WO2009091048A1 - 反応治具及び反応方法、並びにcDNAの合成方法 - Google Patents

反応治具及び反応方法、並びにcDNAの合成方法 Download PDF

Info

Publication number
WO2009091048A1
WO2009091048A1 PCT/JP2009/050585 JP2009050585W WO2009091048A1 WO 2009091048 A1 WO2009091048 A1 WO 2009091048A1 JP 2009050585 W JP2009050585 W JP 2009050585W WO 2009091048 A1 WO2009091048 A1 WO 2009091048A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
protruding
solution
magnetic beads
droplets
Prior art date
Application number
PCT/JP2009/050585
Other languages
English (en)
French (fr)
Inventor
Masaharu Isobe
Nobuyuki Kurosawa
Original Assignee
National University Corporation University Of Toyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation University Of Toyama filed Critical National University Corporation University Of Toyama
Priority to EP09703047.2A priority Critical patent/EP2246425B1/en
Priority to KR1020107017949A priority patent/KR101530408B1/ko
Priority to CN200980102879.8A priority patent/CN101939427B/zh
Priority to JP2009550069A priority patent/JP5244130B2/ja
Priority to CA2712572A priority patent/CA2712572C/en
Priority to AU2009205104A priority patent/AU2009205104B2/en
Priority to US12/863,185 priority patent/US8993241B2/en
Publication of WO2009091048A1 publication Critical patent/WO2009091048A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/149Particles, e.g. beads

Definitions

  • the present invention relates to a reaction jig and a reaction method. More specifically, the present invention relates to a reaction jig and a reaction method capable of simply and sequentially performing a plurality of sequential reactions including a washing step. Furthermore, the present invention relates to a cDNA synthesis method using the reaction jig.
  • gene-related reactions such as synthesis of cDNA from mRNA and amplification of DNA are often performed in parallel in a small amount.
  • a 96-well or 384-well microwell array prepare an array containing reaction solution or washing solution in each well, and when the reaction or washing is completed, move the solution to the next well using a pipette.
  • processing operations may be performed by a robot when performed in a routine.
  • a magnetic bead is used and a sample fixed to the magnetic bead is lifted and moved by a magnet (for example, JP-T-2007-504835 (Patent Document 1)).
  • a magnet for example, JP-T-2007-504835 (Patent Document 1)
  • the moving magnet needs to be approached from above the well and may be immersed in the solution in the well in some cases.
  • the magnet immersed in the solution needs to be cleaned before the next step.
  • the magnet after moving to the next step, the magnet must also be demagnetizable in order to release the magnetic beads from the magnet.
  • Non-Patent Document 1 describes an RT-PCR reaction method using magnetic beads.
  • the reaction at room temperature is performed by adding oil 1 to the solution 100 to cover the droplets with an oil film to prevent evaporation and the like.
  • Special table 2007-504835 Juergen Pipper1, Masafumi Inoue2, Lisa FP Ng3, Pavel Neuzil1,4, Yi Zhang1,4 & Lukas Novak1,4, NATURE MEDICINE VOLUME 13 NUMBER 10 OCTOBER 2007 pp1259-1263
  • Non-Patent Document 1 covering the droplets with an oil film to prevent evaporation or the like is also complicated as an operation. In particular, when using a large number of droplets, this complexity cannot be ignored.
  • an object of the present invention is to provide an apparatus and a method capable of performing a plurality of types of reactions and washing operations in parallel without washing or exchanging instruments used for moving a solution or the like for each operation. It is in. It is another object of the present invention to provide an apparatus and a method capable of performing a plurality of types of reactions and washing operations in parallel without covering the droplets with an oil film.
  • the present invention is as follows. (1) A plurality of protruding enclosures are provided in alignment on one surface of the substrate, and the protruding enclosure has at least one notch and can hold a droplet inside. Have The reaction jig is characterized in that at least a surface of the substrate surface that holds the droplets has a contact angle with respect to pure water of 90 to 150 °. (2) The reaction jig according to (1), wherein at least a part or all of the plurality of protruding enclosures are arranged vertically and horizontally. (3) The reaction jig according to (1) or (2), wherein the droplet holding space of the protruding enclosure can hold droplets in an amount ranging from 0.5 ⁇ l to 200 ⁇ l.
  • the protrusion-shaped enclosure has two or three notches, and the interval between the openings of the notches is in the range of 0.5 to 10 mm.
  • the apparatus further includes a covering member that covers the surface having the protruding enclosure, and further includes a moisture retaining member that supplies moisture to a space covered with the covering member.
  • (11) Using the reaction jig according to any one of (1) to (10), The substance immobilized on the magnetic beads is opposite to the surface of the substrate having the protruding enclosure in the droplet of the solution containing the surface tension reducing reagent held in the droplet holding space of the protruding enclosure.
  • a reaction method comprising performing reaction and / or washing by sequentially moving from the surface of the substrate using a magnet.
  • reaction jig according to any one of (1) to (10), wherein the reaction jig is provided with at least two protruding enclosures in one column, In the droplet holding space of the two protruding enclosures, a cell lysis solution containing a surface tension reducing reagent and a droplet of cDNA synthesis solution are held in this order, respectively.
  • the magnet from the surface opposite to the surface having the protruding enclosure of the substrate the mRNA immobilized on the magnetic beads is sequentially applied to the solution held in the droplet holding space of the two protruding enclosures.
  • a method for synthesizing cDNA comprising obtaining cDNA immobilized on magnetic beads.
  • reaction jig provided with at least two protruding enclosures in a plurality of columns,
  • the solution held in the droplet holding space of each row of protruding enclosures is the same type of solution
  • the mRNA immobilized on the magnetic beads that move the column is a different kind of mRNA
  • the method according to (12) wherein a plurality of different types of cDNA are obtained as cDNA immobilized on magnetic beads.
  • the reaction jig is provided with at least four protruding enclosures in one column, In the droplet holding spaces of the four protruding enclosures, the cell lysis solution, mRNA washing solution, cDNA synthesis solution and cDNA washing solution droplets are held in this order, respectively.
  • an apparatus and method capable of performing a plurality of types of reactions and washing operations in parallel without washing or exchanging an instrument used for moving a solution or the like for each operation such as reaction or washing. can do.
  • reaction jig a plurality of protruding enclosures are provided in alignment on one surface of a substrate, the protruding enclosure has at least one notch and can hold a droplet inside.
  • the present invention relates to a reaction jig having a space.
  • the protrusion-shaped enclosure may have at least one notch and a space that can hold a droplet inside.
  • the shape of the protruding enclosure can be selected from various types according to the application.
  • the notch can be a single protruding enclosure.
  • the protruding enclosure with one notch is suitable for the reaction start position, the reaction end position, or the final position, for example.
  • A, C, E, F, H, I, and M in FIG. 1 a projecting enclosure having two notches is suitable for use during the process such as reaction or washing.
  • the notched part has three protruding enclosures, and as shown in B, D, and L of FIG. It is suitable to use at the position where the washed object is distributed to two or more. However, it is not intended to be limited to these usages.
  • the protruding enclosure provided in one reaction jig is not limited to one type, and a protruding enclosure having a plurality of different shapes can be appropriately provided.
  • the capacity of the space that can hold the droplets formed inside the protruding enclosure can be set as appropriate according to the use of the reaction jig and the function of the protruding enclosure, and is, for example, in the range of 0.5 ⁇ l to 200 ⁇ l. be able to. However, it is not intended to be limited to this range, and the capacity of the space that can hold the droplets can be determined as appropriate according to the application.
  • the reaction jig of the present invention will be further described below with reference to FIG. 2, taking as an example an aspect having a C-shaped projection as the protruding enclosure.
  • the C-shaped projection is not shown in FIG. 1, it has two notches and has a shape in which the size of the opening (gap) formed by each notch is different.
  • the larger opening dimension can be used as an inlet, and the smaller opening dimension can be used as an outlet, for example.
  • a plurality of C-shaped protrusions 20 are provided on one surface 11 of the substrate 10 so as to be aligned in the same direction.
  • the plurality of protrusions are arranged vertically and horizontally.
  • the number of C-shaped projections that make up the column of C-shaped projections and the number of C-shaped projections that make up the rows of C-shaped projections depend on the application of the reaction jig and the reaction to be processed at one time. The number can be appropriately determined in consideration of the number of operations, the size and shape of the substrate 10, the shape and size of the C-shaped projections 20, the interval between the C-shaped projections 20, and the like.
  • the number of the C-shaped projections constituting the column of the C-shaped projections is, for example, 2 to 10, and the number of the C-shaped projections configuring the row of the C-shaped projections is 2 to 100 Can be. However, it is not intended to be limited to this range.
  • the reaction jig shown in FIG. 2 is provided with C-shaped projections of 16 columns and 8 rows arranged in a row and column.
  • the C-shaped projection is composed of two projections 22 and 23 provided through a gap 21 formed by a notch. Furthermore, a space 30 that can hold the droplet 40 is provided inside the C-shaped projection, and the amount of the droplet that can be held in this space can be in the range of 0.5 ⁇ l to 200 ⁇ l, for example. However, it is not intended to be limited to this range.
  • the shape of the protrusions 22 and 23 is not particularly limited as long as the amount of droplets can be held in the space 30. However, from the viewpoint of efficiently holding the droplets held in the space 30 in the space, it is preferably a partial circle or a partial ellipse.
  • the height of the protrusions 22 and 23 is not particularly limited as long as the above amount of droplets can be held in the space 30.
  • the height of the protrusions 22 and 23 can be set in the range of 0.1 to 5 mm, for example.
  • the gap 21 allows the reaction product immobilized on the magnetic beads that have undergone the processing operation from the droplets held in the space 30 inside the C-shaped projection to be inside the next C-shaped projection.
  • This is a moving path for moving the magnetic beads together with the immobilized reactant when moving to the droplets held in the space 30 of FIG. Therefore, the shortest interval of the gap 21 allows the magnetic beads to easily move to the next C-shaped projection space 30 and the droplets held together with the magnetic beads in the C-shaped projection space 30
  • the C-shaped projection can function as a movement defense bank so as to prevent movement to the space 30 of the C-shaped projection. From such a viewpoint, the shortest interval of the gap 21 can be, for example, in the range of 1 to 10 mm.
  • the ends of the protrusions 22 and 23 on the side opposite to the gap 21 are in an open state from the viewpoint of facilitating the movement of the magnetic beads and forming a space for holding droplets.
  • At least the surface of the reaction jig of the present invention for holding droplets on the substrate surface is preferably flat from the other substrate surfaces from the viewpoint of easy substrate production.
  • at least the surface holding the droplets on the substrate surface of the reaction jig of the present invention is lower than the other substrate surfaces, and a depression can be formed. By using the depression, it is easier to hold the droplets than when it is flat.
  • At least the surface that leads to the opening of the protrusion and on which the magnetic beads may move is suitably a curved surface having no step. Further, it is appropriate that the depth of the recess is, for example, 1 ⁇ 2 or less of the dimension of the opening of the protrusion, and the maximum inclination of the surface constituting the recess is 45 ° or less.
  • At least the surface holding the droplets has a contact angle with respect to pure water of 90 to 150 °, so that the droplets are held in the space and the liquid held in each space. It is suitable from the viewpoint of preventing contact of the droplets.
  • the protruding enclosure alone may not be able to hold the droplet satisfactorily in a reaction operation using magnetic beads described later. . Therefore, in the present invention, in order to satisfactorily hold the droplets inside the protruding enclosure, at least the inner surface of the protruding enclosure is a surface having a contact angle with respect to pure water of 90 to 150 °.
  • the contact angle with pure water varies depending on the material (material) forming the surface and the surface condition (for example, surface roughness, surface shape, etc.). Even if the material is the same, if the surface condition (for example, surface roughness, surface shape, etc.) is different, the contact angle with pure water also changes.
  • the material (material) forming the surface and the surface state for example, surface roughness, surface shape, etc. are selected so that the contact angle with pure water is in the range of 90 to 150 °.
  • paraffin resin, Teflon resin, silicon resin, or the like which is a material having relatively high water repellency
  • the substrate itself can be formed of any of these materials, and the substrate can be made of other materials (for example, a glass substrate, and a coating layer such as the above paraffin resin, Teflon resin, or silicon resin can be provided on the surface.
  • These resins can exhibit a contact angle in the above range even on a smooth surface with high water repellency of the material itself, but if necessary, the contact angle can be adjusted by roughening the surface. it can.
  • the surface of the substrate 10 is provided with micro-wave irregularities (surface roughness) that are oriented in the direction parallel to the vertical direction of the C-shaped protrusions. Can be provided. Since the minute wave-shaped projections and depressions are oriented in a direction parallel to the longitudinal direction of the C-shaped projection, the function of facilitating the movement of the magnetic beads is obtained.
  • Microwave irregularities are not particularly limited as long as they exhibit the functions as described above.
  • the height is in the range of 1 ⁇ m to 1 mm and the wavelength is in the range of 1 ⁇ m to 1 mm. be able to.
  • the uneven shape is adjusted so that the surface having the microwave unevenness has a contact angle with respect to pure water of 90 to 150 °.
  • each C-shaped projection 20 the same or different types of solution droplets are held without being mixed with the droplets placed in the C-space portion of other C-shaped projections.
  • the solution held as droplets in the space 30 is not particularly limited, and can be, for example, a reaction solution or a cleaning solution.
  • cleaning liquid can be suitably selected according to the intended purpose of using the reaction jig of this invention.
  • the surface tension reducing reagent has the effect of reducing the surface tension of the solution and stably holding the droplets on the hydrophobic substrate.
  • the surface tension reducing reagent has an effect of reducing the surface tension of the droplet, which hinders the movement of the magnetic bead population from the droplet.
  • at least the contact angle of the surface forming the droplet holding space with respect to pure water is in the range of 90 to 150 ° and has relatively water repellency.
  • the spread of the droplets to the outside of the droplet holding space surface is suppressed, and the adhesion of the droplets to the surface of the droplet holding space is given to increase the holding force.
  • the contact angle between the adjacent protrusion-shaped enclosures and the protrusion-shaped enclosures can be in the range of 90 to 150 ° with respect to pure water.
  • the surface between adjacent protruding enclosures can have different properties.
  • the surface tension reducing reagent for example, reduces the contact angle of pure water on the glass plate (the measurement result shown in Table 1 described later is 42 °) to 30 ° or less when the concentration is 0.1% in pure water. It is suitable that the reagent can be used.
  • a reagent having a surface tension reducing action include lipoproteins such as surfactants and lung surfactant proteins, and serum containing a large amount of serum albumin and lipoprotein.
  • surfactants there are various types of surfactants, and they can be used as a surface tension reducing reagent regardless of the type. Although illustrated below, these are merely examples and are not intended to be limited to these exemplified surfactants.
  • Anionic surfactant fatty acid sodium, monoalkyl sulfate
  • Cationic surfactant alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, monoalkyl phosphate
  • Amphoteric surfactant Agents alkyltrimethylammonium salt, dialkyldimethylammonium salt, alkylbenzyldimethylammonium salt, alkyldimethylamine oxide, alkylcarboxybetaine,
  • Nonionic surfactants Polyoxyethylene alkyl ethers, fatty acid sorbitan esters, alkyl polyglucosides, fatty acid diethanolamides, alkyl monoglyceryl ether anionic surfactants are typically exemplified by lithium
  • the amount of the surface tension reducing reagent added is, for example, in the range of 0.001 to 1%, taking into consideration the above viewpoint, and taking into account the type of surface tension reducing reagent and the contact angle of the surface of the droplet holding space with pure water. Preferably, it is in the range of 0.01 to 1%. However, it is not limited to this range.
  • reaction jig of the present invention when the same reaction processing operation is performed on different types of samples, droplets of the same type of solution are held in the spaces of the C-shaped projections belonging to the same row. Can be used.
  • the reaction jig of the present invention may further include a cover member that covers the surface having the protruding enclosure, and may further include a moisturizing member that supplies moisture to the space covered with the cover member.
  • a cover member that covers the surface having the protruding enclosure
  • a moisturizing member that supplies moisture to the space covered with the cover member.
  • the magnetic beads are sequentially moved using a magnet (e.g., a small neodymium magnet) 70 from the surface (upper surface in FIG. 2) opposite to the surface having the protruding enclosure 20 of the substrate 10 for reaction, washing, etc. The operation can be performed.
  • a magnet e.g., a small neodymium magnet
  • the present invention includes a reaction method using the reaction jig of the present invention.
  • a substance immobilized on a magnetic bead is placed in a droplet of a solution containing a surface tension reducing reagent held in the space of a protruding enclosure (for example, the above-mentioned C-shaped projection). It includes sequentially moving the surface from the surface opposite to the surface having the protruding enclosure by using a magnet to perform reaction and washing.
  • the temperature at which the reaction and washing are performed can be appropriately determined in consideration of the temperature suitable for the reaction and washing, and can be adjusted by raising and lowering the temperature for each step.
  • Heating and / or cooling devices can be provided on the opposite surface.
  • the reaction jig is preferably used with the surface having a protruding enclosure facing downward.
  • the liquid droplets contained in the protruding enclosure become a hanging drop.
  • the reaction method is carried out in such a state, since the vapor is light and tends to evaporate upward, if the droplet is in a hanging drop shape, evaporation can be suppressed. As a result, even in an open system, evaporation is considerably suppressed at room temperature.
  • the surface having the protruding enclosure of the reaction jig is accommodated in the covering member, or the surface having the protruding enclosure of the reaction jig is installed in the covering member containing the moisturizing member. By doing so, evaporation of water from the droplets can be further prevented. By doing so, it is possible to suppress the evaporation of moisture from the droplets without using oil as described in Non-Patent Document 1. If no oil is used, even a very small amount of reaction liquid such as several microliters does not adhere to the pipette, so that there is an advantage that the addition and recovery of the solution can be easily performed at any time.
  • the reaction jig and the inside formed by the covering member are reacted before and during the reaction. It is preferable to heat to 30 to 40 ° C., for example, within a range that does not affect the above. This is because the water vapor generated by heating condenses on the substrate surface to form fine droplets, and has the effect of smooth movement of the magnetic beads from the droplets. In particular, when a reagent having a relatively low surface tension reducing ability (specifically, a reagent other than a surfactant) is used, this heating has an advantage that the movement of the magnetic beads becomes smoother. Further, from the viewpoint of promoting the condensation of water vapor on the substrate surface, the reaction jig covered with the covering member can be cooled, for example, operated in a relatively low temperature room.
  • Another advantage of making the droplet into a hanging drop is that stirring of the magnetic beads in the droplet is promoted.
  • the magnet is moved away from the substrate, the magnetic beads in the droplet attracted by the magnet fall to the hanging drop-shaped droplet bottom due to gravity, and the magnet is brought into contact with the substrate again, so that the magnetic beads are removed from the droplet bottom. Collect on the substrate surface.
  • This operation can increase the efficiency of magnetic bead washing and enzyme reaction.
  • the magnetic beads can be attracted and dropped in a hanging drop-like droplet by a magnet one time or a plurality of times.
  • the particle size of the magnetic beads can be, for example, in the range of 0.01 ⁇ m to 2 mm, preferably in the range of 0.1 ⁇ m to 0.1 mm.
  • the particle size of the magnetic beads is reduced to a nano size, it may be difficult to enter (carry in) the droplet. In that case, penetration into the droplet can be facilitated by using magnetic beads having a larger particle size as a carrier.
  • the beads used in combination as the carrier do not immobilize the substance, but carrier beads immobilized with the substance can also be used in combination.
  • a substance that is an object to be treated by the reaction method of the present invention is immobilized on the surface of the magnetic beads.
  • the substance can be immobilized by a conventional method.
  • nucleic acids DNA, RNA, etc.
  • This method can be applied to continuous large-scale and trace reactions of nucleic acids, proteins, lipids, carbohydrates, glycoconjugates, and chemicals, and can also be used for immunostaining of immobilized cells (1 to a dozen). .
  • the amount of immobilization of a substance that is an object to be subjected to a reaction process with respect to magnetic beads can be appropriately determined in consideration of the kind of substance and the kind of reaction.
  • An example of the reaction method of the present invention is a cDNA synthesis method.
  • the cDNA synthesis method of the present invention uses the reaction jig of the present invention described above, in which at least two protruding enclosures are provided in one column.
  • a cell lysis solution containing a surface tension reducing reagent and a droplet of a cDNA synthesis solution containing a surface tension reducing reagent are held in this order, respectively.
  • the mRNA immobilized on the beads is sequentially transferred to the solution held in the droplet holding space of the two protruding enclosures using a magnet from the surface opposite to the surface having the protruding enclosure of the substrate. And obtaining cDNA immobilized on magnetic beads.
  • the reaction jig is preferably used with the surface having a protruding enclosure facing downward.
  • the droplets accommodated in the protruding enclosure are in a hanging drop shape, and it is possible to obtain the effect of suppressing the evaporation of moisture and promoting the stirring of the magnetic beads.
  • a reaction jig provided with at least four protruding enclosures in one column is preferably used.
  • the space of the four protruding enclosures for example, the C-shaped projection
  • droplets of the cell lysis solution, mRNA washing solution, cDNA synthesis solution and cDNA washing solution are respectively held in this order (see FIG. 3)
  • mRNA immobilized on the magnetic beads is sequentially moved to the solution held in the space of the four protruding enclosures using a magnet from the surface opposite to the side where the protrusions of the substrate are provided. Thereby, cDNA immobilized on the magnetic beads is obtained.
  • the volume of the space of the C-shaped protrusion of the reaction jig used in the cDNA synthesis method of the present invention is suitably in the range of 0.5 to 100 ⁇ l, for example.
  • the cell lysis solution retained in the space of the first C-shaped protrusion is, for example, a solution of 3 ⁇ l in total containing 100 mM Tris HCl (pH 7.5), 500 mM LiCl, 1% lithium dodecyl sulfate 5 mM dithiothreitol. Can do.
  • the mRNA washing solution retained in the space of the second C-shaped protrusion can be a solution of 3 ⁇ l in total containing 10 mM Tris HCl (pH 7.5), 0.15 M LiCl, 0.1% lithium dodecyl sulfate.
  • the washing solution for reverse transcription reaction held in the space of the third C-shaped protrusion is 50 mM Tris HCl (pH 8.3), 75 mM KCl, 3 mM MgCl 2 , 0.1% Triton X-100, 0.5 mM dNTP, 5 mM. It can be a 3 ⁇ l total solution containing DTT, 2 unit RNase inhibitor.
  • the reverse transcription reaction solution retained in the space of the fourth C-shaped projection is 50 mM Tris HCl (pH 8.3), 75 mM KCl, 3 mM MgCl 2 , 0.1% Triton X-100, 0.5 mM dNTP, 5 mM DTT, A total volume of 3 ⁇ l containing 2 unit RNase inhibitor and 8 unit SuperScript III Reverse transcriptase can be used. However, these are examples and are not intended to be limited to these solutions.
  • mRNA immobilized on magnetic beads There are no particular restrictions on the type or length of the mRNA. MRNAs derived from various organisms can be used. As the magnetic beads, for example, particles having a particle system of 2.8 ⁇ m and oligo dT25 covalently bonded to the surface can be used. Immobilization of mRNA on magnetic beads can be performed as follows.
  • the mRNA immobilized on the magnetic beads is sequentially added to the solution (droplet) held in the space of the four C-shaped protrusions.
  • the magnet for example, a small neodymium magnet can be used.
  • Each droplet is allowed to stay for the time required for reaction or washing.
  • the time required for the reaction or washing varies depending on the reaction conditions and washing conditions, but can be, for example, in the range of 1 second to 1 hour.
  • the above reaction and washing can be performed at room temperature (room temperature), but the temperature can be adjusted as necessary. Furthermore, when the amount of droplets is small, the solvent in the solution may evaporate, so put the reaction jig in a sealed container and keep the humidity in the container constant to prevent the solvent from evaporating. Is preferred. In order to keep the humidity in the container constant, a container containing water or a suitable aqueous solution can coexist in the sealed container.
  • the cDNA immobilized on the magnetic beads can be obtained by sequentially retaining and passing the mRNA immobilized on the magnetic beads in the solution (droplet) held in the space of the four C-shaped projections. .
  • the obtained cDNA can be used in subsequent steps without being cut out from the magnetic beads.
  • a reaction jig provided with a plurality of (for example, 2 to 50) columns and provided with at least four C-shaped projections is held on each row of C-shaped projections.
  • the solutions are the same, and the mRNA immobilized on the magnetic beads moving in the tandem is a different type of mRNA, and a plurality of different types of cDNA can be obtained as cDNA immobilized on the magnetic beads.
  • FIG. 4 shows an example of a reaction using antibody-bound magnetic beads.
  • FIG. 4 is a view of the reaction jig as viewed from below, and the droplet is a hanging drop.
  • magnetic beads to which a specific antibody against the target antigen is bound are used.
  • the first row of antibody magnetic beads (0.1% Triton X-100, 150 mM NaCl, 10 mM ⁇ ⁇ ⁇ ⁇ sodium phosphate-potassium buffer, pH 7.0, particle system 2.8 ⁇ m to 1.0 ⁇ m antibody-bound magnetic beads 25 ⁇ g / 3 ⁇ l), second Specimen sample in row, washing solution in 3 rows (0.1% Triton X-100, 150 mM NaCl, 10 mM sodium phosphate-potassium buffer, pH 7.0), labeled antibody in 4 rows (specific for target antigen, magnetic beads Recognizing epitopes of antigens different from those immobilized on the antibody (labeled with alkaline phosphatase label, peroxidase label, fluorescent dye label, or gold particle), 5 rows of washing solution, 6 rows Spot the color solution.
  • the composition of each solution which forms a spot is an illustration, Comprising: It is not the intention limited to these.
  • the antibody magnetic beads in the first row droplets are moved to the second row specimen sample droplets, and for example, an antigen-antibody reaction is performed at room temperature for 10 to 60 minutes. During this time, the magnetic beads that have been inverted on the plate or moved to the bottom of the droplets using a magnet are moved to the top of the plate to stir the magnetic beads.
  • the beads After moving the magnetic beads to the third row cleaning solution, for example, the beads are stirred and washed for 5 minutes.
  • an antigen-antibody reaction is performed at room temperature for 10 to 60 minutes. During this time, the magnetic beads that have been inverted on the plate or moved to the bottom of the droplets using a magnet are moved to the top of the plate to stir the magnetic beads.
  • the magnetic beads After moving the magnetic beads to the cleaning solution in the fifth row, for example, the magnetic beads are stirred and washed for 5 minutes.
  • color development or chemiluminescence reaction is performed according to the labeling compound. If the magnetic bead hinders detection, the reaction can be stopped by moving the magnetic bead to the seventh row and measuring the color development or chemiluminescence of the sixth row of droplets.
  • reaction can be performed using antibody-bound magnetic beads.
  • Fig. 5 shows an example of a method for detecting multiple antigens in one sample.
  • an example is shown in which three types of antigens are detected simultaneously from one specimen.
  • Antibody magnetic beads specific to antigens A, B, and C are spotted on the first row droplet holding projections 1, 2, and 3.
  • Specimen sample in the second row washing solution in the third row (0.1% Triton X-100, 150 mM NaCl, 10 mM sodium phosphate-potassium buffer, pH 7.0), labeled antibody in the fourth row (specific for the target antigen) Yes, which recognizes an epitope of an antigen different from the antibody immobilized on the magnetic beads (alkaline phosphatase label, peroxidase label, fluorescent dye label, or gold particle label)), column 5 Spot the cleaning solution and the coloring solution in the sixth row.
  • the composition of each solution which forms a spot is an illustration, Comprising: It is not the intention limited to these.
  • the antibody magnetic beads on the first row of droplet holding protrusions 1 are moved to the second row of specimen sample droplets. For example, after reacting at room temperature for 10 to 60 minutes to bind the antigen A to the magnetic beads 1, the magnetic beads are moved to the third row of washing droplets 1.
  • the antibody magnetic beads on the first row of droplet holding protrusions 2 are moved to the second row of specimen sample droplets. For example, after reacting at room temperature for 10 to 60 minutes to bind the antigen B to the magnetic beads 2, the magnetic beads are moved to the washing droplets 2 in the third row.
  • the antibody magnetic beads on the first row of droplet holding protrusions 3 are moved to the second row of specimen sample droplets. For example, after reacting at room temperature for 10 to 60 minutes to bind the antigen C to the magnetic beads 3, the magnetic beads are moved to the washing droplets 3 in the third row.
  • the antigen-antibody reaction is performed, for example, at room temperature for 10 to 60 minutes.
  • the magnetic beads 1, 2, and 3 are moved to the sixth row of colored droplets 1, 2, and 3, respectively, and color development or chemiluminescence reaction is performed for a certain period of time, and the resulting color development or light emission is measured using a detector. .
  • the bottom surface of a plastic plate (127 mm ⁇ 86 mm ⁇ 15 mm) 50 is cut out, and a thin glass plate (thickness 0.15 mm) 10 or a plastic plate (thickness 0.15 mm) is fitted therein. Since the magnetic force of the small neodymium magnet was insufficient, the bottom of the plate was changed to a thin plate.
  • a paraffin resin film (trade name: Parafilm) 11 was pressure-bonded onto the thin glass plate.
  • a fine groove is formed in the paraffin resin film in a direction orthogonal to the expansion and contraction direction, and this groove serves as a guide when moving the magnetic beads.
  • the paraffin resin film facilitates the creation of tulip-shaped protrusions and the like.
  • the protrusions formed on the paraffin resin film are C-shaped protrusions for stably holding a solution used for washing magnetic beads, enzyme reaction, etc. on the film. See Figure 2.
  • the contact angle of the paraffin resin film with respect to pure water was 112 °.
  • the contact angles of paraffin resin, Teflon resin, silicon resin, glass plate, acrylic plate and copper plate with pure water and with 0.1% Triton X100 (surfactant) aqueous solution are shown in Table 1 below.
  • the measurement was performed as follows. 3 ⁇ l of pure water was allowed to stand on the surface of various materials, and the state of the droplet after 5 minutes was observed with a microscope. The height A of the droplet and the length B of the side in contact with the material surface were measured, and the contact angle ⁇ of water was determined by the following calculation formula.
  • a cylindrical neodymium magnet having a diameter of 1.5 mm and a height of 2 mm was used for moving the magnetic beads.
  • Example 1 We created a cDNA for 5'-RACE according to the protocol described below 5'-RACE cDNA for creating ⁇ br/>.
  • 2 to 3 ⁇ l of the reverse transcription reaction solution is spotted on the center of the tulip-shaped protrusion in row D (droplet for reverse transcription reaction).
  • 2 to 3 ⁇ l of 3′-tailing reaction cleaning solution is spotted on the center of the tulip-shaped protrusion of row E (3′-tailing reaction cleaning droplet).
  • 2 to 3 ⁇ l of 3′-tailing reaction liquid is spotted on the center of the tulip-shaped protrusion in the F row (3′-tailing reaction droplet).
  • a small neodymium magnet is placed from the thin glass plate on the bottom of the plate toward the center of the cell lysed droplet in row A and allowed to stand for 1 second.
  • a small neodymium magnet is slowly slid over about 2 seconds from the cell lysis droplet in row A to the droplet for washing mRNA in row B.
  • the magnetic bead population to which the mRNA is bound moves from the cell lysis droplet in the A row to the droplet for washing the mRNA in the B row as a water droplet of several tens of nanoliters.
  • HTLV-I Human T-cell leukemia virus type 1
  • MT2 fetal bovine serum medium
  • the cells were cultured for 24 hours in a 24-well cell culture dish.
  • DNase I was added to the cell culture solution and treated at 37 ° C. for 15 minutes to decompose genomic DNA derived from the contaminated cells.
  • Line A is a 3 ⁇ l total solution containing 100 mM Tris HCl (pH 7.5), 500 mM LiCl, 1% lithium dodecyl sulfate 5 mM dithiothreitol.
  • Line B is a 3 ⁇ l total solution containing 10 mM Tris HCl (pH 7.5), 0.15 M LiCl, 0.1% lithium dodecyl sulfate.
  • Line C is a 3 ⁇ l total solution containing 50 mM Tris HCl (pH 8.3), 75 mM KCl, 3 mM MgCl 2 , 0.1% Triton X-100, 0.5 mM dNTP, 5 mM DTT, 2 unit RNase inhibitor.
  • Row D shows a total volume of 3 ⁇ l containing 50 mM Tris HCl (pH 8.3), 75 mM KCl, 3 mM MgCl 2 , 0.1% Triton X-100, 0.5 mM dNTP, 5 mM DTT, 2 unit RNase inhibitor, 8 unit SuperScript III Reverse transcriptase. It is a solution.
  • Row E is a 3 ⁇ l total solution containing 10 mM Tris HCl (pH 7.5), 0.1% Triton X-100, 0.1 mM EDTA.
  • HTLV-I virus present in the cell culture medium was detected by PCR using 1 ⁇ l from the E-line droplet.
  • the PCR method uses Takara Bio's prime star thermostable DNA polymerase, primers 5'-gaggacggcttgacaaacatgggg-3 'and 5'-acagaagtctgagaaggtcagggc-3', at 94 ° C for 20 seconds, 60 ° C for 20 seconds, and 72 ° C for 20 seconds.
  • the reaction was performed for 40 cycles.
  • the PCR reaction product was analyzed by electrophoresis using 2% agarose gel (see Fig. 6), specific HTLV-I genome amplification was observed even in samples diluted 10-fold to 10,000-fold. It was.
  • Example 3 Magnetic bead migration from droplets containing bovine serum albumin
  • Each row A contains 3 ⁇ l of PBS (10 mM phosphate buffer, 120 mM NaCl, 2.7 mM KCl, pH 7.6) containing 25 ⁇ g of magnetic beads (dynabeads with a particle size of 2.8 ⁇ m) or 25 ⁇ g of magnetic beads (dynabeads with a particle size of 2.8 ⁇ m).
  • the containing 1% bovine serum albumin-PBS 3 ⁇ l was spotted.
  • Row B was spotted with 1% bovine serum albumin-PBS. This was heated at 37 ° C. for 30 minutes with the reaction jig shown in FIG.
  • This method can be applied to large-scale and trace continuous reactions of nucleic acids, proteins, lipids, carbohydrates, complex carbohydrates, and chemical substances. It can also be used for immunostaining of fixed cells (1 to 10 or more).
  • Example 2 Electrophoresis photograph obtained in Example 2 (M: DNA size marker, 1: negative control, 2: 10-fold dilution, 3: 100-fold dilution, 4: 1000-fold dilution, 5: 10,000-fold dilution, 6: 100,000-fold magnification) (Dilution, 7: 1 million dilution, 8: 10 million dilution) A photograph of the reaction jig obtained in Example 3.

Abstract

操作毎に溶液等の移動に使用する器具を洗浄または交換することなく、複数種類の反応や洗浄の操作を並列的に行うことができる装置及び方法を提供する。基板の一方の表面に複数の突起状囲いが、整列して設けられており、前記突起状囲いは、少なくとも1つの切欠き部を有し、かつ内部には液滴を保持できる空間を有し、かつ前記基板表面の少なくとも前記液滴を保持する面は、純水に対する接触角が90~150°の範囲である、反応治具。この反応治具を用い、磁気ビーズに固定化した物質を、上記突起状囲いの液滴保持用空間に保持された表面張力低下試薬を含有する溶液の液滴中で、前記基板の突起状囲いを有する表面とは反対側の表面から磁石を用いて、順次移動させて、反応及び洗浄を行うことを含む、反応方法。

Description

反応治具及び反応方法、並びにcDNAの合成方法
 本発明は、反応治具及び反応方法に関する。さらに詳しくは、任意に洗浄工程を含む複数の逐次反応を、並列的にかつ簡便に実施できる反応治具及び反応方法に関する。さらに、本発明は、上記反応治具を用いるcDNAの合成方法に関する。
 一般に、mRNAからのcDNAの合成や、DNAの増幅等の遺伝子関係の反応は、少量の容量で、複数種類が並列的に行われることが多い。その場合、例えば、96穴あるいは384穴等のマイクロウェルアレイを用い、各ウェルに反応液や洗浄液を入れたアレイを用意し、反応あるいは洗浄が終了したら、ピペットにより溶液を次のウェルに移動させ、次の処理に供するのが一般的である。そのような処理操作は、ルーチンで行われる場合はロボットが利用される場合もある。
 しかし、ロボットを利用するにしても、液の移動に使用したピペットは、その都度洗浄または交換して次の処理に使用する必要があり、操作は非常に煩雑である。
 ピペットを使用する代わりに、磁気ビーズを用い、磁気ビーズに固定化した試料を、磁石で釣り上げ移動させることも行われている(例えば、特表2007-504835号公報(特許文献1))。しかし、上記のようなマイクロウェルアレイを用いる場合、移動用の磁石は、ウェルの上方から近づけ、場合によってはウェル中の溶液に浸漬する必要がある。溶液に浸漬した磁石は、次のステップの前に洗浄が必要である。また、次のステップに移動した後には、磁石から磁気ビーズを開放するために、磁石は、消磁可能なものであることも必要である。
 非特許文献1には、磁気ビーズを利用したRT-PCR反応法が掲載されている。この文献に記載の方法では、室温での反応は溶液100に対しオイル1を加えることで、 液滴を油膜で覆い蒸発等の防止を行っている。
特表2007-504835号公報 Juergen Pipper1, Masafumi Inoue2, Lisa F-P Ng3, Pavel Neuzil1,4, Yi Zhang1,4 & Lukas Novak1,4, NATURE MEDICINE VOLUME 13  NUMBER 10 OCTOBER 2007 pp1259-1263
 前述のように、96穴あるいは384穴等のマイクロウェルアレイを用いて、複数種類の反応や洗浄の操作を並列的に行う場合、ピペットを用いるにしても、磁気ビーズを用いるにしても、操作に使用するピペットや磁気ビーズの洗浄または交換が必要であり、操作は煩雑である。
 さらに、非特許文献1に記載の方法のように、液滴を油膜で覆い蒸発等を防止することも、操作としては煩雑である。特に、多数の液滴を用いる場合、この煩雑さは無視できないものである。
 そこで、本発明の目的は、操作毎に溶液等の移動に使用する器具を洗浄または交換することなく、複数種類の反応や洗浄の操作を並列的に行うことができる装置及び方法を提供することにある。さらに本発明は、液滴を油膜で覆うことなしに、複数種類の反応や洗浄の操作を並列的に行うことができる装置及び方法を提供することも目的とする。
 本発明は以下のとおりである。
(1)基板の一方の表面に複数の突起状囲いが、整列して設けられており、前記突起状囲いは、少なくとも1つの切欠き部を有し、かつ内部には液滴を保持できる空間を有し、
かつ
前記基板表面の少なくとも前記液滴を保持する面は、純水に対する接触角が90~150°の範囲である
ことを特徴とする反応治具。
(2)前記複数の突起状囲いは、少なくとも一部または全部が、縦横に整列して設けられている(1)に記載の反応治具。
(3)前記突起状囲いの液滴保持用空間は、0.5μl~200μlの範囲の量の液滴を保持できる(1)または(2)に記載の反応治具。
(4)突起状囲いは、2つまたは3つの切欠き部を有し、前記切欠き部の開口の間隔は0.5~10mmの範囲である(1)~(3)のいずれかに記載の反応治具。
(5)前記基板表面は、パラフィン樹脂、テフロン樹脂またはシリコン樹脂からなる(1)~(4)のいずれかに記載の反応治具。
(6)前記基板は、パラフィン樹脂、テフロン樹脂またはシリコン樹脂からなるコーティング層を有する(1)~(4)のいずれかに記載の反応治具。
(7)各突起状囲いの液滴保持用空間には、同一または異なる種類の溶液の液滴が、他の突起状囲いの液滴保持用空間部分に置かれた液滴と混ざることなく、保持されるように用いられる(1)~(6)のいずれかに記載の反応治具。
(8)同一の横列に属する突起状囲いの液滴保持用空間には、同一の種類の溶液の液滴が保持されるように用いられる(1)~(7)のいずれかに記載の反応治具。
(9)前記溶液が、表面張力低下試薬を含有する反応液または洗浄液である(7)または(8)に記載の反応治具。
(10)前記突起状囲いを有する表面をカバーする覆い部材をさらに有し、かつ前記覆い部材が覆われた空間に湿気を供給する保湿部材をさらに有する(1)~(9)のいずれかに記載の反応治具。
(11)(1)~(10)のいずれかに記載の反応治具を用い、
磁気ビーズに固定化した物質を、上記突起状囲いの液滴保持用空間に保持された表面張力低下試薬を含有する溶液の液滴中で、前記基板の突起状囲いを有する表面とは反対側の表面から磁石を用いて、順次移動させることにより、反応及び/または洗浄を行うことを含む、反応方法。
(12)(1)~(10)のいずれかに記載の反応治具であって、1つの縦列に、少なくとも2つの突起状囲いが設けられた反応治具を用い、
前記2つの突起状囲いの液滴保持用空間には、表面張力低下試薬を含有する細胞溶解用溶液、及びcDNA合成用溶液の液滴をこの順にそれぞれ保持し、
磁気ビーズに固定化したmRNAを、前記2つの突起状囲いの液滴保持用空間に保持された溶液に、順次、基板の突起状囲いを有する表面とは反対側の表面から磁石を用いて、移動させ、
磁気ビーズに固定化したcDNAを得ることを含む、cDNAの合成方法。
(13)複数の縦列に、少なくとも2つの突起状囲いが設けられた反応治具を用い、
各横列の突起状囲いの液滴保持用空間に保持された溶液は、同一種類の溶液であり、
縦列を移動させる磁気ビーズに固定化したmRNAは、異なる種類のmRNAであり、
複数の異なる種類のcDNAを、磁気ビーズに固定化したcDNAとして得る、(12)に記載の方法。
(14)前記反応治具は、1つの縦列に、少なくとも4つの突起状囲いが設けられ、
前記4つの突起状囲いの液滴保持用空間には、細胞溶解用溶液、mRNA洗浄用溶液、cDNA合成用溶液及びcDNA洗浄用溶液の液滴をこの順にそれぞれ保持し、
磁気ビーズに固定化したmRNAを、前記4つの突起状囲いの液滴保持用空間に保持された溶液に、順次移動させる、(12)または(13)に記載の方法。
(15)前記反応治具は、突起状囲いを有する表面を下向きにして用いられる、(11)~(14)のいずれかに記載の方法。
 本発明によれば、反応や洗浄等の操作毎に溶液等の移動に使用する器具を洗浄または交換することなく複数種類の反応や洗浄の操作を並列的に行うことができる装置及び方法を提供することができる。
[反応治具]
 本発明は、基板の一方の表面に複数の突起状囲いが、整列して設けられており、前記突起状囲いは、少なくとも1つの切欠き部を有し、かつ内部には液滴を保持できる空間を有する反応治具に関する。
 突起状囲いは、少なくとも1つの切欠き部を有し、かつ内部には液滴を保持できる空間を有するものであれば良い。突起状囲いの形状は、具体的には、図1に示すように、用途に応じて、種々のものから選択できる。例えば、図1のGに示すように、切欠き部が1つの突起状囲いであることができる。切欠き部が1つの突起状囲いは、例えば、反応開始位置や反応終了位置、あるいは最終位置に適している。図1のA、C、E、F、H、I、Mに示すように、切欠き部が2つの突起状囲いは、反応や洗浄など、工程の途中で用いることが適している。図1のJ、Kに示すように、切欠き部が3つの突起状囲い、および図1のB、D、Lに示すように、切欠き部が4つの突起状囲いは、例えば、反応や洗浄した物を2つ以上に分配する位置に用いることが適している。但し、これらの使い方に限定される意図ではない。
 また、1つの反応治具に設けられる突起状囲いは、1種類に限定されず、複数の異なる形状を有する突起状囲いを適宜設けることもできる。
 突起状囲いの内部に形成される、液滴を保持できる空間の容量は、反応治具の用途や、突起状囲いの機能に応じて適宜設定できるが、例えば、0.5μl~200μlの範囲であることができる。但し、この範囲に限定される意図ではなく、液滴を保持できる空間の容量は、用途に応じて適宜決定できる。
 突起状囲いとして、ハの字型突起を有する態様を例に、本発明の反応治具について、以下図2に基づいてさらに説明する。ハの字型突起は、図1には示されていないが、2つの切欠きを有し、各切欠きが形成する開口(隙間)の寸法が異なる形状を有する。開口の寸法が大きい方を例えば、入口として用い、開口の寸法が小さい方を例えば、出口として用いることができる。
 本発明の反応治具100は、図2に示すように、基板10の一方の表面11に複数のハの字型突起20が、同一方向を向いて整列して設けられている。前記複数の突起は、縦横に整列して設けられている。ハの字型突起の縦列を構成するハの字型突起の数、及びハの字型突起の横列を構成するハの字型突起の数は、反応治具の用途や、一度に処理する反応操作の数、さらには、基板10の大きさ及び形状、ハの字型突起20の形状や大きさ、ハの字型突起20同士の間隔等、を考慮して適宜決定できる。ハの字型突起の縦列を構成するハの字型突起の数は、例えば、2~10個、ハの字型突起の横列を構成するハの字型突起の数は、2~100個であることができる。但し、この範囲に限定される意図ではない。図2の反応治具は、横16列、縦8行のハの字型突起を縦横に整列して設けたものである。
 ハの字型突起は、図2に示すように、切欠きによって形成された隙間21を介して設けられた2つの突起22、23から構成される。さらに、ハの字型突起の内部には液滴40を保持できる空間30を有し、この空間に保持できる液滴の量は、例えば、0.5μl~200μlの範囲であることができる。但し、この範囲に限定される意図ではない。突起22、23の形状は、空間30に上記量の液滴を保持できれば特に制限はない。但し、空間30に保持される液滴を空間に効率的に保持するという観点から、部分円状または部分楕円状であることが好ましい。但し、一本の直線状または複数の直線からなる形状(例えば、への字型)であることもできる。突起22、23の高さは、空間30に上記量の液滴を保持できれば特に制限はない。突起22、23の高さは、例えば、0.1~5mmの範囲とすることができる。
 隙間21は、後述するように、ハの字型突起の内部の空間30に保持された液滴から、処理操作完了した磁気ビーズに固定化された反応物を次のハの字型突起の内部の空間30に保持された液滴に移動するときに、磁気ビーズを固定化された反応物と一緒に移動させる移動路である。従って、隙間21の最短間隔は、磁気ビーズが容易に次のハの字型突起の空間30に移動でき、かつ磁気ビーズとともにハの字型突起の空間30に保持された液滴が、次のハの字型突起の空間30に移動することを妨げるように、ハの字型突起が移動防御堤として機能できる、という観点から決定される。そのような観点から、隙間21の最短間隔は、例えば、1~10mmの範囲であることができる。
 一方、隙間21と反対側の突起22、23の末端は、開口状態であることが、磁気ビーズの移動を容易にし、かつ液滴保持のための空間を形成するという観点から好ましい。
 本発明の反応治具の基板表面の少なくとも液滴を保持する面は、その他の基板表面と高低差がなく、平坦であることが、基板の作製が容易であるという観点からは好ましい。但し、本発明の反応治具の基板表面の少なくとも液滴を保持する面は、その他の基板表面よりも低く、窪みを形成していることもできる。窪みとすることで、液滴の保持は、平坦である場合に比べて容易になる。しかし、保持された液滴からの磁気ビーズの移動に支障がない程度の窪みの深さと窪みを構成する面の形状を有することが適当である。窪みを構成する面の内、少なくとも突起の開口に通じる、磁気ビーズが移動する可能性がある面については段差がない曲面であることが適当である。また、窪みの深さは、例えば、突起の開口の寸法の1/2以下であること、窪みを構成する面の最大傾斜は45°以下であることが適当である。
 本発明の反応治具の基板表面の少なくとも液滴を保持する面は、純水に対する接触角が90~150°の範囲であることが、空間への液滴保持、各空間に保持された液滴の接触を防ぐという観点から適当である。突起状囲いの内部には、突起状囲いによって液滴が保持されるが、突起状囲いだけでは、後述する磁気ビーズを用いた反応操作において、液滴を良好に保持することはできない場合がある。そこで本発明では、突起状囲いの内部に液滴が良好に保持されるために、少なくとも突起状囲いの内部面は、純水に対する接触角が90~150°の範囲である表面とする。純水に対する接触角は、表面を形成する材料(材質)と表面状態(例えば、表面粗さや表面形状等)によって変化する。材質が同一であっても、表面状態(例えば、表面粗さや表面形状等)が違えば、純水に対する接触角も変化する。本発明では、表面を形成する材料(材質)と表面状態(例えば、表面粗さや表面形状等)を純水に対する接触角が90~150°の範囲なるように、選択する。
 表面を形成する材料(材質)としては、比較的撥水性の高い材料であるパラフィン樹脂、テフロン樹脂またはシリコン樹脂等を用いることができる。基板自体をこれらの材料からなるもので形成することもできるし、基板は他の材料(例えば、ガラス基板とし、表面に上記パラフィン樹脂、テフロン樹脂またはシリコン樹脂等のコーティング層を設けることもできる。これらの樹脂は、材料自体の撥水性が高く平滑な表面でも上記範囲の接触角を示すことができる。しかし、必要に応じて、表面を粗面化することで、接触角を調整することもできる。
 例えば、パラフィン樹脂を用いる場合、図2の反応治具において、基板10の表面に、各ハの字型突起のハの縦方向と並行な向きに配向する微小波型凹凸(表面粗さ)を設けることができる。この微小波型凹凸は、ハの字型突起のハの縦方向と並行な向きに配向していることから、磁気ビーズの移動を容易にするとうい機能がある。
 微小波型凹凸は、上記のような機能を発揮するものであれば特に制限はないが、例えば、高さが1μm~1mmの範囲であり、かつ波長が1μm~1mmの範囲であるものであることができる。さらに、微小波型凹凸を有する表面は、純水に対する接触角が90~150°の範囲となるように、凹凸形状を調整する。
 各ハの字型突起20の空間30には、同一または異なる種類の溶液の液滴が、他のハの字型の突起のハの空間部分に置かれた液滴と混ざることなく、保持されて用いることができる。空間30に液滴として保持される溶液は、特に制限はないが、例えば、反応液または洗浄液であることができる。反応液及び洗浄液の種類は、本発明の反応治具の使用目的に応じて適宜選択できる。
 使用する反応液及び洗浄液には表面張力低下試薬を添加することが適当である。表面張力低下試薬には溶液の表面張力を減少させ、疎水性の基板上に液滴を安定的に保持させる効果がある。また表面張力低下試薬には磁気ビーズ集団が液滴外へ移動する際の妨げとなる液滴の表面張力を低下させる効果を持つ。本発明では、上記のように少なくともは液滴保持空間を形成する表面の純水に対する接触角は90~150°の範囲とし、比較的撥水性を持たせ、そこに保持する液滴には、表面張力低下試薬を添加することで、液滴の液滴保持空間表面外への広がりを抑制し、かつ液滴の液滴保持空間表面に対する付着性を与え、保持力を増大させ、それにより、磁気ビーズの液滴への搬入や搬出の際にも、液滴の液滴保持空間表面への保持を維持できる。また、隣接する突起状囲いと突起状囲いの間の表面も、同様に、純水に対する接触角は90~150°の範囲とすることができるが、磁気ビーズの移動のし易さ等を考慮して、隣接する突起状囲いと突起状囲いの間の表面は、異なる性質を持たせることもできる。
 また、表面張力低下試薬を添加することで、磁気ビーズ、特に粒径の比較的小さい磁気ビーズを用いた場合にも、液滴への搬出(侵入)を容易にすることができる、という利点がある。
 表面張力低下試薬は、例えば、純水において0.1%濃度とした場合において、ガラス板上の純水の接触角(後述する表1に示す測定結果は42°である)を30°以下に低下させることができる試薬であることが適当である。そのような表面張力低下作用を有する試薬としては、界面活性剤および肺サーファクタント蛋白質等のリポプロテイン、血清アルブミンやリポプロテインが多く含まれる血清等をあげることができる。
 界面活性剤には種々のものがあり、種類に関係なく、表面張力低下試薬として用いることができる。以下に例示をするが、これらはあくまでも例示であって、これら例示された界面活性剤に限定する意図ではない。
(1)陰イオン系界面活性剤:脂肪酸ナトリウム、モノアルキル硫酸塩
(2)陽イオン系界面活性剤:アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、モノアルキルリン酸塩
(3)両性界面活性剤:アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、アルキルベンジルジメチルアンモニウム塩、アルキルジメチルアミンオキシド、アルキルカルボキシベタイン、
(4)非イオン性界面活性剤:ポリオキシエチレンアルキルエーテル、脂肪酸ソルビタンエステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキルモノグリセリルエーテル
陰イオン系界面活性剤の代表例として、ドデシル硫酸リチウムをあげることができ、非イオン性界面活性剤の代表例として、TritonX100をあげることができる。
 表面張力低下試薬の添加量は、上記観点を勘案し、表面張力低下試薬の種類と液滴保持空間表面の純水に対する接触角も考慮して、例えば、0.001~1%の範囲であり、好ましくは、0.01~1%の範囲である。但し、この範囲に制限されるものではない。
 本発明の反応治具は、異なる種類のサンプルについて、同一の反応処理操作を行う場合、同一の横列に属するハの字型突起の空間には、同一の種類の溶液の液滴が保持されるように用いることができる。
 本発明の反応治具は、突起状囲いを有する表面をカバーする覆い部材をさらに有し、かつ覆い部材が覆われた空間に湿気を供給する保湿部材をさらに有することができる。例えば、図2に示すように、箱型のプラスチックケース50の底部開口部に薄層ガラス板10を設置し、その上に突起状囲いを有する樹脂フィルム11を、突起がプラスチックケースの内部に向くように貼り付ける。さらに、プラスチックケースの上部開口をカバーする覆い部材(蓋)60を設けることができる。覆い部材(蓋)60の内部には、覆い部材が覆われた空間に湿気を供給する保湿部材(例えば、湿式濾紙)61を設けることができる。このような構成にすることで、少量の液滴を扱う場合であっても、液滴からの水分の揮発を抑制して、反応や洗浄操作等を良好に行うことができる。磁気ビーズは、基板10の突起状囲い20を有する表面とは反対側の表面(図2の上面)から磁石(例えば、小型ネオジウム磁石)70を用いて、順次移動させて、反応及び洗浄等の操作を行うことができる。
[反応方法]
 本発明は、上記本発明の反応治具を用いる反応方法を包含する。本発明の反応方法は、磁気ビーズに固定化した物質を突起状囲い(例えば、上記ハの字型突起)の空間に保持された表面張力低下試薬を含有する溶液の液滴中を、基板の突起状囲いを有する表面とは反対側の表面から磁石を用いて、順次移動させて、反応及び洗浄を行うことを含む。反応及び洗浄を行う温度は、反応及び洗浄に適した温度を考慮して適宜決定でき、工程ごとに、温度を上下させて調整することもできる。その場合、必要により、例えば、前記覆い部材50および/または60の外側あるいは内部、および/または薄層ガラス板(10)と樹脂フィルム(11)の間または基板の突起状囲いを有する表面とは反対側の表面に、加熱および/または冷却装置を設けることもできる。
 上記本発明の反応方法において、前記反応治具は、突起状囲いを有する表面を下向きにして用いられることが好ましい。突起状囲いを有する表面を下向きにして用いると、突起状囲いに収容された液滴はハンギングドロップ状になる。このような状態で、反応方法を実施すると、蒸気は軽いため上に蒸発して行こうとするので、液滴がハンギングドロップ状であれば、蒸発を抑制することが可能である。その結果、開放系での実施でも、室温では蒸発がかなり抑えられる。さらに、反応治具の突起状囲いを有する表面を覆い部材の中になるように収容すること、あるいは、反応治具の突起状囲いを有する表面を、保湿部材を収容した覆い部材の中に設置することで、液滴からの水の蒸発をより一層防止することができる。このようにすることで、非特許文献1に記載のようにオイルを用いることなしに、液滴からの水分の蒸発を抑制することが可能である。オイルを用いなければ、数マイクロリッターといった微量の反応液でもオイルがピペットに付着しないので溶液の添加・回収が随時、容易に行えるという利点がある。室温で風が吹かない条件であれば、保湿剤を用いず、閉鎖系にもしない(覆い部材(容器)に入れない)場合でも、数マイクロリットルのハンギングドロップを数時間は乾燥せずに維持することは可能である。ただ、酵素反応を行わせる温度が室温より高い場合、例えば、酵素反応を50℃付近で行う場合には、蒸発が無視できなくなる。その場合には、保湿剤を入れた容器(覆い部材)内に入れて、反応等の操作を行うことが好ましい。
 反応治具の突起状囲いを有する表面を覆い部材の中になるように収容する場合には、反応等の操作を行う前および操作中、反応治具と覆い部材で形成された内部を、反応等に影響がない範囲で、例えば、30~40℃に加温することが好ましい。加温により生じる水蒸気が基板表面上で凝結して微小な液滴が形成され、磁気ビーズの液滴からの移動をスムーズにする作用があるからである。特に、表面張力低下能の比較的低い試薬(具体的には界面活性剤以外の試薬)を用いる場合には、この加温により、磁気ビーズの移動がよりスムーズになるという利点がある。また、基板表面上での水蒸気の凝結を促進するという観点から、覆い部材で覆われた反応治具を冷却すること、例えば、比較的低温の室内で操作をすることもできる。
 また、液滴をハンギングドロップ状にするもう一つの利点として、液滴中の磁気ビーズの撹拌が促進される点が挙げられる。磁石を基板から離すと、磁石に吸引されていた液滴中の磁気ビーズは重力によりハンギングドロップ状の液滴底部に落下し、再び磁石を基板に接触させることで、磁気ビーズが液滴底部から基板表面に集合する。この操作により磁気ビーズの洗浄や酵素反応等の効率を上昇させることができる。磁石によるハンギングドロップ状の液滴中の磁気ビーズの吸引と落下は、1回でも複数回繰り返し行うこともできる。
 磁気ビーズは、市販の磁気ビーズを使用することができる。磁気ビーズの粒径は例えば、0.01μm~2mmの範囲、好ましくは0.1μm~0.1mmの範囲であることができる。但し、磁気ビーズの粒径がナノサイズとなり小さくなると、液滴への侵入(搬入)が困難になる場合がある。その場合は、より大きい粒径を有する磁気ビーズをキャリアとして併用することで、液滴への侵入(搬入)を容易にすることができる。キャリアとして併用するビーズには、物質を固定化しないが、物質を固定化したキャリアビーズを併用することもできる。
 さらに磁気ビーズの表面には、本発明の反応方法で反応処理する対象物である物質を固定化する。物質の固定化は、常法によって行うことができる。反応処理する対象物である物質は、特に制限はなく、核酸(DNA、RNA等)、ペプチド、タンパク質、糖類、脂質、複合糖脂質、天然低分子、合成低分子、高分子化合物、金属等を挙げることができる。本法は核酸、タンパク、脂質、糖質、複合糖質、化学物質の大規模・微量連続反応に応用可能であり、固定化細胞(1から十数個)の免疫染色にも利用可能である。
 磁気ビーズに対する反応処理する対象物である物質の固定化量は、物質の種類や反応の種類等を考慮して適宜決定できる。
 本発明の反応方法の一例としてcDNAの合成方法を挙げることができる。
本発明のcDNAの合成方法は、上記本発明の反応治具であって、1つの縦列に、少なくとも2つの突起状囲いが設けられた反応治具を用いる。前記2つの突起状囲いの液滴保持用空間には、表面張力低下試薬を含有する細胞溶解用溶液、及び表面張力低下試薬を含有するcDNA合成用溶液の液滴をこの順にそれぞれ保持し、磁気ビーズに固定化したmRNAを、前記2つの突起状囲いの液滴保持用空間に保持された溶液に、順次、基板の突起状囲いを有する表面とは反対側の表面から磁石を用いて、移動させ、磁気ビーズに固定化したcDNAを得ることを含む。
 上記本発明のcDNAの合成方法においても、前述のように、反応治具は、突起状囲いを有する表面を下向きにして用いられることが好ましい。突起状囲いを有する表面を下向きにして用いると、突起状囲いに収容された液滴はハンギングドロップ状になり、水分の蒸発抑制と磁気ビーズの撹拌促進効果を得ることができる。
 この本発明のcDNAの合成方法は、好ましくは、1つの縦列に、少なくとも4つの突起状囲いが設けられた反応治具を用いる。前記4つの突起状囲い(例えば、ハの字型突起)の空間には、細胞溶解用溶液、mRNA洗浄用溶液、cDNA合成用溶液及びcDNA洗浄用溶液の液滴をこの順にそれぞれ保持し(図3参照)、磁気ビーズに固定化したmRNAを、前記4つの突起状囲いの空間に保持された溶液に、順次、基板の突起を設けたとは反対側の表面から磁石を用いて、移動させる。それによって、磁気ビーズに固定化したcDNAを得る。
 本発明のcDNAの合成方法に用いる反応治具のハの字型突起の空間の容量は、例えば、0.5~100μlの範囲とすることが適当である。
第1のハの字型突起の空間に保持される細胞溶解用溶液は、例えば、100mM Tris HCl (pH7.5), 500mM LiCl, 1% ドデシル硫酸リチウム 5mM dithiothreitolを含む全量3μlの溶液であることができる。
第2のハの字型突起の空間に保持されるmRNA洗浄用溶液は、10mM Tris HCl (pH7.5), 0.15M LiCl, 0.1% ドデシル硫酸リチウムを含む全量3μlの溶液であることができる。
第3のハの字型突起の空間に保持される逆転写反応用洗浄溶液は、50mM Tris HCl (pH8.3), 75mM KCl, 3mM MgCl2, 0.1% Triton X-100, 0.5mM dNTP, 5mM DTT, 2 unit RNase inhibitorを含む全量3μlの溶液であることができる。
第4のハの字型突起の空間に保持される逆転写反応溶液は、50mM Tris HCl (pH8.3), 75mM KCl, 3mM MgCl2, 0.1% Triton X-100, 0.5mM dNTP, 5mM DTT, 2 unit RNase inhibitor, 8 unit SuperScript III Reverse transcriptaseを含む全量3μlの溶液であることができる。
但し、これらは例示であって、これらの溶液に限定される意図ではない。
 磁気ビーズに固定化したmRNAを用意する。mRNAの種類や長さ等には特に制限はない。種々の生物由来のmRNAを用いることができる。磁気ビーズとしては、例えば、粒子系2.8μm, oligo dT25が表面に共有結合されたものを用いることができる。mRNAの磁気ビーズへの固定化は以下のように実施できる。
 細胞溶解用溶液に磁気ビーズを濃度10mg/mlになるように懸濁し、これに細胞1から100個を加える。上記の操作により、細胞内のmRNAはそのpolyAテールを介して磁気ビーズ上に固定化されたoligo dT25に結合する。
 基板の突起を設けた表面とは反対側の表面から磁石を用いて、磁気ビーズに固定化したmRNAを、前記4つのハの字型突起の空間に保持された溶液(液滴)に、順次、移動させる。磁石としては、例えば、小型ネオジム磁石を用いることができる。各液滴中では、反応または洗浄に必要な時間、滞留させる。反応または洗浄に必要な時間は、反応条件、洗浄条件によって異なるが、例えば、1秒~1時間の範囲であることができる。
 上記反応及び洗浄は、常温(室温)で行うことができるが、必要により、温度調節をすることもできる。さらに、液滴の量が少量である場合、溶液中の溶媒が蒸発することもあるので、反応治具を密閉容器に入れ、容器中の湿度を一定に保つことで、溶媒の蒸発を防ぐことが好ましい。容器中の湿度を一定に保つには、水あるいは適当な水溶液を含む容器を上記密閉容器に共存させることができる。
 上記4つのハの字型突起の空間に保持された溶液(液滴)に、順次、磁気ビーズに固定化したmRNAを滞留及び通過させることで、磁気ビーズに固定化したcDNAを得ることができる。得られたcDNAは、磁気ビーズから切り取ることなく、後の工程に使用することができる。
 上記cDNAの合成方法では、複数(例えば、2~50個)の縦列に、少なくとも4つのハの字型突起が設けられた反応治具を用い、各横列のハの字型の突起に保持された溶液は、同一であり、縦列を移動させる磁気ビーズに固定化したmRNAは、異なる種類のmRNAであり、複数の異なる種類のcDNAを、磁気ビーズに固定化したcDNAとして得ることができる。
 図4に抗体結合磁気ビーズを用いた反応例を示す。図4は、反応治具を下部から見たときの図であり、液滴はハンギングドロップになっている。この反応では、目的抗原に対する特異的抗体が結合した磁気ビーズを利用する。
 第1列に抗体磁気ビーズ(0.1%Triton X-100, 150mM NaCl,10mM リン酸ナトリウム-カリウム緩衝液, pH7.0, 粒子系2.8μm~1.0μmの抗体結合磁気ビーズ25μg/3μl)、第2列に検体試料、3列に洗浄液(0.1%Triton X-100, 150mM NaCl,10mM リン酸ナトリウム-カリウム緩衝液, pH7.0)、4列に標識抗体(目的抗原に特異的であり、磁気ビーズに固定化された抗体とは異なる抗原のエピトープを認識するもの。アルカリフォスファターゼ標識、パーオキシダーゼ標識、蛍光色素標識、または金粒子等の標識が行われているもの)、5列に洗浄液、6列に発色液をスポットしておく。尚、スポットを形成する各溶液の組成は例示であって、これらに限定される意図ではない。
 小型磁石を用いて、第1列液滴内の抗体磁気ビーズを第2列の検体試料液滴に移動させ、例えば、室温にて10分から60分間抗原-抗体反応を行う。この間、プレートを反転、もしくは磁石を用いて液滴底部に落下した磁気ビーズをプレート上部に移動させ、磁気ビーズの撹拌を行う。
 磁気ビーズを第3列の洗浄液に移動させた後、例えば、5分間ビーズの撹拌・洗浄を行う。
 磁気ビーズを第4列の標識抗体液滴に移動させた後、例えば、室温にて10分から60分間抗原-抗体反応を行う。この間、プレートを反転、もしくは磁石を用いて液滴底部に落下した磁気ビーズをプレート上部に移動させ、磁気ビーズの撹拌を行う。
 磁気ビーズを第5列の洗浄液に移動させた後、例えば、5分間磁気ビーズの撹拌・洗浄を行う。
 磁気ビーズを第6列の発色液滴へ移動させた後、標識化合物に応じた発色または化学発光反応を行う。磁気ビーズが検出の妨げとなる場合、反応を停止する場合には、磁気ビーズを第7列へ移動させ、第6列の液滴の発色または化学発光を測定することもできる。
 このようにして、抗体結合磁気ビーズを用いて反応を行うことができる。
 図5に1試料で、複数の抗原を検出する方法の例を示す。ここでは、3種類の抗原を1検体から同時検出する例を示す。
 第1列の液滴保持用突起1,2,3に抗原A,B,Cに特異的な抗体磁気ビーズをスポットする。
 第2列に検体試料、第3列に洗浄液(0.1%Triton X-100, 150mM NaCl,10mM リン酸ナトリウムーカリウム緩衝液, pH7.0)、第4列に標識抗体(目的抗原に特異的であり、磁気ビーズに固定化された抗体とは異なる抗原のエピトープを認識するもの。アルカリフォスファターゼ標識、パーオキシダーゼ標識、蛍光色素標識、または金粒子等の標識が行われているもの)、第5列に洗浄液、第6列に発色液をスポットしておく。尚、スポットを形成する各溶液の組成は例示であって、これらに限定される意図ではない。
 第1列の液滴保持用突起1の抗体磁気ビーズを第2列の検体試料液滴に移動させる。例えば、室温にて10分から60分間反応を行い抗原Aを磁気ビーズ1に結合させた後、磁気ビーズを第3列の洗浄液滴1に移動させる。
 第1列の液滴保持用突起2の抗体磁気ビーズを第2列の検体試料液滴に移動させる。例えば、室温にて10分から60分間反応を行い抗原Bを磁気ビーズ2に結合させた後、磁気ビーズを第3列の洗浄滴2に移動させる。
 第1列の液滴保持用突起3の抗体磁気ビーズを第2列の検体試料液滴に移動させる。例えば、室温にて10分から60分間反応を行い抗原Cを磁気ビーズ3に結合させた後、磁気ビーズを第3列の洗浄滴3に移動させる。
 磁気ビーズ1,2,3をそれぞれ第4列の標識抗体液滴1,2,3に移動させた後、例えば、室温にて10分から60分間抗原-抗体反応を行う。
 磁気ビーズ1,2,3をそれぞれ第5列の洗浄液滴1,2,3に移動させる。
 磁気ビーズ1,2,3をそれぞれ第6列の発色液滴1,2,3に移動させ、一定時間発色または化学発光反応を行い、得られた発色又は発光を、検出器を用いて測定する。
 このように、複数の抗原を検出する方法を実施することができる。
 以下、本発明を実施例によってさらに詳細に説明する。
 図2に示すように、プラスチックプレート(127mm×86mm×15mm)50の底面を切り抜き、ここに薄層ガラス板(厚み0.15mm)10またはプラスチック板(厚み0.15mm)をはめ込む。小型ネオジム磁石の磁力が不十分なため、プレート底面を薄板に換えた。
 上記薄層ガラス板上に、パラフィン樹脂フィルム(商品名パラフィルム))11を圧着させた。パラフィン樹脂フィルムには伸縮方向と直交する方向に微細な溝が形成されており、この溝は、磁気ビーズの移動時にガイドとして役立つ。パラフィン樹脂フィルムはチューリップ型の突起等の作成を容易にする。
 上記パラフィン樹脂フィルム上には、あらかじめチューリップ型の突起を必要数、治具を用いて形成しておいた。パラフィン樹脂フィルム上に形成された本突起は、磁気ビーズの洗浄、酵素反応等に用いる溶液をフィルム上に安定に保持するためのハの字型突起である。図2参照。1~16列、A行~H行のチューリップ型の突起を有する。パラフィン樹脂フィルムの純水に対する接触角は、112°であった。
 尚、パラフィン樹脂、テフロン樹脂、シリコン樹脂、ガラス板、アクリル板および銅板の純水に対する接触角および0.1%TritonX100(界面活性剤)水溶液に対する接触角を以下の表1に示す。
測定は以下のように行った。純水3μlを各種材料表面に静置し5分後の液滴の状態を顕微鏡にて観察した。液滴の高さA及び材料表面と接触している辺の長さBを測定し、水の接触角θを以下の計算式により求めた。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-T000002
 磁気ビーズの移動には、直径1.5mm高さ2mmの円柱状ネオジム磁石を使用した。
実施例1
5'-RACE用cDNA作成
以下に記載するプロトコルに従って5'-RACE用cDNAを作成した。
 [溶液の分注]
 mRNA結合性磁気ビーズ(25μg)を含む細胞溶解液3μlにBリンパ球1から100個を加え溶解させ、細胞から放出されたmRNAをmRNA結合性磁気ビーズ上に捕捉する。
A行のチューリップ型突起の中心部に上記溶液2~3μlをスポットする(細胞溶解液滴)。
B行のチューリップ型突起の中心部に、mRNA洗浄用溶液2~3μlをスポットする(細胞洗浄液滴)。
C行のチューリップ型突起の中心部に、逆転写反応用洗浄液2~3μlをスポットする(逆転写反応用洗浄液滴)。
D行のチューリップ型突起の中心部に、逆転写反応液2~3μlをスポットする(逆転写反応用液滴)。
E行のチューリップ型突起の中心部に、3'-テーリング反応用洗浄液2~3μlをスポットする(3'-テーリング反応用洗浄液滴)。
F行のチューリップ型突起の中心部に、3'-テーリング反応液2~3μlをスポットする(3'-テーリング反応用液滴)。
G行に反応停止液2~3μlをスポットする。
H行にPCR反応溶液2~3μlをスポットする。
 プレートに蓋をかぶせた後これを反転させ、溶液をハンギングドロップとしてフィルム上に保持する(蒸発防止および重力による磁気ビーズ撹拌の為)。蓋の内側には水をしみこませた濾紙を圧着させておく(蒸発防止の為)。
[A行からB行への移動]
 プレート底面の薄層ガラス板上からA行の細胞溶解液滴の中心部に向け、小型ネオジム磁石を設置し1秒静置させる。
 A行の細胞溶解液滴からB行のmRNA洗浄用液滴へ向け、小型ネオジム磁石を2秒程度かけてゆっくりスライドさせる。このときmRNAを結合した磁気ビーズ集団は数十ナノリットルの水滴として、A行の細胞溶解液滴から離れ、B行のmRNA洗浄用液滴へ移動する。
 小型ネオジム磁石をガラス板から離す。磁力で樹脂性フィルム上に集積した磁気ビーズは、重力によりmRNA洗浄用液滴底部に向け落下する。このとき磁気ビーズ周辺に付着した溶液の洗浄が行われる。必要があればプレートを前後左右に傾け磁気ビーズを液滴中で撹拌させ更に洗浄効率を高める。
[B行からC行への移動]
 磁気ビーズが液滴底部に落下した後、上記の操作と同様に小型ネオジム磁石をB行のmRNA洗浄用液滴の中心部に1秒間静置させ、次にC行の逆転写反応用洗浄液滴へ移動させる。
[C行からD行への移動]
逆転写反応
 D行の逆転写反応用液滴に磁気ビーズを移動させた後、プレートは反転させたまま、37~50℃の保温装置に入れ1時間保温する。この間10分ごとにプレートを反転または前後左右に傾け磁気ビーズを液滴中で撹拌させ十分な酵素反応を行わせる。
[D行からE行への移動]
 磁気ビーズの洗浄を行う。
[E行からF行への移動]
 3'-テーリング反応 プレートを反転させ37℃にて1時間保温する。逆転写反応と同様磁気ビーズの撹拌を行う。
[F行からG行への移動に続きG行からH行への移動]
 H行に移動させた液はそのまま、5'-RACE法によるDNAの増幅に用いることができる。
実施例2
RNAウイルス、レトロウイルス含有試料からのcDNA合成法
成人ヒトT細胞白血病ウイルスー1型(HTLV-I)は一本鎖RNAをゲノムとして有するヒトレトロウイルスである。細胞上澄中に分泌されたレトロウイルスを、本発明を用いて検出するため、HTLV-Iを産生する細胞株(MT2)1万個を、1mlのRPMI-10%牛胎児血清培地を用いて24well細胞培養皿にて24時間培養した。まず、本細胞培養液にDNase Iを加え37℃、15分間処理することで、混入した細胞由来のゲノムDNAを分解した。本溶液1μlを、細胞溶解用溶液(100mM Tris HCl (pH7.5), 500mM LiCl, 1% ドデシル硫酸リチウム 5mM dithiothreitol)でそれぞれ10倍から1000万倍に10倍きざみで希釈して7種類の希釈サンプルを調製した。各希釈サンプル1μlを、Oligo-dT磁気ビーズを濃度10mg/mlになるように懸濁した細胞溶解用溶液(100mM Tris HCl (pH7.5), 500mM LiCl, 1% ドデシル硫酸リチウム 5mM dithiothreitol)2μlに加え、実施例1と同様の方法でE行の逆転写反応までを7サンプル並行して行った。さらに、希釈サンプルを含まない細胞溶解用溶液もネガティブコントロールとしてE行の逆転写反応までを7サンプルに並行して行った。
A行は、100mM Tris HCl (pH7.5), 500mM LiCl, 1% ドデシル硫酸リチウム 5mM dithiothreitolを含む全量3μlの溶液である。
B行は、10mM Tris HCl (pH7.5), 0.15M LiCl, 0.1% ドデシル硫酸リチウムを含む全量3μlの溶液である。
C行は、50mM Tris HCl (pH8.3), 75mM KCl, 3mM MgCl2, 0.1% Triton X-100, 0.5mM dNTP, 5mM DTT, 2 unit RNase inhibitorを含む全量3μlの溶液である。
D行は、50mM Tris HCl (pH8.3), 75mM KCl, 3mM MgCl2, 0.1% Triton X-100, 0.5mM dNTP, 5mM DTT, 2 unit RNase inhibitor, 8 unit SuperScript III Reverse transcriptaseを含む全量3μlの溶液である。
E行は、10mM Tris HCl (pH 7.5), 0.1% Triton X-100, 0.1mM EDTAを含む全量3μlの溶液である。
E行の液滴から1μlを用い、細胞培養液中に存在するHTLV-IウイルスをPCR法により検出した。PCR法はタカラバイオのプライムスター耐熱性DNAポリメラーゼ、プライマー 5'-gaggacggcttgacaaacatgggg-3'及び5'-acagaagtctgagaaggtcagggc-3'を用い、94℃で20秒, 60℃で20秒, 72℃で20秒の反応を40サイクル行った。PCR反応産物を2%アガロースゲルを用いた電気泳動法により解析した所(図6参照)、細胞培養液を10倍から1万倍希釈したサンプルにおいても特異的なHTLV-Iゲノムの増幅が認められた。
実施例3
牛血清アルブミンを含む液滴からの磁気ビーズ移動
A行にそれぞれ、磁気ビーズ(粒径2.8μmのDyanabeads)25μgを含むPBS(10mM phosphate buffer, 120mM NaCl, 2.7mM KCl, pH 7.6)を3μl、もしくは磁気ビーズ(粒径2.8μmのDyanabeads)25μgを含む1%牛血清アルブミン-PBS 3μlをスポットした。B行には1%牛血清アルブミン-PBSをスポットした。これを図2に示す反応治具にて37℃で30分加温し、加温により生じる水蒸気が基板表面上で凝結して微小な液滴が形成されることを促進した。尚室温は20℃であった。その後室温にて5分間放置し、小型磁石を用いてA行液滴内の磁気ビーズのB行への移動を試みた。移動後の反応治具の写真を図7に示す。この結果、牛血清アルブミンを含有する液滴においては磁気ビーズの移動が認められたが、牛血清アルブミンを含有しない液滴においては磁気ビーズの移動が認められなかった。
 本法は核酸、タンパク、脂質、糖質、複合糖質、化学物質の大規模・微量連続反応に応用可能。固定化細胞(1から十数個)の免疫染色にも利用可能である。
突起状囲いの形状の例を示す。 本発明の反応治具の一例の説明図。 本発明の反応治具を用いるcDNAの合成方法の説明図。 抗体結合磁気ビーズを用いた反応例を示す。 1試料で、複数の抗原を検出する方法の例を示す。 実施例2で得た電気泳動写真(M:DNAサイズマーカー,1:ネガティブコントロール,2:十倍希釈,3:百倍希釈,4:千倍希釈,5:一万倍希釈,6:十万倍希釈,7:百万倍希釈,8:千万倍希釈) 実施例3で得た反応治具の写真。

Claims (15)

  1. 基板の一方の表面に複数の突起状囲いが、整列して設けられており、前記突起状囲いは、少なくとも1つの切欠き部を有し、かつ内部には液滴を保持できる空間を有し、
    かつ
    前記基板表面の少なくとも前記液滴を保持する面は、純水に対する接触角が90~150°の範囲である
    ことを特徴とする反応治具。
  2. 前記複数の突起状囲いは、少なくとも一部または全部が、縦横に整列して設けられている請求項1に記載の反応治具。
  3. 前記突起状囲いの液滴保持用空間は、0.5μL~200μLの範囲の量の液滴を保持できる請求項1または2に記載の反応治具。
  4. 突起状囲いは、2つまたは3つの切欠き部を有し、前記切欠き部の開口の間隔は0.5~10mmの範囲である請求項1~3のいずれかに記載の反応治具。
  5. 前記基板表面は、パラフィン樹脂、テフロン樹脂またはシリコン樹脂からなる請求項1~4のいずれかに記載の反応治具。
  6. 前記基板は、パラフィン樹脂、テフロン樹脂またはシリコン樹脂からなるコーティング層を有する請求項1~4のいずれかに記載の反応治具。
  7. 各突起状囲いの液滴保持用空間には、同一または異なる種類の溶液の液滴が、他の突起状囲いの液滴保持用空間部分に置かれた液滴と混ざることなく、保持されるように用いられる請求項1~6のいずれかに記載の反応治具。
  8. 同一の横列に属する突起状囲いの液滴保持用空間には、同一の種類の溶液の液滴が保持されるように用いられる請求項1~7のいずれかに記載の反応治具。
  9. 前記溶液が、表面張力低下試薬を含有する反応液または洗浄液である請求項7または8に記載の反応治具。
  10. 前記突起状囲いを有する表面をカバーする覆い部材をさらに有し、かつ前記覆い部材が覆われた空間に湿気を供給する保湿部材をさらに有する請求項1~9のいずれかに記載の反応治具。
  11. 請求項1~10のいずれかに記載の反応治具を用い、
    磁気ビーズに固定化した物質を、上記突起状囲いの液滴保持用空間に保持された表面張力低下試薬を含有する溶液の液滴中で、前記基板の突起状囲いを有する表面とは反対側の表面から磁石を用いて、順次移動させることにより、反応及び/または洗浄を行うことを含む、反応方法。
  12. 請求項1~10のいずれかに記載の反応治具であって、1つの縦列に、少なくとも2つの突起状囲いが設けられた反応治具を用い、
    前記2つの突起状囲いの液滴保持用空間には、表面張力低下試薬を含有する細胞溶解用溶液、及びcDNA合成用溶液の液滴をこの順にそれぞれ保持し、
    磁気ビーズに固定化したmRNAを、前記2つの突起状囲いの液滴保持用空間に保持された溶液に、順次、基板の突起状囲いを有する表面とは反対側の表面から磁石を用いて、移動させ、
    磁気ビーズに固定化したcDNAを得ることを含む、cDNAの合成方法。
  13. 複数の縦列に、少なくとも2つの突起状囲いが設けられた反応治具を用い、
    各横列の突起状囲いの液滴保持用空間に保持された溶液は、同一種類の溶液であり、
    縦列を移動させる磁気ビーズに固定化したmRNAは、異なる種類のmRNAであり、
    複数の異なる種類のcDNAを、磁気ビーズに固定化したcDNAとして得る、請求項12に記載の方法。
  14. 前記反応治具は、1つの縦列に、少なくとも4つの突起状囲いが設けられ、
    前記4つの突起状囲いの液滴保持用空間には、細胞溶解用溶液、mRNA洗浄用溶液、cDNA合成用溶液及びcDNA洗浄用溶液の液滴をこの順にそれぞれ保持し、
    磁気ビーズに固定化したmRNAを、前記4つの突起状囲いの液滴保持用空間に保持された溶液に、順次移動させる、請求項12または13に記載の方法。
  15. 前記反応治具は、突起状囲いを有する表面を下向きにして用いられる、請求項11~14のいずれかに記載の方法。
PCT/JP2009/050585 2008-01-18 2009-01-16 反応治具及び反応方法、並びにcDNAの合成方法 WO2009091048A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09703047.2A EP2246425B1 (en) 2008-01-18 2009-01-16 REACTION DEVICE, REACTION METHOD AND METHOD OF SYNTHESIZING cDNA
KR1020107017949A KR101530408B1 (ko) 2008-01-18 2009-01-16 반응 지그 및 반응 방법, 및 cDNA의 합성 방법
CN200980102879.8A CN101939427B (zh) 2008-01-18 2009-01-16 反应治具和反应方法、以及cDNA的合成方法
JP2009550069A JP5244130B2 (ja) 2008-01-18 2009-01-16 反応治具及び反応方法、並びにcDNAの合成方法
CA2712572A CA2712572C (en) 2008-01-18 2009-01-16 Reaction device, reaction method and method of synthesizing cdna
AU2009205104A AU2009205104B2 (en) 2008-01-18 2009-01-16 Reaction Device, Reaction Method and Method of Synthesizing cDNA
US12/863,185 US8993241B2 (en) 2008-01-18 2009-01-16 Reaction device, reaction method and method of synthesizing cDNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008008767 2008-01-18
JP2008-008767 2008-01-18

Publications (1)

Publication Number Publication Date
WO2009091048A1 true WO2009091048A1 (ja) 2009-07-23

Family

ID=40885430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050585 WO2009091048A1 (ja) 2008-01-18 2009-01-16 反応治具及び反応方法、並びにcDNAの合成方法

Country Status (8)

Country Link
US (1) US8993241B2 (ja)
EP (1) EP2246425B1 (ja)
JP (1) JP5244130B2 (ja)
KR (1) KR101530408B1 (ja)
CN (1) CN101939427B (ja)
AU (1) AU2009205104B2 (ja)
CA (1) CA2712572C (ja)
WO (1) WO2009091048A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012133572A1 (ja) 2011-03-30 2012-10-04 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
JP2013500734A (ja) * 2009-08-07 2013-01-10 ワッカー ケミー アクチエンゲゼルシャフト シリコーン材料からなるバイオリアクター
JP2013500735A (ja) * 2009-08-07 2013-01-10 ワッカー ケミー アクチエンゲゼルシャフト シリコーン被覆を備えたバイオリアクター
JP2013067527A (ja) * 2011-09-21 2013-04-18 Kiyohara Optics Inc 結晶化プレート
WO2015046505A1 (ja) 2013-09-30 2015-04-02 第一三共株式会社 抗lps o11抗体
JP2018057333A (ja) * 2016-10-06 2018-04-12 株式会社リコー 処理キット、処理方法、cDNAの合成方法及び処理装置
US10416165B2 (en) 2015-08-10 2019-09-17 National University Corporation University Of Toyama Method for producing antigen specific monoclonal antibody
WO2020171020A1 (ja) 2019-02-18 2020-08-27 株式会社エヌビィー健康研究所 細胞の選抜方法、核酸の製造方法、組換え細胞の製造方法、目的物質の製造方法、医薬組成物の製造方法、及び試薬
WO2021020282A1 (ja) 2019-07-26 2021-02-04 学校法人埼玉医科大学 Alk2/acvr1の細胞外領域を認識する抗体
EP4180455A1 (en) 2015-06-29 2023-05-17 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349272B (zh) * 2015-11-17 2018-09-07 港龙生物技术(深圳)有限公司 一种用于微量移液针的清洗剂及其配制方法和使用方法
JP7209980B2 (ja) 2020-12-11 2023-01-23 東洋紡株式会社 Dnaポリメラーゼの5’→3’エキソヌクレアーゼ活性ドメインに特異的に結合する抗体

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349557A (ja) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd 反応容器及びこれを用いた物質の検出方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110579A (ja) 1990-08-31 1992-04-13 Toshiba Corp 製氷装置
JP2003315346A (ja) 2002-04-19 2003-11-06 Hideyuki Suzuki マイクロウェルアレイと同マイクロウェルアレイを用いた液体の取り出し方法
ES2375724T3 (es) * 2002-09-27 2012-03-05 The General Hospital Corporation Dispositivo microflu�?dico para seperación de células y sus usos.
CN2575676Y (zh) * 2002-11-04 2003-09-24 成都夸常科技有限公司 一种多面生物芯片
US20060182655A1 (en) 2003-03-04 2006-08-17 Fanglin Zou Integrating analysis chip with minimized reactors and its application
CN1208622C (zh) * 2003-03-04 2005-06-29 成都夸常科技有限公司 一种反应器隔离结构高度最小化的生物芯片及制备方法
NZ545469A (en) 2003-09-12 2009-11-27 Biocontrol Systems Inc Methods, compositions, and kits for the concentration and detection of microorganisms without a separate DNA extraction step
FR2861608B1 (fr) 2003-10-31 2005-12-23 Commissariat Energie Atomique Dispositif de travail comportant des zones de travail bordees, laboratoire sur puce et microsysteme
JP2006105705A (ja) 2004-10-04 2006-04-20 National Institute For Materials Science 試料作製用基板と液状試料盛付方法及び試料の製造方法
JP4987885B2 (ja) * 2006-03-09 2012-07-25 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ 小滴中で反応を行うための装置及びその使用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349557A (ja) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd 反応容器及びこれを用いた物質の検出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PIPPER J. ET AL.: "Catching bird flu in a droplet", NATURE MEDICINE, vol. 13, 2007, pages 1259 - 1263, XP008139273 *
See also references of EP2246425A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9200247B2 (en) 2009-08-07 2015-12-01 Wacker Chemie Ag Bioreactor consisting of silicone materials
JP2013500734A (ja) * 2009-08-07 2013-01-10 ワッカー ケミー アクチエンゲゼルシャフト シリコーン材料からなるバイオリアクター
JP2013500735A (ja) * 2009-08-07 2013-01-10 ワッカー ケミー アクチエンゲゼルシャフト シリコーン被覆を備えたバイオリアクター
US9200248B2 (en) 2009-08-07 2015-12-01 Wacker Chemie Ag Bioreactor comprising a silicone coating
WO2012133572A1 (ja) 2011-03-30 2012-10-04 国立大学法人富山大学 形質細胞または形質芽細胞の選択方法、目的抗原特異的な抗体の製造方法、新規モノクローナル抗体
US9487583B2 (en) 2011-03-30 2016-11-08 National University Corporation University Of Toyama Method for selecting plasma cells or plasmablasts, method for producing target antigen specific antibodies, and novel monoclonal antibodies
JP2013067527A (ja) * 2011-09-21 2013-04-18 Kiyohara Optics Inc 結晶化プレート
WO2015046505A1 (ja) 2013-09-30 2015-04-02 第一三共株式会社 抗lps o11抗体
EP3835422A1 (en) 2013-09-30 2021-06-16 Daiichi Sankyo Company, Limited Anti-lps o11 antibody
EP4180455A1 (en) 2015-06-29 2023-05-17 Daiichi Sankyo Company, Limited Method for selectively manufacturing antibody-drug conjugate
US10416165B2 (en) 2015-08-10 2019-09-17 National University Corporation University Of Toyama Method for producing antigen specific monoclonal antibody
JP2018057333A (ja) * 2016-10-06 2018-04-12 株式会社リコー 処理キット、処理方法、cDNAの合成方法及び処理装置
WO2020171020A1 (ja) 2019-02-18 2020-08-27 株式会社エヌビィー健康研究所 細胞の選抜方法、核酸の製造方法、組換え細胞の製造方法、目的物質の製造方法、医薬組成物の製造方法、及び試薬
WO2021020282A1 (ja) 2019-07-26 2021-02-04 学校法人埼玉医科大学 Alk2/acvr1の細胞外領域を認識する抗体

Also Published As

Publication number Publication date
CN101939427A (zh) 2011-01-05
EP2246425A4 (en) 2012-05-23
JPWO2009091048A1 (ja) 2011-05-26
CN101939427B (zh) 2014-08-13
CA2712572C (en) 2016-09-13
AU2009205104B2 (en) 2013-11-21
KR20100112163A (ko) 2010-10-18
US20110020879A1 (en) 2011-01-27
JP5244130B2 (ja) 2013-07-24
EP2246425B1 (en) 2013-07-10
EP2246425A1 (en) 2010-11-03
US8993241B2 (en) 2015-03-31
AU2009205104A1 (en) 2009-07-23
KR101530408B1 (ko) 2015-06-19
CA2712572A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5244130B2 (ja) 反応治具及び反応方法、並びにcDNAの合成方法
US8691147B2 (en) Apparatus for processing a sample in a liquid droplet and method of using the same
US9329174B2 (en) Bead trapping method and method for detecting target molecule
AU2021345133A1 (en) Methods of determining the location of an analyte in a biological sample using a plurality of wells
US7785862B2 (en) Thin film coated microwell arrays
Witters et al. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications
JP4972636B2 (ja) 薄膜コーティングで被覆されたマイクロウェルアレイおよびそれを製造する方法
JP2022547801A (ja) 液滴操作のための方法およびシステム
US20050026346A1 (en) Device for the manipulation of limited quantities of liquids
JP5719313B2 (ja) 免疫蛍光計測のための官能化マイクロ流体デバイス
DK2809799T3 (en) Rotatable Nucleic Acid Sequencing Lead Platform
Cleveland et al. Nanoliter dispensing for uHTS using pin tools
JP6668336B2 (ja) 非混和性液体を分離して少なくとも1つの液体を効果的に単離する方法及び装置
De Bruyker et al. Rapid mixing of sub-microlitre drops by magnetic micro-stirring
US20130102501A1 (en) Device for recovery and isolation of biomolecules
Hsin et al. Single‐Molecule Reactions in Liposomes
JP2006519384A (ja) 極小の高さのリアクターを持つ高集積解析チップとその応用
JP2006519384A5 (ja)
Toppi et al. Photolithographic patterning of fluoracryl for biphilic microwell-based digital bioassays and selection of bacteria
EP4186981A1 (en) Parallel direct isolation and manipulation of nucleic acid from cultured cells in nanoliter droplets
JP2018072134A (ja) 検出方法及びデバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102879.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09703047

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550069

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2712572

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009205104

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009703047

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009205104

Country of ref document: AU

Date of ref document: 20090116

Kind code of ref document: A

Ref document number: 20107017949

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12863185

Country of ref document: US