WO2009084681A1 - 画像表示装置 - Google Patents

画像表示装置 Download PDF

Info

Publication number
WO2009084681A1
WO2009084681A1 PCT/JP2008/073848 JP2008073848W WO2009084681A1 WO 2009084681 A1 WO2009084681 A1 WO 2009084681A1 JP 2008073848 W JP2008073848 W JP 2008073848W WO 2009084681 A1 WO2009084681 A1 WO 2009084681A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
light emission
light emitting
image display
display device
Prior art date
Application number
PCT/JP2008/073848
Other languages
English (en)
French (fr)
Inventor
Akinori Sato
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Priority to CN200880122626.2A priority Critical patent/CN101911165B/zh
Priority to JP2009548116A priority patent/JP5385791B2/ja
Priority to US12/810,768 priority patent/US8379010B2/en
Priority to KR1020107015061A priority patent/KR101239672B1/ko
Publication of WO2009084681A1 publication Critical patent/WO2009084681A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor

Definitions

  • the present invention relates to an image display device provided with a light emitting element.
  • a thin film transistor formed of amorphous silicon, polycrystalline silicon, or the like, or an organic light emitting diode (Organic Light Emitting Diode: OLED), which is one of organic EL elements, is used for each pixel.
  • TFT thin film transistor
  • OLED Organic Light Emitting Diode
  • Each pixel is arranged in a matrix. Then, by setting an appropriate current value for each pixel, the luminance of each pixel is controlled, and a desired image is displayed.
  • the batch light emission method is a method in which image signal potentials are written to each pixel circuit sequentially every predetermined unit (for example, every row, every column, etc.), and light emission control for each pixel circuit is performed simultaneously in all pixel circuits.
  • the sequential light emission method is a method in which writing of an image signal potential to each pixel circuit and light emission control of each pixel circuit are sequentially performed for each predetermined group (for example, every row, every column, etc.).
  • the sequential light emission method the writing control of the image signal potential and the light emission control for each pixel circuit are sequentially performed for each predetermined group as described above, so that load peaks are distributed and given to the power supply capacity of the power supply device. Impact is small.
  • the collective light emission method the light emission control for each pixel circuit is performed in all the pixel circuits at the same time. Therefore, the load peak is concentrated, and the influence on the power supply capacity of the power supply device is increased. For this reason, when the scale (number of pixels) of the pixel circuits is the same, the collective light emission type image display device has a problem that it is necessary to prepare a power supply device having a larger capacity than the sequential light emission method.
  • the image display device includes a plurality of pixel circuits each having a light emitting element and a driving element for driving the light emitting element, a power supply line connected to each pixel circuit, and the light emitting element.
  • An image signal line that applies an image data potential corresponding to the light emission luminance of the element to the drive element, and the magnitude and output timing of the potential applied to the image signal line, and the magnitude of the potential applied to the power supply line
  • a drive control unit that controls the output timing and performs light emission control on each of the pixel circuits simultaneously in all the pixel circuits.
  • the drive control unit performs control to start light emission of the light emitting element by gradually changing the image data potential of the image signal line from the first potential as a reference potential to the second potential as a constant potential. .
  • an image display device that can reduce the influence on the power supply capacity of the power supply device in the image display device driven by the collective light emission method.
  • FIG. 1 is a diagram showing a configuration of an image display apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a pixel circuit (one pixel) provided in the display panel 2 shown in FIG.
  • FIG. 3 is a sequence diagram for explaining the operation of the pixel circuit shown in FIG.
  • FIG. 4 is a block diagram showing a more detailed configuration of the timing controller 1 shown in FIG.
  • FIG. 5 is a diagram illustrating an example of a program code for realizing the function of the timing controller 1.
  • FIG. 6 is a diagram illustrating measurement results of the voltage waveform and the current waveform when the control method according to the embodiment is not used.
  • FIG. 7 is a diagram illustrating measurement results of the voltage waveform and the current waveform when the control method according to the embodiment is used.
  • FIG. 8 is a sequence diagram illustrating a modified example of the control method according to the embodiment.
  • FIG. 9 is a sequence diagram illustrating a modified example of the control method according to the embodiment.
  • the image display apparatus includes a timing controller 1 and a display panel 2.
  • the display panel 2 is provided with a display unit 3 on which wirings including a first power supply line 11, a second power supply line 12, a scanning line 13, and an image signal line 14 are provided.
  • the display panel 2 includes a Y driver (line driver) 20 that applies a predetermined potential to the scanning line 13 at a desired timing, and an X driver (a driver that applies a predetermined potential to the image signal line 14 at a desired timing).
  • Data driver 22 is provided.
  • the first power supply line 11, the second power supply line 12, and the scanning line 13 are arranged in a predetermined direction (the horizontal direction in the example of FIG. 1) in the display unit 3.
  • the scanning line 13 is connected to the Y driver 20.
  • the image signal line 14 is disposed along a direction (substantially orthogonal direction) different from the first power supply line 11, the second power supply line 12, and the scanning line 13, and is connected to the X driver 22.
  • the display unit 3 includes a plurality of organic light emitting diodes (organic light emitting elements) connected to the first power supply line 11, the second power supply line 12, the scanning line 13, and the image signal line 14 described above arranged in a matrix.
  • a pixel pixel circuit is configured.
  • the timing controller 1 is provided outside the display panel 2.
  • the timing controller 1 is configured using a control device such as a driving IC or a counter that includes, for example, an arithmetic circuit, a logic circuit, and the like.
  • the timing controller 1 uses the X driver 22 or the three types of light emission control power sources (VDD, ⁇ VE, VdH) exemplified as input image data and power input for displaying the image data on the display unit 3.
  • the timing to supply to the Y driver 20 is controlled.
  • the X driver 22, the Y driver 20, and the timing controller 1 are components corresponding to the drive control unit in the present invention.
  • the X driver 22 is configured using, for example, a driving IC that includes an arithmetic circuit and the like.
  • the X driver 22 generates a potential corresponding to the image data signal (hereinafter referred to as “image data potential”) based on the image data signal input from the timing controller 1 through the image signal supply line 6. Then, based on the clock signal (XCLK) input from the timing controller 1 through the clock signal supply line 7, the timing for supplying the generated image data potential to the image signal line 14 is controlled.
  • the Y driver 20 is configured using, for example, a driving IC that includes a switching element and the like.
  • the Y driver 20 controls the timing at which the control signal generated therein is applied to the scanning line 13 based on the clock signal (YCLK) input from the timing controller 1 through the clock signal supply line 8.
  • the applied potential (OUT_P) to the first power supply line 11 is directly applied using the first power supply line 4 without going through the Y driver 20.
  • the applied potential (OUT_N) to the second power supply line 12 is also directly applied using the second power supply line 5 without going through the Y driver 20.
  • the layout of the figure regarding the first power supply line 11, the second power supply line 12, the scanning line 13 and the image signal line 14, the Y driver 20, and the X driver 22 shows an example. However, it is not limited to these layouts.
  • the Y driver 20 and the X driver 22 are arranged on the display panel in FIG. 1, they may be arranged outside the display panel 2.
  • the timing controller 1 is arranged outside the display panel 2, but may be arranged inside the display panel 2.
  • Each pixel circuit includes an organic light emitting element OLED which is one of organic EL elements, a driving transistor T d , a threshold voltage detecting transistor T s, and a capacitor C s that holds a threshold voltage (V th ) and an image signal potential. It is comprised so that it may be provided.
  • OLED organic light emitting element
  • T d driving transistor
  • T s threshold voltage detecting transistor
  • C s capacitor
  • the drive transistor Td is a driver element for controlling the amount of current flowing through the organic light emitting element OLED according to the potential difference applied between the gate electrode and the source electrode.
  • the threshold voltage detecting transistor T s, upon an ON state, the gate electrode and the drain electrode of the driving transistor T d by electrically connecting to the drain electrode from the gate electrode of the driving transistor T d towards flowing current, close the potential difference between the gate electrode and the source electrode of the driving transistor T d to the threshold voltage V th of the driving transistor T d, consequently, the potential difference between the gate electrode and the source electrode of the driving transistor T d close to the threshold voltage V th or function of the threshold voltage V th has a (hereinafter referred to as "V th detection function").
  • the organic light-emitting element OLED is an element having a characteristic that current flows when a potential difference (anode-cathode voltage) equal to or higher than a threshold voltage is generated at both ends, and light is emitted.
  • the organic light emitting device OLED includes an anode layer and a cathode layer formed of Al, Cu, ITO (Indium Tin Oxide), and the like, and phthalocyanine, trisaluminum complex, benzoquinolinolato, and beryllium between the anode layer and the cathode layer. And a light emitting layer formed of an organic material such as a complex. And it has the function to generate light by the recombination of the hole and the electron which were inject
  • the driving transistor T d and the threshold voltage detecting transistor T s for example, a thin film transistor.
  • the channel (N-type or P-type) of each thin film transistor may be either N-type or P-type, but in this embodiment, N-type is used.
  • the first power supply line 11 and the second power supply line 12 apply a predetermined potential (variable potential) corresponding to each of these operation periods to the organic light emitting element OLED and the drive transistor Td .
  • Scan line 13 supplies a signal for controlling the threshold voltage detecting transistor T s.
  • Image signal line 14 supplies an image signal corresponding to the light emission luminance of the organic light emitting device OLED to the capacitor C s.
  • C s reset period The C s reset period, the first power supply line 11 is high potential (VDD), and thus the second power supply line 12 is high potential (VDD), and thus the scanning line 13 is a high potential (VgH), the image signal line 14 is zero potential (GND) It is said.
  • the threshold voltage detection transistor T s is turned on and the drive transistor T d is turned off, and the current flows through the path of the first power supply line 11 ⁇ the organic light emitting element OLED ⁇ the threshold voltage detection transistor T s ⁇ the capacitance C s. Flowing. Then, when the capacitor C s is charged, the charge of the capacitor C s is reset. The reason why the capacitor C s is charged in the C s reset period is to reset the image signal potential of the previous frame written in the capacitor C s .
  • V th detection preparation period In the Vth detection preparation period, the first power supply line 11 has a negative potential ( ⁇ VE), the second power supply line 12 has a zero potential (GND), the scanning line 13 has a low potential (VgL), and the image signal line 14 has a high potential ( VgH).
  • the threshold voltage detection transistor T s is turned off and the drive transistor T d is turned on, and a current flows through the path of the second power supply line 12 ⁇ the drive transistor T d ⁇ the organic light emitting element OLED. Then, electric charges are accumulated in the element capacitance inherent in the organic light-emitting element OLED (hereinafter referred to as “element capacitance C oled ”).
  • the reason why charges are accumulated in the organic light emitting element OLED during the V th detection preparation period is that when the gate-source voltage of the driving transistor T d is brought close to the threshold voltage during the V th detection period described later, the organic light emitting element This is because the OLED is caused to act as a supply source of a current flowing between the drain and the source of the driving transistor Td .
  • Vth detection period In the Vth detection period, the first power supply line 11 is set to zero potential (GND) and the scanning line 13 is set to high potential (VgH), while the image signal line 14 is set to high potential (VdH), and the second power supply line 12 is set. Is maintained at zero potential (GND). With this control, the threshold voltage detecting transistor T s is turned on, the gate and drain of the driving transistor T d are connected.
  • the capacitance C s and the organic light emitting device charges accumulated in the OLED is discharged, the capacitance C s ⁇ threshold voltage detecting transistor T s ⁇ driving transistor T d ⁇ the second power supply line 12 and the organic light emitting element OLED ⁇ the drive transistor Current flows in both paths of T d ⁇ second power supply line 12.
  • the driving transistor T gate-source voltage V gs of d reaches the threshold voltage V th, the driving transistor T d is to become off, as a result, the threshold voltage V th of the driving transistor T d is detected .
  • the data write period by reflecting the image signal potential (-Vdata) in the capacitor C s, the gate potential of the driving transistor T d be changed to a desired potential is performed. More specifically, the first power supply line 11 is maintained at zero potential (GND), and the second power supply line 12 is maintained at zero potential (GND).
  • the image signal line 14 is set to a potential (VdH ⁇ Vdata) obtained by subtracting the image signal potential (Vdata) from the applied potential (VdH) during the Vth detection period, and the scanning line 13 is set in the data writing period. In a predetermined period, the potential is high (VgH).
  • the threshold voltage detection transistor T s is turned on, the charge accumulated in the element capacitance C oled is discharged, and a current flows through the path of the organic light emitting element OLED ⁇ the threshold voltage detection transistor T s ⁇ capacitance C s. . That is, charges accumulated in the OLED is moved to the capacitor C s. As a result, the capacitor C s, a predetermined charge is determined based on the image signal potential (Vdata) is accumulated.
  • the capacitance C s and the OLED are connected in series, the amount of decrease in potential of one end of the capacitor C s (end connected to the gate of the driving transistor T d), the image not decrease the potential of the signal line 14 and (Vdata) is affected by the capacitance ratio between the capacitance C s and the organic light emitting device OLED.
  • the first power supply line 11 is set to a minus potential ( ⁇ VE)
  • the second power supply line 12 is set to a minus potential ( ⁇ VE).
  • the scanning line 13 is maintained at a low potential (VgL) and the image signal line 14 is maintained at a high potential (VdH).
  • the threshold voltage detection transistor T s is turned off and the drive transistor T d is turned on, and a current flows through the path of the organic light emitting element OLED ⁇ the drive transistor T d ⁇ the second power supply line 12 and remains in the organic light emitting element OLED.
  • the electric charge is discharged.
  • the reason for discharging the electric charge of the element capacitance C oled this C oled reset period is to avoid affecting the light emission due to residual charges in the element capacitance C oled.
  • the first power supply line 11 is set to a high potential (VDD)
  • the second power supply line 12 is set to a zero high potential (GND)
  • the scanning line 13 is maintained at a low potential (VgL).
  • the first power supply line 11 is switched from the negative potential ( ⁇ VE) as the third potential to the high potential (VDD) as the fourth potential at the start of the light emission period.
  • the image signal line 14 is once pulled down to the GND level as the first potential that becomes the reference potential immediately after the start of the light emission period. Thereafter, it is raised to a high potential (VdH) as a second potential that is a constant potential, and the level of the high potential (VdH) is maintained.
  • the current flowing through the organic light emitting element OLED in the pixel circuit to be controlled is not increased at a stretch until the current level necessary for causing the desired light emission luminance to be emitted.
  • Control is performed to increase the current flowing through the light emitting element OLED. That is, in the control until the light emission is stopped in the light emission period, the current flowing through the organic light emitting element OLED in the pixel circuit to be controlled is not reduced to the non-light emitting level (black level) at once, but the current flowing through the organic light emitting element OLED is reduced. Control to decrease. Therefore, the time required for the image signal line 14 to change from the first potential to the second potential is longer than the time required for the first power supply line 11 to change from the third potential to the fourth potential.
  • the time for raising the potential of the image signal line 14 from the first potential to the second potential from the start of the light emission period will be described.
  • the organic light emitting element OLED can be modeled as a capacitor element, and the drive transistor Td can be modeled as an electric resistance. That is, a circuit in which a capacitive element and an electrical resistance are connected in series between the first power supply line 11 and the second power supply line is assumed.
  • the first power supply line 11 becomes a high potential at the start of the light emission period, and a potential difference is generated between the first power supply line 12 and the second power supply line 12.
  • the time from when the image signal line 14 becomes the GND level to when it becomes the high potential (VdH) is set to, for example, 50 ⁇ s or more and 350 ⁇ s or less.
  • a method for gradually increasing the potential of the image signal line 14 will be described.
  • the necessity to raise in steps is that the determination of the potential of the image signal line 14 necessary to avoid the occurrence of an overcurrent in the light emission control power supply (VDD) takes into account the temperature characteristics and fluctuations in the characteristics of the drive transistor Td. Although necessary, it is difficult to obtain these factors in advance. As a result, the overcurrent can be suppressed by setting the potential of the image signal line 14 step by step and maintaining the state from the GND level to the high potential (VdH).
  • the electric resistance of the drive transistor Td increases, and the current flowing through the first power supply line 11 and the second power supply line 12 gradually decreases. can do. If the potential of the image signal line 14 is not gradually lowered, an inductance component existing in the first power supply line 11 and the second power supply line 12 tends to keep current flowing between them. The drain of the driving transistor T d - large induced voltage due to the inductance component between the source will can take, adversely affects the life of the driving transistor T d. On the other hand, according to the present embodiment, by gradually lowering the potential of the image signal line 14, the induced voltage can be reduced, and the product life of the drive transistor Td can be extended.
  • Timing Controller 1 ⁇ Configuration and Function of Timing Controller 1> Next, the configuration and function of the timing controller 1 will be described with reference to FIG.
  • the timing controller 1 includes a signal generation unit 21, a control unit 23, a counter 25, a calculation unit 27, and a selector 29.
  • the timing controller 1 receives the above-described three types of light emission control power supplies (VDD, ⁇ VE, VdH) and image data (Xdata0).
  • the signal generation unit 21 generates a logic signal (Ctrl_P, Ctrl_N) necessary for generating a potential waveform, a logic signal (HSYNC) required for image display synchronization control, and a clock signal (XCLK, YCLK) also required for synchronization control. And output. Further, the signal generator 21 controls the output timing of the input image data (Xdata0).
  • the control unit 23 determines and outputs an applied potential (OUT_P) to the first power supply line 11 based on the input logic signal (Ctrl_P) from the signal generation unit 21. Further, the control unit 23 determines and outputs an applied potential (OUT_N) to the second power supply line 12 based on the input logic signal (Ctrl_N) from the signal generation unit 21.
  • the applied potential (OUT_P) output from the control unit 23 corresponds to the applied potential to the first power supply line 11 in the sequence diagram of FIG. 3, and the applied potential (OUT_N) is the second power supply in the sequence diagram of FIG. This corresponds to the potential applied to the line 12.
  • the counter 25 outputs a count value (COUNT) obtained by counting the input logic signal (HSYNC) to the arithmetic unit 27 and the selector 29. Note that the count value counted by the counter 25 is cleared by the control signal (CLR) output from the control unit 23, and then the counting process is performed again.
  • the calculation unit 27 calculates corrected image data obtained by correcting the image data from the signal generation unit 21 based on the count value from the counter 25 and outputs the corrected image data to the selector 29.
  • the selector 29 selects one of the image data input from the signal generation unit 21 and the corrected image data input from the calculation unit 27 based on the count value from the counter 25 and selects the X driver 22. Output to. That is, the selector 29 performs a process of selecting one of the image data and the corrected image data.
  • control unit 23, the counter 25, the calculation unit 27, and the selector 29 are components corresponding to the image data generation unit in the present invention.
  • FIG. 5 is a diagram illustrating an example of a program code for realizing the function of the timing controller 1 described above.
  • a program code for performing light emission control immediately after the start of light emission is illustrated. Note that the program code for performing the light emission control immediately before the light emission stop can also be described according to FIG.
  • step S4 it is determined whether or not the count value of the counter 25 has reached a predetermined value (N) (step S4). If the count value does not reach the predetermined value (N), the counter count process proceeds (step S5). Further, the image data input from the signal generation unit 21 is multiplied by a count value (COUNT) and a predetermined coefficient (A), respectively, and the multiplied value is output as the corrected image data corrected (steps S6 and S7). .
  • COUNT count value
  • A predetermined coefficient
  • step S6 and S8 the image data input from the signal generator 21 is output. That is, in the processing of steps S6 to S8, if the count value does not reach the predetermined value (N), a value proportional to the count value is set as the corrected image data, and the count value has reached the predetermined value (N). In this case, the input image data is set.
  • control at the start of light emission has been described, but the same applies to the control at the time of light emission stop. Although a detailed description is omitted, the following control is performed generally.
  • the applied potentials are the first power supply line 11 and the second power supply line 12, respectively. To be applied.
  • a process of counting down the count value of the counter 25 is performed. Further, it is determined whether or not the counted value has reached a predetermined value (M and M are positive integers satisfying M ⁇ N).
  • the count value does not reach the predetermined value (M)
  • the count value (COUNT) and a predetermined coefficient (B, which is the same value as the coefficient A) are added to the image data input from the signal generation unit 21. Or different values) are output as corrected image data. If the count value has reached the predetermined value (M), the operation during the light emission period ends.
  • the processing flow shown in FIG. 5 has been described as a program code for realizing the function of the timing controller 1 as software processing. However, hardware processing based on each functional block as shown in FIG. Good.
  • the “rise time” of the image data potential means that the potential of the image signal line 14 reaches the level of the high potential (VdH) as the second potential from the GND potential as the first potential in the control period at the start of light emission. Is the time. This time can also be regarded as a period during which the image data input via the timing controller 1 is processed into corrected image data. Note that this start-up time is preferably about 300 ⁇ s, for example, about 100 ⁇ s in the case of an image display device having the above specifications, for example, from the viewpoint of securing a light emission period sufficient to emit light with desired luminance. Further preferred.
  • the rise time is a period in which the light emission control for each pixel circuit is performed simultaneously in all the pixel circuits, and the load peak is concentrated. Therefore, the potential of the image signal line 14 as described above is set. By performing control to gradually increase from the GND level to the high potential (VdH), it is possible to reduce the influence on the power supply capacity of the power supply device.
  • the “falling time” of the image data potential is the time until the potential of the image signal line 14 reaches the level of the GND potential from the high potential (VdH) in the control period when the light emission is stopped. This time can also be regarded as a period during which the image data input via the timing controller 1 is processed into corrected image data.
  • the fall time is about 0.5 to 1 ms in consideration of characteristics of a general image display device.
  • the preferable value of the fall time is different from the preferred value of the rise time due to the characteristics of a power supply circuit used in a general image display device.
  • a booster circuit that generates a voltage of about 15 V to a voltage of about 15 V is used, and a stable output is obtained by feeding back the output.
  • the time until the voltage fluctuation that has risen due to the load fluctuation returns to the stable output voltage by the feedback function is an indication of the time for controlling the image data potential. This time is approximately 0.5 to 1 ms, although it depends on the switching frequency and the feedback method.
  • the time for returning to a stable voltage is shorter in the former when the voltage fluctuation that has fallen due to the load fluctuation is restored and when the voltage fluctuation that is raised due to the load fluctuation is restored. This is because of the characteristics of the booster circuit (high boosting capability and low bucking capability). Therefore, the voltage recovery period is shorter in the control period at the start of light emission than in the control period at the time when light emission is stopped.
  • the ratio of (rise time + fall time) to the light emission period is (300 + 1000).
  • about 93% of the period during which the potential corresponding to the light emission luminance is applied can be secured, so that it is possible to further secure a sufficient light emission period for emitting light at the desired luminance.
  • the image display device As described above, in the image display device according to the present embodiment, it is possible to reduce the influence on the power supply capacity of the power supply device while securing a sufficient light emission period for emitting light with desired luminance.
  • the power supply device since the power supply device used in a general image display device can be used, the power supply device secures a sufficient light emission period to emit light with desired luminance. It is possible to reduce the influence on the power supply characteristics.
  • the waveform indicated by the solid line is a voltage waveform (see FIG. 3) applied to the second power supply line 12, and the waveform indicated by the one-dot chain line is the input side of the timing controller 1 (for example, light emission). It is a current waveform measured at the input terminal of the control power supply (VDD): see FIG.
  • control method according to the present embodiment when the control method according to the present embodiment is not used, for example, when the organic light emitting element OLED emits light with high luminance, as shown by an elliptical portion K1 in FIG. It can be understood that a large overcurrent occurs at the start, and the load peaks are concentrated. This property occurs even when the organic light emitting element OLED emits light with low luminance, as indicated by an elliptical portion K2 in FIG.
  • control method shown in FIG. 8 it is possible to suppress the influence of variation in the characteristics of the display panel in the image display apparatus. That is, by changing ⁇ V1 that determines the potential level after the pulling up, it becomes possible to improve the influence of the variation in the light emission characteristics due to the variation in the characteristics of the display panel.
  • This control also provides an effect that both the rise time and the fall time of the image data potential can be shortened.
  • Modification of control method-Modification 2 9 differs from the sequence diagram shown in FIG. 2 in that immediately after the start of the light emission period, the potential that is once lowered is controlled to a potential higher than GND, and after the potential is lowered when light emission is stopped. Is controlled to a predetermined potential higher than GND. As a result, the potential immediately after the start of the light emission period and when the light emission is stopped is “ ⁇ V2”.
  • the control method shown in FIG. 9 it is possible to shorten both the rise time and the fall time of the image data potential by changing the potential level ⁇ V2 at the time of reduction.
  • the potential level ⁇ V2 at the time of reduction can be varied in the range of 0 ⁇ V2 ⁇ VdH ⁇ Vdata.
  • the potential level that is lowered immediately after the start of the light emission period and the potential level that is lowered when the light emission is stopped are shown as the same potential level, but these potential levels are different. It doesn't matter.
  • an organic light emitting element is described as an example of a light emitting element.
  • the present invention can be applied to a light emitting element other than an organic light emitting element, for example, a pixel circuit using an LED or an inorganic EL element. .
  • the drive transistor T d and the threshold voltage detection transistor T s have been described using N-type transistors, but the drive transistor T d and the threshold voltage detection transistor T s are P It may be a type of mold. Then, the driving transistor T d and the threshold voltage detecting transistor T s is described P-type type. In addition, a different part from embodiment mentioned above is demonstrated.
  • the timing controller 1 as the drive control unit sets the potential of the image signal line 14 at the start of light emission of the light emitting element to a potential that is once higher than the image data potential in a state where the light emitting element emits light, and then reaches the image data potential. Reduce. Further, the timing controller 1 raises the potential of the image signal line 14 to a potential located between the image data potential and the threshold voltage when stopping the light emission of the light emitting element. In this way, the magnitude of the overcurrent can be reduced at the input terminal of the light emission control power supply (VDD) by changing the potential of the image signal line at the start of light emission or at the time of light emission stop during the light emission period.
  • VDD light emission control power supply
  • the image display device according to the present invention is useful as an invention capable of reducing the influence on the power supply capacity of the power supply device in the image display device driven by the collective light emission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

 発光素子および発光素子を駆動する駆動素子をそれぞれ有する複数の画素回路に対して接続される第1電源線(11)および第2電源線(12)、発光素子の発光輝度に対応する画像データ電位を駆動素子に印加する画像信号線(14)ならびに、画像信号線(14)に印加する電位の大きさおよび出力タイミングを制御するとともに、第1電源線(11)および第2電源線(12)に印加する電位の大きさおよび出力タイミングを制御し、各画素回路に対する発光制御を全画素回路で一斉に行なう駆動制御部(タイミングコントローラ(1)、Xドライバ(22)、Yドライバ(20))を備える。この駆動制御部は、画像信号線(14)の画像データ電位を基準電位となる第1電位から一定電位となる第2電位となるまで漸次変化させることにより、発光素子の発光を開始させる制御を行う。

Description

画像表示装置
 本発明は、発光素子を備えた画像表示装置に関するものである。
 従来から、発光層に注入された正孔と電子とが再結合することによって光を生じる機能を有する有機EL(Electroluminescence)素子を用いた画像表示装置が提案されている。
 画像表示装置では、例えばアモルファスシリコンや多結晶シリコン等で形成された薄膜トランジスタ(Thin Film Transistor:TFT)や有機EL素子の一つである有機発光ダイオード(Organic Light Emitting Diode:OLED)などが各画素を構成しており、各画素がマトリックス状に配置されている。そして、各画素に適切な電流値が設定されることにより、各画素の輝度が制御され、所望の画像が表示される。
 なお、発光素子と、TFTなどの駆動トランジスタとが直列に配置された画素を複数持つアクティブ・マトリクス型の画像表示装置が存在する(例えば、R.M.A. Dawson,et al.(1998).Design of an Improved Pixel for a Polysilicon Active-Matrix Organic LED Display. SID98 Digest, pp.11-14.)。
 ところで、上記のような画像表示装置の各画素を発光制御する方式には、一括発光方式と順次発光方式とがある。一括発光方式は、各画素回路に対する画像信号電位の書き込みは、所定の単位ごと(例えば行ごと、列ごとなど)に順次行いつつ、各画素回路に対する発光制御は全画素回路で一斉に行う方式である。一方、順次発光方式は、各画素回路に対する画像信号電位の書き込み、および各画素回路の発光制御の双方ともに、所定のグループごと(例えば一行ごと、一列ごとなど)に順次行う方式である。
 ここで、順次発光方式は、上記のように画像信号電位の書き込み制御や各画素回路に対する発光制御が所定のグループごとに順次行われるので、負荷のピークが分散され、電源装置の電源容量に与えるインパクトが小さい。一方、一括発光方式は、各画素回路に対する発光制御が全画素回路で一斉に行われるので、負荷のピークが集中し、電源装置の電源容量に与える影響が大きくなる。このため、画素回路の規模(画素数)が同等の場合、一括発光方式の画像表示装置では、順次発光方式に比して容量の大きな電源装置を準備する必要があるという課題があった。
 本発明は、一括発光方式で駆動される画像表示装置において、電源装置の電源容量に与える影響を小さくすることができる画像表示装置を提供することを目的とする。
 本発明の第1実施形態に係る画像表示装置は、発光素子および該発光素子を駆動する駆動素子をそれぞれ有する複数の画素回路と、前記各画素回路に対して接続される電源線と、前記発光素子の発光輝度に対応する画像データ電位を前記駆動素子に印加する画像信号線と、前記画像信号線に印加する電位の大きさおよび出力タイミングを制御するとともに、前記電源線に印加する電位の大きさおよび出力タイミングを制御し、前記各画素回路に対する発光制御を全画素回路で一斉に行なう駆動制御部と、を備える。この駆動制御部は、前記画像信号線の画像データ電位を基準電位となる第1電位から一定電位となる第2電位となるまで漸次変化させることにより、前記発光素子の発光を開始させる制御を行う。
 本発明によれば、一括発光方式で駆動される画像表示装置において、電源装置の電源容量に与える影響を小さくすることができる画像表示装置を提供することができるという効果が得られる。
図1は、本発明の一実施形態にかかる画像表示装置の構成を示す図である。 図2は、図1に示した表示パネル2に設けられる画素回路(1画素)の構成を示す図である。 図3は、図2に示す画素回路の動作を説明するためのシーケンス図である。 図4は、図1に示したタイミングコントローラ1のより詳細な構成を示すブロック図である。 図5は、タイミングコントローラ1の機能を実現するためのプログラムコードの一例を示す図である。 図6は、一実施形態にかかる制御手法を用いない場合の電圧波形および電流波形の測定結果を示す図である。 図7は、一実施形態にかかる制御手法を用いた場合の電圧波形および電流波形の測定結果を示す図である。 図8は、一実施形態にかかる制御手法の変形例を示すシーケンス図である。 図9は、一実施形態にかかる制御手法の変形例を示すシーケンス図である。
 以下、本発明の一実施形態にかかる画像表示装置を図面に基づいて詳細に説明する。なお、以下の実施の形態によって本発明が限定されるものではない。
<画像表示装置の概略構成>
 図1において、この画像表示装置は、タイミングコントローラ1および表示パネル2を備えている。表示パネル2には、第1電源線11、第2電源線12、走査線13、および画像信号線14による各配線が配設された表示部3が設けられている。さらに、表示パネル2には、走査線13に対し所定の電位を所望のタイミングで印加するYドライバ(ラインドライバ)20、画像信号線14に対し所定の電位を所望のタイミングで印加するXドライバ(データドライバ)22が設けられている。これらの配線において、第1電源線11、第2電源線12および走査線13は、表示部3における所定方向(図1の例では横方向)に配設されている。そして、走査線13については、Yドライバ20に接続されている。また、画像信号線14は、第1電源線11、第2電源線12および走査線13とは異なる方向(概略直交方向)に沿って配設されるとともに、Xドライバ22に接続されている。
 表示部3には、上述した第1電源線11、第2電源線12、走査線13および画像信号線14に接続された有機発光ダイオード(有機発光素子)がマトリックス状に配列されてなる複数の画素(画素回路)が構成されている。
 表示パネル2の外部には、タイミングコントローラ1が設けられている。タイミングコントローラ1は、例えば演算回路、論理回路などを内部に含む駆動用ICやカウンタなどの制御機器を用いて構成される。タイミングコントローラ1は、入力された画像データや、当該画像データを表示部3に表示させるための電源入力として例示した3種の発光制御用電源(VDD,-VE、VdH)を、Xドライバ22またはYドライバ20に供給するタイミングを制御する。なお、Xドライバ22、Yドライバ20およびタイミングコントローラ1は、本発明における駆動制御部に対応する構成部である。
 Xドライバ22は、例えば演算回路などを内部に含む駆動用ICなどを用いて構成される。Xドライバ22は、タイミングコントローラ1から画像信号供給線6を通じて入力された画像データ信号に基づき、当該画像データ信号に対応する電位(以下「画像データ電位」という)を生成する。そして、タイミングコントローラ1からクロック信号供給線7を通じて入力されたクロック信号(XCLK)に基づき、生成した画像データ電位を画像信号線14に供給するタイミングを制御する。
 また、Yドライバ20は、例えばスイッチング素子などを内部に含む駆動用ICなどを用いて構成される。Yドライバ20は、タイミングコントローラ1から、クロック信号供給線8を通じて入力されたクロック信号(YCLK)に基づき、自己の内部で生成した制御信号を走査線13に印加するタイミングを制御する。
 第1電源線11に対する印加電位(OUT_P)は、Yドライバ20を介さず第1電源供給線4を用いて直接的に付与される。同様に、第2電源線12に対する印加電位(OUT_N)も、Yドライバ20を介さず第2電源供給線5を用いて直接的に付与される。
 なお、図1の表示部3において、第1電源線11、第2電源線12、走査線13および画像信号線14、ならびにYドライバ20、Xドライバ22に関する同図のレイアウトは、その一例を示すものであり、これらのレイアウトに限られるものではない。
 例えば、図1では、Yドライバ20およびXドライバ22を表示パネル上に配置しているが、表示パネル2の外部に配置するようにしてもよい。また、図1では、タイミングコントローラ1を表示パネル2の外部に配置するようにしているが、表示パネル2の内部に配置するようにしてもよい。
<画素回路の構成>
 図2に示す画素回路は、表示パネル2上にマトリックス状に配列されている。そして、各画素回路は、有機EL素子の一つである有機発光素子OLED、駆動トランジスタT、閾値電圧検出用トランジスタTおよび閾値電圧(Vth)や画像信号電位を保持する容量Cを備えるように構成されている。
 図2において、駆動トランジスタTは、ゲート電極・ソース電極間に与えられる電位差に応じて有機発光素子OLEDに流れる電流量を制御するためのドライバ素子である。また、閾値電圧検出用トランジスタTは、オン状態となったときに、駆動トランジスタTのゲート電極とドレイン電極とを電気的に接続することにより、駆動トランジスタTのゲート電極からドレイン電極に向かって電流を流し、駆動トランジスタTのゲート電極・ソース電極間の電位差を駆動トランジスタTの閾値電圧Vthに近づけ、結果的に、駆動トランジスタTのゲート電極・ソース電極間の電位差を閾値電圧Vthに近づけるもしくは閾値電圧Vthとする機能(以下「Vth検出機能」という)を有している。
 有機発光素子OLEDは、両端に閾値電圧以上の電位差(アノード-カソード間電圧)が生じることにより電流が流れ、発光する特性を有する素子である。有機発光素子OLEDは、Al、Cu、ITO(Indium Tin Oxide)等によって形成されたアノード層およびカソード層と、アノード層とカソード層との間にフタルシアニン、トリスアルミニウム錯体、ベンゾキノリノラト、ベリリウム錯体等の有機系の材料によって形成された発光層とを少なくとも備えた構造である。そして、発光層に注入された正孔と電子とが再結合することによって光を生じる機能を有する。
 駆動トランジスタTおよび閾値電圧検出用トランジスタTは、例えば、薄膜トランジスタである。なお、以下に参照される各図面において、各薄膜トランジスタのチャネル(N型またはP型)については、N型、P型のいずれのタイプを用いてもよいが、本実施形態ではN型を用いるものとする。
 第1電源線11および第2電源線12は、有機発光素子OLEDや駆動トランジスタTに対して、これらの各動作期間に応ずる所定の電位(可変電位)を付与する。走査線13は、閾値電圧検出用トランジスタTを制御するための信号を供給する。画像信号線14は、有機発光素子OLEDの発光輝度に対応する画像信号を容量Cに供給する。
<画素回路の動作>
 つぎに、図2に示す画素回路の動作について、図2および図3を参照して説明する。図2に示す画素回路にあっては、図3に示すように、Cリセット期間、Vth検出準備期間)、Vth検出期間、データ書き込み期間、Coledリセット期間および発光期間という6つの期間を経て動作することになる。なお、これらの動作の中で、発光期間における動作は、後述の図4に示すタイミングコントローラ1の詳細ブロックおよび図5に示す処理フローに基づいて実行されるが、ここでは、動作の概要について説明し、詳細な動作については後述する。
(Cリセット期間)
 Cリセット期間では、第1電源線11が高電位(VDD)、第2電源線12が高電位(VDD)、走査線13が高電位(VgH)、画像信号線14がゼロ電位(GND)とされる。この制御により、閾値電圧検出用トランジスタTがオン、駆動トランジスタTがオフとされ、第1電源線11→有機発光素子OLED→閾値電圧検出用トランジスタT→容量Cという経路で電流が流れる。そして、容量Cが充電されることにより、容量Cの電荷がリセットされる。なお、このCリセット期間で容量Cを充電する理由は、容量Cに書き込まれている1フレーム前の画像信号電位をリセットするためである。
(Vth検出準備期間)
 Vth検出準備期間では、第1電源線11がマイナス電位(-VE)、第2電源線12がゼロ電位(GND)、走査線13が低電位(VgL)、画像信号線14が高電位(VgH)とされる。この制御により、閾値電圧検出用トランジスタTがオフ、駆動トランジスタTがオンとされ、第2電源線12→駆動トランジスタT→有機発光素子OLEDという経路で電流が流れる。そして、有機発光素子OLEDが固有に有している素子容量(以下「素子容量Coled」と表記)に電荷が蓄積される。なお、このVth検出準備期間において、有機発光素子OLEDに電荷を蓄積する理由は、後述するVth検出期間に駆動トランジスタTのゲート・ソース間電圧を閾値電圧に近づける際に、有機発光素子OLEDを駆動トランジスタTのドレイン・ソース間に流す電流の供給源として作用させるためである。
(Vth検出期間)
 Vth検出期間では、第1電源線11がゼロ電位(GND)、走査線13が高電位(VgH)とされる一方で、画像信号線14が高電位(VdH)に、第2電源線12がゼロ電位(GND)に維持される。この制御により、閾値電圧検出用トランジスタTがオンとなり、駆動トランジスタTのゲートとドレインとが接続される。
 また、容量Cおよび有機発光素子OLEDに蓄積されていた電荷が放電され、容量C→閾値電圧検出用トランジスタT→駆動トランジスタT→第2電源線12および有機発光素子OLED→駆動トランジスタT→第2電源線12という両経路での電流が流れる。そして、駆動トランジスタTのゲート・ソース間電圧Vgsが閾値電圧Vthに達すると、駆動トランジスタTがオフとなるため、結果的に、駆動トランジスタTの閾値電圧Vthが検出される。
(データ書き込み期間)
 データ書き込み期間では、画像信号電位(-Vdata)を容量Cに反映させることにより、駆動トランジスタTのゲート電位を所望電位に変化させることが行われる。より詳細には、第1電源線11がゼロ電位(GND)に、第2電源線12がゼロ電位(GND)にそれぞれ維持される。また、画像信号線14は、Vth検出期間時の印加電位(VdH)から画像信号電位(Vdata)を差し引いた分の電位(VdH-Vdata)とされ、走査線13は、データ書き込み期間内の所定期間において、高電位(VgH)とされる。
 この制御により、閾値電圧検出用トランジスタTがオンとなり、素子容量Coledに蓄積された電荷が放電され、有機発光素子OLED→閾値電圧検出用トランジスタT→容量Cという経路で電流が流れる。すなわち、有機発光素子OLEDに蓄積されていた電荷が容量Cに移動する。この結果、容量Cには、画像信号電位(Vdata)に基づいて決定される所定の電荷が蓄積される。
 なお、データ書き込み期間では、容量Cと有機発光素子OLEDとが直列に接続されるので、容量Cの一端(駆動トランジスタTのゲートに接続される端)の電位の低下量は、画像信号線14の電位低下量(Vdata)とはならず、容量Cと有機発光素子OLEDとの容量比の影響を受ける。
(Coledリセット期間)
 Coledリセット期間では、第1電源線11がマイナス電位(-VE)、第2電源線12もマイナス電位(-VE)とされる。一方、走査線13が低電位(VgL)に、画像信号線14が高電位(VdH)に維持される。このとき、閾値電圧検出用トランジスタTがオフ、駆動トランジスタTがオンとされ、有機発光素子OLED→駆動トランジスタT→第2電源線12という経路で電流が流れ、有機発光素子OLEDに残存する電荷が放電される。なお、このColedリセット期間に素子容量Coledの電荷を放電する理由は、素子容量Coledの残存電荷による発光への影響を回避するためである。
(発光期間)
 発光期間では、第1電源線11が高電位(VDD)、第2電源線12がゼロ高電位(GND)とされ、走査線13が低電位(VgL)に維持される。なお、このようにして、第1電源線11が、発光期間開始時に第3電位としてのマイナス電位(-VE)から第4電位としての高電位(VDD)に切り替えられる。一方、画像信号線14は、発光期間の開始直後では、一旦、基準電位となる第1電位としてのGNDレベルまで引き下げられる。その後、一定電位となる第2電位としての高電位(VdH)まで引き上げられ、その高電位(VdH)のレベルが維持される。さらに、発光期間の終了直前では、GNDレベルまで引き下げられる。すなわち、発光期間における発光開始時からの制御では、制御対象の画素回路における有機発光素子OLEDに流れる電流が所望の発光輝度を発光させるに必要な電流レベルとなるまで一気に引き上げるのではなく、当該有機発光素子OLEDに流れる電流を増加させる制御を行っている。すなわち、発光期間における発光停止までの制御では、制御対象の画素回路における有機発光素子OLEDに流れる電流が非発光のレベル(黒レベル)まで一気に引き下げるのではなく、当該有機発光素子OLEDに流れる電流を減少させる制御を行っている。よって、画像信号線14が第1電位から第2電位となるために要する時間は、第1電源線11が第3電位から第4電位となるために要する時間よりも長くなる。
 ここで、画像信号線14の電位を発光期間の開始時点から第1電位から第2電位まで上げていく時間について説明する。まず、次のようなモデルを想定する。画像信号線14を上昇させている過渡現象の考察においては、有機発光素子OLEDを容量素子、駆動トランジスタTを電気抵抗とモデル化することができる。すなわち、第1電源線11と第2電源線との間に、容量素子と電気抵抗が直列に接続されている回路を想定する。ここで、発光期間の開始時点において第1電源線11が高電位となり、第2電源線12との間に電位差を生じる。この電位差によりその間に電流が流れるが、電気抵抗が小さいときは容量素子に大きな電流が流れてしまう。そこで、電気抵抗を大きなものとし、容量素子に徐々に電荷を蓄積することで、容量素子に大きな電流が流れるのを抑制することができる。なお、画像信号線14がGNDレベルになってから、高電位(VdH)になるまでの時間は、例えば、50μs以上350μs以下に設定されている。
 発光開始時の駆動トランジスタTの状態について考えると、ゲートとソース間には点灯させる絵の輝度に対応した電位が書き込まれている。その結果、明るい絵を出す設定のときは駆動トランジスタTの抵抗成分が小さく、駆動トランジスタTに電流が流れやすい状態であるため、発光開始直後に発光制御用電源(VDD)の入力端に過電流が流れてしまう。本実施形態のように、画像信号線の電位を徐々に上げていくことで有機発光素子OLEDの容量成分に電荷を蓄積させることで、過電流を低減することができる。駆動トランジスタTの抵抗成分を大きくし、駆動トランジスタTに急に電流が流れるのを抑制した状態とすることで、点灯させる絵の輝度によらず発光制御用電源(VDD)に過電流が発生するのを抑制することができる。
 また、画像信号線14の電位を段階的に上げていく方法について説明する。段階的にあげる必要性は、発光制御用電源(VDD)に過電流が発生するのを避けるために必要な画像信号線14の電位の決定は温度特性や駆動トランジスタTの特性変動を考慮する必要があるが、あらかじめこれらの要因を求めることは困難である。その結果、段階的に画像信号線14の電位を設定、その状態を保持することをGNDレベルから高電位(VdH)まで行うことにより、過電流を抑制することができる。
 さらに、発光期間の最後において、画像信号線14の電位を徐々に下げることにより、駆動トランジスタTの電気抵抗が大きくなり、第1電源線11と第2電源線12に流れる電流を徐々に小さくすることができる。仮に、画像信号線14の電位を徐々に下げない場合は、第1電源線11と第2電源線12に存在するインダクタンス成分により、両者の間に電流が流れ続けようとする。そして、駆動トランジスタTのドレイン-ソース間にインダクタンス成分による大きな誘導電圧がかかることになり、駆動トランジスタTの寿命に悪影響を与えてしまう。一方、本実施形態によれば、画像信号線14の電位を徐々に下げることにより、誘導電圧を小さくすることができ、ひいては駆動トランジスタTdの製品寿命を長くすることができる。
 この制御により、駆動トランジスタTのオン、閾値電圧検出用トランジスタTのオフは継続される一方で、有機発光素子OLEDに順バイアスの電圧が印加されるので、有機発光素子OLED→駆動トランジスタT→第2電源線12という経路で電流が流れ、有機発光素子OLEDが発光する。ただし、上記のように、発光開始時からの制御では、画像信号線14の電位が引き上げられるので、発光輝度も徐々に増加し、発光停止までの制御では、画像信号線14の電位が引き下げられるので、発光輝度も徐々に減少して行く。
<タイミングコントローラ1の構成および機能>
 つぎに、タイミングコントローラ1の構成および機能について図4を参照して説明する。
 図4において、タイミングコントローラ1は、信号生成部21、制御部23、カウンタ25、演算部27およびセレクタ29を備えて構成される。タイミングコントローラ1には、上述した3種類の発光制御用電源(VDD,-VE,VdH)および画像データ(Xdata0)が入力される。信号生成部21は、電位波形の生成に必要なロジック信号(Ctrl_P,Ctrl_N)、画像表示の同期制御に必要なロジック信号(HSYNC)、同じく同期制御に必要なクロック信号(XCLK,YCLK)を生成して出力する。さらに、信号生成部21は、入力された画像データ(Xdata0)の出力タイミングを制御する。
 制御部23は、入力された信号生成部21からのロジック信号(Ctrl_P)に基づき、第1電源線11に対する印加電位(OUT_P)を決定して出力する。また、制御部23は、入力された信号生成部21からのロジック信号(Ctrl_N)に基づき、第2電源線12に対する印加電位(OUT_N)を決定して出力する。なお、制御部23から出力される印加電位(OUT_P)は、図3のシーケンス図における第1電源線11に対する印加電位に対応し、印加電位(OUT_N)は、図3のシーケンス図における第2電源線12に対する印加電位に対応する。
 カウンタ25は、入力されたロジック信号(HSYNC)をカウントしたカウント値(COUNT)を演算部27およびセレクタ29に出力する。なお、カウンタ25がカウントしたカウント値は、制御部23から出力される制御信号(CLR)によってクリアされ、その後、再度のカウント処理が実行される。
 演算部27は、カウンタ25からのカウント値に基づき、信号生成部21からの画像データを補正した補正画像データを演算してセレクタ29に出力する。
 セレクタ29は、カウンタ25からのカウント値に基づき、信号生成部21から入力された画像データと、演算部27から入力された補正画像データとの中から、いずれか一方を選択してXドライバ22に出力する。すなわち、セレクタ29は、画像データおよび補正画像データのうちのいずれか一方の画像データを選択する処理を行う。
 制御部23、カウンタ25、演算部27およびセレクタ29は、本発明における画像データ生成部に対応する構成部である。
 図5は、上述したタイミングコントローラ1の機能を実現するためのプログラムコードの一例を示す図であり、特に、発光開始直後の発光制御を行うプログラムコードの一例を示したものである。なお、発光停止直前の発光制御を行うプログラムコードについても、図5に倣って記述することができる。
 図5において、まず、発光期間であるか否かをロジック信号(VSYNC)に基づいて判定する(ステップS1)。このステップS1において、発光期間ではないと判定した場合には(例えば、VSYNC=0)、ステップS9の処理に移行する。なお、ステップS9の処理では、ロジック信号(Crtl_P,Crtl_N)に基づき、第1電源線11に対する印加電位および第2電源線12に対する印加電位のそれぞれが決定される。
 ここで、ステップS1において、発光期間であると判定した場合には(例えば、VSYNC=1)、さらに発光期間の開始であるか否かをロジック信号(Crtl_P,Crtl_N)に基づいて判定する(ステップS2)。発光期間の開始ではないと判定した場合には(例えば、Crtl_P=0、または、Crtl_N=0)、後述のステップS4の処理に移行する。また、発光期間の開始であると判定した場合には(例えば、Crtl_P=1、かつ、Crtl_N=1)、カウンタ25のカウント値をクリアする処理を行う(ステップS3)。
 次に、カウンタ25のカウント値が所定値(N)に達しているか否かが判定される(ステップS4)。そして、カウント値が所定値(N)に達していなければカウンタのカウント処理が進められる(ステップS5)。さらに、信号生成部21から入力された画像データにカウント値(COUNT)と所定の係数(A)とをそれぞれ乗算し、乗算した値を上記補正した補正画像データとして出力する(ステップS6,S7)。
 一方、カウント値が所定値(N)に達していれば、信号生成部21から入力された画像データを出力する(ステップS6,S8)。すなわち、ステップS6~S8の処理では、カウント値が所定値(N)に達していなければ、カウント値に比例する値が補正画像データとして設定され、カウント値が所定値(N)に達していれば、入力された画像データが設定されることになる。
 上記では、発光開始時の制御について説明したが、発光停止時の制御についても同様である。詳細な説明は省略するが、概括して説明すると以下のような制御となる。
 まず、入力されたロジック信号(Crtl_P,Crtl_N)に基づき、発光期間における発光停止の制御期間に入っているか否かが判定され、発光停止時の制御期間に入っていないと判定された場合には、ロジック信号(Crtl_P,Crtl_N)に基づいて決定された各印加電位(第1電源線11に対する印加電位および第2電源線12に対する印加電位)のそれぞれが第1電源線11および第2電源線12に印加される。
一方、発光停止の制御期間に入っていると判定された場合には、カウンタ25のカウント値をカウントダウンする処理が行われる。さらに、カウントされたカウント値が所定値(M,MはM<Nを満たす正の整数)に達しているか否かが判定される。
 ここで、カウント値が所定値(M)に達していなければ、信号生成部21から入力された画像データにカウント値(COUNT)と所定の係数(B,この係数Bは上記係数Aと同じ値であっても、異なっていてもよい)とをそれぞれ乗算した値が補正画像データとして出力される。また、カウント値が所定値(M)に達していれば発光期間の動作が終了となる。なお、上記図5に示した処理フローは、タイミングコントローラ1の機能をソフトウェア処理として実現するためのプログラムコードという位置づけで説明したが、図5に示すような各機能ブロックに基づくハードウェア処理としてもよい。
<画像データ電位の立ち上げ時間および立ち下げ時間>
 つぎに、画像信号線14に印加される画像データ電位の立ち上げ時間および立ち下げ時間について説明する。なお、画像表示装置の表示仕様としては、以下のものを想定する。
(1)1フレーム:16.6ms(60Hz)
(2)1フレームにおける発光期間:8.3ms(1/2フレームに相当)
(3)Xドライバのクロック周波数:16.6μs(1/1000フレームに相当)
 画像データ電位の「立ち上げ時間」とは、発光開始時の制御期間において、画像信号線14の電位が第1電位としてのGND電位から第2電位としての高電位(VdH)のレベルに達するまでの時間である。この時間は、タイミングコントローラ1を介して入力された画像データを、補正された補正画像データに加工する期間と捉えることもできる。なお、この立ち上げ時間は、所望輝度で発光させるのに充分な発光期間を確保する観点から、例えば上記仕様の画像表示装置であれば、300μs程度とすることが好ましく、また100μs程度とすればさらに好ましい。また、この立ち上げ時間内は、各画素回路に対する発光制御が全画素回路で一斉に行われる期間であり、負荷のピークが集中する期間となるので、上記のような画像信号線14の電位をGNDレベルから高電位(VdH)まで徐々に引き上げる制御を行うことで、電源装置の電源容量に与える影響を小さくすることが可能となる。
 また、画像データ電位の「立ち下げ時間」とは、発光停止時の制御期間において、画像信号線14の電位が高電位(VdH)からGND電位のレベルに達するまでの時間である。なお、この時間も、タイミングコントローラ1を介して入力された画像データを、補正された画像データに加工する期間と捉えることができる。
 また、この立ち下げ時間は、一般的な画像表示装置の特性を考慮して、0.5~1ms程度とすることが好ましい条件となる。
 なお、上記立ち下げ時間の好ましい値が、上記立ち上げ時間の好ましい値と異なっているのは、一般的な画像表示装置に用いられる電源回路の特性による。一般的な画像表示装置に用いられる電源回路では、3V程度の低電圧から15V程度の電圧を生成する昇圧回路が用いられており、出力をフィードバックすることで安定した出力を得るようにしている。このため、負荷変動によって上昇した電圧変動がフィードバック機能によって安定した出力電圧に戻るまでの時間が、画像データ電位を制御する時間の目安となる。なお、この時間は、スイッチング周波数やフィードバック方式にも依存するが、概ね0.5~1msの時間となる。
 負荷変動によって降下した電圧変動を元に戻す場合と、負荷変動によって上昇した電圧変動を元に戻す場合とでは、安定した電圧に戻る時間は前者の方が短い。この理由は、昇圧回路の特性(昇圧能力は高く、降圧能力は低い)によるものである。したがって、発光停止時の制御期間に比べて、発光開始時の制御期間の方が、電圧の回復期間が短くなる。
 ここで、画像データ電位の立ち上げに300μsの時間をかけ、画像データ電位の立ち下げに1msの時間をかけるとすれば、発光期間に対する(立ち上げ時間+立ち下げ時間)の比は、(300+1000)/8300=13/83=15.7%になる。この場合、発光輝度に対応した電位が印加されている期間を約84%確保できることになるので、所望輝度で発光させる充分な発光期間の確保が可能となる。
 また、画像データ電位の立ち上げに100μsの時間をかけ、画像データ電位の立ち下げに0.5msの時間をかけるとすれば、発光期間に対する(立ち上げ時間+立ち下げ時間)の比は、(100+500)/8300=6/83=7.23%になる。この場合、発光輝度に対応した電位が印加されている期間を約93%確保できることになるので、所望輝度で発光させる充分な発光期間の更なる確保が可能となる。
 このように、本実施の形態にかかる画像表示装置では、所望輝度で発光させる充分な発光期間を確保しつつ、電源装置の電源容量に与える影響を小さくすることが可能となる。
 また、本実施の形態にかかる画像表示装置では、一般的な画像表示装置に用いられている電源装置を使用することができるので、所望輝度で発光させる充分な発光期間を確保しつつ、電源装置の電源特性に与える影響を小さくすることが可能となる。
 つぎに、実際の測定結果について説明する。
 図6,7において、実線にて示される波形は第2電源線12に印加される電圧波形(図3参照)であり、1点鎖線にて示される波形はタイミングコントローラ1の入力側(例えば発光制御用電源(VDD)の入力端:図1参照)で測定した電流波形である。
 ここで、本実施の形態にかかる制御手法を用いない場合であって、例えば、有機発光素子OLEDを高輝度で発光させる場合には、図6(a)の楕円部K1で示すように、発光開始時に大きな過電流が生じており、負荷のピークが集中していることが理解できる。なお、この性質は、図6(b)の楕円部K2で示すように、有機発光素子OLEDを低輝度で発光させる場合においても生じている。
 一方、本実施の形態にかかる制御手法を用いた場合であって、有機発光素子OLEDを高輝度で発光させる場合には、図7(a)の楕円部K1で示すように、発光開始時に大きな過電流が生じており、負荷のピークが集中していることが理解できる。なお、この性質は、同図(b)の楕円部K3、K4で示すように、有機発光素子OLEDを高輝度および低輝度で発光させる場合の双方において、過電流が充分に抑制されていることが理解できる。
(制御手法の変形例-変形例1)
 図8において、図2に示したシーケンス図との相違点は、発光期間において、発光期間の開始直後にGNDレベルまで引き下げられた電位を徐々に引き上げる際に、引き上げ後の電位を高電位(VdH)とはせず、この高電位(VdH)よりもΔV1だけ低い所定電位に維持する制御を行うようにしている点にある。その結果、発光期間において維持される第1電位は、“VdH-ΔV1”となる。
 この図8に示す制御手法によれば、画像表示装置における表示パネルの特性のバラツキの影響を抑制することが可能となる。すなわち、引き上げ後の電位レベルを決めるΔV1を可変することにより、表示パネルの特性のバラツキに起因する発光特性のバラツキの影響を改善することが可能となる。なお、この制御により、画像データ電位の立ち上げ時間および立ち下げ時間の双方を短縮することができるという効果も得られる。
(制御手法の変形例-変形例2)
 図9において、図2に示したシーケンス図との相違点は、発光期間の開始直後において、一旦引き下げる電位をGNDよりも高い電位に制御するようしにている点および発光停止時の電位引き下げ後の電位をGNDよりも高い所定電位に制御するようにしている点にある。その結果、発光期間の開始直後および発光停止時の電位は、“ΔV2”となる。
 この図9に示す制御手法によれば、引き下げ時の電位レベルΔV2を可変することにより、画像データ電位の立ち上げ時間および立ち下げ時間の双方を短縮することができるという効果が得られる。なお、引き下げ時の電位レベルΔV2は、0<ΔV2<VdH-Vdataの範囲で可変することが可能となる。
 なお、上記変形例1,2では、発光期間の開始直後に引き下げられる電位レベルと発光停止時の電位引き下げ後の電位レベルを同一の電位レベルとして示しているが、これらの電位レベルが異なっていても構わない。
 また、本実施の形態では、発光素子として、有機発光素子を一例として説明してきたが、有機発光素子以外の発光素子、例えば、LEDや無機EL素子を用いた画素回路への適用も可能である。
 また、上述した実施形態において、駆動トランジスタTおよび閾値電圧検出用トランジスタTは、N型のタイプのトランジスタを用いて説明したが、駆動トランジスタTおよび閾値電圧検出用トランジスタTは、P型のタイプであっても構わない。次に、駆動トランジスタTおよび閾値電圧検出用トランジスタTが、P型のタイプについて説明する。なお、上述した実施形態と異なる箇所について説明する。
 各薄膜トランジスタがP型のタイプの場合、各薄膜トランジスタをオン状態にするには、各薄膜トランジスタのゲート・ソース間の電位を閾値電圧以下に設定することになる。つまり、ゲート電位を薄膜トランジスタの閾値電圧以下となるように設定する。そのため、駆動制御部としてのタイミングコントローラ1は、発光素子の発光開始時における画像信号線14の電位を発光素子が発光する状態の画像データ電位よりも一旦大きい電位に設定し、その後画像データ電位まで低下させる。また、タイミングコントローラ1は、発光素子の発光を停止する際に画像信号線14の電位を画像データ電位と閾値電圧との間に位置する電位まで上昇させる。このようにして、画像信号線の電位を発光期間の発光開始時又は発光停止時にて変化させることで、発光制御用電源(VDD)の入力端に過電流の大きさを低減することができる。
 以上のように、本発明にかかる画像表示装置は、一括発光方式で駆動される画像表示装置において、電源装置の電源容量に与える影響を小さくすることができる発明として有用である。

Claims (7)

  1.  発光素子および該発光素子を駆動する駆動素子をそれぞれ有する複数の画素回路と、
     前記各画素回路に対して接続される電源線と、
     前記発光素子の発光輝度に対応する画像データ電位を前記駆動素子に印加する画像信号線と、
     前記画像信号線に印加する電位の大きさおよび出力タイミングを制御するとともに、前記電源線に印加する電位の大きさおよび出力タイミングを制御し、前記各画素回路に対する発光制御を全画素回路で一斉に行なう駆動制御部と、
     を備え、
     前記駆動制御部は、前記画像信号線の画像データ電位を基準電位となる第1電位から一定電位となる第2電位となるまで漸次変化させることにより、前記発光素子の発光を開始させることを特徴とする画像表示装置。
  2.  請求項1に記載の画像表示装置において、
     前記電源線に印加される電位は、前記発光素子の発光期間開始時に第3電位から第4電位に切り替えられ、
     前記画像信号線が前記第1電位から前記第2電位となるために要する時間は、前記電源線が第3電位から第4電位となるために要する時間よりも長いことを特徴とする画像表示装置。
  3.  請求項1に記載の画像表示装置において、
     前記画像信号線が前記第1電位から前記第2電位となるまでの時間は、50μs以上、350μs以下であることを特徴とする画像表示装置。
  4.  請求項1に記載の画像表示装置において、
     前記画像信号線が前記第1電位から前記2電位まで段階的に変化して到達することを特徴とする画像表示装置。
  5.  請求項1に記載の画像表示装置において、
     前記電源線は、各画素回路に接続される第1電源線と第2電源線を有し、
     前記発光期間開始時より前記第1電源線及び前記第2電源線の両方を切り替えることを特徴とする画像表示装置。
  6.  請求項1に記載の画像表示装置において、
     前記駆動制御部は、前記発光期間における発光開始時を判定し、発光開始時からの経過時間に基づいて前記画像信号線に出力する電位を調整する画像データ生成部を更に備えたことを特徴とする画像表示装置。
  7.  請求項5に記載の画像表示装置において、
     前記発光素子は、有機発光ダイオードであり、
     前記第1電源線は、前記有機発光ダイオードのアノード側に接続され、且つ前記第2電源線は、前記有機発光ダイオードのカソード側に接続されることを特徴とする画像表示装置。
PCT/JP2008/073848 2007-12-28 2008-12-26 画像表示装置 WO2009084681A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200880122626.2A CN101911165B (zh) 2007-12-28 2008-12-26 图像显示装置
JP2009548116A JP5385791B2 (ja) 2007-12-28 2008-12-26 画像表示装置
US12/810,768 US8379010B2 (en) 2007-12-28 2008-12-26 Image display apparatus
KR1020107015061A KR101239672B1 (ko) 2007-12-28 2008-12-26 화상 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007340478 2007-12-28
JP2007-340478 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084681A1 true WO2009084681A1 (ja) 2009-07-09

Family

ID=40824394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073848 WO2009084681A1 (ja) 2007-12-28 2008-12-26 画像表示装置

Country Status (5)

Country Link
US (1) US8379010B2 (ja)
JP (1) JP5385791B2 (ja)
KR (1) KR101239672B1 (ja)
CN (1) CN101911165B (ja)
WO (1) WO2009084681A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086497A (ja) * 2012-10-22 2014-05-12 Toshiba Corp 有機電界発光素子及び照明装置
KR102054760B1 (ko) * 2013-12-17 2019-12-11 엘지디스플레이 주식회사 유기발광표시장치 및 이의 동작방법
CN112820236B (zh) * 2019-10-30 2022-04-12 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178028A (ja) * 2004-12-21 2006-07-06 Casio Comput Co Ltd 発光駆動回路及びその駆動制御方法、並びに、表示装置及びその表示駆動方法
JP2006227337A (ja) * 2005-02-18 2006-08-31 Fuji Electric Holdings Co Ltd 有機el表示装置およびその駆動方法
JP2006284959A (ja) * 2005-03-31 2006-10-19 Casio Comput Co Ltd 表示装置及びその駆動制御方法
JP2007219339A (ja) * 2006-02-20 2007-08-30 Sharp Corp 容量性表示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736399B2 (ja) * 2000-09-20 2006-01-18 セイコーエプソン株式会社 アクティブマトリクス型表示装置の駆動回路及び電子機器及び電気光学装置の駆動方法及び電気光学装置
JP4540903B2 (ja) * 2001-10-03 2010-09-08 パナソニック株式会社 アクティブマトリクス型表示装置
JP2003150118A (ja) * 2001-11-14 2003-05-23 Matsushita Electric Ind Co Ltd El表示装置とその駆動方法および情報表示装置
GB0224277D0 (en) * 2002-10-18 2002-11-27 Koninkl Philips Electronics Nv Electroluminescent display devices
US7663615B2 (en) * 2004-12-13 2010-02-16 Casio Computer Co., Ltd. Light emission drive circuit and its drive control method and display unit and its display drive method
US7646367B2 (en) * 2005-01-21 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device and electronic apparatus
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7907137B2 (en) * 2005-03-31 2011-03-15 Casio Computer Co., Ltd. Display drive apparatus, display apparatus and drive control method thereof
KR101245218B1 (ko) * 2006-06-22 2013-03-19 엘지디스플레이 주식회사 유기발광다이오드 표시소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006178028A (ja) * 2004-12-21 2006-07-06 Casio Comput Co Ltd 発光駆動回路及びその駆動制御方法、並びに、表示装置及びその表示駆動方法
JP2006227337A (ja) * 2005-02-18 2006-08-31 Fuji Electric Holdings Co Ltd 有機el表示装置およびその駆動方法
JP2006284959A (ja) * 2005-03-31 2006-10-19 Casio Comput Co Ltd 表示装置及びその駆動制御方法
JP2007219339A (ja) * 2006-02-20 2007-08-30 Sharp Corp 容量性表示装置

Also Published As

Publication number Publication date
CN101911165B (zh) 2014-04-30
KR101239672B1 (ko) 2013-03-11
JP5385791B2 (ja) 2014-01-08
KR20100090722A (ko) 2010-08-16
CN101911165A (zh) 2010-12-08
US20100277460A1 (en) 2010-11-04
JPWO2009084681A1 (ja) 2011-05-19
US8379010B2 (en) 2013-02-19

Similar Documents

Publication Publication Date Title
JP5258160B2 (ja) 画像表示装置
JP5080248B2 (ja) 画像表示装置
KR100911982B1 (ko) 이미션 구동부 및 이를 이용한 유기전계발광 표시장치
EP2881933A1 (en) Organic light emitting display device and method for driving the same
JP5154755B2 (ja) 画像表示装置およびその駆動方法
JP4786437B2 (ja) 画像表示装置の駆動方法
EP2128848A1 (en) Pixel and organic light emiting display using the same
KR101747719B1 (ko) 유기발광다이오드 표시장치 및 그 구동방법
KR20160007786A (ko) 표시장치
CN101305409A (zh) 对电致发光器件中的亮度退化的补偿技术
KR101987078B1 (ko) 유기 발광 표시 장치 및 이의 구동 방법
JP5779656B2 (ja) 画像表示装置
JP5020815B2 (ja) 画像表示装置
KR102519364B1 (ko) 게이트 구동부, 이를 포함하는 표시 장치 및 이를 이용한 표시 패널의 구동 방법
WO2015176108A1 (en) High resolution oled display operation circuit
JPWO2015118599A1 (ja) 表示装置および表示装置の駆動方法
Lu et al. Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays
JP5385791B2 (ja) 画像表示装置
JP5106010B2 (ja) 画像表示装置、画像表示装置における電流計測方法および電子機器の駆動方法
JP4536392B2 (ja) 表示装置および表示装置の駆動方法
KR20170118467A (ko) 유기발광표시장치
US7830338B2 (en) Plasma display and driving method thereof
KR102658876B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치의 구동 방법
JP2619001B2 (ja) 表示装置の駆動方法
KR20100072657A (ko) 유기전계발광소자 및 그 구동방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880122626.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08867413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009548116

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12810768

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107015061

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 08867413

Country of ref document: EP

Kind code of ref document: A1