WO2009088056A1 - 熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法 - Google Patents

熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法 Download PDF

Info

Publication number
WO2009088056A1
WO2009088056A1 PCT/JP2009/050171 JP2009050171W WO2009088056A1 WO 2009088056 A1 WO2009088056 A1 WO 2009088056A1 JP 2009050171 W JP2009050171 W JP 2009050171W WO 2009088056 A1 WO2009088056 A1 WO 2009088056A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
heat treatment
treatment furnace
exhaust gas
component
Prior art date
Application number
PCT/JP2009/050171
Other languages
English (en)
French (fr)
Inventor
Takanobu Sakurai
Shinichi Ueno
Original Assignee
Nikki-Universal Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki-Universal Co., Ltd. filed Critical Nikki-Universal Co., Ltd.
Priority to JP2009548958A priority Critical patent/JP5366830B2/ja
Publication of WO2009088056A1 publication Critical patent/WO2009088056A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths

Definitions

  • the present invention relates to the volatility generated from a resist agent when heat-treating a component (hereinafter referred to as a material to be baked) with a resist agent as a film forming material applied to a substrate used for a liquid crystal display or the like.
  • the present invention relates to a catalyst for purifying exhaust gas containing any organic compound, a method for treating exhaust gas using the catalyst, and a method for preventing contamination of a heat treatment furnace using the catalyst.
  • a film forming material (hereinafter referred to as a resist agent) containing a photosensitive resin binder, a thermosetting resin, a solvent, etc. is used to form a black matrix on the surface of a glass substrate.
  • the object to be fired applied to the glass substrate is transported to a heat treatment apparatus (hereinafter referred to as a heat treatment furnace), heated to a predetermined temperature in the furnace, the resist agent is dried, and then subjected to a firing treatment (hereinafter referred to as these). This is called heat treatment.
  • a fired product in which a resist agent is applied (printed) on the surface of a glass substrate is used in a heat treatment furnace. Heat treatment is performed by exposure to hot air at a predetermined temperature.
  • a resist agent is used and a baking process is performed.
  • a gas containing a volatile organic compound (hereinafter referred to as exhaust gas) is a heat treatment furnace. Occur in large quantities.
  • this exhaust gas is cooled in the opening of the furnace, in the vicinity of the gap or in the exhaust gas circulation passage, the organic compounds in the exhaust gas solidify into particles, tars or particles, which can be used in the heat treatment furnace or in the exhaust system.
  • problems such as contamination or blockage, leakage to the outside of the furnace, and contamination of the clean room.
  • the organic compound contained in the resist agent examples include the following; that is, the binder component includes acrylic derivatives, epoxy resins, silicone resins, hydroxypropylcellulose, hydroxyethylcellulose, methylcellulose, carboxymethylcellulose and other cellulose derivatives or The modified product, amide resin, phenol resin, polystyrene resin and the like are used, and polysilane, siloxane compound, silyl compound, silazane compound and the like are used as the silicon binder.
  • the binder component includes acrylic derivatives, epoxy resins, silicone resins, hydroxypropylcellulose, hydroxyethylcellulose, methylcellulose, carboxymethylcellulose and other cellulose derivatives or The modified product, amide resin, phenol resin, polystyrene resin and the like are used, and polysilane, siloxane compound, silyl compound, silazane compound and the like are used as the silicon binder.
  • dispersion medium or solvent component contained in the resist agent examples include isopropyl alcohol, ethylene glycol, glycerin, ethyl cellosolve, toluene, xylene, methyl ethyl ketone, cyclohexanone, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether.
  • One or a plurality of these organic compounds contained in the resist agent and the polymer newly produced by heating to the drying or baking temperature are volatilized or sublimated in the heat treatment furnace, and as a result, the organic compounds are converted into the furnace. It is contained in the air and becomes exhaust gas.
  • the conventional oxidation catalyst converts the organic compound generated by evaporation of the solvent in the resist agent into CO 2 and H 2 O, but is generated at a higher temperature, that is, at a firing temperature such as 200 to 300 ° C.
  • the organic compound that does the sublimation of the binder resin, that is, the oxidative decomposition action is not effectively exhibited, and the production of partial oxides such as carbon monoxide (CO), formaldehyde, and acetaldehyde is caused.
  • the exhaust gas after that may generate irritating odors and odors, and undecomposed sublimation components remain in the exhaust gas after the catalyst treatment, which adheres to the wall surface of the furnace and the exhaust pipe and contaminates the furnace.
  • Patent Documents 8 and 9 Japanese Patent Laid-Open No. 2001-241862 JP 2002-257314 A JP 2003-214772 A JP 2004-316987 A JP 2005-37024 A JP 2005-71632 A JP 2006-17357 A International Publication No. 05/94991 Pamphlet JP 2006-314867 A
  • an object of the present invention is to provide a new catalyst for purifying exhaust gas by oxidizing an organic compound contained in exhaust gas generated in a heat treatment furnace for baking the object to be fired coated with a resist agent.
  • Another object is to provide a method for purifying exhaust gas in a heat treatment furnace using the catalyst.
  • Still another object is to provide a method for preventing contamination of the heat treatment furnace.
  • the present inventor has found a new catalyst for solving the above-mentioned problems and has completed the present invention. That is, the present invention is as the following Inventions 1 to 3.
  • Invention 1 is a catalyst for decomposing a volatile organic compound generated from a resist agent when the heated component coated with the resist agent is heat-treated in a heat treatment furnace, the catalyst comprising zeolite particles (component 1), noble metal Is a catalyst for purification of exhaust gas from a heat treatment furnace, containing inorganic oxide particles (component 2) supporting bismuth in a weight ratio of component 1: component 2 of 90:10 to 10:90.
  • the invention 2 includes a step of heat-treating a heated part coated with a resist agent in a heat treatment furnace, and an exhaust gas containing an organic compound volatilized or sublimated from the resist agent by the heat treatment in the catalyst installed in or outside the furnace.
  • a method for purifying exhaust gas from a heat treatment furnace comprising a step of decomposing the organic compound by contacting with the catalyst described above.
  • Invention 3 is a process in which a heated part coated with a resist agent is heat-treated in a heat treatment furnace, and an exhaust gas containing an organic compound volatilized or sublimated from the resist agent by the heat treatment is supplied to the catalyst installed in or outside the furnace.
  • a method for preventing contamination of a heat treatment furnace comprising a step of decomposing the organic compound by contacting with the catalyst described above.
  • the amount of noble metal used for the honeycomb catalyst per unit volume can be reduced, and the economic effect is great.
  • the size of the support such as a honeycomb can be reduced, installation in a limited heat treatment furnace space is facilitated, and high-speed processing is possible. Etc. are obtained.
  • FIG. 1 shows a reaction apparatus for evaluating a catalyst.
  • FIG. 2 is a chart showing the dirt reduction rate in the catalyst in which the mixing ratio of component 1 and component 2 is changed.
  • Decomposition experiment conducted using the ratio of component 1 to the total weight of component 1 (HY) and component 2 (Pt / Al 2 O 3 ) of catalysts A, B, 1, 2 and 3 on the horizontal axis Among the results, the dirt reduction rate in Table 1 is shown on the vertical axis. In the figure, from the left of the measured value point, they are catalyst B, 2, 1, 3, and A, respectively.
  • the object to which the catalyst of the present invention is applied is a heat treatment furnace such as a drying furnace, a debinding furnace, and a baking furnace for processing an object to which a resist agent is applied, and a hot air generator for supplying heated air to these furnaces.
  • a heat treatment furnace such as a drying furnace, a debinding furnace, and a baking furnace for processing an object to which a resist agent is applied
  • a hot air generator for supplying heated air to these furnaces.
  • these are called heat treatment furnaces.
  • the catalyst of the present invention is a catalyst for decomposing a volatile organic compound generated from a resist agent when the heated part coated with the resist agent is heat-treated in a heat treatment furnace, and the catalyst comprises zeolite particles (component 1) and The inorganic oxide particles (component 2) supporting noble metal are contained in a weight ratio of component 1: component 2 in a ratio of 90:10 to 10:90.
  • the zeolite (component 1) used in the present invention may be a natural product or a synthetic product.
  • natural zeolites include mordenite, erionite, ferrierite, and chapasite.
  • synthetic products include Y-type zeolite; MFI-type zeolite such as ZSM-5; and ⁇ -type zeolite.
  • zeolite having a molar ratio of silica to alumina (SiO 2 / Al 2 O 3 molar ratio) of 5 to 900 is used.
  • a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 5 or more and 100 or less, more preferably 5 to 50 is preferable to use a zeolite having a SiO 2 / Al 2 O 3 molar ratio of 5 or more and 100 or less, more preferably 5 to 50.
  • the zeolite may be proton type (H type) or metal substitution type (including ammonium substitution).
  • H type of Y type zeolite may be denoted as HY.
  • the zeolite used in the present invention includes an FCC (fluid catalytic cracking) catalyst used in a petroleum refining process.
  • the FCC catalyst contains 10 to 40% by weight of alumina and 90 to 60% by weight of silica, and is used for producing a gasoline fraction from heavy oil, but is suitable as component 1 of the catalyst of the present invention.
  • the particle size of the zeolite is not particularly limited, but when mixed with inorganic oxide particles supporting a precious metal of component 2 and forming this catalyst layer on a support such as a honeycomb, both particles are dispersed and contacted.
  • the particle size is preferably in the range of 0.1 ⁇ m to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m.
  • Inorganic oxide particles carrying precious metal Another component of the catalyst of the present invention is an inorganic oxide particle comprising inorganic oxide particles supporting one or more precious metal components selected from Pt, Pd, Rh, Ir, Ru, and alloys thereof.
  • the component 2 may be expressed as noble metal-supported inorganic particles.
  • Inorganic oxides include alumina (Al 2 O 3 ), zirconia (ZrO 2 ), titania (TiO 2 ), silica (SiO 2 ), ceria (CeO 2 ), and titania / alumina composite oxide (TiO 2 ⁇ Al 2 O).
  • the CeO 2 .ZrO 2 composite oxide may contain one or more of lanthanum (La), praseodymium (Pr), yttrium (Y), and neodymium (Nd).
  • the particle size of the component 2 is not particularly limited, but when mixed with the component 1 particles and forming a catalyst layer on a support such as a honeycomb, it is preferable to improve dispersion and contact of both particles. Therefore, the particle diameter is preferably in the range of 0.1 ⁇ m to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m.
  • the amount of the noble metal supported on the inorganic oxide particles of component 2 is usually in the inorganic oxide particles so that the noble metal content in the catalyst after mixing with component 1 can satisfy 50 wt ppm to 5 wt%.
  • the metal content is preferably set in the range of 100 ppm by weight to 10% by weight.
  • Al 2 O 3 particles carrying 1.0% by weight of Pt may be expressed as Pt (1.0) / Al 2 O 3 .
  • the inorganic oxide particles carrying the noble metal can be prepared by impregnating the aqueous solution of the noble metal compound with the inorganic oxide particles, then drying and then firing, but the present invention is not limited thereto.
  • Pt / ZrO 2 particles for example, by impregnating the ZrO 2 particles in an aqueous solution of platinum dinitro diammine complex, it was dried at 100 ⁇ 0.99 ° C., then calcined at 400 ⁇ 600 ° C., hydrogen reduction if necessary Is obtained.
  • the catalyst of the present invention comprises a mixture of the zeolite particles (component 1) and the noble metal-supported inorganic oxide particles (component 2), and the noble metal content relative to the total weight of the zeolite and the inorganic oxide in the catalyst. Is 50 wt ppm to 5 wt%, preferably 100 wt ppm to 5 wt%.
  • the precious metal content in the catalyst is set in light of the temperature and space velocity at which the catalyst comes into contact with the exhaust gas, but if it is less than 50 ppm by weight, the oxidation reaction may be insufficient, while it exceeds 5% by weight. However, there is no further improvement in the oxidation reaction, which is uneconomical.
  • the catalyst of the present invention comprises one or more of component 1 and one or more of component 2 in a weight ratio of 90:10 to 10:90, preferably 85: It is prepared by mixing at a ratio of 15 to 30:70, more preferably 80:20 to 30:70.
  • the proportion of component 2 is less than 10%, the action of the oxidation catalyst becomes insufficient, and the content of aldehyde and undecomposed content in the exhaust gas after the catalyst treatment becomes high.
  • component 1 and component 2 have a synergistic action to improve the oxidative decomposition action on the sublimable organic compound generated from the resist agent, thereby preventing contamination of the heat treatment furnace.
  • the catalyst of the present invention contains component 1 and component 2 as essential components, but does not exclude the inclusion of other components as long as it does not inhibit the function of the catalyst of the present invention.
  • the catalyst may be carried on a honeycomb or the like, or a binder component used in the form of a granulated body, for example, clay, SiO 2 or Al 2 O 3 may be included.
  • Component 2 for example, Pt / Al 2 O 3, is known per se as an oxidation catalyst, and is known as an exhaust gas treatment catalyst for a heat treatment furnace (eg, Patent Document 1).
  • the organic compound generated by volatilization or sublimation generated from the resist agent is not easily decomposed by the component 2 alone, and an aldehyde is easily generated by incomplete oxidation.
  • component 1 and component 2 in the above ratio, the effect of component 2 is remarkably improved, and the problem that the amount of aldehyde produced by component 2 alone is high is also solved.
  • a high molecular weight organic compound having sublimation properties such as a binder resin in a resist agent is converted into a carbon number by component 1 by catalytic decomposition reaction. It is presumed that this is due to a series of reactions that decompose into a small hydrocarbon, that is, a light hydrocarbon having 1 to 4 carbon atoms and oxidatively decompose component 2 coexisting with the produced light hydrocarbon.
  • the catalyst of the present invention has a small amount of coke-like substance accumulation and a long catalyst life. This effect is also presumed to be due to the interaction due to the coexistence of component 1 and component 2.
  • the catalyst of the present invention comprises component 1 and component 2 in a weight ratio of 90:10 to 10:90.
  • the catalyst having the above composition is usually supported on a catalyst support such as a honeycomb or used in a granulated form, but the form is not limited thereto. Absent.
  • Another embodiment of the catalyst of the present invention is as follows.
  • Embodiment 1 A catalyst (catalyst U-1) provided with a catalyst comprising zeolite as an active ingredient on the upstream side of the exhaust gas flow to be treated, and a catalyst (catalyst D-1) provided with the catalyst of the present invention on the downstream side on the downstream side.
  • -1) is a catalyst system arranged in combination, and a heat treatment furnace gas treatment method using the catalyst system.
  • the catalysts U-1 and D-1 may be either superimposed or separated from each other.
  • Example of catalyst U-1 catalyst containing one or more zeolite particles of HY, ZSM5, mordenite, FCC catalyst.
  • Example of catalyst D-1 Pt / Al 2 O 3 , Pt / TiO 2 , Pt / ZrO 2 , Pd / Al 2 O 3 , one or more inorganic oxide particles, zeolite particles,
  • the catalyst of the present invention which is contained in a weight ratio of 10:90 to 90:10, and the noble metal content in the catalyst is 500 ppm by weight to 5% by weight.
  • Embodiment 2 A catalyst (catalyst U-2) containing a relatively large amount of zeolite and having a relatively small amount of noble metal (catalyst U-2) is disposed on the upstream side of the exhaust gas flow to be treated.
  • the catalysts U-2 and D-2 may be either superimposed or separated from each other.
  • Example of catalyst U-2 Zeolite particles (component 1) and one or more inorganic oxide particles (component 2) of Pt / Al 2 O 3 , Pt / ZrO 2 , Pd / Al 2 O 3 )
  • component 1 Zeolite particles
  • component 2 inorganic oxide particles
  • the noble metal content in the catalyst is 50 wt.
  • the catalyst of the present invention having ppm to 1000 ppm.
  • Example of catalyst D-2 Zeolite particles (component 1) and one or more inorganic oxide particles (component 2) of Pt / Al 2 O 3 , Pt / ZrO 2 , Pd / Al 2 O 3 ) In a weight ratio of 10:90 to 60:40, preferably 15:85 to 50:50, more preferably 20:80 to 50:50, and a noble metal content of 500 ppm to 5 wt. % Of the catalyst of the present invention.
  • the catalyst U-1 or U-2 provided on the upstream side decomposes the organic compounds in the exhaust gas into light hydrocarbons, and then the catalyst D-1 disposed on the downstream side or D-2 ensures that light hydrocarbons are converted to CO 2 and H 2 O.
  • the use of the catalyst according to Embodiment 2 is particularly suitable for use in heat treatment furnaces where the use conditions and exhaust gas conditions are severe and where durability is required because the carbonaceous deposit (coking) on the catalyst U2 provided on the upstream side is particularly small. Is particularly convenient.
  • the catalyst of the present invention is used by being supported on a support suitable for gas treatment.
  • a support suitable for gas treatment Preferred examples of the support include those having a shape such as a honeycomb, a sheet, a mesh, a pipe, a filter, a punching metal, and a foam metal body.
  • the material of the support is not particularly limited, but preferably has heat resistance and corrosion resistance that can withstand the operating temperature, and cordierite, alumina, silica, silica / alumina, carbon fiber, metal fiber, glass fiber, ceramic fiber.
  • the metal foil include stainless steel and titanium. What is necessary is just to carry
  • the catalyst may be processed into spherical or pellet shaped particles having a particle diameter of 0.5 mm to 10 mm and filled into a breathable container or bag for use.
  • a known binder component such as colloidal silica sol, alumina sol, silicate sol, boehmite, zirconia sol is used.
  • the average thickness of the catalyst layer is not particularly limited, but the thickness is suitably 10 ⁇ m or more and 500 ⁇ m or less in view of the effect of the catalyst effectively and considering the economy.
  • the heat treatment furnace exhaust gas purification method of the present invention is a volatility generated by heat treatment of a heated part in which the catalyst of the present invention is disposed in an exhaust gas system inside or outside the heat treatment furnace and to which a resist agent is applied.
  • exhaust gas containing an organic compound is brought into contact with the catalyst to decompose the organic compound.
  • the contact temperature is preferably a temperature necessary for the oxidative decomposition of the organic compound, specifically, a heat treatment temperature or higher, that is, 200 to 350 ° C., preferably 210 to 350 ° C., particularly preferably 220 to 350 ° C. is there.
  • the decomposition activity of the catalyst of the present invention is higher than that of the conventional catalyst, it is difficult to decompose components such as organic compounds that volatilize from the resist agent.
  • 210 ° C. or higher is preferable, and from the viewpoint of energy saving, 350 ° C. or lower is preferable.
  • the space velocity is not limited, but is preferably in the range of 1000 to 100,000 hr ⁇ 1 , although it depends on the amount of exhaust gas generated and the size of the catalyst.
  • the catalyst-treated gas may be discharged out of the furnace or refluxed to the heat treatment furnace. By this treatment, the solvent component evaporated from the resist agent and the sublimated binder resin component can be oxidatively decomposed.
  • a method for preventing contamination of a heat treatment furnace according to the present invention includes a step of heat-treating a heated part coated with a resist agent in a heat treatment furnace (step 1), and an organic compound volatilized or sublimated from the resist agent by the heat treatment.
  • a method for preventing contamination of a heat treatment furnace comprising the step of bringing the exhaust gas containing the catalyst into contact with the catalyst of the present invention installed inside or outside the furnace and converting the organic compound into CO 2 and H 2 O (step 2) It is.
  • the heated part is heat-treated in step 1 and the exhaust gas containing the binder resin sublimated in this step is brought into contact with the catalyst in step 2, the resin is oxidatively decomposed.
  • the contact temperature is preferably a temperature necessary for the oxidative decomposition of the organic compound, specifically, a heat treatment temperature or higher, that is, 200 to 350 ° C., preferably 210 to 350 ° C., particularly preferably 220 to 350 ° C. is there.
  • the following noble metal-supported inorganic oxide particles (component 2) were prepared by the following method. That is, a dinitroaminoplatinum acidic aqueous solution containing a target supported amount of Pt is prepared with respect to the weight of the weighed inorganic oxide particles such as Al 2 O 3 and ion-exchanged water is sufficiently immersed in the inorganic oxide particles. Then, the inorganic oxide particles are sufficiently impregnated with an aqueous solution of platinum in an evaporating dish, then evaporated to dryness, and then calcined at 500 ° C. for 2 hours to carry the specified amount of platinum, as shown below. ⁇ 8 were prepared.
  • Comparative Example 1 (Non-catalyst) Cordierite honeycomb (Nippon Choshi Co., Ltd., 200 cells / square inch) was used in the reaction as it was.
  • a slurry was prepared using 700 g of exchange water. This slurry was applied to a cordierite honeycomb (manufactured by Nippon Choshi Co., Ltd., 200 cells / square inch) by a wash coating method, excess slurry was blown off with compressed air, and dried at 150 ° C. for 3 hours in a dryer.
  • honeycomb type catalyst A in which HY zeolite was supported on the honeycomb support as a catalyst layer.
  • silica sol manufactured by Nissan Chemical Co., Snowtex
  • a honeycomb type catalyst 1 in which a catalyst layer having a weight ratio of HY and Pt / Al 2 O 3 of 50:50 was provided on the honeycomb carrier in the same manner as Catalyst A was obtained. .
  • the Pt content in the catalyst layer of the catalyst 1 is 0.8% by weight (ratio to the total of zeolite and Al 2 O 3 ).
  • the Pt content in the catalyst layer of the catalyst 2 is 0.7% by weight (ratio to the total of zeolite and Al 2 O 3 ).
  • the Pt content in the catalyst layer of the catalyst 4 is 0.75% by weight (ratio to the total of zeolite and TiO 2 ).
  • the HY: Pt / ZrO 2 weight ratio is 50:50 in the same manner as in the catalyst 1 except that the above-mentioned H—Y type zeolite powder and the particles 3 ⁇ Pt (1.5) / ZrO 2 particles> are used.
  • a honeycomb type catalyst 5 provided with a catalyst layer having a composition of 50 was obtained.
  • the Pt content in the catalyst layer of the catalyst 5 is 0.75 wt% (ratio to the total of zeolite and ZrO 2 ).
  • the HY: Pt / CeO 2 weight ratio is 50:50 in the same manner as in the catalyst 1 except that the above-mentioned H—Y type zeolite powder and the above-described particles 6 ⁇ Pt (4.5) / CeO 2 particles> are used.
  • a honeycomb type catalyst 6 provided with a catalyst layer having a composition of 50 was obtained.
  • the Pt content in the catalyst layer of the catalyst 6 is 2.25% by weight (ratio to the total of zeolite and CeO 2 ).
  • Example 7 Catalyst 7 ⁇ HY (50) + Pt / CeO 2 .ZrO 2 (50)>: HY: Pt / CeO 2 .ZrO is the same as catalyst 1 except that the above-mentioned HY type zeolite powder and the above-mentioned particle 7 ⁇ Pt (4.5) / CeO 2 ⁇ ZrO 2 particle> are used.
  • the Pt content in the catalyst layer of the catalyst 7 is 2.25% by weight (ratio to the total of zeolite and CeO 2 .ZrO 2 ).
  • Example 8 Catalyst 8 ⁇ HY (50) + Pt / CeO 2 .ZrO 2 .La 2 O 3 (50)>: HY: Pt in the same manner as in the catalyst 1 except that the above-mentioned HY type zeolite powder and the particles 8 ⁇ Pt (4.5) / CeO 2 .ZrO 2 .La 2 O 3 particles> were used.
  • a honeycomb type catalyst 8 provided with a catalyst layer having a composition in which the weight ratio of / CeO 2 ⁇ ZrO 2 ⁇ La 2 O 3 was 50:50 was obtained.
  • the Pt content in the catalyst layer of the catalyst 8 is 2.25% by weight (ratio to the total of zeolite and CeO 2 .ZrO 2 .La 2 O 3 ).
  • the obtained catalyst was mounted on the reaction apparatus shown in FIG. 1, and the resist evaporation gas was brought into contact therewith, and the composition of the generated decomposition gas and the amount of undecomposed components were measured.
  • an aluminum container 2 for containing a resist agent is installed in a reaction tube 1, and a cylindrical (diameter 21 mm, length 10 mm) honeycomb catalyst 3 is mounted on the downstream side of the container.
  • a collection filter 4 made of glass fiber is provided downstream thereof (collection region). The gas temperature in the collection region was set to 80 to 90 ° C.
  • the main components of the resist agent (R) are as follows: propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, acrylic resin, polyfunctional acrylic monomer, pigment, and solvent.
  • THC total hydrocarbons
  • Apparatus Gas chromatography (Shimadzu GCL4-A type, detector: FID) Column; 20% PEG-20M on Chromosorb / WAW Column temperature: 100 ° C., injection temperature: 150 ° C., detector temperature: 150 ° C. Carrier gas; nitrogen gas 35 ml / min.
  • THC is a value obtained by converting the total of hydrocarbons having 1 to 5 carbon atoms into methane and expressed in ppm by weight.
  • CO measurement Measurement of electrolytic CO analyzer CO 2 : Methanation FID analyzer Measurement of aldehyde: GASTEC detector tube, no. 92L (formaldehyde), No. 91 (acetaldehyde) Measurement of undegraded content: The carbon content was measured by burning the undecomposed resist content collected by the collection filter.
  • C1 is the weight of undecomposed portion collected in the collection filter (Comparative Example 1 in Table 1) when treated with the honeycomb material not supporting the catalyst attached
  • C2 is , The weight of the undecomposed portion of each catalyst.
  • Catalyst B (Comparative Example 3; Pt / Al 2 O 3 )
  • the undecomposed component adhering to the collection filter was 13 mg as the amount of carbon, and the dirt reduction rate was no catalyst (Comparative Example 1). It was 71% compared to) and showed a somewhat good effect in reducing dirt, but the gas after the treatment with the catalyst B contained 2 ppm and 4 ppm of CO and aldehyde, respectively.
  • Catalyst C (Comparative Example 4; Pt / ZrO 2 ) had almost the same results as Catalyst B.
  • the generation of aldehyde is very little or zero, and the undecomposed content in the exhaust gas after treatment is significantly reduced compared to the catalyst B, and the dirt reduction rate is 80-94%. It is apparent that the catalyst of the present invention containing a mixture of zeolite (component 1) and a noble metal-supported inorganic oxide (component 2) has an extremely large antifouling effect in the heat treatment furnace.
  • component 1 is 10 to 90%, especially 10 to 80%, and component 2 is 90 to 10% of the total amount of zeolite (component 1) and noble metal-supported inorganic oxide (component 2).
  • the catalyst of the present invention comprising 90 to 20% in particular had a greatly improved dirt reduction rate as compared with component 1 alone (catalyst A) or component 2 alone (catalyst B).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

 レジスト剤を塗布した被焼成物を焼成する熱処理装置から発生する排ガスを浄化する触媒を提供すること。  ゼオライト粒子(成分1)と、貴金属を担持した無機酸化物粒子(成分2)とを、成分1:成分2の重量比で90:10~10:90の割合で含有してなる、レジスト剤を塗布した熱処理炉排ガスの浄化用触媒。

Description

熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法
 本発明は、液晶デイスプレイ等に使用される基板に膜形成素材であるレジスト剤を塗布した部品(以下これを被焼成物という。)を熱処理装置で熱処理する際に、レジスト剤から発生する揮発性の有機化合物を含んだ排ガスを浄化するための触媒、同触媒を用いた排ガスの処理方法、および同触媒を用いた熱処理炉の汚染防止方法に関する。
 液晶ディスプレイ(LCD)の製造において、ガラス基板の表面にブラックマトリックスを形成するために、感光性樹脂バインダー、熱硬化樹脂、溶剤等を含む膜形成素材(以下レジスト剤という。)が使用され、これがガラス基板に塗布された被焼成物を、熱処理装置(以下熱処理炉という。)に搬送して、炉内で所定の温度に加熱して、レジスト剤を乾燥し、ついで焼成処理(以下、これらを熱処理という。)が行われる。
 プラズマディスプレイ(PDP)パネルの製造においても、同様に、電極や誘電体となる部分を形成するために、レジスト剤をガラス基板の表面に塗布(印刷)した被焼成物を、熱処理炉中で、所定の温度の熱風に晒して、熱処理される。このほかシリコン基板に半導体回路を形成する際にも、レジスト剤が使用され、焼成処理する工程が行われる。
 これら熱処理工程では、レジスト剤に含まれる溶剤、感光性あるいは熱硬化性樹脂バインダーなどの有機化合物が、蒸発あるいは昇華して、揮発性の有機化合物を含んだ気体(以下排ガスという。)が熱処理炉内に大量に発生する。この排ガスは、炉の開口部、隙間の近傍あるいは排ガス循環通路で冷却されると、排ガス中の有機化合物が凝固して、粒子状、タール状あるいはパーテイクルになって、熱処理炉内や排気系統を汚染あるいは閉塞させ、また炉外に漏出し、クリーンルームを汚染する等の問題があった。
 レジスト剤に含まれる有機化合物を例示すると以下のものがある;すなわち、バインダー成分としては、アクリル系樹脂、エポキシ系樹脂、シリコーン樹脂、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体或いはその変性物、アミド系樹脂、フェノール系樹脂、ポリスチレン系樹脂等が、またシリコン系バインダーとしては、ポリシラン、シロキサン系化合物、シリル系化合物、シラザン系化合物等が使用される。
 またレジスト剤に含まれる分散媒あるいは溶剤成分としては、イソプロピルアルコール、エチレングリコール、グリセリン、エチルセロソルブ、トルエン、キシレン、メチルエチルケトン、シクロヘキサノン、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル等が使用される。
 レジスト剤に含まれるこれらの1種または複数の有機化合物や、乾燥あるいは焼成温度に加熱することによって新たに生成した重合体が、熱処理炉内で揮発もしくは昇華し、結果として有機化合物が、炉内の空気中に含まれ、排ガスとなる。
 (従来の技術)
 このため、上記熱処理炉の排ガスを浄化するために、酸化触媒で処理する技術が開発されている。すなわち酸化触媒として、コージライト等のセラミック製のハニカム構造体等に、Pt,Pd,AgO、Co,CuOなどの触媒金属を担持した触媒(特許文献1、特許文献3、特許文献4、特許文献5、特許文献7)、Pt,Rh,Pd,Al,CeO,NiO等を活性成分とする触媒(特許文献6)、伝熱管の表面にPt,Pd,AgO等を担持した触媒(特許文献2)が報告されている。
 (従来技術の問題点)
 しかしながら従来の酸化触媒は、レジスト剤中の溶剤が蒸発して発生した有機化合物をCOとHOに転化するが、より高温で行う熱処理、すなわち200~300℃のような焼成温度において発生する有機化合物、すなわちバインダー樹脂が昇華した有機化合物に対しては、酸化分解作用は効果的に発揮されず、一酸化炭素(CO)やホルムアルデヒド、アセトアルデヒドなど部分酸化物の生成をもたらすため、触媒処理後の排ガスが刺激臭や悪臭を発生する場合があり、また触媒処理後の排ガス中には未分解の昇華成分が残存して、これが炉内の壁面や排気管内に付着し、炉を汚染させる問題が残る。また有機ケイ素系のバインダーを含むレジスト剤を使用すると、ケイ素含有有機化合物が排ガス中に揮発し、これが触媒毒となって、触媒の活性が短時間に低下するという問題がある。本出願人は先に、耐シリコン性に優れた有機化合物を含む排気ガス浄化触媒に関する発明を完成し、特許出願をした(特許文献8、特許文献9)。
特開2001-241862号公報 特開2002-257314号公報 特開2003-214772号公報 特開2004-316987号公報 特開2005-37024号公報 特開2005-71632号公報 特開2006-17357号公報 国際公開第05/94991号パンフレット 特開2006-314867号公報
 (1) したがって本発明の目的は、レジスト剤を塗布した被焼成物を焼成する熱処理炉内に発生する排ガスに含まれる有機化合物を酸化して、排ガスを浄化するための、新しい触媒を提供することにある。
 (2) 他の目的は、同触媒を用いた熱処理炉内の排ガスを浄化する方法を提供することにある。
 (3) 更に他の目的は、熱処理炉の汚れを防止する方法を提供することにある。
 本発明者は、前記の問題を解決するための、新しい触媒を見出し、本発明を完成した。すなわち、本発明は、以下の発明1~3の通りである。
 発明1は、レジスト剤を塗布した被加熱部品を熱処理炉で熱処理する際に、レジスト剤から発生する揮発性有機化合物を分解する触媒であって、該触媒はゼオライト粒子(成分1)と、貴金属を担持した無機酸化物粒子(成分2)とを、成分1:成分2の重量比で90:10~10:90の割合で含有してなる、熱処理炉排ガスの浄化用触媒である。
 発明2は、レジスト剤を塗布した被加熱部品を熱処理炉内で熱処理する工程と、熱処理によってレジスト剤から揮発または昇華した有機化合物を含む排ガスを、前記炉内または炉外に設置した上記触媒に記載の触媒に接触させて、前記有機化合物を分解する工程を含む、熱処理炉排ガスの浄化方法である。
 発明3は、レジスト剤を塗布した被加熱部品を熱処理炉内で熱処理する工程と、熱処理によってレジスト剤から揮発または昇華した有機化合物を含む排ガスを、前記炉内または炉外に設置した上記触媒に記載の触媒に接触させて、前記有機化合物を分解する工程を含む、熱処理炉の汚染防止方法である。
 本発明の触媒を用いることにより;
(1) レジストを含む被処理物の熱処理炉から発生する排ガス中の有機化合物が、効果的に酸化され、未分解成分の残存をゼロまたは極小にでき、アルデヒドなど部分酸化物の生成が防止できるため、処理後の排ガスの臭気問題が解消されるとともに、
(2) とりわけ200℃以上の温度での熱処理、いわゆるポストキュアのための熱処理段階で発生する昇華性の有機化合物を効果的に酸化分解するため、タール状あるいはパーテイクルの付着による熱処理装置内の汚染や排気系統を閉塞などの問題が解消される。
(3) このため、処理した排ガスを再循環することができ、エネルギーの節約になる。
(4) また従来知られている貴金属触媒に比べて、単位容積あたりのハニカム触媒への貴金属の使用量を削減でき、経済的な効果も大きい。
(5) またハニカムのような支持体のサイズを小さくできるため、限られた熱処理炉のスペースに設置が容易になるとともに、高速処理が可能になる、
等の効果が得られる。
図1は、触媒の評価をするための反応装置である。 図2は、成分1と成分2の混合割合を変えた触媒における汚れ低減率を示す図表である。触媒A,B,1、2および3の成分1(H-Y)と成分2(Pt/Al)の合計重量に対する成分1の割合を横軸に、それらを用いて行った分解実験結果のうち、表1の汚れ低減率を縦軸に示したものである。図中、測定値点左から、それぞれ、触媒B、2、1、3およびAである。
符号の説明
1 反応管
2 容器
3 触媒
4 捕集フィルター
5 ガス導入管
6 ガス排出管
 以下本発明を詳細に説明する。本発明の触媒が適用される対象は、レジスト剤を塗布した被処理物を処理するための乾燥炉、脱バインダー炉、焼成炉などの熱処理炉、およびこれら炉へ加熱空気を供給する熱風発生装置など周辺装置を含み、これらを本発明では熱処理炉という。
 本発明の触媒は、レジスト剤を塗布した被加熱部品を熱処理炉で熱処理する際に、レジスト剤から発生する揮発性有機化合物を分解する触媒であって、該触媒はゼオライト粒子(成分1)と、貴金属を担持した無機酸化物粒子(成分2)とを、成分1:成分2の重量比で90:10~10:90の割合で含有してなることを特徴とする。
 ゼオライト(成分1)
 本発明で使用されるゼオライト(成分1)は、天然品であっても合成品であってもよい。例えば、天然品のゼオライトとして、モルデナイト、エリオナイト、フェリエライト、シャパサイトが挙げられる。合成品としては、Y型ゼオライト;ZSM-5等のMFI型ゼオライト;β型ゼオライト;が挙げられる。
 その構成成分であるシリカとアルミナのモル比(SiO/Alモル比)は、5~900のゼオライトが使用される。炉の汚染を一層効果的に防止する触媒とするには、SiO/Alモル比が5以上、100以下、より好ましくは5~50のゼオライトを使用するのが好ましい。またゼオライトは、プロトン型(H型)であっても、金属置換型(アンモニウム置換を含む)であってもよい。なお以下例えばY型ゼオライトのH型をH-Yと表示する場合がある。
 本発明でいうゼオライトには、石油精製工程で使用されFCC(流動接触分解)触媒も含まれる。該FCC触媒は、アルミナを10~40重量%およびシリカを90~60重量%含み、重油からガソリン留分を製造するために使用されるが、本発明の触媒の成分1として好適である。
 該ゼオライトの粒子サイズには特別な制限はないが、成分2の貴金属を担持した無機酸化物粒子と混合し、これをハニカムなどの支持体に触媒層を形成する際、両粒子の分散と接触性を高めることが好ましく、このため粒径は0.1μm~100μm、より好ましくは0.1~50μmの範囲のものが好ましい。
 貴金属を担持した無機酸化物粒子(成分2)
 本発明の触媒の他の成分は、無機酸化物粒子に、Pt、Pd、Rh、Ir、Ru、これらの合金、から選択される1種または2種以上の貴金属成分を担持してなる、無機酸化物粒子(成分2)である。以下この成分2を貴金属担持無機粒子と表現する場合がある。無機酸化物は、アルミナ(Al)、ジルコニア(ZrO)、チタニア(TiO)、シリカ(SiO)、セリア(CeO)、チタニア・アルミナ複合酸化物(TiO・Al)、シリカ・ジルコニア複合酸化物(SiO・ZrO)およびセリア・ジルコニア複合酸化物(CeO・ZrO)から選択される1種または2種以上である。これらの無機酸化物の中でも、ZrOおよびCeO・ZrOを用いた触媒は、炉の汚れを防止する効果に特に優れる。なおCeO・ZrO複合酸化物には、ランタン(La),プラセオジム(Pr),イットリウム(Y),ネオジム(Nd)のいずれか1種または2種以上を含むものでも良い。
 該成分2の粒子サイズには特別な制限はないが、成分1の粒子と混合し、これをハニカムなどの支持体に触媒層を形成する際、両粒子の分散と接触性を高めることが好ましく、このため粒径は0.1μm~100μm、より好ましくは0.1~50μmの範囲のものが好ましい。
 該成分2の無機酸化物粒子に担持する貴金属の量は、成分1との混合後の触媒中の貴金属含有量が50重量ppm~5重量%を満足できるように、通常は無機酸化物粒子に対して、金属分として100重量ppm~10重量%の範囲で適宜設定されるのが良い。
 本明細書では、例えばPtをAlに担持した粒子をPt/Alと表示することとし、他の貴金属および無機酸化物を組み合わせた粒子についても、同様に例えばPd/Al,Pt/ZrO、Pt/CeO、Pd/TiOなどと表示する。なお例えばPtが1.0重量%担持されたAl粒子をPt(1.0)/Alと表記することがある。
 貴金属を担持した無機酸化物粒子(成分2)は、貴金属化合物の水溶液に無機酸化物粒子を含浸し、その後乾燥し、次いで焼成することによって調製できるが、これに限るものではない。例えばPt/ZrO粒子は、例えば白金ジニトロジアンミン錯体の水溶液にZrO粒子を含浸した後、100~150℃で乾燥し、次いで400~600℃にて焼成し、必要に応じて水素還元することにより、得られる。
 本発明の触媒は、上記ゼオライト粒子(成分1)と貴金属担持無機酸化物粒子(成分2)との混合物を含有して成り、該触媒中における、ゼオライトと無機酸化物の合計重量に対する貴金属含有量は、50重量ppm~5重量%、好ましくは100重量ppm以上、5重量%以下が好ましい。触媒中の貴金属含有量は、触媒が排ガスと接触する温度および空間速度に照らして設定されるが、50重量ppm未満では、酸化反応が不十分な場合があり、一方、5重量%を超えても構わないが、酸化反応の一層の向上はみられなく、不経済になる。
 本発明の浄化用触媒
 本発明の触媒は、前記成分1の1種または2種以上と、成分2の1種または2種以上を、重量比で90:10~10:90、好ましくは85:15~30:70、より好ましくは80:20~30:70の割合で混合して、調製される。成分2の割合が10%未満では、酸化触媒の作用が不十分になり、触媒処理後の排ガス中にアルデヒドと未分解分の含有量が高くなる。一方成分2の割合が90%を越えると、相対的に成分1の割合が小さくなるため、排ガス中の有機化合物の分解率が低下し、結果として酸化反応が十分に進まなくなり、アルデヒド等の生成量が増加する。
 したがって成分1と成分2の合計に対して、成分1を10重量部以上、より好ましくは15重量部、さらに好ましくは20重量部以上、90重量部以下、好ましくはより好ましくは70重量部以下、混合することによって、成分1と成分2が相乗作用によって、レジスト剤から発生する昇華性の有機化合物に対する酸化分解作用が向上し、これによって熱処理炉の汚染が防止できる。
 なお本発明の触媒には、成分1と成分2を必須成分とするが、本発明の触媒の機能を阻害しないものであれば、その他の成分を含むことを排除するものではなく、例えば後述のハニカム等に触媒を担持するか、あるいは造粒体の形態で用いられるバインダー成分、例えば粘土質、SiOあるいはAl等を含んでも良いことは言うまでもない。
 成分2である例えばPt/Alは、それ自身は酸化触媒として公知であり、熱処理炉の排ガス処理用触媒として知られている(特許文献1など)。しかしながら、レジスト剤から発生する揮発もしくは昇華して発生する有機化合物は、該成分2だけでは酸化分解されにくく、不完全酸化によるアルデヒドを生成しやすい。しかしながら成分1と成分2を前記割合で混合することにより、成分2の作用が著しくに向上するとともに、成分2単独でみられるアルデヒドの生成量が高いという問題も解決する。その作用機構は明らかではないが、成分1と成分2を共存させることによって、レジスト剤中のバインダー樹脂のような昇華性を有する高分子量の有機化合物を、成分1が接触分解反応によって、炭素数の小さい炭化水素、すなわち炭素数1~4の軽質炭化水素に分解し、生成した軽質炭化水素を共存する成分2が酸化分解するという、一連の反応による効果ではないかと推定される。あわせて本発明の触媒は、コーク状物質の堆積が少なく、触媒寿命が長い。この効果も、成分1と成分2の共存による相互作用によりものと推定される。
 本発明の触媒は、成分1と成分2を、重量比90:10~10:90の割合で含有してなるものである。実用においては、該組成の触媒を、ハニカムなどの触媒支持体に担持するか、あるいは粒状に造粒した形態で使用されるのが通常であるが、その形態は、これらに限定されるものではない。
 本発明の触媒の別の実施態様は、以下の通りである。
 実施態様1:
 処理する排気ガスの流れの上流側にゼオライトを有効成分とする触媒を支持体に設けた触媒(触媒U-1)を、また下流側に本発明の触媒を支持体に設けた触媒(触媒D-1)を組み合わせて配置した触媒システム、およびこれによる熱処理炉内ガスの処理方法である。なお触媒U-1とD-1は、重ね合わせるか、隔離して配置するか、いずれでも良い。
 具体例;
 触媒U-1の例;H-Y、ZSM5、モルデナイト、FCC触媒のいずれか1種または2種以上のゼオライト粒子を含む触媒。
 触媒D-1の例;Pt/Al、Pt/TiO、Pt/ZrO、Pd/Alのいずれか1種または2種以上の無機酸化物粒子と、ゼオライト粒子を、重量比10:90~90:10で含み、しかも触媒中の貴金属含有量が500重量ppm~5重量%である本発明の触媒。
 実施態様2:
 処理する排気ガスの流れの上流側には、ゼオライトを相対的に多い割合で含み、かつ貴金属含有量が相対的に少ない触媒(触媒U-2)を、下流側にはゼオライトの割合が上流側触媒のそれより相対的に少なく、かつ貴金属含有量が下流側触媒のそれより相対的に多い触媒(触媒D-2)を配置した触媒システム、およびこれによる熱処理炉排ガスの処理方法である。なお触媒U-2とD-2は、重ね合わせるか、隔離して配置するか、いずれでも良い。
 具体例;
 触媒U-2の例;ゼオライト粒子(成分1)と、Pt/Al、Pt/ZrO、Pd/Alのいずれか1種または2種以上の無機酸化物粒子(成分2)とを、重量比50:50~90:10、より好ましくは60:40~90:10、更に好ましくは70:30~85:15の割合で含み、しかも触媒中の貴金属含有量が50重量ppm~1000ppmである本発明の触媒。
 触媒D-2の例;ゼオライト粒子(成分1)と、Pt/Al,Pt/ZrO、Pd/Alのいずれか1種または2種以上の無機酸化物粒子(成分2)とを、重量比10:90~60:40、好ましくは15:85~50:50、さらに好ましくは20:80~50:50の割合で含み、しかも貴金属含有量が500重量ppm~5重量%である本発明の触媒。
 上記の実施態様1および2では、上流側に設ける触媒U-1あるいはU-2により、排ガス中の有機化合物を分解して軽質炭化水素に転化し、ついで下流側に配置した触媒D-1あるいはD-2により、軽質炭化水素をCOおよびHOに確実に転化する。とくに実施態様2による触媒の使用は、上流側に設けた触媒U2への炭素質の沈積(コーキング)が特に少ないため、使用条件や排ガスの条件が過酷な熱処理炉用や耐久性を要する用途向きに特に好都合である。
 触媒の製造
 本発明の触媒は、ガス処理に適する支持体に担持して使用される。好ましい支持体は、ハニカム、シート、メッシュ、パイプ、フィルター、パンチングメタル、発泡金属体等の形状のものが例示される。支持体の材質に特に制限はないが、使用温度に耐えられる耐熱性や耐腐食性を有するものが好ましく、コージェライト、アルミナ、シリカ、シリカ・アルミナ、炭素繊維、金属繊維、ガラス繊維、セラミック繊維、ステンレス、チタン等の金属箔が例示される。該支持体のガス通過面に、本発明の触媒を触媒層として担持すればよい。
 別の形態としては、触媒を粒径0.5mm~10mmの球やペレット状の成形粒子に加工して、これを通気性の容器や袋に充填して、使用してもよい。
 前記支持体、例えばハニカム支持体へ、本発明の触媒を触媒層として担持した触媒を作成するには、コロイダルシリカゾル、アルミナゾル、ケイ酸ゾル、ベーマイト、ジルコニアゾルなど公知のバインダー成分を用いる。触媒層の平均厚さには、特別の制限はないが、触媒の効果を有効に発揮させ、かつ経済性を考慮すると、その厚さは10μm以上、500μm以下が適当である。
 排ガス処理方法
 本発明の熱処理炉排ガスの浄化方法は、熱処理炉内あるいは炉外の排ガス系統に、本発明の触媒を配置して、レジスト剤を塗布した被加熱部品の熱処理によりに発生する揮発性有機化合物を含む排ガスを、該触媒に接触させて、有機化合物を分解させる方法である。接触温度としては、有機化合物の酸化分解に必要な温度が好ましく、具体的には熱処理温度もしくはそれ以上の温度、すなわち200~350℃、好ましくは210~350℃、特に好ましくは220~350℃である。本発明の触媒の分解活性は従来の触媒に比べて高いものの、レジスト剤から揮発する有機化合物のような、分解しにくい成分に対しては、200℃を下回る温度では、一酸化炭素やアルデヒドのような部分酸化物を生成しやすくなり、被加熱部品の熱処理温度と触媒反応温度に照らし、210℃以上が好ましく、一方省エネルギーの観点から、350℃以下が好ましい。空間速度には制限はないが、排ガスの発生量と触媒の大きさにもよるが、1000~100000hr-1の範囲が好ましい。なお触媒処理されたガスは、炉外に排出するか、または熱処理炉に還流してもよい。この処理により、レジスト剤から蒸発した溶剤成分や昇華したバインダー樹脂成分を酸化分解させることができる。
 熱処理炉の汚染防止方法
 本発明の熱処理炉の汚染防止方法は、レジスト剤を塗布した被加熱部品を熱処理炉内で熱処理する工程(工程1)と、熱処理によってレジスト剤から揮発または昇華した有機化合物を含む排ガスを、前記炉内または炉外に設置した本発明の触媒に接触させて、前記有機化合物をCOとHOに変換する工程(工程2)を含む、熱処理炉の汚染防止方法である。工程1で被加熱部品を熱処理し、この工程で昇華したバインダー樹脂を含む排ガスを、工程2に触媒に接触させると、樹脂が酸化分解されるため、熱処理炉の開口部や排ガス循環通路など、冷却により樹脂が凝固しやすい箇所の汚染を防止できる。接触温度としては、有機化合物の酸化分解に必要な温度が好ましく、具体的には熱処理温度もしくはそれ以上の温度、すなわち200~350℃、好ましくは210~350℃、特に好ましくは220~350℃である。
 以下実施例にもとづき、より詳細に説明する。
 <貴金属担持無機酸化物粒子の調製>
 以下の各貴金属担持無機酸化物粒子(成分2)を、次の方法で調製した。すなわち、秤量したAlなどの無機酸化物粒子の重量に対して、目標とする担持量のPtを含むジニトロアミノ白金酸性水溶液を用意し、無機酸化物粒子が十分浸るよう、イオン交換水を加え、蒸発皿中で無機酸化物粒子に白金水溶液を十分含浸し、その後蒸発乾固し、次いで500℃で2時間焼成して、規定量の白金を担持した以下に示す無機酸化物粒子1~8を調製した。
 ・粒子1;<Pt(4.0)/Al
 γ-アルミナ粉(日揮ユニバーサル社製、平均粒径5μm)を使用して上記方法で、Ptを4.0重量%担持した粒子1を調製した。
 ・粒子2;<Pt(0.8)/Al
 γ-アルミナ粉(日揮ユニバーサル社製、平均粒径5μm)を使用して上記方法で、Ptを0.8重量%担持した粒子2を調製した。
 ・粒子3;<Pt(1.5)/ZrO>;
 ZrO(ミレニアム社製、平均粒径1μm、BET比表面積250m/g)を使用して上記方法で、Ptを1.5重量%担持した粒子3を調製した。
 ・粒子4;<Pt(0.8)/ZrO>;
 ZrO(ミレニアム社製、平均粒径1μm、BET比表面積250m/g)を使用して上記方法で、Ptを0.8重量%担持した粒子4を調製した。
 ・粒子5;<Pt(1.5)/TiO>;
 TiO(ミレニアム社製、平均粒径1μm、BET比表面積330m/g)を使用して、上記方法で、Ptを1.5重量%担持した粒子5を調製した。
 ・粒子6;<Pt(4.5)/CeO>;
 CeO(第一稀元素社製、平均粒径1μm、BET比表面積20m/g)を使用して、上記方法で、Ptを4.5重量%担持した粒子6を調整した。
 ・粒子7;<Pt(4.5)/CeO・ZrO>;
 CeO・ZrO複合酸化物粒子(第一稀元素社製、CeO:ZrOモル比が50:50、平均粒径1μm、BET比表面積77m/g)を用いて、同様の方法で、Ptを4.5重量%担持した粒子7を調製した。
 ・粒子8;<Pt(4.5)/CeO・ZrO・La>;
 CeO・ZrO・La複合酸化物粒子(第一稀元素社製、CeO:ZrO:Laモル比が30:60:10、平均粒径1μm、BET比表面積77m/g)を用いて、同様の方法で、Ptを4.5重量%担持した粒子8を調製した。
 <触媒の調製>
 各触媒を以下のようにして調製した。
 比較例1;(無触媒)コージライトハニカム(日本碍子社製、200セル/平方インチ)を、そのまま反応に用いた。
 比較例2;触媒A <H-Y(100)>:
 H-Y型ゼオライト粉末(UOP社製の商品名LZY85、平均粒径2μm、SiO/Alモル比5.9)200g、バインダーとして、シリカゾル(日産化学製、スノーテックス )40gおよびイオン交換水700gを用い、スラリーを作成した。このスラリーを、コージライトハニカム(日本碍子社製、200セル/平方インチ)にウォッシュコート法により塗布し、過剰のスラリーを圧縮空気で吹き払い、乾燥器中で150℃において3時間乾燥した。その後、空気中で500℃において2時間焼成し、次いで水素雰囲気中で500℃において1時間加熱し、ハニカム担持体にH-Yゼオライトを触媒層として担持した、ハニカム型の触媒Aを得た。
 比較例3;触媒B <Pt/Al(100)>:
 前記の粒子2<Pt(0.8)/Al粒子>の200gと、バインダーとしてベーマイト50gを混合し、この混合物の25gを、60%硝酸および725gのイオン交換水の混合液に加え、スラリーを作成した。このスラリーを、触媒Aと同じ方法でハニカム担持体にPt/Alの触媒層を設けたハニカム型の触媒Bを得た。ハニカム1リットルあたりの触媒層の重量は50g(バインダーを含む)であった。該触媒Bの触媒層中のPt含有量は0.8重量%(Alに対する割合)である。
 比較例4;触媒C <Pt/ZrO(100)>:
 前記の粒子4<Pt(0.8)/ZrO粒子>を用いて、触媒Bと同じ方法にて、Pt/ZrOの触媒層を設けたハニカム型の触媒Cを得た。該触媒Cの触媒層中のPt含有量は0.8重量%(ZrOに対する割合)である。
 実施例1;触媒1 <H-Y(50) + Pt/Al(50)>:
 触媒Aで用いたH-Y型ゼオライト粉末100gと、前記の粒子1<Pt(4.0)/Al粒子>25gと前記の粒子2<Pt(0.8)/Al粒子>75gを混合し、これにシリカゾル(日産化学製、スノーテックス)40gおよびイオン交換水700gを添加して、スラリーを作成した。該スラリーを用いて、触媒Aと同じ方法にて、ハニカム担持体にH-YとPt/Alの重量割合が50:50である触媒層を設けたハニカム型の触媒1を得た。該触媒1の触媒層中のPt含有量は0.8重量%(ゼオライトとAlの合計に対する割合)である。
 実施例2;触媒2 <H-Y(10)+Pt/Al(90)>:
 前掲のH-Y型ゼオライト粉末の20gと、前記の粒子2<Pt(0.8)/Al粒子>の180gを用いた以外は触媒1と同じ方法にて、H-Y:Pt/Al重量比が10:90の組成の触媒層を設けたハニカム型の触媒2を得た。該触媒2の触媒層中のPt含有量は0.7重量%(ゼオライトとAlの合計に対する割合)である。
 実施例3;触媒3 <H-Y(80)+Pt/Al(20)>:
 前掲のH-Y型ゼオライト粉末の160gと、前記の粒子1<Pt(4.0)/Al粒子>の40gを用いた以外は触媒1と同じ方法にて、H-Y:Pt/Al重量比が80:20の組成の触媒層を設けたハニカム型の触媒3を得た。該触媒3の触媒層中のPt含有量は0.8重量%(ゼオライトとAlの合計に対する割合)である。
 実施例4;触媒4 <H-Y(50)+Pt/TiO(50)>:
 前掲のH-Y型ゼオライト粉末100gと、前記の粒子5<Pt(1.5)/TiO粒子>100gを用いた以外は、触媒1と同じ方法で、H-Y:Pt/TiO重量比が50:50の組成の触媒層を設けたハニカム型の触媒4を得た。該触媒4の触媒層中のPt含有量は0.75重量%(ゼオライトとTiOの合計に対する割合)である。
 実施例5;触媒5 <H-Y(50)+Pt/ZrO(50)>:
 前掲のH-Y型ゼオライト粉末と前記の粒子3<Pt(1.5)/ZrO粒子>を用いた以外は触媒1と同じ方法で、H-Y:Pt/ZrO重量比が50:50の組成の触媒層を設けたハニカム型の触媒5を得た。該触媒5の触媒層中のPt含有量は0.75重量%(ゼオライトとZrOの合計に対する割合)である。
 実施例6;触媒6 <H-Y(50)+Pt/CeO(50)>:
 前掲のH-Y型ゼオライト粉末と前記の粒子6<Pt(4.5)/CeO粒子>を用いた以外は触媒1と同じ方法で、H-Y:Pt/CeO重量比が50:50の組成の触媒層を設けたハニカム型の触媒6を得た。該触媒6の触媒層中のPt含有量は2.25重量%(ゼオライトとCeOの合計に対する割合)である。
 実施例7;触媒7 <H-Y(50)+Pt/CeO・ZrO(50)>:
 前掲のH-Y型ゼオライト粉末と前記の粒子7<Pt(4.5)/CeO・ZrO粒子>を用いた以外は触媒1と同じ方法で、H-Y:Pt/CeO・ZrOの重量比が50:50の組成の触媒層を設けたハニカム型の触媒7を得た。該触媒7の触媒層中のPt含有量は2.25重量%(ゼオライトとCeO・ZrOの合計に対する割合)である。
 実施例8;触媒8 <H-Y(50)+Pt/CeO・ZrO・La(50)>:
 前掲のH-Y型ゼオライト粉末と前記の粒子8<Pt(4.5)/CeO・ZrO・La粒子>を用いた以外は触媒1と同じ方法で、H-Y:Pt/CeO・ZrO・Laの重量比が50:50の組成の触媒層を設けたハニカム型の触媒8を得た。該触媒8の触媒層中のPt含有量は2.25重量%(ゼオライトとCeO・ZrO・Laの合計に対する割合)である。
 <評価>
 反応装置
 得られた触媒を、図1に示す反応装置に装着し、これにレジスト蒸発ガスを接触させて、生成する分解ガスの組成と未分解成分の量を測定した。
 図1の装置において、反応管1内には、レジスト剤を入れるアルミニウム製容器2が設置され、該容器の下流側には、円筒状(直径21mm、長さ10mm)のハニカム触媒3が装着されており、その下流(捕集領域)には、触媒処理後のガス中に含まれる未分解成分を捕集するために、ガラス繊維製の捕集フィルター4が設けられている。なお該捕集領域のガス温度は80~90℃に設定した。
 容器2に市販の液晶マトリックス形成レジスト剤(R)1.5gを入れ、容器と触媒の領域を室温から230℃まで、毎分5℃の速度で昇温した後、ガス導入管5から、空気を、2.0リットル/分の速さで、50分間、総量100Lを導入し、蒸発したレジスト剤成分を、空気とともに触媒に接触させて、温度230℃、空間速度35000hr-1にて接触反応を行った。ガス排出管6から処理後のガスを排出し、ガス分析に供した。
 前記レジスト剤(R)の主要成分は以下のとおりである;プロピレングルコールモノメチルエーテルアセテート、プロピレングルコールモノエチルエーテルアセテート、アクリル樹脂、多官能アクリルモノマー、顔料、溶剤。
 評価方法
 触媒で処理された後のガスの成分を以下の方法で測定した。
分解ガス中の全炭化水素(THC)の測定:
  装置;ガスクロマトグラフィー(島津製作所製GCL4-A型、検出器;FID)
  カラム;20%PEG-20M on Chromosorb/WAW
  カラム温度;100℃、インジェクション温度;150℃、検出器温度;150℃
  キャリヤーガス;窒素ガス35ml/分
 THCは、炭素数1~5個の炭化水素合計をメタン換算した値であって、重量ppmで表す。
 COの測定:
  電解式CO分析計
 COの測定:
  メタン化FID式分析計
 アルデヒドの測定:
  GASTEC検知管、No.92L(ホルムアルデヒド)、No.91(アセトアルデヒド)
 未分解分の測定:
  捕集フィルターに捕集された未分解レジスト分を燃焼して炭素分を測定した。
 <計算式>
 汚れ減少率を下記の式で算出した。
   汚れ減少率(%)=(C1-C2)/C1×100
 式中、C1は、触媒を担持していないハニカム材を取り付けた状態で処理した場合の、捕集フィルターに捕集された未分解分の重量(表1の比較例1)であり、C2は、各触媒での未分解分の重量である。
 <評価結果>
 各触媒で処理した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、触媒B(比較例3;Pt/Al)では、捕集フィルターへ付着した未分解成分が炭素量として13mgであり、汚れ低減率は無触媒(比較例1)に比べて71%であり、汚れの低減にはある程度良好な効果を示したが、触媒Bで処理した後のガス中には、COおよびアルデヒドがそれぞれ2ppm、4ppm含まれていた。触媒C(比較例4;Pt/ZrO)も、触媒Bと、ほぼ同様な結果であった。これに対し、本発明の触媒1~8では、アルデヒドの生成が極めて少ないかゼロであり、また処理後の排ガスには未分解分が、触媒Bに比べて大幅に低減し、汚れ低減率は80~94%であった。ゼオライト(成分1)と貴金属担持の無機酸化物(成分2)の混合物を含む本発明の触媒は、熱処理炉の汚れ防止効果が極めて大きいことが明らかである。
 図2から分かるように、ゼオライト(成分1)と貴金属担持無機酸化物(成分2)の合計量に対して、成分1を10~90%、とりわけ10~80%、成分2を90~10%、とりわけ90~20%の割合で含んでなる本発明の触媒は、成分1のみ(触媒A)あるいは成分2のみ(触媒B)に比べて、汚れの低減率が大きく向上していた。

Claims (9)

  1.  レジスト剤を塗布した被加熱部品を熱処理炉で熱処理する際に、レジスト剤から発生する揮発性有機化合物を分解する触媒であって、該触媒はゼオライト粒子(成分1)と、貴金属を担持した無機酸化物粒子(成分2)とを、成分1:成分2の重量比で90:10~10:90の割合で含有してなる、熱処理炉排ガスの浄化用触媒。
  2.  無機酸化物粒子が、Al、TiO、ZrO、CeO、CeO・ZrOおよびSiOから選択される少なくとも1種である、請求項1に記載の熱処理炉排ガスの浄化用触媒。
  3. 前記揮発性有機化合物が、被加熱部品の焼成工程で、レジスト剤から揮発または昇華する有機化合物である、請求項1又は2に記載の熱処理炉排ガスの浄化用触媒。
  4.  レジスト剤を塗布した被加熱部品を熱処理炉内で熱処理する工程で発生する有機化合物を含む排ガスを、前記炉内または炉外に設置した請求項1~3のいずれかに記載の触媒に接触させて、有機化合物を分解する工程を含む、熱処理炉排ガスの浄化方法。
  5.  レジスト剤を塗布した被加熱部品を熱処理炉内で熱処理する工程と、熱処理によってレジスト剤から揮発または昇華した有機化合物を含む排ガスを、前記炉内または炉外に設置した請求項1~3のいずれかに記載の触媒に接触させて、前記有機化合物を分解する工程を含む、熱処理炉排ガスの浄化方法。
  6. 排ガスを触媒に200~350℃で接触させる、請求項5に記載の、熱処理炉排ガスの浄化方法。
  7.  熱処理炉内または炉外に設置した請求項1~3のいずれかに記載の触媒に、熱処理炉内で熱処理する工程で発生する有機化合物を含む排ガスを接触させて、有機化合物を分解する工程を含む、熱処理炉の汚染防止方法。
  8. 排ガスを触媒に200~350℃で接触させる、請求項7に記載の、熱処理炉の汚染防止方法。
  9.  レジスト剤を塗布した被加熱部品を熱処理炉内で熱処理する工程と、熱処理によってレジスト剤から揮発または昇華した有機化合物を含む排ガスを、前記炉内または炉外に設置した請求項1~3のいずれかに記載の触媒に200~350℃で接触させて、前記有機化合物を分解する工程を含む、熱処理炉の汚染防止方法。
PCT/JP2009/050171 2008-01-11 2009-01-09 熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法 WO2009088056A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009548958A JP5366830B2 (ja) 2008-01-11 2009-01-09 熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-003881 2008-01-11
JP2008003881 2008-01-11

Publications (1)

Publication Number Publication Date
WO2009088056A1 true WO2009088056A1 (ja) 2009-07-16

Family

ID=40853167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050171 WO2009088056A1 (ja) 2008-01-11 2009-01-09 熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法

Country Status (3)

Country Link
JP (1) JP5366830B2 (ja)
TW (1) TW200934574A (ja)
WO (1) WO2009088056A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034230A (ja) * 2015-07-29 2017-02-09 東京エレクトロン株式会社 基板処理装置、基板処理方法及び基板処理装置のメンテナンス方法及び記憶媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6531271B2 (ja) * 2015-11-05 2019-06-19 日揮ユニバーサル株式会社 ポリマーフィルム製造炉内浄化用触媒およびポリマーフィルム製造炉内浄化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071632A (ja) * 2003-08-25 2005-03-17 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの製造方法及びその装置
WO2005094991A1 (ja) * 2004-03-30 2005-10-13 Nikki-Universal Co., Ltd. 排ガス浄化用触媒と排ガスの浄化方法
JP2006017357A (ja) * 2004-06-30 2006-01-19 Espec Corp 熱処理装置
JP2006314867A (ja) * 2005-05-10 2006-11-24 Nikki Universal Co Ltd 排ガス浄化用触媒組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071632A (ja) * 2003-08-25 2005-03-17 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイパネルの製造方法及びその装置
WO2005094991A1 (ja) * 2004-03-30 2005-10-13 Nikki-Universal Co., Ltd. 排ガス浄化用触媒と排ガスの浄化方法
JP2006017357A (ja) * 2004-06-30 2006-01-19 Espec Corp 熱処理装置
JP2006314867A (ja) * 2005-05-10 2006-11-24 Nikki Universal Co Ltd 排ガス浄化用触媒組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017034230A (ja) * 2015-07-29 2017-02-09 東京エレクトロン株式会社 基板処理装置、基板処理方法及び基板処理装置のメンテナンス方法及び記憶媒体

Also Published As

Publication number Publication date
JP5366830B2 (ja) 2013-12-11
JPWO2009088056A1 (ja) 2011-05-26
TW200934574A (en) 2009-08-16

Similar Documents

Publication Publication Date Title
US9259716B2 (en) Oxidation catalyst systems compositions and methods thereof
JP5631997B2 (ja) 酸化触媒ならびにco、vocおよびハロゲン化vocの破壊のための方法
JP3297432B2 (ja) 粒子を放出せずまた周期的に浄化中断することなく、デイーゼル機関の排気ガスを酸化浄化する連続作動触媒
JP4144898B2 (ja) パティキュレート燃焼触媒、パティキュレートフィルター及び排ガス浄化装置
US20160045867A1 (en) Zone coated catalytic substrates with passive nox adsorption zones
JP4319222B2 (ja) 排ガス浄化用触媒と排ガスの浄化方法
JP2001526586A (ja) フォーウエイディーゼル排気ガス触媒および使用方法
CN102824909B (zh) 一种低温催化燃烧挥发性有机物催化剂及其制备方法
WO2014145775A1 (en) Methods for oxidation and two-way and three-way zpgm catalyst systems and apparatus comprising same
US5840649A (en) NOx adsorbents
JP6299049B2 (ja) 耐珪素被毒性に優れた排ガス浄化用触媒
WO2018151289A1 (ja) 排ガス浄化用触媒
CN107876050A (zh) 一种有机废气净化催化剂及其制备方法
JP5366830B2 (ja) 熱処理炉排ガスの浄化用触媒、該触媒による熱処理炉排ガスの浄化方法および熱処理炉の汚染防止方法
CN104302389A (zh) 废气处理催化剂
JP5515635B2 (ja) 貴金属担持炭化ケイ素粒子とその製造方法及びそれを含有する触媒並びにその製造方法
TW460332B (en) Catalytic compositions and methods for suppression of halogenation of organic compounds with oxidation products of halogenated organic compounds in gaseous emission streams
JP6531271B2 (ja) ポリマーフィルム製造炉内浄化用触媒およびポリマーフィルム製造炉内浄化方法
JP4700648B2 (ja) 有機酸含有排ガス処理用触媒および該排ガス処理方法
JP5419865B2 (ja) Pet延伸炉内ガスの浄化用触媒、同触媒を用いるpet延伸炉内ガスの浄化方法およびpet延伸炉の汚れ防止方法
JP4711731B2 (ja) 排ガス浄化用触媒組成物
JP3316879B2 (ja) ディーゼルエンジン用排ガス浄化触媒
KR102498425B1 (ko) 반도체 제조공정의 유해가스 제거용 촉매 및 이의 제조방법
TWI293036B (en) Catalyst, method for producing the same and method for treating volatile organic compounds
JP2004209356A (ja) 排ガス処理触媒および排ガス処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701064

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2009548958

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09701064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0902895

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091001