基づき第2のバイパス回路13を流れる冷媒Rの流量を推測し、ひいては第6配管2fを流れる冷媒Rの流量を推測する。
 このときも、T字形継手14を流れる冷媒Rは、第1の接続部22から第2の接続部24へ流れる際に90度向きを変えることになり、その折れ曲がり部分で乱流が発生し易くなる。このため、制御装置は、サーミスタ25により、T字形継手14を流れる冷媒Rによる温度低下度合を極力正確に計測することができ、ひいてはその検出値から冷媒Rの流量を極力正確に推測することが可能になる。
 前記第2の熱交換器7に流れ込んだ冷媒Rは、ここを流れる過程で放熱して液化(凝縮)する。この場合、第2の熱交換器7は、コンデンサ(凝縮器)として機能する。使用者は、この第2の熱交換器7を暖房器として利用する。液化した冷媒Rは、第5配管2e、膨張弁6、第4配管2dを通って第1の熱交換器5に流れ込む。第1の熱交換器5に流れ込んだ冷媒Rは、ここで蒸発し、その際に周囲の熱を奪う。この場合、第1の熱交換器5は、エバポレータ(蒸発器)として機能する。
 第1の熱交換器5において蒸発してガス化した冷媒Rは、第3配管2c、4方向弁4の第2ポート4b、第4ポート4d、第7配管2g、T字形継手8、第8配管2h、アキュムレータ9を通り、コンプレッサ1の流入口1bからコンプレッサ1内に流入し、再び圧縮されて高温高圧のガスとなって吐出口1aから吐出されるようになる。
 このときも、T字形継手8のセンサ取付部23に取り付けた冷媒センサ26のサーミスタ25に電流を流すことで自己加熱しておき、そのサーミスタ25の検出温度の低下度合を検出し、その検出信号を前記制御装置に出力する。制御装置は、その検出信号に基づきT字形継手8を流れる冷媒Rに液冷媒が含まれているか否かを推測し、ひいてはコンプレッサ1に戻る冷媒Rの液戻りを検出する。
 なお、この暖房の場合には、第1のバイパス回路11に設けられたT字形継手12の冷媒センサ26については、冷媒Rの物理量は検出しない。
 上記した実施形態によれば、次のような作用効果を得ることができる。
 サーミスタ25を有する冷媒センサ26を、各T字形継手3,8,12,14において主管部20の第1の接続部22と対向するセンサ取付部23に取り付ける構成としているので、検出素子であるサーミスタ25を冷媒Rと直接接触させることができ、冷媒Rの物理量を直接的に検出することができる。サーミスタ25を、センサ取付部23内に納まるように配置しているので、そのサーミスタ25が、各T字形継手3,8,12,14内を流れる冷媒Rの流れを妨げることを防止できる。
 前記サーミスタ25は、第1の接続部22と第2の接続部24との間で、冷媒Rが90度向きを変える部分に配置されているので、そこでは乱流が発生し易く、冷媒Rの平均的な物理量を極力正確に検出することが可能になり、検出精度を高くできる。
 各T字形継手3,8,12,14において、冷媒センサ26を取り付けたセンサ取付部23側を第1の接続部22側より高くなるように配置したことにより、各冷媒センサ26の部分には、冷媒R中のオイル或いは液冷媒が溜まらないようにできる。これにより、冷媒センサ26のサーミスタ25はそれらオイルや液冷媒の影響を受け難くでき、検出精度が低下することを防止できる。
 冷媒センサ26を取り付けるセンサ取付部23は円筒状をなしているから、検出素子であるサーミスタ25を、そのセンサ取付部23の中心部に比較的容易に配置することが可能となる。これによっても、冷媒センサ26の検出精度を高くすることが可能になる。
 冷媒センサ26には、サーミスタ25を保護するためのフィルタ31を設けているので、サーミスタ25を保護することができる。
 また、特にT字形継手3,8,12に設けた冷媒センサ26のサーミスタ25に対しては、冷媒Rの流れが端子25aの延び方向に沿った方向となるため、その端子25aの接続部分に負荷が掛かり難く、断線が発生し難くできる。ちなみに、サーミスタ25に対して冷媒Rの流れが横向きに加わると、サーミスタ25を横から揺するような力が発生し、断線が発生し易くなるおそれがあるが、本実施形態によれば、そのような不具合を防止することができる。
 冷媒センサ26を、T字形継手3,8,12,14のセンサ取付部23に取り付ける場合に、ベース基板32にリード端子34を貫通させた状態で、このリード端子34をガラス35を介して前記ベース基板32に気密に固着する工程は、高温の焼成炉で行うことになる。この工程を、サーミスタ25を取り付けない状態で行うことで、サーミスタ25が損傷することを防止できる。
 センサ取付部23に、アダプタ30のみをろう付けすることにより、ろう付けの際の熱でサーミスタ25が損傷することを防止できる。そして、ベース基板32に固着したリード端子34にサーミスタ25の端子25aを接続して、サーミスタ25をベース基板32にユニット化し、この後、前記ベース基板32を、サーミスタ25を前記センサ取付部23内に挿入する状態で前記アダプタ30の開口部30aにレーザー溶接により固着することで、検出素子であるサーミスタ25を良好に取り付けることができる。
 本発明は、上記した実施形態にのみ限定されるものではなく、次のように変形または拡張できる。
 冷凍サイクルCは、冷房用冷媒回路10Aと暖房用冷媒回路10Bとに切り替えが可能な構成としたが、必ずしも切り替えが可能である必要はない。
 冷媒センサ26を4箇所に設ける構成としたが、1箇所のみでもよい。
 以上のように、本発明にかかる冷媒センサの取付構造は、冷凍サイクルの配管中を流れる冷媒に係る物理量(温度や流量、液戻り)を検出するのに有用である。

Claims (3)

  1.  冷凍サイクル(C)の配管中を流れる冷媒(R)に係る物理量を検出するための冷媒センサ(26)の取付構造において、
     円筒状をなし両端部が開口した主管部(20)と、この主管部の軸方向の中間部から分岐し先端部が開口した円筒状をなす分岐管部(21)とを有して全体としてT字形に形成され、前記主管部(20)の一端部を前記配管に接続する第1の接続部(22)とし、前記主管部の他端部をセンサ取付部(23)とし、前記分岐管部(21)を前記配管に接続する第2の接続部(24)とするT字形継手(3,8,12,14)と、
     サーミスタ(25)を有し、このサーミスタが前記センサ取付部(23)内に納まるようにして当該センサ取付部に気密に取り付けられた冷媒センサ(26)とを備え、
     前記T字形継手(3,8,12,14)の前記第1の接続部(22)および前記第2の接続部(24)を前記配管に接続した状態で、前記主管部(20)の前記センサ取付部(23)側を前記第1の接続部(22)側より高く配置したことを特徴とする冷媒センサ(26)の取付構造。
  2.  請求の範囲第1項に記載の冷媒センサ(26)の取付構造において、
     前記冷媒センサ(26)に、前記サーミスタ保護用のフィルタ(31)を設けたことを特徴とする冷媒センサ(26)の取付構造。
  3.  円筒状をなし両端部が開口した主管部(20)と、この主管部の軸方向の中間部から分岐し先端部が開口した円筒状をなす分岐管部(21)とを有して全体としてT字形に形成され、前記主管部(20)の一端部を冷凍サイクル(C)の配管に接続する第1の接続部(22)とし、前記主管部の他端部をセンサ取付部(23)とし、前記分岐管部(21)を前記配管に接続する第2の接続部(24)とする金属製のT字形継手(3,8,12,14)と、
     サーミスタ(25)を有し、このサーミスタが前記センサ取付部(23)内に納まるようにして当該センサ取付部に気密に取り付けられる冷媒センサ(26)とを備え、
     前記冷媒センサ(26)を前記T字形継手(3,8,12,14)の前記センサ取付部(23)に取り付ける方法であって、
     前記センサ取付部(23)に円筒状をなす金属製のアダプタ(30)をろう付けにより固着する工程と、
     ベース基板(32)にリード端子(34)を貫通させた状態で、このリード端子をガラス(35)を介して前記ベース基板に気密に固着する工程と、
     前記リード端子(34)に前記サーミスタ(25)の端子(25a)を接続して前記サーミスタを前記ベース基板(32)にユニット化する工程と、
     前記サーミスタ(25)をユニット化した前記ベース基板(32)を、前記サーミスタを前記センサ取付部(23)内に挿入する状態で前記アダプタ(30)の開口部にレーザー溶接により固着する工程とを含むことを特徴とする冷媒センサ(26)の取付方法。
PCT/JP2008/000071 2008-01-24 2008-01-24 冷媒センサの取付構造および冷媒センサの取付方法 WO2009093282A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801254987A CN101970956A (zh) 2008-01-24 2008-01-24 冷却介质传感器安装结构以及冷却介质传感器安装方法
PCT/JP2008/000071 WO2009093282A1 (ja) 2008-01-24 2008-01-24 冷媒センサの取付構造および冷媒センサの取付方法
JP2009550373A JPWO2009093282A1 (ja) 2008-01-24 2008-01-24 冷媒センサの取付構造および冷媒センサの取付方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000071 WO2009093282A1 (ja) 2008-01-24 2008-01-24 冷媒センサの取付構造および冷媒センサの取付方法

Publications (1)

Publication Number Publication Date
WO2009093282A1 true WO2009093282A1 (ja) 2009-07-30

Family

ID=40900803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000071 WO2009093282A1 (ja) 2008-01-24 2008-01-24 冷媒センサの取付構造および冷媒センサの取付方法

Country Status (3)

Country Link
JP (1) JPWO2009093282A1 (ja)
CN (1) CN101970956A (ja)
WO (1) WO2009093282A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008048A (ja) * 2014-06-20 2016-01-18 日立オートモティブシステムズメジャメント株式会社 燃料供給装置
JP2016190658A (ja) * 2015-03-31 2016-11-10 日立オートモティブシステムズメジャメント株式会社 液体燃料供給装置
JP2019100365A (ja) * 2017-11-28 2019-06-24 大陽日酸株式会社 水素ステーション

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469448U (ja) * 1977-10-26 1979-05-17
JPS55119664U (ja) * 1979-02-17 1980-08-25
JPS62238959A (ja) * 1986-04-11 1987-10-19 株式会社日立製作所 冷凍サイクルにおける冷媒温度検出用サ−ミスタの取付構造
JPH06257903A (ja) * 1992-05-21 1994-09-16 Ubukata Seisakusho:Kk 熱応動素子の取付機構及びその取付方法
JP2002168700A (ja) * 2000-11-30 2002-06-14 Denso Corp 温度センサ
JP2006064655A (ja) * 2004-08-30 2006-03-09 Denso Corp 温度センサ収容機構

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5469448U (ja) * 1977-10-26 1979-05-17
JPS55119664U (ja) * 1979-02-17 1980-08-25
JPS62238959A (ja) * 1986-04-11 1987-10-19 株式会社日立製作所 冷凍サイクルにおける冷媒温度検出用サ−ミスタの取付構造
JPH06257903A (ja) * 1992-05-21 1994-09-16 Ubukata Seisakusho:Kk 熱応動素子の取付機構及びその取付方法
JP2002168700A (ja) * 2000-11-30 2002-06-14 Denso Corp 温度センサ
JP2006064655A (ja) * 2004-08-30 2006-03-09 Denso Corp 温度センサ収容機構

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008048A (ja) * 2014-06-20 2016-01-18 日立オートモティブシステムズメジャメント株式会社 燃料供給装置
JP2016190658A (ja) * 2015-03-31 2016-11-10 日立オートモティブシステムズメジャメント株式会社 液体燃料供給装置
JP2019100365A (ja) * 2017-11-28 2019-06-24 大陽日酸株式会社 水素ステーション

Also Published As

Publication number Publication date
JPWO2009093282A1 (ja) 2011-05-26
CN101970956A (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
ES2282485T3 (es) Refrigerador.
WO2009093282A1 (ja) 冷媒センサの取付構造および冷媒センサの取付方法
US4987749A (en) Thermistor probe for exposed sensing element for direct immersion in refrigerant flows
JP2006177597A (ja) 冷凍装置及びこれを用いた空気調和機
JP5418253B2 (ja) 冷凍サイクル装置
JP3819672B2 (ja) 高圧容器のオイルレベル検知装置および空気調和装置
EP3237814B1 (en) Device and method for heating of air at an air treatment device
SE506059C2 (sv) Anordning vid en förångare
JP2009103364A (ja) 冷媒漏洩検知方法
JP2003004315A (ja) 空気調和機
KR101363547B1 (ko) 수분지시계가 구비된 볼 밸브 조립체와 이를 갖는 냉동사이클 장치 및 그 볼 밸브 조립체의 제조방법
JP4115094B2 (ja) 空気調和装置
JP2014048009A (ja) 冷媒温度センサ付きモジュール、冷媒温度センサ取付構造、及び冷凍装置
JPH06137726A (ja) 自動車用空調装置の高低圧スイッチと溶栓の取付配置
US6691771B1 (en) Condenser
JPWO2008078379A1 (ja) 冷凍サイクル用の検出器
CN205014709U (zh) 空调器的气液分离器、空调器的室外机及空调器
JPWO2008078370A1 (ja) 冷凍サイクル用液バック検出方法及び装置
KR20100010704A (ko) 응축유닛 조립체
WO2021010107A1 (ja) 冷凍装置、温度センサ取付管及び温度センサ取付構造
JP5434985B2 (ja) 冷凍装置
JP2009156526A (ja) 冷凍サイクル装置のフィルタの収納構造
CN114738934B (zh) 一种空调器故障检测方法、检测装置及空调器
JP2014196863A (ja) 蒸発器
CN216557574U (zh) 多内机管路感温包空调器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880125498.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08702812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009550373

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08702812

Country of ref document: EP

Kind code of ref document: A1