WO2009087761A1 - 通信制御方法、局側装置、加入者側装置および通信システム - Google Patents

通信制御方法、局側装置、加入者側装置および通信システム Download PDF

Info

Publication number
WO2009087761A1
WO2009087761A1 PCT/JP2008/050086 JP2008050086W WO2009087761A1 WO 2009087761 A1 WO2009087761 A1 WO 2009087761A1 JP 2008050086 W JP2008050086 W JP 2008050086W WO 2009087761 A1 WO2009087761 A1 WO 2009087761A1
Authority
WO
WIPO (PCT)
Prior art keywords
side device
discovery
subscriber
registration request
station
Prior art date
Application number
PCT/JP2008/050086
Other languages
English (en)
French (fr)
Inventor
Hiroaki Mukai
Takashi Kikuzawa
Tetsuya Yokotani
Original Assignee
Mitsubishi Electric Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation filed Critical Mitsubishi Electric Corporation
Priority to EP08710535.9A priority Critical patent/EP2242213B1/en
Priority to JP2009548831A priority patent/JP4926253B2/ja
Priority to CN200880124281.4A priority patent/CN101971576B/zh
Priority to US12/812,167 priority patent/US8509619B2/en
Priority to PCT/JP2008/050086 priority patent/WO2009087761A1/ja
Priority to KR1020107016791A priority patent/KR101097004B1/ko
Publication of WO2009087761A1 publication Critical patent/WO2009087761A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects

Definitions

  • the present invention relates to a communication control method when a discovery procedure is executed in a PON system.
  • the OLT collects the ONU's individual number (corresponding to the MAC address in E-PON (Ethernet (registered trademark) PON)) by performing the discovery procedure at an arbitrary timing, and registers it in the OLT database ( Non-patent document 1).
  • the OLT when collecting the individual numbers of ONUs, the OLT does not allocate user data in a time zone in which a registration request signal from the ONU is expected to be received. This time zone is called a discovery window.
  • the discovery window needs to be opened for a time that covers the round trip time with the installed ONU. However, if the window is enlarged to cover the round trip time, the usable user bandwidth is reduced.
  • Patent Document 1 a fixed delay is set for an ONU when a new ONU is installed, and the bandwidth consumed by the discovery window is saved by detecting the ONU in a narrow discovery window.
  • the PON system is a system that provides optical access to subscribers economically by sharing an optical fiber with many subscribers, and the more subscribers that share the optical fiber, the higher the economic effect. Improvements are being made in the direction of further multi-branching and lengthening.
  • JP 2001-326666 A IEEE 802.3ah Clause 64 Multi-point MAC Control
  • the OLT transmits a transmission permission signal for discovery using a multicast address as a destination. Thereafter, a discovery window for receiving a registration request signal from the ONU is provided so that a user grant is not assigned to an ONU that is in an operating state.
  • the ONU avoids signal collision by transmitting a registration request signal at a random timing within a time slot designated by the OLT when a transmission permission signal is received.
  • the expansion of the time slot leads to a decrease in the user band and an increase in delay fluctuation for the ONU transmission signal in the operation state, and as a result It will cause communication quality degradation.
  • the present invention has been made in view of the above, and even when further multi-branching and lengthening are implemented in the PON system, the reduction in user bandwidth and the increase in delay fluctuation accompanying the execution of the discovery procedure are achieved.
  • An object is to obtain an avoidable communication control method.
  • the present invention provides mask information for the station-side device to specify the individual number of the subscriber-side device to which a response is permitted and the match detection target bit of the individual number.
  • registration request signals can be generated without expanding the discovery window. There is an effect that the probability of collision can be reduced. In addition, since the number of discovery attempts can be reduced by reducing the signal collision probability, it is possible to shorten the time until the service starts.
  • FIG. 1 is a diagram showing a configuration example of a PON system capable of realizing the communication control method according to the present invention.
  • FIG. 2 is a diagram illustrating an example of a format of a discovery transmission permission signal.
  • FIG. 3 is a diagram illustrating an example of the format of the registration request signal.
  • FIG. 4 is a flowchart illustrating the communication control method according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a discovery transmission permission signal.
  • FIG. 6 is a diagram showing an outline of discovery in the second embodiment.
  • FIG. 7 is a diagram illustrating an example of the correspondence between the distance between the OLT and the ONU and the MAC address of the ONU.
  • FIG. 8 is a flowchart illustrating the communication control method according to the second embodiment.
  • FIG. 9 is a diagram showing an outline of discovery in the third embodiment.
  • FIG. 10 is a flowchart illustrating the communication control method 3 according to the embodiment.
  • FIG. 1 is a diagram showing a configuration example of a PON system capable of realizing the communication control method according to the present invention.
  • the PON system employs wavelength division multiplexing (hereinafter referred to as WDM (Wavelength Division Multiplexing)) and multiplexes and transmits optical signals of different wavelengths on an optical cable.
  • WDM Wavelength Division Multiplexing
  • Each ONU transmits an upstream burst optical signal having a wavelength ⁇ 1 to the OLT 1.
  • the OLT 1 transmits a downstream optical signal having a wavelength ⁇ 2 to each ONU.
  • the OLT 1 includes a WDM unit 2, a TX unit 3, an RX unit 4, a MUX unit 5, a DeMUX unit 6, a PON control unit 7, a network I / F unit 8, and a database 9. ing.
  • the WDM unit 2 is an interface compatible with the wavelength division multiplexing method, and transmits and receives optical signals.
  • the TX3 unit performs E / O (Electric / Optical) conversion of the electrical signal output from the MUX unit 5 into an optical signal.
  • the RX unit 4 performs O / E (Optical / Electric) conversion of the optical signal output from the WMD unit 2 into an electrical signal.
  • the MUX unit 5 multiplexes the downlink PON control signal and user data.
  • the DeMUX unit 6 separates the upstream PON control signal and user data.
  • the PON control unit 7 generates a PON control signal and outputs it to the MUX unit 5, and analyzes the PON control signal output from the DeMUX unit 6.
  • the network I / F unit 8 transmits and receives user data.
  • the database 9 stores information related to the ONU in the operational state obtained by executing the discovery procedure, information necessary for executing the discovery procedure, and the like.
  • the operational state refers to a state in which the ONU is connected to the PON system and activated.
  • the ONUs 10-1 to 10-N include the WDM unit 11, the RX unit 12, the TX unit 13, the DeMUX unit 14, the MUX unit 15, the PON control unit 16, and the user I / F unit, respectively. 17.
  • the WDM unit 11 is an interface compatible with the wavelength division multiplexing method, and transmits and receives optical signals.
  • the RX unit 12 O / E converts the optical signal output from the WMD unit 11 into an electrical signal.
  • the TX unit 13 E / O converts the electrical signal output from the MUX unit 15 into an optical signal.
  • the DeMUX unit 14 separates the downstream PON control signal from the user data.
  • the MUX unit 15 multiplexes the uplink PON control signal and user data.
  • the PON control unit 16 generates a PON control signal and outputs it to the MUX unit 15 and analyzes the PON control signal output from the DeMUX unit 14.
  • the user I / F unit 17 transmits and receives user data.
  • FIG. 2 is a diagram illustrating an example of a format of a discovery transmission permission signal generated by the PON control unit 7 of the OLT 1.
  • a discovery transmission permission signal is defined in a GATE message defined by IEEE 802.3ah.
  • “Destination Address” (hereinafter referred to as the destination address) 301 is a unique number of the ONU.
  • the MAC address of the ONU is set.
  • “Address Mask (hereinafter, address mask)” 302 is defined in the GATE message.
  • the PON control unit 7 of the OLT 1 designates an ONU that permits transmission of a registration request signal using the destination address 301 and the address mask 302.
  • FIG. 3 is a diagram illustrating an example of a format of a registration request signal generated by the PON control unit 16 of the ONU.
  • a registration request signal is defined in a RegisterRequest message defined by IEEE 802.3ah.
  • “Source Address” (hereinafter referred to as “source address”) 401 is its own individual number, and sets the MAC address of the ONU as described above.
  • the PON control unit 16 of the ONUs 10-1 to N receives the discovery transmission permission signal shown in FIG. 2, and notifies the OLT 1 of its own number with a registration request signal shown in FIG. 3 when the conditions match.
  • the OLT 1 stores the ONU individual number and other information in the database 9.
  • FIG. 4 is a flowchart showing the operation of the ONU.
  • the ONU checks whether or not a discovery transmission permission signal has been received (step S1).
  • the PON control unit 16 determines whether the received signal is unicast transmission based on the value of the destination address 301 (step S2). For example, in the case of unicast transmission (step S2: Yes), the destination address 301 and the address mask 302 are referred to, and the value of the bit position specified by the address mask 302 is checked against its own MAC address. (Step S3).
  • step S3 When the designated bit in the destination address 301 matches the own MAC address in the process of step S3 (step S3: Yes), the ONU PON control unit 16 sets its own MAC address to the source address 401. Is created and transmitted to the OLT 1 as a registration request signal (step S4). At this time, transmission may be performed with a random delay conventionally performed.
  • step S2 If it is determined in step S2 that the transmission is multicast (step S2: No), the ONU PON control unit 16 transmits a registration request signal to the OLT 1 according to a conventional procedure (step S4). If they do not match in the process of step S3 (step S3: Yes), the PON control unit 16 of the ONU repeatedly executes the processes of steps S1 to S3 until they match.
  • the PON control unit 7 of the OLT 1 determines that the ONU having the MAC address set in the source address 401 is in the operating state and registers it in the database 9.
  • FIG. 5 is a diagram illustrating an example of a discovery transmission permission signal in a case where transmission of a registration request signal is permitted to an ONU whose least significant bit of the MAC address is “0”. For example, when permitting transmission of a registration request signal only to an ONU having the least significant bit of the MAC address “0”, the OLT 1 sets only the least significant bit of the address mask 302 to “1” as shown in FIG. A discovery transmission permission signal instructing a match search of only the least significant bit is transmitted to the ONU. Only the ONU for which the match of the least significant bit is confirmed transmits a registration request signal to the OLT 1.
  • x is an arbitrary value of 0 or 1.
  • the present invention is not limited to this, and a search for matching more bits may be instructed. As a result, the number of collisions can be further reduced.
  • the number of ONUs that respond simultaneously can be limited, so that the probability of registration request signals colliding with each other without expanding the discovery window can be reduced even when further multi-branching or lengthening is implemented. Can do.
  • the number of discovery attempts can be reduced by reducing the signal collision probability, it is possible to shorten the time until the service starts.
  • the ONU's individual number and address mask are included in the transmission permission signal for discovery to limit simultaneously responding ONUs.
  • the bit value may be directly specified in the address mask.
  • the solid number of the ONU is a MAC address, but a serial number, a manufacturing number, or the like may be used.
  • Embodiment 2 a part of the solid number of the ONU is masked and the number of ONUs that can respond at the same time is limited, thereby avoiding collision between registration request signals without expanding the discovery window.
  • the registration request signal from the ONU can be received without expanding the discovery window.
  • the PON system of the present embodiment has the same configuration as that of FIG. 1 of the first embodiment described above.
  • FIG. 6 is a diagram showing an outline of discovery in the present embodiment.
  • the ONUa-OLT distance is short (no discovery window offset) and the ONUb-OLT distance is long (discovery window offset).
  • OLT does not provide a discovery window that covers the distance to all ONUs, but uses a narrow discovery window to perform discovery for short distances and discovery for long distances.
  • When performing discovery for short distance set the discovery window so that ONUb at a long distance does not react.
  • discovery window so that ONUa at a short distance does not react.
  • FIG. 7 is a diagram illustrating an example of the correspondence between the distance between the OLT and the ONU and the MAC address of the ONU.
  • the 4 bits of BIT7 to BIT4 in the fourth octet correspond to the distance from the OLT. That is, when the distance from the OLT is “0 to 10 km”, the 4 bits of BIT7 to BIT4 of the fourth octet of the MAC address are set to “0000”. Similarly, when the distance from the OLT is “10 to 20 km”, “20 to 30 km”, and “30 to 40 km”, the 4 bits of BIT7 to BIT4 of the fourth octet are set to “0001” and “0010”, respectively. , “0011”.
  • 4 bits of the address mask corresponding to 4 bits of BIT 7 to BIT 4 of the fourth octet of the MAC address are set to “1111”, and an ONU that permits transmission of the registration request signal is designated.
  • x is an arbitrary value of 0 or 1. The correspondence relationship is not limited to this, and other bit ranges and other bits may be associated with each other.
  • FIG. 8 is a flowchart showing the operation of the OLT.
  • the PON control unit 7 of the OLT 1 checks the presence / absence of a registration request signal sent from the ONU side as a response to the process of step S11 (step S12). For example, when a registration request signal is received (step S12: Yes), the PON control unit 7 of the OLT 1 determines that the ONU having the MAC address set as the source address is in the operating state and registers it in the database 9. (Step S19).
  • the PON control unit 7 of the OLT 1 checks the presence / absence of a registration request signal sent from the ONU side as a response to the process of step S13 (step S14). For example, when a registration request signal is received (step S14: Yes), the PON control unit 7 of the OLT 1 determines that the ONU having the MAC address set as the source address is in the operating state and registers it in the database 9. (Step S19).
  • the PON control unit 7 of the OLT 1 checks the presence / absence of a registration request signal sent from the ONU side as a response to the process of step S15 (step S16). For example, when a registration request signal is received (step S16: Yes), the PON control unit 7 of the OLT 1 determines that the ONU having the MAC address set as the source address is in an operating state and registers it in the database 9. (Step S19).
  • the PON control unit 7 of the OLT 1 checks the presence / absence of a registration request signal sent from the ONU side as a response to the process of step S17 (step S18). For example, when a registration request signal is received (step S18: Yes), the PON control unit 7 of the OLT 1 determines that the ONU having the MAC address set as the source address is in the operating state and registers it in the database 9. (Step S19).
  • the PON control unit 7 of the OLT 1 periodically and repeatedly performs the operation (No in step S18) until the registration of all ONUs existing in the range of 0 to 40 km is completed in the processes in steps S11 to S18. .
  • the ONU search is performed in order of increasing distance from the OLT 1, but the search may be performed in a different order.
  • the width of the discovery window is not limited to this.
  • the ONU individual number is associated with the distance between the OLT and the ONT, and the OLT registers the ONU existing in a specific distance range by one discovery, The entire distance range was covered with a narrow discovery window while shifting the start timing of the discovery window. As a result, the discovery window can be prevented from expanding even when the extension is further extended.
  • Embodiment 3 the method of limiting ONUs that can respond when the OLT registers ONUs has been described.
  • the round trip time of the ONU in which discovery has been performed is retained, and the discovery window is set based on the retained time for the ONU in which discovery has been performed once.
  • the PON system of the present embodiment has the same configuration as that of FIG. 1 of the first embodiment described above.
  • OLT 1 performs two types of discovery.
  • One is an initial discovery for detecting an ONU that has never registered a solid number.
  • the other is to detect ONUs that have been discovered in the past and registered with a solid number, but have been put into a non-operational state, such as when the power is turned off. Discovery after registration.
  • FIG. 9 is a diagram showing an outline of discovery in the present embodiment.
  • the destination address is multicast, and the discovery window width is Wmax, which is a size that can cover the registration request signal from the farthest end ONU-x.
  • the OLT 1 holds the ONU-x individual number and the round trip time (RTTx) in the database 9. Further, the OLT 1 performs discovery after registration for the ONU-x that has become non-operational after the initial discovery.
  • a transmission permission signal for discovery in which the MAC address of ONU-x is set as the destination address is transmitted.
  • the discovery window when performing discovery after registration is a narrow window width with a margin D before and after the round trip time (RTTx) held in the database 9.
  • FIG. 10 is a flowchart showing the operation of the OLT.
  • the PON control unit 7 of the OLT 1 starts an initial discovery (step S31). Specifically, first, the discovery transmission permission signal is transmitted with the destination address as a multicast address, the discovery window offset as 0 ⁇ s, and the discovery window width as Wmax ( ⁇ s).
  • the PON control unit 7 of the OLT 1 checks the presence / absence of a registration request signal sent from the ONU side as a response to the process of step S31 (step S32). For example, if there is a registration request (step S32: Yes), the ONU having the MAC address set as the source address is determined to be in the operating state and registered in the database 9 (step S33). Further, the round trip time (RTT) of the ONU is registered in the database 9 (step S33).
  • RTT round trip time
  • step S34 the PON control unit 7 of the OLT 1 performs discovery after registration for the searched ONU (step S35).
  • the destination address is the MAC address of the searched ONU (designated ONU)
  • the discovery window start offset is “designated ONU RTT-D ( ⁇ s)”
  • the margin for providing the discovery window width before and after the RTT A transmission permission signal for discovery is transmitted as a total of 2D ( ⁇ s) of D.
  • the PON control unit 7 of the OLT 1 checks the presence / absence of a registration request signal sent from the designated ONU as a response to the process of step S35 (step S36). For example, if there is a registration request (step S36: Yes), the database 9 is updated by determining that the operation state has been reached again (step S37). Thereafter, the PON control unit 7 of the OLT 1 periodically repeats the operations in steps S31 to S37.
  • step S34 If the corresponding ONU is not searched in step S34 (step S34: No), or if there is no registration request in step S36 (step S36: No), the PON control unit 7 of the OLT 1 again performs the first time. Transition to the discovery process.
  • the round trip time of the ONU once discovered is stored.
  • the minimum necessary discovery window will be opened based on the previously stored round trip time. .
  • the bandwidth consumed for the discovery window can be significantly reduced.
  • the case where the initial discovery and the discovery after registration are alternately performed is shown, but either frequency may be increased.
  • discovery after registration fails for a predetermined number of times, it may be determined that the ONU has stopped and deleted from the database.
  • the communication control method according to the present invention is useful for a PON system, and is particularly suitable as a communication control method for implementing multi-branching or lengthening in a PON system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

 PONシステムにおいて、OLT1が新規に接続されるONUを検出する手順であるディスカバリ手順を実施する際の通信制御方法であって、OLT1が、応答を許可するONUの固体番号および当該固体番号の一致検出対象ビットを指定するためのマスク情報を含む、ディスカバリ用の送信許可信号を送信する送信許可信号送信ステップと、OLT1に登録前のONUが、受信した送信許可信号に基づいて、マスク情報で指定された固体番号の一致検出対象ビットと自身の固体番号とを比較し、一致する場合にOLT1に対して登録要求信号を送信する登録要求信号送信ステップと、を含む。

Description

通信制御方法、局側装置、加入者側装置および通信システム
 本発明は、PONシステムにおいてディスカバリ手順(Discovery processing)を実行する場合の通信制御方法に関する。
 PON(Passive Optical Network)システムでは、加入者側装置であるONU(Optical Network Unit)を接続する際に、そのONUの固体番号を、局側装置であるOLT(Optical Line Terminal)に登録する。従来は、OLTがディスカバリ手順を任意のタイミングで行うことによりONUの固体番号(E-PON(Ethernet(登録商標) PON)ではMACアドレスに相当)を収集し、OLTのデータベースに登録していた(非特許文献1参照)。
 また、ONUの固体番号を収集する際、OLTは、ONUからの登録要求信号の受信が予想される時間帯に、ユーザデータを割当てないようにしている。この時間帯を、ディスカバリウインドウと呼ぶ。ディスカバリウインドウは、設置されたONUとの間のラウンドトリップタイムをカバーする時間分だけ開ける必要がある。しかしながら、ラウンドトリップタイムをカバーするためにウインドウを拡大すると、使用可能なユーザ帯域が減少してしまう。
 下記特許文献1では、ONUの新規設置時にONUに対して固定遅延を設定し、狭いディスカバリウインドウでONUを検出することで、ディスカバリウインドウにより消費される帯域を節約している。
 一方で、PONシステムは、光ファイバーを多数の加入者で共有することで加入者に光アクセスを経済的に提供するシステムであって、光ファイバーを共有する加入者が多いほど経済効果が高くなるため、さらなる多分岐,長延化という方向で改良が進められている。
特開2001-326666号公報 IEEE802.3ah Clause 64 Multi-point MAC Control
 しかしながら、従来技術において、たとえば、光ファイバーを共有する加入者を増大させるために多分岐化を実施した場合には、ディスカバリ手順の実行によるONUの固体番号取得に多大な時間を要する、という問題があった。たとえば、OLTは、宛先をマルチキャストアドレスとしてディスカバリ用の送信許可信号を送信する。その後、ONUからの登録要求信号を受信するためのディスカバリウインドウを設け、運用状態に入っているONUにユーザグラントを割当てないようにする。これに対し、ONUは、送信許可信号受信時に、OLTが指定したタイムスロット内のランダムなタイミングで登録要求信号を送信することにより、信号の衝突を避けている。一方で、登録要求信号をランダムなタイミングで送信することにより、ある程度ONUの送信信号同士の衝突を低減することはできるが、さらなる多分岐化によりONUの数が増加すると、衝突確率が上昇しディスカバリ試行回数が増加し、ONUがOLTに登録されるまでに要する時間が増大することとなる。また、その結果としてサービス開始が遅れることとなる。
 なお、ランダム遅延のタイムスロットの拡張により衝突確率を減らすことが可能であるが、タイムスロットの拡張は、ユーザ帯域の減少および運用状態のONU送信信号に対する遅延ゆらぎ、の増加につながり、その結果として通信品質劣化を引き起こしてしまう。
 また、従来技術において、光ファイバーを共有する加入者を増大させるために長延化を実施した場合には、近端のONUとの間のラウンドトリップタイムおよび遠端のONUとの間のラウンドトリップタイムをカバーするディスカバリウインドウを設ける必要があるため、より大きなディスカバリウインドウが必要となる。これにより、使用可能なユーザ帯域が減少してしまう、という問題があった。
 本発明は、上記に鑑みてなされたものであって、PONシステムにおいてさらなる多分岐化や長延化を実施した場合であっても、ディスカバリ手順の実行に伴うユーザ帯域の減少や遅延揺らぎの増加を回避可能な通信制御方法を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、局側装置が、応答を許可する加入者側装置の固体番号および当該固体番号の一致検出対象ビットを指定するためのマスク情報を含む、ディスカバリ用の送信許可信号を送信する送信許可信号送信ステップと、局側装置に登録前の加入者側装置が、受信した送信許可信号に基づいて、マスク情報で指定された固体番号の一致検出対象ビットと自身の固体番号とを比較し、一致する場合に局側装置に対して登録要求信号を送信する登録要求信号送信ステップと、を含む。
 この発明によれば、同時応答する加入者側装置の数を制限することができるので、さらなる多分岐化や長延化を実施した場合であっても、ディスカバリウインドウを広げることなく登録要求信号同士が衝突する確率を減らすことができる、という効果を奏する。また、信号衝突確率の低減によりディスカバリ試行回数を低減させることができるため、サービス開始までの時間を短縮することも可能となる、という効果を奏する。
図1は、本発明にかかる通信制御方法を実現可能なPONシステムの構成例を示す図である。 図2は、ディスカバリ用送信許可信号のフォーマットの一例を示す図である。 図3は、登録要求信号のフォーマットの一例を示す図である。 図4は、実施の形態1の通信制御方法を示すフローチャートである。 図5は、ディスカバリ用送信許可信号の一例を示す図である。 図6は、実施の形態2におけるディスカバリの概要を示す図である。 図7は、OLT-ONU間の距離とONUのMACアドレスとの対応の一例を示す図である。 図8は、実施の形態2の通信制御方法を示すフローチャートである。 図9は、実施の形態3におけるディスカバリの概要を示す図である。 図10は、実施の形態の3の通信制御方法を示すフローチャートである。
符号の説明
 1 OLT
 2 WDM部
 3 TX部
 4 RX部
 5 MUX部
 6 DeMUX部
 7 PON制御部
 8 ネットワークI/F部
 9 データベース
 10-1~10-N ONU
 11 WDM部
 12 RX部
 13 TX部
 14 DeMUX部
 15 MUX部
 16 PON制御部
 17 ユーザI/F部
 50 スプリッタ
 以下に、本発明にかかる通信制御方法の実施の形態を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明にかかる通信制御方法を実現可能なPONシステムの構成例を示す図である。図1のPONシステムは、OLT1とONU10-1~10-N(N=1,2,…)とスプリッタ50とを備え、各装置間は光ケーブルで接続されている。PONシステムは、波長分割多重(以下、WDM(Wavelength Division Multiplexing)という)を採用し、光ケーブルに複数の異なる波長の光信号を多重して伝送している。各ONUは、OLT1に対して波長λ1の上りバースト光信号を送信する。OLT1は、各ONUに対して波長λ2の下り光信号を送信する。
 また、上記OLT1は、WDM部2と、TX部3と、RX部4と、MUX部5と、DeMUX部6と、PON制御部7と、ネットワークI/F部8と、データベース9とを備えている。WDM部2は、波長分割多重方式に対応したインタフェースであり、光信号を送受する。TX3部は、MUX部5から出力された電気信号を光信号にE/O(Electric/Optical)変換する。RX部4は、WMD部2から出力された光信号を電気信号にO/E(Optical/Electric)変換する。MUX部5は、下りのPON制御信号とユーザデータを多重する。DeMUX部6は、上りのPON制御信号とユーザデータを分離する。PON制御部7は、PON制御信号を生成してMUX部5に出力するとともに、DeMUX部6から出力されたPON制御信号を解析する。ネットワークI/F部8は、ユーザデータを送受する。データベース9は、ディスカバリ手順の実行によって得られた運用状態のONUに関する情報、およびディスカバリ手順の実行に必要となる情報等を格納している。運用状態とは、ONUがPONシステムに接続されかつ起動している状態をいう。
 また、上記ONU10-1~10-Nは、それぞれ、WDM部11と、RX部12と、TX部13と、DeMUX部14と、MUX部15と、PON制御部16と、ユーザI/F部17とを備えている。WDM部11は、波長分割多重方式に対応したインタフェースであり、光信号を送受する。RX部12は、WMD部11から出力された光信号を電気信号にO/E変換する。TX部13は、MUX部15から出力された電気信号を光信号にE/O変換する。DeMUX部14は、下りのPON制御信号とユーザデータを分離する。MUX部15は、上りのPON制御信号とユーザデータを多重する。PON制御部16は、PON制御信号を生成してMUX部15に出力するとともに、DeMUX部14から出力されたPON制御信号を解析する。ユーザI/F部17は、ユーザデータを送受する。
 図2は、OLT1のPON制御部7により生成されるディスカバリ用送信許可信号のフォーマットの一例を示す図である。この例では、IEEE802.3ahで規定されるGATEメッセージにディスカバリ用送信許可信号を定義する。“Destination Address”(以後、デスティネーションアドレスと呼ぶ)301はONUの固体番号であり、IEEE802.3ahではONUのMACアドレスがセットされる。さらに、本実施の形態では、GATEメッセージに“Address Mask(以後、アドレスマスク)”302を定義する。OLT1のPON制御部7は、デスティネーションアドレス301とアドレスマスク302によって、登録要求信号の送信を許可するONUを指定する。
 図3は、ONUのPON制御部16により生成される登録要求信号のフォーマットの一例を示す図である。この例では、IEEE802.3ahで規定されるRegisterRequestメッセージに登録要求信号を定義する。“Source Address”(以後、ソースアドレスと呼ぶ)401は自身の固体番号であり、上記同様ONUのMACアドレスをセットする。ONU10-1~NのPON制御部16では、図2に示すディスカバリ用送信許可信号を受信し、条件が一致した場合に、図3に示す登録要求信号にて自固体番号をOLT1に通知する。OLT1では、登録要求信号を正常に受信すると、データベース9にONUの固体番号およびその他の情報を保持する。
 つづいて、実施の形態1の通信制御方法を、図面を用いて詳細に説明する。図4は、ONUの動作を示すフローチャートである。まず、ONUは、ディスカバリ用送信許可信号の受信有無をチェックする(ステップS1)。ディスカバリ用送信許可信号を受信した場合(ステップS1:Yes)、PON制御部16では、デスティネーションアドレス301の値に基づいて、受信信号がユニキャスト送信か否かを判定する(ステップS2)。たとえば、ユニキャスト送信であった場合には(ステップS2:Yes)、デスティネーションアドレス301とアドレスマスク302を参照し、アドレスマスク302で指定されているビット位置の値を自身のMACアドレスと照合する(ステップS3)。
 上記ステップS3の処理で、デスティネーションアドレス301における指定されたビットが自身のMACアドレスと一致した場合(ステップS3:Yes)、ONUのPON制御部16は、ソースアドレス401に自身のMACアドレスをセットしたメッセージを作成し、登録要求信号としてOLT1に送信する(ステップS4)。このとき、従来から行われているランダム遅延を付与して送信することとしてもよい。
 なお、上記ステップS2の処理で、マルチキャスト送信であると判断した場合(ステップS2:No)、ONUのPON制御部16は、従来の手順通りに登録要求信号をOLT1に送信する(ステップS4)。また、上記ステップS3の処理で一致しなかった場合(ステップS3:Yes)、ONUのPON制御部16は、一致するまで、上記ステップS1~S3の処理を繰り返し実行する。
 一方、登録要求信号を受信したOLT1のPON制御部7では、ソースアドレス401にセットされたMACアドレスを有するONUを、運用状態であると判断してデータベース9に登録する。
 図5は、MACアドレスの最下位ビットが“0”のONUに対して登録要求信号の送信を許可する場合の、ディスカバリ用送信許可信号の一例を示す図である。たとえば、MACアドレスの最下位ビットが“0”のONUのみに登録要求信号の送信を許可する場合、OLT1は、図5に示すように、アドレスマスク302の最下位ビットのみを“1”とし、最下位ビットのみの一致検索を指示したディスカバリ用送信許可信号をONUに送信する。そして、最下位ビットの一致が確認されたONUのみが、OLT1に登録要求信号を送信する。なお、図中xは0か1の任意の値とする。また、図5では、最下位ビットの一致検索を指示する場合について記載したが、これに限らず、より多くのビットの一致検索を指示することとしてもよい。これにより、さらに衝突回数を減らすことが可能となる。
 以上説明したように、本実施の形態では、PONシステムにおいてディスカバリ用送信許可信号を送信する際に、ONUの固体番号の一部をマスクすることとした。これにより、同時応答するONUの数を制限することができるので、さらなる多分岐化や長延化を実施した場合であっても、ディスカバリウインドウを広げることなく登録要求信号同士が衝突する確率を減らすことができる。また、信号衝突確率の低減によりディスカバリ試行回数を低減させることができるため、サービス開始までの時間を短縮することも可能となる。
 なお、本実施の形態では、ディスカバリ用送信許可信号中にONUの固体番号およびアドレスマスクを含ませることで、同時応答するONUを制限することとしたが、ONUの固体番号を指定せずに、アドレスマスクにおいて直接ビットの値を指定することとしてもよい。また、本実施の形態では、ONUの固体番号をMACアドレスとしたが、シリアル番号や製造番号等を利用することとしてもよい。
実施の形態2.
 実施の形態1では、ONUの固体番号の一部をマスクし、同時に応答可能なONUの数を制限することで、ディスカバリウインドウを広げることなく登録要求信号同士の衝突を避けるとした。本実施の形態では、ONUの固体番号とOLT-ONU間の距離とを関連付けることで、さらなる長延化を実施した場合であっても、ディスカバリウインドウを広げることなくONUからの登録要求信号を受信可能とする。なお、本実施の形態のPONシステムは、前述した実施の形態1の図1と同様の構成である。
 図6は、本実施の形態におけるディスカバリの概要を示す図である。ここでは、一例として、ONUa-OLT間の距離が近く(ディスカバリウインドウのオフセットなし)、ONUb-OLT間の距離が遠い(ディスカバリウインドウのオフセットあり)場合を想定する。OLTは、たとえば、新たに接続されるONUをサーチする際に、全てONUとの距離をカバーするディスカバリウインドウを設けることなく、狭いディスカバリウインドウを用いて近距離用のディスカバリと遠距離用のディスカバリを別々に実施する。近距離用ディスカバリを実施する場合は、遠距離にあるONUbが反応しないようにディスカバリウインドウを設定し、遠距離用ディスカバリを実施する場合には、近距離にあるONUaが反応しないようにディスカバリウインドウを設定する。
 図7は、OLT-ONU間の距離とONUのMACアドレスとの対応の一例を示す図である。ここでは、第4オクテットのBIT7からBIT4の4ビットを、OLTからの距離に対応させている。すなわち、OLTからの距離が「0~10km」の場合には、MACアドレスの第4オクテットのBIT7からBIT4の4ビットを「0000」とする。同様に、OLTからの距離が「10~20km」,「20~30km」,「30~40km」の場合には、それぞれ、第4オクテットのBIT7からBIT4の4ビットを「0001」,「0010」,「0011」とする。また、ここでは、上記MACアドレスの第4オクテットのBIT7~BIT4の4ビットに対応するアドレスマスクの4ビットを「1111」とし、登録要求信号の送信を許可するONUを指定する。なお、図中xは0か1の任意の値とする。また、対応関係についてはこれに限らず、他のビット範囲および他のビットを対応させることとしてもよい。
 つづいて、実施の形態2の通信制御方法を、図面を用いて詳細に説明する。図8は、OLTの動作を示すフローチャートである。
 まず、OLT1のPON制御部7は、自身との距離が0~10kmの範囲に存在するONUをサーチする(ステップS11)。具体的には、デスティネーションアドレスに図7の0~10kmに対応するMACアドレス(第4オクテットb7~b4=0000)を設定し、ディスカバリウインドウのオフセットを0μsとし、ディスカバリウインドウ幅を100μsとして、ディスカバリ用送信許可信号を送信する。
 その後、OLT1のPON制御部7は、ステップS11の処理に対する応答としてONU側から送られてくる登録要求信号の有無をチェックする(ステップS12)。たとえば、登録要求信号を受信した場合(ステップS12:Yes)、OLT1のPON制御部7は、ソースアドレスにセットされたMACアドレスを有するONUを、運用状態であると判断してデータベース9に登録する(ステップS19)。
 上記ステップS11およびS12の処理において、0~10kmの範囲に存在するすべてのONUの登録が完了し、登録要求信号を受信できなくなった場合(ステップS12:No)、OLT1のPON制御部7は、つぎに、自身との距離が10~20kmの範囲に存在するONUをサーチする(ステップS13)。具体的には、デスティネーションアドレスに図7の10~20kmに対応するMACアドレス(第4オクテットb7~b4=0001)を設定し、ディスカバリウインドウのオフセットを100μsとし、ディスカバリウインドウ幅を100μsとして、ディスカバリ用送信許可信号を送信する。
 その後、OLT1のPON制御部7は、ステップS13の処理に対する応答としてONU側から送られてくる登録要求信号の有無をチェックする(ステップS14)。たとえば、登録要求信号を受信した場合(ステップS14:Yes)、OLT1のPON制御部7は、ソースアドレスにセットされたMACアドレスを有するONUを、運用状態であると判断してデータベース9に登録する(ステップS19)。
 上記ステップS11~S14の処理において、0~20kmの範囲に存在するすべてのONUの登録が完了し、登録要求信号を受信できなくなった場合(ステップS14:No)、OLT1のPON制御部7は、つぎに、自身との距離が20~30kmの範囲に存在するONUをサーチする(ステップS15)。具体的には、デスティネーションアドレスに図7の20~30kmに対応するMACアドレス(第4オクテットb7~b4=0010)を設定し、ディスカバリウインドウのオフセットを200μsとし、ディスカバリウインドウ幅を100μsとして、ディスカバリ用送信許可信号を送信する。
 その後、OLT1のPON制御部7は、ステップS15の処理に対する応答としてONU側から送られてくる登録要求信号の有無をチェックする(ステップS16)。たとえば、登録要求信号を受信した場合(ステップS16:Yes)、OLT1のPON制御部7は、ソースアドレスにセットされたMACアドレスを有するONUを、運用状態であると判断してデータベース9に登録する(ステップS19)。
 上記ステップS11~S16の処理において、0~30kmの範囲に存在するすべてのONUの登録が完了し、登録要求信号を受信できなくなった場合(ステップS16:No)、OLT1のPON制御部7は、つぎに、自身との距離が30~40kmの範囲に存在するONUをサーチする(ステップS17)。具体的には、デスティネーションアドレスに図7の30~40kmに対応するMACアドレス(第4オクテットb7~b4=0011)を設定し、ディスカバリウインドウのオフセットを300μsとし、ディスカバリウインドウ幅を100μsとして、ディスカバリ用送信許可信号を送信する。
 その後、OLT1のPON制御部7は、ステップS17の処理に対する応答としてONU側から送られてくる登録要求信号の有無をチェックする(ステップS18)。たとえば、登録要求信号を受信した場合(ステップS18:Yes)、OLT1のPON制御部7は、ソースアドレスにセットされたMACアドレスを有するONUを、運用状態であると判断してデータベース9に登録する(ステップS19)。
 以降、OLT1のPON制御部7では、上記ステップS11~S18の処理において0~40kmの範囲に存在するすべてのONUの登録が完了するまで動作(ステップS18,No)を、定期的に繰り返し実行する。
 なお、上記の例では、OLT1からの距離が近い順にONUのサーチを行っているが、別の順番でサーチを行うこととしてもよい。また、ディスカバリウインドウの幅についてもこの限りではない。
 以上説明したように、本実施の形態では、ONUの固体番号とOLT-ONU間の距離とを関連付けることとし、OLTは、1回のディスカバリで特定の距離範囲に存在するONUの登録を行い、ディスカバリウインドウの開始タイミングをシフトさせながら狭いディスカバリウインドウで全距離範囲をカバーすることとした。これにより、さらなる長延化を実施する場合であっても、ディスカバリウインドウの拡大を避けることができる。
実施の形態3.
 実施の形態1および2では、OLTがONUの登録を行う際に、応答可能なONUを制限する方法について説明した。本実施の形態では、ディスカバリが行われたONUのラウンドトリップタイムを保持し、一度ディスカバリが行われたONUについては保持された時間に基づいてディスカバリウインドウを設定する。なお、本実施の形態のPONシステムは、前述した実施の形態1の図1と同様の構成である。
 本実施の形態では、たとえば、図9に示すように、OLT1が2種類のディスカバリを行う。1つは、1度も固体番号を登録していないONUを検出するための初回のディスカバリである。もう1つは、過去にディスカバリが行われ固体番号が登録されたが、電源を落とされる等、一度非運用状態となり、その後、電源の再投入等により再度運用状態になったONUを検出するための登録後のディスカバリである。
 図9は、本実施の形態におけるディスカバリの概要を示す図である。上記初回のディスカバリでは、デスティネーションアドレスをマルチキャストとし、ディスカバリウインドウ幅を、最遠端のONU-xからの登録要求信号をカバーできる大きさであるWmaxとする。この初回のディスカバリにより登録要求信号を受信した場合、OLT1は、データベース9にONU-xの固体番号とラウンドトリップタイム(RTTx)を保持する。また、初回のディスカバリが行われた後に非運用状態となったONU-xに対して、OLT1は、図示の登録後のディスカバリを行う。ここでは、デスティネーションアドレスにONU-xのMACアドレスを設定したディスカバリ用送信許可信号を送信する。また、登録後のディスカバリを行う場合のディスカバリウインドウは、データベース9に保持されているラウンドトリップタイム(RTTx)の前後にマージンDを持たせた幅の狭いウインドウ幅とする。
 つづいて、実施の形態の3の通信制御方法を、図面を用いて詳細に説明する。図10は、OLTの動作を示すフローチャートである。
 まず、OLT1のPON制御部7は、初回のディスカバリを開始する(ステップS31)。具体的には、まず、デスティネーションアドレスをマルチキャストアドレスとし、ディスカバリウインドウのオフセットを0μsとし、ディスカバリウインドウ幅をWmax(μs)として、ディスカバリ用送信許可信号を送信する。
 つぎに、OLT1のPON制御部7は、ステップS31の処理に対する応答としてONU側から送られてくる登録要求信号の有無をチェックする(ステップS32)。たとえば、登録要求があった場合には(ステップS32:Yes)、ソースアドレスにセットされたMACアドレスを有するONUを、運用状態であると判断してデータベース9に登録する(ステップS33)。また、そのONUのラウンドトリップタイム(RTT)をデータベース9に登録する(ステップS33)。
 ステップS33による登録処理完了後、または、ステップS32の処理で登録要求がなかった場合(ステップS32:No)、OLT1のPON制御部7は、つぎに、データベース9から登録済みかつ非運用状態となっているONUを検索する(ステップS34)。そして、該当するONUが検索された場合(ステップS34:Yes)、OLT1のPON制御部7では、上記検索されたONUに対して登録後のディスカバリを行う(ステップS35)。ここでは、デスティネーションアドレスを上記検索されたONU(指定ONU)のMACアドレスとし、ディスカバリウインドウの開始オフセットを「指定ONUのRTT-D(μs)」とし、ディスカバリウインドウ幅をRTTの前後に設けるマージンDの合計2D(μs)として、ディスカバリ用送信許可信号を送信する。
 つぎに、OLT1のPON制御部7は、ステップS35の処理に対する応答として指定ONUから送られてくる登録要求信号の有無をチェックする(ステップS36)。たとえば、登録要求があった場合には(ステップS36:Yes)、再度運用状態になったと判断してデータベース9を更新する(ステップS37)。以降、OLT1のPON制御部7では、上記ステップS31~S37の動作を、定期的に繰り返し実行する。
 なお、ステップS34において該当するONUが検索されなかった場合(ステップS34:No)、または、ステップS36において登録要求がなかった場合(ステップS36:No)、OLT1のPON制御部7では、再度初回のディスカバリ処理に移行する。
 以上説明したように、本実施の形態では、一度ディスカバリが行われたONUのラウンドトリップタイムを記憶することとした。また、一度ディスカバリが行われた後に非運用状態となったONUに対して、再度ディスカバリを行う場合は、過去に記憶しておいたラウンドトリップタイムに基づき必要最小限のディスカバリウインドウを開くこととした。これにより、ディスカバリウインドウに消費される帯域の大幅な削減が可能となる。
 なお、本実施の形態では、初回のディスカバリと登録後のディスカバリを交互に行う場合について示したが、どちらかの頻度を高くすることとしてもよい。また、登録後のディスカバリを所定の回数に渡って失敗した場合には、ONUが停止したと判定して、データベースから削除することとしてもよい。
 以上のように、本発明にかかる通信制御方法は、PONシステムに有用であり、特に、PONシステムにおいて多分岐化または長延化を実施する場合の通信制御方法として適している。

Claims (11)

  1.  PONシステムにおいて、局側装置が新規に接続される加入者側装置を検出する手順であるディスカバリ手順を実施する際の通信制御方法であって、
     前記局側装置が、応答を許可する加入者側装置の固体番号および当該固体番号の一致検出対象ビットを指定するためのマスク情報を含む、ディスカバリ用の送信許可信号を送信する送信許可信号送信ステップと、
     前記局側装置に登録前の加入者側装置が、受信した送信許可信号に基づいて、マスク情報で指定された固体番号の一致検出対象ビットと自身の固体番号とを比較し、一致する場合に前記局側装置に対して登録要求信号を送信する登録要求信号送信ステップと、
     を含むことを特徴とする通信制御方法。
  2.  前記局側装置が、自身との距離に応じた規則性を有する、加入者側装置の固体番号を管理することとし、
     前記送信許可信号送信ステップは、
     特定距離範囲に存在する加入者側装置を検出するために、前記固体番号と前記距離に応じた規則性を有するビットを指定したマスク情報とを含む送信許可信号を送信する第1サーチステップと、
     前記特定距離範囲に存在する加入者側装置からの登録要求信号を受信可能な時間帯にディスカバリウインドウを設定する第2サーチステップと、
     を含み、
     前記特定距離範囲をシフトすることにより、加入者側装置が存在するすべての距離範囲でディスカバリを実施することを特徴とする請求項1に記載の通信制御方法。
  3.  PONシステムにおいて、局側装置が新規に接続される加入者側装置を検出する手順であるディスカバリ手順を実施する際の通信制御方法であって、
     前記局側装置が、すべての加入者側装置からの応答を許可するマルチキャストアドレスを含むディスカバリ用の送信許可信号を送信し、さらに、すべての加入者側装置からの登録要求信号を受信可能な時間帯にディスカバリウインドウを設定する第1のディスカバリステップと、
     前記局側装置に登録前の加入者側装置が、受信した送信許可信号に対する応答として登録要求信号を送信する登録要求信号送信ステップと、
     前記登録要求信号を受信した局側装置が、当該登録要求信号を送信した加入者側装置の固体番号とラウンドトリップタイムを保持する保持ステップと、
     前記局側装置が、一度ディスカバリが行われた後に非運用状態となった加入者側装置の固体番号を含む送信許可信号を送信し、さらに、過去のディスカバリで保持しておいたラウンドトリップタイムに基づき当該加入者側装置からの登録要求信号を受信可能な時間帯にディスカバリウインドウを設定する第2のディスカバリステップと、
     を含むことを特徴とする通信制御方法。
  4.  前記第2のディスカバリステップを所定回数にわたって繰り返し実行し、前記非運用状態の加入者側装置から応答がない場合、保持している当該加入者側装置の固体番号とラウンドトリップタイムを削除することを特徴とする請求項3に記載の通信制御方法。
  5.  PONシステムにおいて、新規に接続される加入者側装置を検出する手順であるディスカバリ手順を実施する局側装置であって、
     応答を許可する加入者側装置の固体番号および当該固体番号の一致検出対象ビットを指定するためのマスク情報を含む、ディスカバリ用の送信許可信号を生成および送信する局側PON制御手段、
     を備えることを特徴とする局側装置。
  6.  前記局側PON制御手段は、
     自身との距離に応じた規則性を有する、加入者側装置の固体番号を管理することとし、
     特定距離範囲に存在する加入者側装置を検出するために、前記固体番号と前記距離に応じた規則性を有するビットを指定したマスク情報とを含む送信許可信号を送信する第1サーチ機能と、
     前記特定距離範囲に存在する加入者側装置からの登録要求信号を受信可能な時間帯にディスカバリウインドウを設定する第2サーチ機能と、
     を有し、
     前記特定距離範囲をシフトすることにより、加入者側装置が存在するすべての距離範囲でディスカバリを実施することを特徴とする請求項5に記載の局側装置。
  7.  PONシステムにおいて、新規に接続される加入者側装置を検出する手順であるディスカバリ手順を実施する局側装置であって、
     ディスカバリ用の送信許可信号を生成および送信する局側PON制御手段と、
     送信許可信号を受信した登録前の加入者側装置から登録要求信号を受信した場合に、当該登録要求信号を送信した加入者側装置の固体番号とラウンドトリップタイムを保持する保持手段と、
     を備え、
     前記局側PON制御手段は、
     すべての加入者側装置からの応答を許可するマルチキャストアドレスを含むディスカバリ用の送信許可信号を送信し、さらに、すべての加入者側装置からの登録要求信号を受信可能な時間帯にディスカバリウインドウを設定する第1のディスカバリ機能と、
     一度ディスカバリが行われた後に非運用状態となった加入者側装置の固体番号を含む送信許可信号を送信し、さらに、過去のディスカバリで保持しておいたラウンドトリップタイムに基づき当該加入者側装置からの登録要求信号を受信可能な時間帯にディスカバリウインドウを設定する第2のディスカバリ機能と、
     を有することを特徴とする局側装置。
  8.  前記第2のディスカバリ機能を所定回数にわたって繰り返し実行し、前記非運用状態の加入者側装置から応答がない場合、保持している当該加入者側装置の固体番号とラウンドトリップタイムを削除することを特徴とする請求項7に記載の局側装置。
  9.  請求項5または6に記載の局側装置とともにPONシステムを構成する加入者側装置であって、
     前記局側装置に登録していない場合に、当該局側装置から受信した送信許可信号に基づいて、マスク情報で指定された固体番号の一致検出対象ビットと自身の固体番号とを比較し、一致していれば登録要求信号を生成して当該局側装置に対して送信する加入者側PON制御手段、
     を備えることを特徴とする加入者側装置。
  10.  請求項5または6に記載の局側装置と、
     請求項9に記載の加入者側装置と、
     を備えることを特徴とする通信システム。
  11.  請求項7または8に記載の局側装置と、
     前記局側装置に登録していない場合に、受信した送信許可信号に対する応答として登録要求信号を送信する加入者側装置と、
     を備えることを特徴とする通信システム。
PCT/JP2008/050086 2008-01-08 2008-01-08 通信制御方法、局側装置、加入者側装置および通信システム WO2009087761A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP08710535.9A EP2242213B1 (en) 2008-01-08 2008-01-08 Communication control method, station side device, subscriber side device, and communication system
JP2009548831A JP4926253B2 (ja) 2008-01-08 2008-01-08 通信制御方法、局側装置、加入者側装置および通信システム
CN200880124281.4A CN101971576B (zh) 2008-01-08 2008-01-08 通信控制方法、站侧装置、加入者侧装置以及通信系统
US12/812,167 US8509619B2 (en) 2008-01-08 2008-01-08 Communication control method, station side device, subscriber side device, and communication system
PCT/JP2008/050086 WO2009087761A1 (ja) 2008-01-08 2008-01-08 通信制御方法、局側装置、加入者側装置および通信システム
KR1020107016791A KR101097004B1 (ko) 2008-01-08 2008-01-08 통신 제어 방법, 국측 장치, 가입자측 장치 및 통신 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/050086 WO2009087761A1 (ja) 2008-01-08 2008-01-08 通信制御方法、局側装置、加入者側装置および通信システム

Publications (1)

Publication Number Publication Date
WO2009087761A1 true WO2009087761A1 (ja) 2009-07-16

Family

ID=40852886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/050086 WO2009087761A1 (ja) 2008-01-08 2008-01-08 通信制御方法、局側装置、加入者側装置および通信システム

Country Status (6)

Country Link
US (1) US8509619B2 (ja)
EP (1) EP2242213B1 (ja)
JP (1) JP4926253B2 (ja)
KR (1) KR101097004B1 (ja)
CN (1) CN101971576B (ja)
WO (1) WO2009087761A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087190A (ja) * 2009-10-16 2011-04-28 Nec Corp 局内装置、光通信システム、構成検出方法、および装置のプログラム
US20110280578A1 (en) * 2010-05-14 2011-11-17 Wu Guangdong Passive optical network, access method thereof, optical network unit and optical line termination
JP2012134933A (ja) * 2010-12-24 2012-07-12 Of Networks:Kk 親局通信装置、子局通信装置、光通信ネットワークシステム、及び通信方法
CN111541487A (zh) * 2020-04-22 2020-08-14 四川思创优光科技有限公司 多模光纤激光器的组网方法及多模光纤激光器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5111092B2 (ja) * 2007-12-21 2012-12-26 株式会社日立製作所 ネットワークシステム及びolt
CN102075820B (zh) * 2009-11-23 2015-05-20 中兴通讯股份有限公司 在无源光网络中测距的方法和装置
US9048946B1 (en) * 2014-03-03 2015-06-02 Calix, Inc. Hybrid ranging using an out of band signal in optical networks
KR101710524B1 (ko) * 2014-12-03 2017-03-13 (주)텔리언 시분할 다중화 및 파장분할 다중화 방식의 수동 광 네트워크에서 광가입자망 종단유닛을 등록하는 광 라인 종단장치 및 방법
EP3116234B1 (en) * 2015-07-09 2018-08-29 Mitsubishi Electric R&D Centre Europe B.V. Method for transmitting signalling information with reduced identfiying information in an optical communications network
KR102433853B1 (ko) * 2016-03-28 2022-08-19 한국전자통신연구원 수동형 광 네트워크 시스템에서의 콰이어트 윈도우 설정 방법 및 그 장치
CN113727218B (zh) * 2020-05-25 2023-03-31 中国电信股份有限公司 设置静态窗口长度的方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326666A (ja) 2000-05-17 2001-11-22 Nec Miyagi Ltd ポイント−マルチポイント伝送システム
JP2004201099A (ja) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp 親局及び子局及び通信制御方法及び通信制御プログラム
JP2005347980A (ja) * 2004-06-02 2005-12-15 Nec Corp ノード間通信システム
JP2007067948A (ja) * 2005-08-31 2007-03-15 Nec Commun Syst Ltd 光スイッチ装置、光アクセスネットワーク、光スイッチ方法およびプログラム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415323B1 (en) * 1999-09-03 2002-07-02 Fastforward Networks Proximity-based redirection system for robust and scalable service-node location in an internetwork
US7573891B1 (en) * 2001-12-05 2009-08-11 Optimal Innovations, Inc. Hybrid fiber/conductor integrated communication networks
JP2003244179A (ja) 2002-02-15 2003-08-29 Mitsubishi Electric Corp 光多分岐通信システム、加入者装置および局内装置
JP4307381B2 (ja) * 2002-09-13 2009-08-05 ピーエムシー−シエラ イスラエル リミテッド 複数のエンティティーを有するネットワークユニットを含むイーサネット(登録商標)パッシブ光ネットワークの操作方法
US7545813B2 (en) * 2003-08-26 2009-06-09 Teknovus, Inc. Method and apparatus for registering multiple remote nodes in an ethernet passive optical network
WO2005086950A2 (en) * 2004-03-11 2005-09-22 Teknovus, Inc., Method for data encryption in an ethernet passive optical network
KR101083444B1 (ko) * 2004-04-28 2011-11-14 테크노버스, 인크. 이더넷 수동 광 통신망에서 l3-어웨어 스위칭을 하는 방법및 장치
US7068545B1 (en) * 2005-01-04 2006-06-27 Arm Limited Data processing apparatus having memory protection unit
US8086872B2 (en) * 2005-12-08 2011-12-27 Electronics And Telecommunications Research Institute Method for setting security channel based on MPCP between OLT and ONUs in EPON, and MPCP message structure for controlling frame transmission
JP4708997B2 (ja) * 2005-12-20 2011-06-22 日本電気通信システム株式会社 光スイッチ装置、光アクセスネットワーク、光スイッチ方法、プログラム、記録媒体
KR100800688B1 (ko) * 2005-12-26 2008-02-01 삼성전자주식회사 파장분할다중방식 수동형 광네트워크 시스템의 광송신기제어 장치 및 그 방법
CN100454901C (zh) * 2006-02-17 2009-01-21 华为技术有限公司 一种arp报文处理方法
US20070201867A1 (en) * 2006-02-28 2007-08-30 Tellabs Petaluma, Inc. Method, apparatus, system and computer program product for identifying failing or failed optical network terminal(s) on an optical distribution network
JP4466589B2 (ja) * 2006-03-06 2010-05-26 住友電気工業株式会社 Ponシステム及び端末装置の登録方法
WO2007113461A1 (en) * 2006-03-31 2007-10-11 British Telecommunications Public Limited Company Method of introducing an outstation into an optical network and outstation therefor
JP4818815B2 (ja) 2006-05-31 2011-11-16 三菱電機株式会社 光通信方法、光通信ネットワークシステム、親局光通信装置、子局光通信装置
JP4065892B1 (ja) 2006-10-13 2008-03-26 株式会社日立コミュニケーションテクノロジー Ponシステムおよびそのレンジング方法
CN101192885A (zh) * 2006-11-27 2008-06-04 华为技术有限公司 一种无源光网络的测距方法与系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326666A (ja) 2000-05-17 2001-11-22 Nec Miyagi Ltd ポイント−マルチポイント伝送システム
JP2004201099A (ja) * 2002-12-19 2004-07-15 Mitsubishi Electric Corp 親局及び子局及び通信制御方法及び通信制御プログラム
JP2005347980A (ja) * 2004-06-02 2005-12-15 Nec Corp ノード間通信システム
JP2007067948A (ja) * 2005-08-31 2007-03-15 Nec Commun Syst Ltd 光スイッチ装置、光アクセスネットワーク、光スイッチ方法およびプログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087190A (ja) * 2009-10-16 2011-04-28 Nec Corp 局内装置、光通信システム、構成検出方法、および装置のプログラム
US20110280578A1 (en) * 2010-05-14 2011-11-17 Wu Guangdong Passive optical network, access method thereof, optical network unit and optical line termination
US8861961B2 (en) * 2010-05-14 2014-10-14 Huawei Technologies Co., Ltd. Passive optical network, access method thereof, optical network unit and optical line termination
JP2012134933A (ja) * 2010-12-24 2012-07-12 Of Networks:Kk 親局通信装置、子局通信装置、光通信ネットワークシステム、及び通信方法
CN111541487A (zh) * 2020-04-22 2020-08-14 四川思创优光科技有限公司 多模光纤激光器的组网方法及多模光纤激光器
CN111541487B (zh) * 2020-04-22 2021-12-24 四川思创优光科技有限公司 多模光纤激光器的组网方法及多模光纤激光器

Also Published As

Publication number Publication date
JP4926253B2 (ja) 2012-05-09
CN101971576B (zh) 2014-06-18
EP2242213B1 (en) 2017-07-26
KR101097004B1 (ko) 2011-12-20
EP2242213A4 (en) 2013-12-11
US8509619B2 (en) 2013-08-13
JPWO2009087761A1 (ja) 2011-05-26
KR20100106537A (ko) 2010-10-01
US20100290784A1 (en) 2010-11-18
EP2242213A1 (en) 2010-10-20
CN101971576A (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4926253B2 (ja) 通信制御方法、局側装置、加入者側装置および通信システム
JP4942849B2 (ja) 通信制御方法、局側装置および通信システム
JP4820791B2 (ja) パッシブ光ネットワークシステムおよびレンジング方法
US10756841B2 (en) System for registering an ONU to an OLT in a passive optical network system using a dedicated wavelength
US9860618B2 (en) Upstream wavelength calibration in optical networks
US20150365191A1 (en) Method of tuning wavelength in time and wavelength division multiplexing-passive optical network (twdm-pon)
JP4558703B2 (ja) イーサネット受動型光加入者網におけるバーストデータ受信処理方法および装置
EP2997677B1 (en) Optical network unit self-calibration in multi-wavelength passive optical network
US9391734B2 (en) Network system
US20070147835A1 (en) Device and method for controlling optical transmitters in WDM-PON system
JP5556921B1 (ja) 加入者側装置登録方法及び光ネットワークシステム
WO2012130146A1 (zh) 一种光网络单元的检测方法、装置和无源光网络系统
EP3602856B1 (en) Discovery and registration in multi-channel passive optical networks (pons)
WO2011150759A1 (zh) 一种pon网络的信号处理方法、装置和系统
EP3180924A1 (en) Method and apparatus for determining a rogue onu in a pon
KR102017882B1 (ko) 시간 및 파장 분할 다중 - 수동형 광 네트워크에서의 파장 튜닝 방법
JP2005333318A (ja) 局側装置及び通信システム
JP2013258559A (ja) 光通信システム及び新規接続端末検出方法
US20100124420A1 (en) Communication device and communication method
CN106464385B (zh) 一种通信方法、装置及系统
JP2017225018A (ja) 加入者側装置、局側装置、光通信システム、光通信方法、及びプログラム
JP5482931B1 (ja) 加入者側装置登録方法及び光ネットワークシステム
JP5150758B2 (ja) 光終端装置及び光ネットワークユニット
JP6234179B2 (ja) Ponシステム、olt及びonu
JP5649458B2 (ja) アクセス制御装置及びプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880124281.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08710535

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548831

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2008710535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008710535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12812167

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107016791

Country of ref document: KR

Kind code of ref document: A