WO2009090238A1 - Method for preparing a lubricating composition - Google Patents

Method for preparing a lubricating composition Download PDF

Info

Publication number
WO2009090238A1
WO2009090238A1 PCT/EP2009/050483 EP2009050483W WO2009090238A1 WO 2009090238 A1 WO2009090238 A1 WO 2009090238A1 EP 2009050483 W EP2009050483 W EP 2009050483W WO 2009090238 A1 WO2009090238 A1 WO 2009090238A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
grease
substituted
solution
base oil
Prior art date
Application number
PCT/EP2009/050483
Other languages
English (en)
French (fr)
Inventor
Alan Richard Wheatley
Original Assignee
Shell Internationale Research Maatschappij B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V. filed Critical Shell Internationale Research Maatschappij B.V.
Priority to JP2010542635A priority Critical patent/JP5651018B2/ja
Priority to CN200980102363.3A priority patent/CN101910385B/zh
Priority to US12/812,820 priority patent/US20110021392A1/en
Priority to BRPI0906868-6A priority patent/BRPI0906868B1/pt
Priority to RU2010134003/04A priority patent/RU2492217C2/ru
Priority to EP09701564A priority patent/EP2242823B1/en
Publication of WO2009090238A1 publication Critical patent/WO2009090238A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/108Residual fractions, e.g. bright stocks
    • C10M2203/1085Residual fractions, e.g. bright stocks used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/126Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic
    • C10M2207/1265Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids monocarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/125Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids
    • C10M2207/127Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic
    • C10M2207/1276Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of eight up to twenty-nine carbon atoms, i.e. fatty acids polycarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/141Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings monocarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/141Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings monocarboxylic
    • C10M2207/1415Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings monocarboxylic used as thickening agent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/16Naphthenic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/02Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds
    • C10M2219/024Sulfur-containing compounds obtained by sulfurisation with sulfur or sulfur-containing compounds of esters, e.g. fats
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/26Waterproofing or water resistance
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/70Soluble oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/10Semi-solids; greasy

Definitions

  • the present invention relates to a method for preparing a lubricating composition, in particular a grease .
  • Alkyl -substituted quinolines and polymerized derivatives thereof are known as very effective, low cost antioxidants for several uses, including the use in lubricating compositions.
  • WO 94/24235 discloses the use of alkyl -substituted 1 , 2-dihydroquinolines (including monomers, dinners, trimers and tetramers thereof) in motor oils, transmission oils, gear oils, metal working fluids, hydraulic fluids, greases and the like.
  • alkyl -substituted 1, 2-dihydroquinolines are 2 , 2 , 4-trimethyl-l, 2-dihydroquinoline, 2-methyl-2 , 4 ⁇ diethyl-1, 2-dihydroquinoline, 2 , 2, 4 , 6-tetramethyl-l, 2 , - dihydroquinoline, 2,2,4, 7-tetramethyl-l, 2, - dihydroquinoline, 6,6' -bis (2,2, 4-trimethyl-l, 2 , - dihydroquinoline) and the like.
  • US 5 246 606 discloses that dimeric, trirneric and tetrameric tetrahydroquinoline derivatives are suitable for stabilising organic materials against light-induced, thermal and/or oxidative degradation. US 5 246 606 suggests to use these compounds amongst others in functional fluids such as lubricants and hydraulic fluids.
  • alkyl-substituted quinolines such as 2,2,4- trimethyl-1 , 2-dihydroquinoline (also referred to as "TMQ”, “TMDQ” and “TMHQ”) and oligomeric (i.e. dimeric, trimeric and tetrameric ⁇ derivatives thereof, are widely used as antioxidants, they have a number of disadvantages .
  • TMQ is in the form of a brittle solid at room temperature and, being usually- in the form of a mixture of monomer and oligomers, it has no well-defined melting point. Although it softens as the temperature increases, it is still a very viscous and stringy material at typical additive addition temperatures of around 80 to 100 0 C.
  • TMQ TMQ is added to lubricating compositions such as greases at this typical temperature range of from 80 to 100 0 C, it will not be suitably dispersed into the grease and will result in e.g. filter blockages in grease ⁇ delivery systems. Even if the filter loading of these grease delivery systems is not enough for the filter to block immediately, some of the antioxidant will have been taken out of the grease, which would then suffer from reduced life as a result.
  • alkyl-substituted quinolines are usually added to greases at temperatures above 150 0 C, usually between 150-160 0 C after the grease has completed its critical cooling phase after establishing the thickener system in the base oil .
  • an associated problem of the known method is that the window of opportunity for adding the alkyl- substituted quinolines is usually narrow, if they are to be dispersed' properly in the grease. If the alkyl- substituted quinolines are added e.g. ten minutes later, this may be too late as the grease may have been cooled too much.
  • a further problem of the known method of adding the alkyl-substituted quinolines to the grease at relatively high temperatures is that more severe health and safety issues need to be taken into account, relating e.g. to the dangers of grease at high temperature and the danger of fumes when the manufacturing vessel has to be opened. It is an object of the present invention to avoid the above problems .
  • a method for preparing a lubricating composition in particular a grease, the method at least comprising the steps of: a) providing a base oil composition optionally containing one or more additives; b) providing a solution of one or more alkyl- substituted quinolines or oligomeric derivatives thereof in a solvent; and c) adding the solution of step b) to the base oil composition of step a) at a temperature below 150 0 C.
  • the alkyl- .substituted quinolines or oligomeric derivatives thereof
  • they can be added at a lower temperature, whilst still obtaining a proper dispersing thereof in the base oil composition.
  • an important advantage of the present invention is that the alkyl-substituted quinolines (or oligomeric derivatives thereof) can be added at a lower temperature, resulting in less severe safety requirements. Also, there is more flexibility in the moment of adding the alkyl ⁇ substituted quinolines (or oligomeric derivatives thereof) , as the specific temperature for adding thereof is less critical than in the case where no solvent is used.
  • the solution of step b) is added at a temperature below 120 0 C, preferably in the range of from 10 to HO 0 C, more preferably from 15 to 100 0 C.
  • the one or more alkyl-substituted quinolines are alkyl-substituted 1, 2-dihydroquinolines (or oligomeric derivatives thereof) .
  • the one or more alkyl -substituted 1, 2-dihydroquinolines have the general formula (I)
  • R 1 -?. 8 are independently selected from hydrogen or an alkyl group having 1-8 carbon atoms; and n is 0, 1, 2 or 3.
  • R 3 ⁇ -R 8 are independently selected from hydrogen or an alkyl group having 1-4 carbon atoms, preferably having 1-2 carbon atoms.
  • R 4 is H. It is even more preferred that R 4 -R 8 are all H. Also it is preferred that R 1- -R 3 are all a methyl group.
  • one or more alkyl substituted 1,2- dihydroquinolines preferably have an average value for n of from 1.0 to 2.0, preferably from 1.3 to 1.6.
  • the one or more alkyl substituted quinolines provided in the solution have a solubility of below 0.1% as determined using ASTM D893.
  • alkyl substituted quinoline compounds (or oligomeric derivatives thereof) as used in the present invention are either commercially available or can be prepared by various reactions that are known in the art . Examples of preparation methods have been given in the above-mentioned WO 94/24235 and US 5 246 606 and references cited therein, the teaching of which is hereby incorporated by reference. Other examples are given in US 4 692 258 and US 3 910 918 and references cited therein, the teaching of which is hereby incorporated by reference as well.
  • the solvent comprises a polyglycol, more preferably a polyalkylene glycol.
  • Polyglycols are well known in the art and are not further discussed here in detail.
  • the polyalkylene glycols may exhibit alkylene oxide units with 1 to 6 carbon atoms (-
  • the polyalkylene glycols may exhibit hydrogen end groups, alkyl, aryl, alkylaryl, aryloxy, alkoxy, alkylaryloxy and/or hydroxy end groups.
  • Alkylaryloxy groups should also be understood to mean arylalkyl (ene)oxy groups and alkylaryl groups to mean arylalkyl (ene) groups (e.g. aryl CH 2 CH 2 -).
  • the end groups of the alkyl type, including the alkoxy type, or of the aryl types, including the alkylaryl type, aryloxy type and alkylaryloxy type preferably exhibit 6 to 24 carbon atoms, particularly preferably 6 to 18 carbon atoms, based on the aryl types, and preferably 1 to 12 carbon atoms, based on the alkyl types.
  • polyalkylene glycols according to the invention may be either homopolymers, namely polypropylene glycol - S -
  • the monomer units may exhibit a random distribution or a block structure.
  • the polyalkylene glycols are not homopolymers , preferably at least 20%, preferably at least 40% of all monomer units are producible from polypropylene oxide (PO) , and also preferably, at least 20% of all monomer units of these polyalkylene glycols are producible by using ethylene oxide (EO) (PO/EO copolymers ⁇ .
  • PO polypropylene oxide
  • EO ethylene oxide
  • preferably at- least 20%, preferably at least 40% of all monomer units are obtainable from butylene oxide (BO) and, moreover, preferably at least 20% of all monomer units of these polyalkylene glycols are obtainable by using ethylene oxide (BO/EO copolymers) .
  • BO butylene oxide
  • preferably at least 20% of all monomer units of these polyalkylene glycols are obtainable by using ethylene oxide (BO/EO copolymers) .
  • (poly) alcohols the starting compound is incorporated into the polymer and, according to the meaning of the invention, also referred to as end group of the polymer chain.
  • Suitable starting groups consist of compounds comprising active hydrogen such as e.g.
  • n ⁇ butanol propylene glycol, ethylene glycol, neopentyl glycols such as pentaerythritol , ethylene diamine, phenol, cresol or other (Cl to C16 (mono, di or tri) alkyl) aromatics, (hydroxyalkyl) aromatics, hydroquinone , aminoethanolamines, triethylenetetramines, polyamines, sorbitol or other sugars.
  • C-H acidic compounds such as carboxylic acids or carboxylic anhydrides can also be used as starting compounds.
  • the polyalkylene glycols comprise aryl groups or corresponding heteroaromatic groups, e.g. inserted into the polymer chain, as side groups or end groups; the groups may, if necessary, be substituted with linear or branched alkyl groups or alkylene groups, the alkyl groups or alkylene groups overall exhibiting preferably 1 to 18 carbon atoms.
  • Cyclic ether alcohols such as hydroxyfurfuryl or hydroxytetrahydrofuran, nitrogen heterocyclics or sulphur heterocyclics can also be used as starting groups.
  • Such polyalkylene glycols are disclosed in WO 01/57164, the teaching of which is herewith incorporated by reference.
  • the polyalkylene glycols according to ⁇ the invention have an average molecular weight (number average) of 200 to 3000 g/raole, more preferably 400 to 2000 g/mole.
  • the kinematic viscosity of the polyalkylene glycols is preferably 10 to 400 mm 2 /s (cSt) measured at 4O 0 C according to DIN 51562.
  • the polyalkylene glycols used according to the invention can be produced by reacting alcohols, including polyalcohols, as starting compounds with oxiranes such as ethylene oxide, propylene oxide and/or butylene oxide. Following the reaction, these possess only one free hydroxy group as end group. Polyalkylene glycols with only one hydroxy group are preferred over those with two free hydroxy groups. Polyalkylene glycols which, e.g. after a further etherification step, comprise no free hydroxy groups any longer are particularly preferred regarding the stability, hygroscopicity and compatibility. The alkylation of terminal hydroxyl groups leads to an increase in the thermal stability.
  • the PAG base oil comprises end-capped PAG, i.e. where no free hydroxyl groups are present.
  • neopentyl polyolesters instead of the polyalkylene glycols described above.
  • the esters of neopentyl polyols such as neopentyl glycol, pentaerythritol and trimethylol propane with linear or branched C4 to C 1 2 mono ⁇ arboxylic acids, e.g. with addition of corresponding dicarboxylic acids are suitable neopentyl polyolesters.
  • pentaerythritol is obtainable as technical grade pentaerythritol which is a mixture of monopentaerythritol, dipentaerythritol and tripentaerythritol .
  • dipentaerythritol and/or tripentaerythritol are also suitable as alcohol components.
  • Pentaerythritol or mixtures with dipentaerythritol and/or tripentaerythritol, preferably mixtures comprising predominantly dipentaerythritol are particularly suitable.
  • Complex esters can be produced by proportional esterification of polyhydric alcohols with monovalent and divalent acids such as C 4 to Ci 2 dicarboxylic acids. In this way, dimers and oligomers are formed. When using neopentyl glycol and/or trimethylol propane as alcohol group, complex esters are preferred.
  • base oil composition used in the method according to the present invention, and various conventional mineral oils and synthetic oils may be conveniently used.
  • base oil is meant to also include a grease base stock.
  • the base oil composition used in the present invention may conveniently comprise mixtures of one or more mineral oils and/or one or more synthetic oils.
  • Mineral oils include liquid petroleum oils and solvent-treated or acid-treated mineral lubricating oil of the paraffinic, naphthenic, or mixed paraffinic/naphthenic type which may be further refined by hydrofinishing processes and/or dewaxing.
  • Suitable base oils for use in the lubricating oil composition of the present invention are Group I, Group II or Group III base oils, polyalphaolefins, Fischer- Tropsch derived base oils and mixtures thereof.
  • Group I base oil By “Group I” base oil, “Group II” base oil and “Group III” base oil in the present invention are meant lubricating oil base oils according to the definitions of American Petroleum Institute (API) categories I, II and III. Such API categories are defined in API Publication 1509, 15th Edition, Appendix E, April 2002.
  • API American Petroleum Institute
  • Suitable Fischer-Tropsch derived base oils that may be conveniently used as the base oil in the lubricating oil composition of the present invention are those as for example disclosed in EP 0 776 959, EP 0 668 342, WO 97/21788, WO 00/15736, WO 00/14188, WO 00/14187, WO 00/14183, WO 00/14179, WO 00/08115, WO 99/41332, EP 1 029 029, WO 01/18156 and WO 01/57165.
  • Synthetic oils include hydrocarbon oils such as olefin oligomers (PAOs) , dibasic acid esters, polyol esters, and dewaxed waxy raffinate. Synthetic hydrocarbon base oils sold by the Shell Group under the designation "XHVI” (trade mark) may be conveniently used.
  • PAOs olefin oligomers
  • XHVI XHVI
  • the total amount of base oil incorporated in the lubricating composition of the present invention is preferably present in an amount in the range of from 60 to 92 wt. %, more preferably in an amount in the range of from 75 to 90 wt . % and most preferably in an amount in the range of from 75 to 88 wt.%, with respect to the total weight of the lubricating composition.
  • the final lubricating composition may further comprise one or more additives such as anti- oxidants, anti-wear agents, dispersants, detergents, friction modifiers, viscosity index improvers, pour point depressants, tackifying agents, corrosion inhibitors, demulsifiers, defoaming agents and seal fix or seal compatibility agents, etc.
  • additives such as anti- oxidants, anti-wear agents, dispersants, detergents, friction modifiers, viscosity index improvers, pour point depressants, tackifying agents, corrosion inhibitors, demulsifiers, defoaming agents and seal fix or seal compatibility agents, etc.
  • the additives may be added to the base oil composition before or after the one or more alkyl- substituted quinolines are added in step c) . Also, if appropriate, the additives may also be added at the same time with the one or more alkyl-substituted quinolines.
  • Said additives are typically present in an amount in the range of from 0.01 to 12.5 wt.%, based on the total weight of the lubricating composition, preferably in an amount in the range of from 0.05 to 10.0 wt.%, more preferably from 1.0 to 9.0 wt . % and most preferably in the range of from 2.0 to 5.0 wt.%, based on the total weight of the lubricating composition.
  • the base oil as contained in the lubricating composition may contain or be compounded with one or more thickeners such as metallic soaps, organic substances or inorganic substances, for example, lithium soaps, lithium complex soaps, sodium terephthalate, urea/urethane compounds and clays .
  • thickeners such as metallic soaps, organic substances or inorganic substances, for example, lithium soaps, lithium complex soaps, sodium terephthalate, urea/urethane compounds and clays .
  • the lubricating composition has a kinematic viscosity in the range of from 2 to 80 mm 2 /s at 100 0 C, more preferably in the range of from 3 to
  • the lubricating compositions of the present invention may be conveniently prepared by admixing the one or more base oils and, optionally, one or more additives that are usually present in lubricating compositions, for example as herein before described, with mineral and/or synthetic base oil.
  • the one or more alkyl- substituted quinoline compounds (or oligomeric derivatives thereof) have a sufficiently small particle size (e.g. below 50 ⁇ m, preferably below 20 ⁇ m) to allow easy dispersion thereof in the lubricating composition.
  • the present invention provides a lubricating composition, in particular a grease, obtained by the method according to the present invention.
  • the present invention is described below with reference to the following Examples, which are not intended to limit the scope of the present invention in any way. Examples
  • a 500 ml 50 % na/m solution of oligomeric 2,2,4- trimethyl-1, 2-dihydroquinoline (solid; available from Rhein Ghemie Rheinau GmbH under the trade designation "Additin RC7010”) in polyalkylene glycol (available from The Dow Chemical Company, USA under the trade designation "Oxilube 504") was prepared by heating the polyalkylene glycol to 100 0 C before adding the oligomeric 2,2,4- trimethyl-1, 2-dihydroquinoline.
  • the oligomeric 2,2,4- trimethyl-1 , 2-dihydroquinoline was added slowly over about two minutes, allowing it to disperse throughout the fluid before adding more. The mixture thus obtained was stirred for a further 30 minutes at 100 0 C. A stable, homogeneous solution was formed.
  • Solution B Similar to Solution A, a 500 ml 50 % m/m solution of oligomeric 2 , 2 , 4 -trimethyl-1 , 2 ⁇ dihydroquinoline in polyglycol (available from The Dow Chemical Company, USA under the trade designation "Synalox 50-50B") was prepared. A stable, homogeneous solution was formed.
  • Synynalox 50-50B polyglycol
  • a grease was prepared using the above mentioned Solution A (50 ml) and a conventional grease base stock (4950 g) .
  • the conventional grease base stock contained about 10% m/m lithium complex thickener and about 90% m/m paraffinic mineral base oil blended from SN 500 and bright stock (viscosity at 40 0 C of 180 ⁇ nm 2 /s according to ASTM D445) .
  • the conventional grease base stock also contained an antiwear additive (a zinc dialkyl dithiophosphate) , an extreme pressure additive (a sulphurised ester) and a rust inhibitor (a zinc naphthenate) .
  • the grease base stock and Solution A were simply mixed during 30 minutes using a laboratory paddle mixer, after both had been previously heated to 80 0 C before mixing.
  • a grease was prepared using the same amount of oligomeric 2 , 2 ,4-trimethyl- 1, 2-dihydroquinoline ⁇ without the solvent) and the same grease base stock of Examples 1 and 2.
  • the grease base stock was heated to about 16O 0 C. Then, a part of the solid oligomeric 2 , 2, 4-trimethyl-l, 2- dihydroquinoline was added to the heated grease base stock and left at this temperature for about 10 minutes. Mixing took place using a laboratory paddle mixer until the mixture had reached the temperature of about 6O 0 C.
  • the present invention allows adding the alkyl-substituted quinolines or oligomeric derivatives thereof at a significant lower temperature, whilst still obtaining a stable grease having desired properties. It goes without saying that this is highly desired from a health and safety perspective as well as from a practical manufacturing perspective .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
PCT/EP2009/050483 2008-01-16 2009-01-16 Method for preparing a lubricating composition WO2009090238A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010542635A JP5651018B2 (ja) 2008-01-16 2009-01-16 潤滑組成物の製造方法
CN200980102363.3A CN101910385B (zh) 2008-01-16 2009-01-16 制备润滑组合物的方法
US12/812,820 US20110021392A1 (en) 2008-01-16 2009-01-16 Method for preparing a lubricating composition
BRPI0906868-6A BRPI0906868B1 (pt) 2008-01-16 2009-01-16 Method for preparing a lubricant composition
RU2010134003/04A RU2492217C2 (ru) 2008-01-16 2009-01-16 Способ получения смазывающей композиции
EP09701564A EP2242823B1 (en) 2008-01-16 2009-01-16 Method for preparing a grease composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08100550 2008-01-16
EP08100550.6 2008-01-16

Publications (1)

Publication Number Publication Date
WO2009090238A1 true WO2009090238A1 (en) 2009-07-23

Family

ID=39456435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/050483 WO2009090238A1 (en) 2008-01-16 2009-01-16 Method for preparing a lubricating composition

Country Status (8)

Country Link
US (1) US20110021392A1 (pt)
EP (1) EP2242823B1 (pt)
JP (1) JP5651018B2 (pt)
CN (1) CN101910385B (pt)
AR (1) AR070686A1 (pt)
BR (1) BRPI0906868B1 (pt)
RU (1) RU2492217C2 (pt)
WO (1) WO2009090238A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162020A1 (en) * 2011-05-26 2012-11-29 The Lubrizol Corporation Stabilized blends containing antioxidants
EP3336161A4 (en) * 2015-08-10 2019-02-27 NTN Corporation LUBRICANT COMPOSITION AND LUBRICATING SEALANT BEARING BEARING

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2660479T3 (es) 2011-12-27 2018-03-22 Arçelik Anonim Sirketi Dispositivo de cocción
JP6262916B2 (ja) * 2014-09-19 2018-01-17 ヴァンダービルト ケミカルズ、エルエルシー ポリアルキレングリコール系工業用潤滑剤組成物
JP7108373B2 (ja) * 2016-10-21 2022-07-28 Ntn株式会社 玉軸受

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB808596A (en) * 1956-02-24 1959-02-04 California Research Corp High temperature greases stabilized against oxidation
US2908646A (en) 1956-01-24 1959-10-13 Texaco Inc Lubricating greases contining polymerized dihydroquinolines
US3910918A (en) 1971-04-26 1975-10-07 Heliodoro Monroy 1,2-Dihydroquinolines and process and apparatus for the obtention thereof
US4692258A (en) 1981-08-10 1987-09-08 Ciba-Geigy Corporation Tetrahydroquinolines as antioxidants for lubricants
US5246606A (en) 1991-01-31 1993-09-21 Ciba-Geigy Corporation Process of stabilizing lubricants, or functional fluids and a composition therefor
WO1994024235A1 (en) 1993-04-13 1994-10-27 Uniroyal Chemical Company, Inc. Lubricant composition containing antioxidant
EP0668342A1 (en) 1994-02-08 1995-08-23 Shell Internationale Researchmaatschappij B.V. Lubricating base oil preparation process
EP0776959A2 (en) 1995-11-28 1997-06-04 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
WO1997021788A1 (en) 1995-12-08 1997-06-19 Exxon Research And Engineering Company Biodegradable high performance hydrocarbon base oils
WO1999041332A1 (en) 1998-02-13 1999-08-19 Exxon Research And Engineering Company Low viscosity lube basestock
WO2000008115A1 (en) 1998-08-04 2000-02-17 Exxon Research And Engineering Company A lubricant base oil having improved oxidative stability
WO2000014179A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricant base stock
WO2000014188A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium wear resistant lubricant
WO2000014183A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Production on synthetic lubricant and lubricant base stock without dewaxing
WO2000014187A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricants
WO2000015736A2 (en) 1998-09-11 2000-03-23 Exxon Research And Engineering Company Wide-cut synthetic isoparaffinic lubricating oils
EP1029029A1 (en) 1997-10-20 2000-08-23 Mobil Oil Corporation Isoparaffinic lube basestock compositions
WO2001018156A1 (fr) 1999-09-08 2001-03-15 Total Raffinage Distribution S.A. Nouvelle huile de base hydrocarbonee pour lubrifiants a indice de viscosite tres eleve
WO2001057166A1 (en) 2000-02-04 2001-08-09 Mobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
WO2001057164A1 (en) 2000-02-02 2001-08-09 Laporte Performance Chemicals Uk Limited Lubricating oils comprising polyoxyalkylenglycol derivates
US20060205613A1 (en) * 2005-03-14 2006-09-14 Kyodo Yushi Co., Ltd. Grease composition for harnesses

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649800A (en) * 1979-09-29 1981-05-06 Daihatsu Motor Co Ltd Grease composition for brake or clutch
JPS57115493A (en) * 1981-01-05 1982-07-17 Sumitomo Chem Co Ltd Antioxidant for lubricating oil
JPS63162791A (ja) * 1986-12-26 1988-07-06 Kyodo Yushi Kk グリ−ス組成物
SU1567612A1 (ru) * 1988-08-23 1990-05-30 Днепропетровский химико-технологический институт им.Ф.Э.Дзержинского Смазка дл холодной обработки металлов давлением
JP3819579B2 (ja) * 1998-02-06 2006-09-13 株式会社ジェイテクト 生分解性グリース組成物
JP2002309250A (ja) * 2001-04-09 2002-10-23 Toyo Fine Kk 酸化防止剤可溶化剤、組成物、製造方法および配合油
US7265080B2 (en) * 2002-06-12 2007-09-04 Nsk Ltd. Rolling bearing, rolling bearing for fuel cell, compressor for fuel cell system and fuel cell system
CN1671828B (zh) * 2002-06-28 2012-05-30 新日本石油株式会社 润滑油添加剂,包含这种添加剂的润滑油组合物,以及这种添加剂和组合物的生产方法
US6916768B2 (en) * 2003-02-20 2005-07-12 Chevron U.S.A. Inc. Low noise grease gelling agents
MX221601B (en) * 2004-05-14 2004-07-22 Basf Ag Functional fluids containing alkylene oxide copolymers having low pulmonary toxicity

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2908646A (en) 1956-01-24 1959-10-13 Texaco Inc Lubricating greases contining polymerized dihydroquinolines
GB808596A (en) * 1956-02-24 1959-02-04 California Research Corp High temperature greases stabilized against oxidation
US3910918A (en) 1971-04-26 1975-10-07 Heliodoro Monroy 1,2-Dihydroquinolines and process and apparatus for the obtention thereof
US4692258A (en) 1981-08-10 1987-09-08 Ciba-Geigy Corporation Tetrahydroquinolines as antioxidants for lubricants
US5246606A (en) 1991-01-31 1993-09-21 Ciba-Geigy Corporation Process of stabilizing lubricants, or functional fluids and a composition therefor
WO1994024235A1 (en) 1993-04-13 1994-10-27 Uniroyal Chemical Company, Inc. Lubricant composition containing antioxidant
EP0668342A1 (en) 1994-02-08 1995-08-23 Shell Internationale Researchmaatschappij B.V. Lubricating base oil preparation process
EP0776959A2 (en) 1995-11-28 1997-06-04 Shell Internationale Researchmaatschappij B.V. Process for producing lubricating base oils
WO1997021788A1 (en) 1995-12-08 1997-06-19 Exxon Research And Engineering Company Biodegradable high performance hydrocarbon base oils
EP1029029A1 (en) 1997-10-20 2000-08-23 Mobil Oil Corporation Isoparaffinic lube basestock compositions
WO1999041332A1 (en) 1998-02-13 1999-08-19 Exxon Research And Engineering Company Low viscosity lube basestock
WO2000008115A1 (en) 1998-08-04 2000-02-17 Exxon Research And Engineering Company A lubricant base oil having improved oxidative stability
WO2000014188A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium wear resistant lubricant
WO2000014183A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Production on synthetic lubricant and lubricant base stock without dewaxing
WO2000014187A2 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricants
WO2000014179A1 (en) 1998-09-04 2000-03-16 Exxon Research And Engineering Company Premium synthetic lubricant base stock
WO2000015736A2 (en) 1998-09-11 2000-03-23 Exxon Research And Engineering Company Wide-cut synthetic isoparaffinic lubricating oils
WO2001018156A1 (fr) 1999-09-08 2001-03-15 Total Raffinage Distribution S.A. Nouvelle huile de base hydrocarbonee pour lubrifiants a indice de viscosite tres eleve
WO2001057164A1 (en) 2000-02-02 2001-08-09 Laporte Performance Chemicals Uk Limited Lubricating oils comprising polyoxyalkylenglycol derivates
WO2001057166A1 (en) 2000-02-04 2001-08-09 Mobil Oil Corporation Formulated lubricant oils containing high-performance base oils derived from highly paraffinic hydrocarbons
US20060205613A1 (en) * 2005-03-14 2006-09-14 Kyodo Yushi Co., Ltd. Grease composition for harnesses

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"API Publication", April 2002, pages: 1509
W.R. VAUGHAN: "Organic synthesis", COLLECTIVE, vol. III, 1955, pages 329 - 30

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162020A1 (en) * 2011-05-26 2012-11-29 The Lubrizol Corporation Stabilized blends containing antioxidants
US9650587B2 (en) 2011-05-26 2017-05-16 The Lubrizol Corporation Stabilized blends containing antioxidants
EP3336161A4 (en) * 2015-08-10 2019-02-27 NTN Corporation LUBRICANT COMPOSITION AND LUBRICATING SEALANT BEARING BEARING
US10597598B2 (en) 2015-08-10 2020-03-24 Ntn Corporation Grease composition and grease-sealed roller bearing

Also Published As

Publication number Publication date
BRPI0906868B1 (pt) 2017-12-05
CN101910385A (zh) 2010-12-08
BRPI0906868A2 (pt) 2015-07-07
JP5651018B2 (ja) 2015-01-07
JP2011514912A (ja) 2011-05-12
US20110021392A1 (en) 2011-01-27
RU2492217C2 (ru) 2013-09-10
EP2242823A1 (en) 2010-10-27
CN101910385B (zh) 2014-03-05
RU2010134003A (ru) 2012-02-27
EP2242823B1 (en) 2013-03-13
AR070686A1 (es) 2010-04-28

Similar Documents

Publication Publication Date Title
RU2555703C2 (ru) Смазочные композиции
US4302343A (en) Rotary screw compressor lubricants
US9708564B2 (en) Use of carboxylic acid esters as lubricants
JP6033303B2 (ja) 改善された酸化安定性と耐用寿命を有する潤滑剤組成物
EP2456845A2 (en) Polyalkylene glycols useful as lubricant additives for groups i-iv hydrocarbon oils
EP2242823B1 (en) Method for preparing a grease composition
CN107001969A (zh) 基于聚亚烷基二醇的工业润滑剂组合物
JP2954744B2 (ja) 潤滑油組成物
WO2018144301A1 (en) Low transition temperature mixtures and lubricating oils containing the same
EP2147967A1 (en) Thermally stable zinc-free antiwear agent
WO2019110355A1 (en) Branched adipic acid based esters as novel base stocks and lubricants
CN107922878B (zh) 具有聚亚烷基二醇和不饱和酯的流体
JP3229652B2 (ja) 潤滑油組成物
EP3935146B1 (en) Polyalkylene glycol lubricant compositions
US11479734B2 (en) Synthetic lubricant compositions having improved oxidation stability
US10752860B2 (en) Lubricant composition
EP3475400B1 (en) Lubricant composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102363.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009701564

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4243/CHENP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010542635

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010134003

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12812820

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0906868

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100714