WO2009083509A1 - Polymere auf der basis von polydiallylammoniumverbindungen, anionenaustauschermembranen enthaltend die polymere und deren verwendung in brennstoffzellen - Google Patents

Polymere auf der basis von polydiallylammoniumverbindungen, anionenaustauschermembranen enthaltend die polymere und deren verwendung in brennstoffzellen Download PDF

Info

Publication number
WO2009083509A1
WO2009083509A1 PCT/EP2008/068086 EP2008068086W WO2009083509A1 WO 2009083509 A1 WO2009083509 A1 WO 2009083509A1 EP 2008068086 W EP2008068086 W EP 2008068086W WO 2009083509 A1 WO2009083509 A1 WO 2009083509A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
water
polydiallylammonium
groups
membrane
Prior art date
Application number
PCT/EP2008/068086
Other languages
English (en)
French (fr)
Inventor
Robert Gaertner
Hans-Georg Herz
Gerhard Maier
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2009083509A1 publication Critical patent/WO2009083509A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/26Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2387/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to water-insoluble polymers composed of a polymer chain based on at least one base polymer A and at least one group based on polydiallyl ammonium compounds B, wherein the polymer chain is covalently linked to the polydiallylammonium compound, a process for preparing the water-insoluble polymers, a membrane containing at least one Water-insoluble polymer according to the invention, the use of the membrane according to the invention as an anion exchange membrane in alkaline fuel cells, alkaline batteries, in electrolysis cells and in separation and purification processes, a membrane electrode assembly comprising a membrane according to the invention and a fuel cell containing at least one inventive polymer, at least one membrane according to the invention and / or at least one membrane electrode unit according to the invention.
  • Anion-exchange membranes are used industrially in a wide variety of separation and purification processes, for example in electrodialysis or diffusion dialysis.
  • anion exchange membranes in fuel cells in particular SAFC (Solid Alkaline Fuel Cells)
  • SAFC Solid Alkaline Fuel Cells
  • the anion exchange membranes In order for the anion exchange membranes to be suitable for the aforementioned technical applications, they must meet various requirements, for example insolubility and limited swelling in the process solutions used, in particular in aqueous solutions, sufficiently high carrier density and long-term stability of the polymer structure under the conditions of use.
  • SAFC alkaline fuel cells
  • the chemical resistance of the ionic groups of the anion exchange membranes in strongly alkaline medium i. H. at pH values of> 13, at elevated temperatures of importance.
  • anion exchange membranes which carry ammonium ions as ionic anion conducting groups.
  • US 6,183,914 B1 relates to a polymer-based electrolyte composition having excellent film-forming properties, flexibility, mechanical stability and high hydroxide ion conductivity.
  • This composition contains an organic polymer having the structure of a quaternary alkylammonium salt, a nitrogen-containing heterocyclic quaternary ammonium salt and a metal hydroxide salt.
  • the composition may contain other components such as binders.
  • a polydiallylammonium compound is used as an organic polymer which has a quaternary alkylammonium salt structure.
  • Polymers composed of a polymer chain of at least one base polymer which is covalently linked to at least one group based on polydiallylamonium compounds are not disclosed in US Pat. No. 6,183,914 B1.
  • EP-A 1 612 874 relates to alkaline fuel cells (SAFC) containing anion exchange membranes comprising diamines or polyamines bonded to a carrier polymer via sulfonamide bonds. At least one of the nitrogen atoms of the diamine or of the polyamine is a quaternary nitrogen atom which serves as an anion exchanger group. Polymers having polydiallylammonium compounds covalently bonded to a base polymer are not disclosed in EP-A 1 612 874.
  • SAFC alkaline fuel cells
  • DE-A 195 24 867 discloses branched high molecular weight polyammonium compounds. These polyammonium compounds are based on unsaturated quaternary ammonium compounds and suitable prepolymers containing linear amino groups. The prepolymers are the backbone and the ammonium salt is the side chain.
  • the branched polyammonium compounds disclosed in DE-A 195 24 867 are water-soluble and are particularly useful for the purification of contaminated waters. Due to the water solubility is an application of the disclosed in DE-A 195 24 867 branched polyammonium compounds in fuel cells or batteries out of the question.
  • the object of the present application is to provide polymers which are suitable for the preparation of anion exchange membranes, wherein the membranes have a high charge density and long-term stability of the polymer structure under the operating conditions. It is particularly important that the membranes prepared from the polymers have a high chemical resistance of the ionic groups of the membranes in a strongly alkaline medium, and are thus suitable for use in alkaline batteries and alkaline fuel cells (SAFC).
  • SAFC alkaline fuel cells
  • a water-insoluble polymer composed of i) a polymer chain based on at least one base polymer A containing one or more hydrocarbon radicals, preferably one or more aromatic hydrocarbon radicals, in the polymer chain, and ii) at least one group based on polydiallylammonium compounds B
  • the at least one group based on polydiallyl ammonium compounds is covalently linked to the hydrocarbon radicals, preferably with the aromatic hydrocarbon radicals, the polymer chain.
  • the present invention is based on the fact that it has surprisingly been found that polydiallylammonium compounds in alkaline medium extremely stable are.
  • the advantageous extraordinary base stability of the polydiallylammonium compounds can be used according to the invention to produce base-stable, water-insoluble polymers which are suitable for the preparation of anion-exchange membranes.
  • the pure polydiallylammonium compounds are not suitable for the preparation of anion exchange membranes, since they are soluble in the solvents widely used in ion exchange processes, such as water or mixtures of water and alcohols, for example methanol.
  • the polydiallylammonium compounds are bound according to the invention via covalent bonds to a water-insoluble base polymer.
  • the base polymer A has one or more hydrocarbon radicals in the polymer chain, preferably one or more aromatic hydrocarbon radicals.
  • the covalent linking of the polydiallylamonium compounds takes place according to the invention with the aromatic hydrocarbon radicals, preferably with the aromatic hydrocarbon radicals, the polymer chain of the base polymer A.
  • any desired covalent linkages between the hydrocarbon radicals, preferably aromatic hydrocarbon radicals, of the base polymer A and the polydiallylammonium compounds are conceivable.
  • suitable covalent linkages are:
  • R 1 , R 2 independently of one another are H, substituted or unsubstituted C 1 -C 8 -alkyl, substituted or unsubstituted C 6 -C 14 -aryl or substituted or unsubstituted C 5 -C 14 -cycloalkyl, preferably independently of one another H, C 1 -C 8 -synyl Alkyl, particularly preferably independently of one another, is H, methyl, ethyl, isopropyl, n-propyl, isobutyl, n-butyl, sec-butyl, tert-butyl, very particularly preferably independently of one another H, methyl, n-butyl ;
  • R 3 , R 4 are independently H, substituted or unsubstituted C 1 -Cs
  • Alkyl, wherein R 3 and R 4 in the o different groups - (CR 3 R 4 ) - may be the same or different; preferably H; o is 1 to 8, preferably 1 to 4, particularly preferably 1.
  • the covalent linking of the polydiallylammonium compound B with the hydrocarbon radicals, preferably aromatic hydrocarbon radicals, of the polymer chain of the base polymer A takes place via one of the following groups:
  • R 1 and R 2 independently of one another have the meanings given above.
  • any generally water-insoluble base polymer A can be used according to the invention, containing one or more hydrocarbon radicals, preferably one or more aromatic hydrocarbon radicals, in the polymer chain.
  • Suitable water-insoluble polymers which have one or more hydrocarbon radicals, preferably one or more aromatic hydrocarbon radicals, in the polymer chain are known to the person skilled in the art.
  • Suitable hydrocarbon radicals are generally aliphatic or aromatic hydrocarbon radicals, with aromatic hydrocarbon radicals being preferred. Examples of suitable aliphatic hydrocarbon radicals are alkylene groups, e.g. C1 to C6 alkylene groups. Examples of aromatic hydrocarbon radicals are arylene groups, e.g. Phenylene groups.
  • the alkylene and arylene groups may optionally be substituted.
  • the base polymer A is preferably selected from the group consisting of polyaryl ether sulfones (PES), polystyrene (PS), styrene copolymers, polysulfones (PSU), polyether ketones (PEK), polyether ether ketones (PEEK), polyether ether ketone ketones (PEEKK), polyphenylene sulfides (PPS ), Polyphenylene oxides (PPO), poly (4-phenoxybenzoyl-1, 4-phenylene) (PPBP), polybenzimidazoles (PBI), polybenzoxazoles, polybenzothiazoles, polyimides (PI), polyphenylenes (PP), polybenzazoles (PBZ), polythiophenylenes, Polyphenylenequinoxalines, polyphosphazenes and mixtures of the abovementioned polymers Particularly preferred water-insoluble base polymers A are selected from the group consist
  • Suitable styrene copolymers are known to the person skilled in the art.
  • suitable styrene copolymers are poly (styrene-co-acrylonitrile), poly (styrene-c-buatdiene), poly (styrene-c-butyl) co-ethylene), poly (styrene-co-propylene), poly (styrene-co-butadiene), poly (styrene-co-i-butene), poly (styrene-co-1-pentene), poly (styrene-co 1-hexene), poly (styrene-co-acrylonitrile-co-butadiene), poly (styrene-co-poly (ethylene-ran-butylene)), poly (styrene-co-ethylene oxide) and poly (styrene-co-ethylene). propylene oxide).
  • the abovementioned copolymers may contain the monomers in any proportion
  • copolymers is to be understood as meaning both polymers which are composed of two different monomer units and also polymers which are made up of three or more different monomer units.
  • water-insoluble polymers are known to the person skilled in the art and are commercially available or can be prepared by processes known to those skilled in the art.
  • the base polymer A preferably has at least one of the hydrocarbon radicals, preferably at least one of the aromatic hydrocarbon radicals, in the polymer chain a functional group -SO 2 -Y or -Z-Y, where Z and Y have the following meanings:
  • R3, R4 are independently H, substituted or unsubstituted C 8 - alkyl, wherein R 3 and R 4 in the o different groups - can be -technische or different (CR 3 R 4); preferably H; o is 1 to 8, preferably 1 to 4, particularly preferably 1; and
  • Y halide selected from fluoride, chloride, bromide and iodide, preferred
  • Chloride or sulfonate, e.g. Benzenesulfonate, toluenesulfonate, methanesulfonate or trifluoromethanesulfonate.
  • the group -ZY is selected from the group consisting of -CH 2 Y, wherein Y may be halide selected from fluoride, chloride, bromide and iodide, preferably chloride, or sulfonate, for example benzenesulfonate, toluenesulfonate, methanesulfonate or trifluoromethanesulfonate, is particularly preferred the functional group -ZY-CH 2 Cl.
  • Y may be halide selected from fluoride, chloride, bromide and iodide, preferably chloride, or sulfonate, for example benzenesulfonate, toluenesulfonate, methanesulfonate or trifluoromethanesulfonate, is particularly preferred the functional group -ZY-CH 2 Cl.
  • Lymers A with functional groups -ZY can be carried out by processes known to those skilled in the art, in particular processes for the functionalization of aromatics.
  • the particularly preferred functional group -ZY: -CH 2 Cl is generally carried out by Chlormethyltechnik one or more aromatic hydrocarbon radicals in the polymer chain of the base polymer A.
  • the chloromethylation of the aromatic hydrocarbon radicals preferably follows in the sense of a Blanc reaction, ie by reacting the base polymer A containing one or more aromatic hydrocarbon radicals in the polymer chain with formaldehyde and hydrogen chloride in the presence of a catalyst, for example ZnCl 2 or ZnCl 4 . It is also possible to use other processes for the chloromethylation of the aromatic hydrocarbon radicals of the base polymer A, for example the reaction of the corresponding polymer with chloromethyl octyl ether in the presence of SnCl 4 . Suitable reaction conditions of the chloromethylation of polymers containing one or more aromatic hydrocarbon radicals in the polymer chain are known to those skilled in the art.
  • Essential for the preparation of the water-insoluble polymers according to the invention is the provision of functionalized polydiallylammonium compounds which are suitable for bonding covalent bonds with the functionalized base polymer.
  • a polydiallylammonium compound having terminal functional groups is preferably used according to the present invention.
  • Such terminal polydiallylammonium compounds are new and are disclosed in the copending application entitled "Preparation of end groups of functionalized polydiallylammonium compounds of defined molecular weight by free-radical polymerization.”
  • the preferred polydiallylammonium compounds having terminal functional groups are as described above Registration by radical polymerization of diallylammonium salts in the presence of at least one compound of the general formula
  • R 3 , R 4 independently of one another are H, substituted or unsubstituted C 1 -C 5 -alkyl, substituted or unsubstituted C 5 -C 4 -cycloalkyl or substituted or unsubstituted C 6 -C 4 -aryl, preferably independently of one another H, methyl, ethyl, isopropyl , n-propyl, isobutyl, n-butyl, sec-butyl, tert-butyl, cyclohexyl or phenyl, more preferably at least one of R 3 or R 4 is H, very particularly preferably both R 3 and R are 4 H;
  • n is 1 to 6, preferably 2 to 4, more preferably 2 or 3, most preferably 2;
  • R 1 , R 2 are independently H, substituted or unsubstituted CrCs
  • Alkyl substituted or unsubstituted C 5 -C 4 -aryl or substituted or unsubstituted C 5 -C 4 -cycloalkyl, preferably independently of one another H or substituted or unsubstituted C 1 -C 8 -alkyl, particularly preferably independently of one another H, methyl, ethyl, isopropyl, n-propyl, isobutyl, n-butyl, sec-butyl or tert. Butyl, most preferably independently H, methyl or n-butyl;
  • R 3 , R 4 , X and n independently have the meanings given above; substituted or unsubstituted C 1 -C 8 -alkyl, preferably H, methyl, ethyl, isopropyl, n-propyl, isobutyl, n-butyl, sec-butyl or tert.
  • the radical polymerization of the diallyl ammonium salts takes place in the presence of a compound selected from the group consisting of
  • Suitable diallylammonium salts preferably have the general formula
  • R 6 , R 7 are each independently substituted or unsubstituted C 1 -C 8 -alkyl, preferably independently of one another methyl, ethyl, isopropyl, n-propyl, isobutyl, n-butyl, sec-butyl, tert -Butyl, more preferably methyl; or
  • R 9 and R 10 together with the nitrogen atom, form a 5-membered heterocyclic ring which may be substituted or unsubstituted and optionally fused with a 6-membered aromatic ring;
  • a " halide in particular chloride, bromide, trifluoroacetate, OH " , tetrafluoroborate or hexafluorophosphate.
  • diallylammonium salts are selected from the group consisting of:
  • a " halide, preferably chloride, bromide, trifluoroacetate, OH " , tetrafluoroborate or hexafluorophosphate means.
  • terminally functionalized polydialylammonium compounds B used for the preparation of the water-soluble polymer according to the invention particularly preferably have B amino groups or ammonium groups as terminal functional groups. These are prepared by the group X in the compounds used in the polymerization of diallyl ammonium salts a
  • Amino or ammonium group Suitable amino and ammonium groups X have already been mentioned above.
  • the terminal functional group-carrying polydiallylammonium compounds may carry one or more functional groups X. Preferably, they carry a functional group.
  • the present invention relates to a water-insoluble polymer according to the invention, wherein the at least one group based on polydiallylammonium compounds B is based on polydiallylammonium hydroxides. It has surprisingly been found that anion exchange membranes based on polydiallylammonium hydroxides have a particularly high base stability.
  • the water-insoluble polymers according to the invention very particularly preferably have at least one group based on polydiallylammonium compounds B, the polydiallylammonium compounds being selected from the group consisting of polydiallyldimethylammonium hydroxide and polydiallylisoindolinium hydroxide.
  • PDADMAH polydiallyldimethylammonium hydroxide
  • PDAIH polydiallylisoindolium hydroxide
  • n is 2 to 100, preferably 2 to 50, particularly preferably 5 to 30.
  • An example of a preferred water-insoluble polymer of the invention is a
  • Preferred linkages are mentioned above.
  • the abovementioned polymer has OH " ions as anionic counterions.
  • m number of repeating units of the base polymer preferably 10 to 250, more preferably 25 to 100, most preferably 40 to 70;
  • n number of positive charges of group B based on polydiallylammonium compounds and simultaneously number of OH " groups, vorzut 2 to 100, particularly preferably 5 to 30;
  • the water-insoluble polymers according to the invention are characterized by insolubility in the process solutions used for the use of the anion exchange membranes, high charge carrier density and long-term stability of the polymer structure under operating conditions, especially under alkaline conditions at pH values of> 13 at elevated temperature. Furthermore, the inventive water-insoluble polymers show a low swelling behavior in the process solutions, in particular in water or mixtures of water with alcohols, for example methanol. Surprisingly, the swelling behavior of the inventive water-insoluble polymers in the abovementioned solvents is significantly lower than the swelling behavior of polycations in which the cationic charges are randomly distributed along the polymer main chain.
  • the water-insoluble polymers according to the invention are prepared by linking at least one functionalized base polymer A containing one or more hydrocarbon radicals, preferably one or more aromatic hydrocarbon radicals, in the polymer chain with at least one functionalized polydiallylammonium compound B.
  • a further subject of the present application is therefore a process for the preparation of the water-insoluble polymers according to the invention comprising: reaction of one or more polydialylammonium compound B having terminal functional groups X with at least one functionalized base polymer A containing one or more hydrocarbon radicals, preferably one or more aromatic hydrocarbon radicals, wherein the hydrocarbon radicals at least partially carry functional groups -ZY, which are suitable for forming a covalent bond with the functional groups X.
  • Suitable base polymers A and preferred degrees of functionalization of the base polymers having the functional groups -ZY are already mentioned above.
  • Suitable covalent linkages (linkers) and suitable functional groups X and -ZY are already mentioned above.
  • the terminal groups X of the polydiallylammonium compound B are amino groups or ammonium groups.
  • the functional groups -ZY of the base polymer A are preferably -CH 2 -Y groups, where Y is halide selected from fluoride, chloride, bromide and iodide, preferably chloride, or sulfonate, for example benzenesulfonate, toluenesulfonate, methanesulfonate or trifluoromethanesulfonate means.
  • reaction conditions of the process for linking the functionalized base polymer A with the terminal functional group-containing polydiallylammonium compounds B depend on the functional groups used.
  • the chloride ion usually present in the preparation of the terminal functional groups containing polydiallylammonium compounds can be exchanged for example by Trifluoracetationen, PolydiallylammoniumENSen are obtained, which dissolve better in organic solvents, than the corresponding chlorides. While the amino-terminated polydiallylammonium chlorides are substantially soluble in water, methanol and mixtures prepared from these solvents, the corresponding trifluoroacetates can be dissolved, for example, in polar aprotic solvents such as DMF, DMSO, ⁇ -butyrolactone or cyclopentanone.
  • polar aprotic solvents such as DMF, DMSO, ⁇ -butyrolactone or cyclopentanone.
  • terminal functionalized polydiallylammonium compounds depends not only on the counterions used, but also on the structure of the polydiallylammonium compounds themselves.
  • terminal-terminated (functionalized) polydiallylisoindolinium compounds are more soluble in organic solvents than polydiallyldimethylammonium compounds.
  • solubility of the end groups of functionalized polydiallylammonium compounds is dependent on the average degree of polymerization of the polydiallylamonium compounds.
  • Polydiallylammonium compounds, for example polydiallylammonium chlorides, with average degrees of polymerization of m ⁇ 3 also dissolve, for example, in organic solvents such as ethanol, isopropanol and DMSO.
  • the solubility of the functionalized polydiallylammonium compounds in organic solvents used in the process according to the invention is important in order to find common solvents in which both the terminal functionalized polydiallylammonium compounds and the functionalized base polymers are soluble.
  • a solubility of the two starting materials in a common solvent is not a mandatory requirement for the process according to the invention, it is preferred to carry out the process according to the invention in solvents or solvent mixtures in which both the end groups functionalized polydiallylammonium compound and the functionalized base polymer are soluble.
  • the terminal functionalized polydiallyl ammonium compounds are substantially soluble in water and short chain alcohols or mixtures thereof
  • the functionalized base polymers are usually insoluble in water, short chain alcohols or mixtures thereof.
  • these functionalized base polymers are usually soluble in polar organic solvents such as THF, CHCl 3 , CH 2 Cl 2 , 1, 2-dichloroethane, dioxane, acetophenone, cyclopentanone, dimethylacetamide, dimethylformamide, DMSO, ⁇ -butyrolactone or mixtures thereof.
  • common polar solvents if appropriate after replacement of the chloride ion usually containing functionalized polydiallylammonium compounds by organic anions such as trifluoroacetations, are preferably strongly polar organic solvents such as DMF, DMSO, NMP or cyclopentanone or mixtures thereof.
  • the functionalized base polymer used from the starting product and the end groups functionalized polydiallylammonium compound are preferably dissolved separately in a suitable solvent, so that solutions with 5 to 25 wt .-%, preferably 5 to 20 Wt .-%, particularly preferably 5 to 15 wt .-% of the respective starting product.
  • suitable solvents and solvent mixtures have already been mentioned above.
  • the two resulting solutions of the starting materials are combined in a preferred embodiment.
  • the reaction mixture may contain ionic additives which influence the aggregation behavior of the polycations. Suitable ionic additives are, for example, LiBF 4 or LiPF 4 .
  • the reaction mixture may contain an auxiliary base in order to prevent the HCl, for example, formed during the reaction of a chloromethylated base polymer with an amino-end-functionalized polydiallylammonium compound, from protonating the amino end groups of the polydiallylammonium compound and thus deactivating it for further reaction.
  • auxiliary base it is possible to use bulky substituted and thus sterically shielded amines. Suitable amines are known to the person skilled in the art, examples being ethyldiisopropylamine (Hünig base).
  • the auxiliary base can be added in proportions of generally 25 to 1000 mol%, preferably 25 to 300 mol%, particularly preferably 50 to 150 mol%, based on the molar amount of the chloromethyl groups used.
  • the reaction mixture is then typically 10 to 1000 minutes, preferably 15 to 600 minutes, more preferably 15 minutes to 120 minutes at temperatures of generally 25 to 150 0 C, preferably 25 to 120 0 C, particularly preferably 25 to 80 0 C. touched.
  • a membrane can be prepared from the resulting reaction mixture without isolation of the water-insoluble polymers of the invention.
  • the water-insoluble polymers according to the invention preferably have 5 to
  • the number-average molecular weight of the water-insoluble polymers according to the invention is generally from 10,000 g / mol to 200,000 g / mol, preferably from 15,000 g / mol to 150000 g / mol, more preferably from 20,000 g / mol to 80000 g / mol, determined by GPC in DMF with 1 wt. % Lithium trifluoroacetate as solvent on polystylol standards.
  • the polymers prepared by the process according to the invention are characterized by insolubility and limited swelling in the process solvents used for the production of membranes, for example water, methanol, ethanol and mixtures prepared from these solvents.
  • the polydiallylammonium compounds due to the attachment of the polydiallylammonium compounds to the base polymer, they have a high local charge carrier density.
  • the polymers produced by the process according to the invention are distinguished by a high stability under alkaline conditions, in particular by a chemical resistance in a strongly alkaline medium of pH> 13 at elevated temperatures.
  • the water-insoluble polymers according to the invention are particularly suitable for the production of membranes which must be stable in the alkaline medium.
  • membranes are used, for example, in alkaline fuel cells (SAFC) and alkaline batteries.
  • Another object of the present invention is therefore a polymer prepared according to the inventive method.
  • the polymers according to the invention are suitable for the production of membranes.
  • Another object of the present invention is therefore a membrane containing at least one inventive polymer.
  • the membranes are produced by customary methods known to the person skilled in the art.
  • a casting solution or casting dispersion is applied to at least one suitable carrier material to produce the membranes.
  • the casting solution or casting dispersion may be the solution obtained in the preparation of the polymers of the invention.
  • suitable solvents or solvent mixtures are, for example, DMF, DMSO, NMP, DMAc, cresols, ⁇ -butyrolactone, cyclopentanone or mixtures of two or more of the solvents mentioned.
  • the concentration of the polymer according to the invention in the casting solution or casting dispersion is generally from 2 to 30% by weight, preferably from 5 to 15% by weight.
  • a suitable carrier for example, glass plates or Kunststoffofffienien, z. B. of polyester or polyolefins suitable.
  • a glass plate is used as the carrier.
  • the application of the casting solution or casting dispersion can be carried out by any method known to the person skilled in the art.
  • the wet film thickness after application is generally 0.01 mm to 2 mm, preferably 0.05 to 1 mm, particularly preferably 0.2 to 1 mm.
  • the further workup to obtain the membrane can be carried out by methods known to the person skilled in the art, for example by removing the solvent used.
  • the removal of the solvent is generally carried out at temperatures of 20 0 C to 120 0 C, preferably 40 0 C to 120 0 C, particularly preferably 60 to 120 0 C, each at a pressure of generally 100 mbar to 1000 mbar.
  • the membranes according to the invention have thicknesses of 20 to 300 ⁇ m, preferably 40 to 200 ⁇ m, particularly preferably 50 to 150 ⁇ m, very particularly preferably 50 to 120 ⁇ m.
  • the ion exchange capacities of the membranes of the invention are generally up to 3 meq / g, preferably up to 2.5 meq / g, more preferably up to
  • ion exchange capacities are 0.5 to 2 meq / g, in particular very particular preference is given to ion exchange capacities of
  • the present invention therefore relates to a membrane containing at least one water-insoluble polymer according to the invention, wherein the polymer present in the membrane has OH " counterions.
  • the membranes of the invention show high ionic conductivities.
  • ionic conductivities of generally up to 0.1 S / cm, preferably up to 0.080 S / cm, more preferably up to 0.07 S / cm, very particularly preferably 0.02 to 0.07 S / cm, in particular very particularly preferred 0.02 to 0.06 S / cm can be achieved.
  • the membranes of the present invention are useful as an anion exchange membrane and can be used in all applications where anion exchange membranes are employed.
  • the membranes according to the invention are preferably used as anion exchange membrane in alkaline fuel cells (SAFC), alkaline batteries, electrolysis cells or in separation and purification processes, for example in electrodialysis or diffusion dialysis.
  • SAFC alkaline fuel cells
  • electrolysis cells or in separation and purification processes, for example in electrodialysis or diffusion dialysis.
  • Another object of the present invention is therefore the use of a membrane according to the invention as an anion exchange membrane, preferably the use as anion exchange membrane in alkaline fuel cells (SAFC), alkaline batteries, electrolysis cells or in separation and purification processes, for example in electrodialysis or diffusion dialysis.
  • SAFC alkaline fuel cells
  • alkaline batteries electrolysis cells
  • separation and purification processes for example in electrodialysis or diffusion dialysis.
  • SAFC alkaline fuel cells
  • SAFC comprising ethanol, ethylene glycol, glycerol or formate
  • Suitable electrolysis cells are:
  • the polymer according to the invention is used as an ionomer, for example in alkaline fuel cells or electrolysis cells.
  • the polymers of the invention for. B. in the form of ionomers or in the form of membranes in alkaline fuel cells (SAFC) or electrolysis cells used.
  • SAFC alkaline fuel cells
  • MEA membrane electrode assembly
  • Suitable membrane-electrode units are known to the person skilled in the art.
  • the present invention relates to a fuel cell, in particular an alkaline fuel cell (SAFC) containing at least one inventive polymer which may be present as an ionomer or membrane, at least one erfindungsge- membrane and / or at least one membrane electrode unit according to the invention.
  • SAFC alkaline fuel cell
  • Example 2 (not according to the invention): Preparation of chloromethylated polysulfone having a degree of chloromethylation of 1.6 chloromethyl groups per repeat unit (according to Warshawski, Journal of Polymer Science: Part A: Polymer Chemistry 28 (1990) 2885)
  • the reaction and purification of the chloromethylated polysulfone is carried out as described in Example 1, but with the variation that the reaction time is 27 h.
  • the degree of chloromethylation is 1, 6 chloromethyl groups per repeat unit.
  • an approximately 170 ⁇ m thick membrane can be removed from the glass dish.
  • the membrane is then rinsed thoroughly with deionized water and shows in water at 60 0 C, an ionic conductivity of about 25 mS / cm.
  • the membrane from Example 3 is placed at room temperature in about 500 ml of 2N-NaOH and after at least 4 h the aqueous solution is exchanged. This process is carried out a total of six times. Subsequently, the membrane is rinsed with deionized water until the excess NaOH is completely removed. The membrane shows in water at 60 0 C an ionic conductivity of about 50 mS / cm.
  • the resulting reaction mixture is stirred at room temperature for 24 h, and then 1, 3 g of the reaction mixture are placed in a 5.5 cm diameter Petri dish and the solution is dried at 60 0 C over a period of 24 h.
  • an approximately 120 ⁇ m thick membrane can be removed from the glass dish.
  • the membrane is then rinsed thoroughly with deionized water and shows in water at 60 0 C, an ionic conductivity of about 12 mS / cm.
  • Example 5 Transfer of the membrane from Example 5 into polysulfone-graft polydiallyldimethylammonium hydroxide
  • the membrane of Example 5 is treated according to the procedure described in Example 4.
  • the membrane shows in water at 60 0 C an ionic conductivity of about 20 mS / cm.
  • polysulfone-graft-Polydiallylisoindoliumbromid from Example 7 is dissolved in 100 ml DMF and 100 mg of LiBr at 60 0 C. The solution is then over a 5 microns
  • membrane example 8 Transition of membrane example 8 to polysulfone-graft polydiallyl isoindolium hydroxide
  • the membrane from Example 8 is placed at room temperature in about 500 ml of 2N-NaOH, and after at least 4 h, the aqueous solution is replaced. This process is carried out a total of six times. Subsequently, the membrane is rinsed with deionized water until the excess NaOH is completely removed.
  • the membrane (membrane thickness: 45 ⁇ m) exhibits an ionic conductivity of about 12 mS / cm in water at 60 ° C.
  • the ion exchange capacity of this membrane is 0.7 meq / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Wasserunlösliche Polymere aufgebaut aus einer Polymerkette basierend auf mindestens einem Basispolymer A und mindestens einer Gruppe basierend auf Polydiallylammoniumverbindungen B, wobei die Polymerkette kovalent mit der Polydiallylammoniumverbindung verknüpft ist, ein Verfahren zur Herstellung der wasserunlöslichen Polymere, eine Membran enthaltend mindestens ein erfindungsgemäßes wasserunlösliches Polymer, die Verwendung der erfindungsgemäßen Membran als Anionenaustauschermembran in alkalischen Brennstoffzellen, alkalischen Batterien, Elektrolysezellen und in Trenn- und Aufreinigungsprozessen, eine Membran-Elektroden-Einheit enthaltend eine erfindungsgemäße Membran sowie eine Brennstoffzelle enthaltend mindestens ein erfindungsgemäßes Polymer, mindestens eine erfindungsgemäße Membran und/oder mindestens eine erfindungsgemäße Membran-Elektrodeneinheit.

Description

Polymere auf der Basis von Polydiallylammoniumverbindungen, Anionenaustauscher- membranen enthaltend die Polymere und deren Verwendung in Brennstoffzellen
Beschreibung
Die vorliegende Erfindung betrifft wasserunlösliche Polymere aufgebaut aus einer Polymerkette basierend auf mindestens einem Basispolymer A und mindestens einer Gruppe basierend auf Polydiallylammoniumverbindungen B, wobei die Polymerkette kovalent mit der Polydiallylammoniumverbindung verknüpft ist, ein Verfahren zur Her- Stellung der wasserunlöslichen Polymere, eine Membran enthaltend mindestens ein erfindungsgemäßes wasserunlösliches Polymer, die Verwendung der erfindungsgemäßen Membran als Anionenaustauschermembran in alkalischen Brennstoffzellen, alkalischen Batterien, in Elektrolysezellen und in Trenn- und Aufreinigungsprozessen, eine Membran-Elektroden-Einheit enthaltend eine erfindungsgemäße Membran sowie eine Brennstoffzelle enthaltend mindestens ein erfindungsgemäßes Polymer, mindestens eine erfindungsgemäße Membran und/oder mindestens eine erfindungsgemäße Membran-Elektrodeneinheit.
Anionenaustauschermembranen finden technische Anwendung in unterschiedlichsten Trenn- und Aufreinigungsprozessen, zum Beispiel in der Elektrodialyse oder Diffusionsdialyse. Des Weiteren können Anionenaustauschermembranen in Brennstoffzellen, insbesondere SAFC (Solid Alkaline Fuel CeIIs), in Elektrolysezellen und alkalischen Batterien eingesetzt werden. Damit die Anionenaustauschermembranen für die vorstehend genannten technischen Anwendungen geeignet sind, müssen Sie verschiedene Anforderungen erfüllen, zum Beispiel Unlöslichkeit und begrenzte Quellung in den verwendeten Prozesslösungen, insbesondere in wässrigen Lösungen, ausreichend hohe Ladungsträgerdichte und Langzeitstabilität der Polymerstruktur unter den Anwendungsbedingungen. Für den Anwendungsbereich von Anionenaustauschermembranen in alkalischen Brennstoffzellen (SAFC) ist insbesondere die chemische Beständigkeit der ionischen Gruppen der Anionenaustauschermembranen in stark alkalischem Milieu, d. h. bei pH-Werten von > 13, bei erhöhten Temperaturen von Bedeutung.
Es ist bereits bekannt, Anionenaustauschermembranen bereitzustellen, die als ionische Anionen leitende Gruppen Ammoniumionen tragen.
US 6,183,914 B1 betrifft eine Polymer-basierende Elektrolytzusammensetzung mit ausgezeichneten filmbildenden Eigenschaften, Flexibilität, mechanischer Stabilität und hoher Hydroxidionen-Leitfähigkeit. Diese Zusammensetzung enthält ein organisches Polymer, dass die Struktur eines quartären Alkylammoniumsalzes aufweist, ein Stick- stoff enthaltendes heterocyclisches quartäres Ammoniumsalz und ein Metallhydroxidsalz. Daneben kann die Zusammensetzung weitere Komponenten wie Bindemittel enthalten. Als organisches Polymer, das eine quartäre Alkylammoniumsalzstruktur aufweist, wird gemäß US 6,183,914 B1 zum Beispiel eine Polydiallylammoniumverbin- dung eingesetzt. Polymere aufgebaut aus einer Polymerkette aus mindestens einem Basispolymer, die kovalent mit mindestens einer Gruppe basierend auf Polydiallylam- moniumverbindungen verknüpft ist, sind in US 6,183,914 B1 nicht offenbart.
EP-A 1 612 874 betrifft alkalische Brennstoffzellen (SAFC), die Anionenaustauscher- membranen enthalten, die Diamine oder Polyamine, die über Sulfonamidbindungen an ein Trägerpolymer gebunden sind, aufweisen. Dabei ist mindestens eines der Stickstoffatome des Diamins oder des Polyamins ein quartäres Stickstoffatom, das als Ani- onenaustauschergruppe dient. Polymere, die Polydiallylammoniumverbindungen, die kovalent an ein Basispolymer gebunden sind, aufweisen, sind in EP-A 1 612 874 nicht offenbart.
In DE-A 195 24 867 sind verzweigte Polyammoniumverbindungen mit hohem Molekulargewicht offenbart. Diese Polyammoniumverbindungen beruhen auf ungesättigten quarternären Ammoniumverbindungen und geeigneten lineare Aminogruppen enthaltenden Präpolymeren. Dabei stellen die Präpolymere das Rückrad und das Ammoniumsalz die Seitenkette dar. Die in DE-A 195 24 867 offenbarten verzweigten Polyammoniumverbindungen sind wasserlöslich und insbesondere zur Reinigung kontaminierter Wässer nützlich. Aufgrund der Wasserlöslichkeit kommt ein Einsatz der in DE-A 195 24 867 offenbarten verzweigten Polyammoniumverbindungen in Brennstoffzellen oder Batterien nicht in Frage.
Aufgabe der vorliegenden Anmeldung ist die Bereitstellung von Polymeren, die zur Herstellung von Anionenaustauschermembranen geeignet sind, wobei die Membranen eine hohe Ladungsdichte und Langzeitstabilität der Polymerstruktur unter den Betriebsbedingungen aufweisen. Dabei ist es insbesondere wesentlich, dass die aus den Polymeren hergestellten Membranen eine hohe chemische Beständigkeit der ionischen Gruppen der Membranen in stark alkalischem Milieu aufweisen, und so für den Einsatz in alkalischen Batterien und alkalischen Brennstoffzellen (SAFC) geeignet sind.
Diese Aufgabe wird gelöst durch die Bereitstellung eines wasserunlöslichen Polymers aufgebaut aus i) einer Polymerkette basierend auf mindestens einem Basispolymer A enthaltend einen oder mehrere Kohlenwasserstoffreste, bevorzugt einen oder mehrere aro- matische Kohlenwasserstoffreste, in der Polymerkette, und ii) mindestens einer Gruppe basierend auf Polydiallylammoniumverbindungen B,
dadurch gekennzeichnet, dass die mindestens eine Gruppe basierend auf Polydiallyl- ammoniumverbindungen kovalent mit den Kohlenwasserstoffresten, bevorzugt mit den aromatischen Kohlenwasserstoffresten, der Polymerkette verknüpft ist.
Die vorliegende Erfindung basiert darauf, dass überraschenderweise gefunden wurde, dass Polydiallylammoniumverbindungen in alkalischem Milieu außerordentlich stabil sind. Die vorteilhafte außerordentliche Basenstabilität der Polydiallylammoniumverbin- dungen lässt sich erfindungsgemäß nutzen, um daraus basenstabile, wasserunlösliche Polymere, die zur Herstellung von Anionenaustauschermembranen geeignet sind, herzustellen. Die reinen Polydiallylammoniumverbindungen sind nicht geeignet zur Her- Stellung von Anionenaustauschermembranen, da sie in den bei lonenaustauschpro- zessen vielfach verwendeten Lösungsmitteln wie Wasser oder Mischungen aus Wasser und Alkoholen, zum Beispiel Methanol, löslich sind.
Zur Herstellung von wasserunlöslichen Polymeren werden die Polydiallylammonium- Verbindungen erfindungsgemäß über kovalente Bindungen an ein wasserunlösliches Basispolymer gebunden. Das Basispolymer A weist erfindungsgemäß in der Polymerkette einen oder mehrere Kohlenwasserstoff reste, bevorzugt einen oder mehrere aromatische Kohlenwasserstoffreste, auf. Die kovalente Verknüpfung der Polydiallylam- moniumverbindungen erfolgt erfindungsgemäß mit den aromatischen Kohlenwasser- Stoffresten, bevorzugt mit den aromatischen Kohlenwasserstoffresten, der Polymerkette des Basispolymers A.
Dabei sind grundsätzlich beliebige kovalente Verknüpfungen zwischen den Kohlenwasserstoffresten, bevorzugt aromatischen Kohlenwasserstoffresten, des Basispoly- mers A und den Polydiallylammoniumverbindungen denkbar. Beispiele für geeignete kovalente Verknüpfungen sind:
R2
, , I+ , ,
A — Z N — B A — Z N — B A-SO9-N — B
I 1 I 1 2 I 1
R R , o Ader R ^ ;
worin bedeuten:
R1, R2 unabhängig voneinander H , substituiertes oder unsubstituiertes C1-Cs- Alkyl, substituiertes oder unsubstituiertes C6-C14-Aryl oder substituiertes oder unsubstituiertes C5-C14-Cycloalkyl, bevorzugt unabhängig voneinander H , C-i-Cs-Alkyl, besonders bevorzugt unabhängig voneinander H, Methyl, Ethyl, iso-Propyl, n-Propyl, iso-Butyl, n-Butyl, sec.-Butyl, tert.-Butyl, ganz besonders bevorzugt unabhängig voneinander H, Methyl, n-Butyl;
A Polymerkette basierend auf mindestens einem Basispolymer A,
B Gruppe basierend auf Polydiallylammoniumverbindungen B; Z -(CR3R4)o- oder substituiertes oder u nsubstituiertes C5- bis C14-
Cycloalkylen; R3, R4 unabhängig voneinander H, substituiertes oder unsubstituiertes C1-Cs-
Alkyl, wobei R3 und R4 in den o verschiedenen Gruppen -(CR3R4)-gleich oder verschieden sein können; bevorzugt H; o 1 bis 8, bevorzugt 1 bis 4, besonders bevorzugt 1.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung erfolgt die kovalente Verknüpfung der Polydiallylammoniumverbindung B mit den Kohlenwasserstoffresten, bevorzugt aromatischen Kohlenwasserstoffresten, der Polymerkette des Basispolymers A über eine der folgenden Gruppen:
Figure imgf000005_0001
worin R1 und R2 unabhängig voneinander die vorstehend genannten Bedeutungen aufweisen.
Als Basispolymer A kann erfindungsgemäß ein beliebiges im Allgemeinen wasserunlösliches Basispolymer A eingesetzt werden, enthaltend einen oder mehrere Kohlen- wasserstoffreste, bevorzugt einen oder mehrere aromatische Kohlenwasserstoffreste, in der Polymerkette. Geeignete wasserunlösliche Polymere, die einen oder mehrere Kohlenwasserstoffreste, bevorzugt einen oder mehrere aromatische Kohlenwasserstoffreste, in der Polymerkette aufweisen, sind dem Fachmann bekannt. Geeignete Kohlenwasserstoff reste sind im Allgemeinen aliphatische oder aromatische Kohlen- wasserstoffreste, wobei aromatische Kohlenwasserstoff reste bevorzugt sind. Beispiele für geeignete aliphatische Kohlenwasserstoff reste sind Alkylengruppen, z.B. C1- bis C6-Alkylengruppen. Beispiele für aromatische Kohlenwasserstoff reste sind Ary- lengruppen, z.B. Phenylengruppen. Die Alkylen- und Arylengruppen können ggf. substituiert sein. Bevorzugt ist das Basispolymer A ausgewählt aus der Gruppe bestehend aus Polyarylethersulfonen (PES), Polystyrol (PS), Styrol-Copolymeren, Polysulfonen (PSU), Polyetherketonen (PEK), Polyetheretherketonen (PEEK), Polyetheretherketon- ketonen (PEEKK), Polyphenylensulfiden (PPS), Polyphenylenoxiden (PPO), Poly-(4- phenoxybenzoyl-1 ,4-phenylen) (PPBP), Polybenzimidazolen (PBI), Polybenzoxazolen, Polybenzothiazolen, Polyimiden (PI), Polyphenylenen (PP), Polybenzazolen (PBZ), Polythiophenylenen, Polyphenylenchinoxalinen, Polyphosphazenen und Gemischen der vorstehend genannten Polymere Besonders bevorzugte wasserunlösliche Basispolymere A sind ausgewählt aus der Gruppe bestehend aus Polyarylethersulfonen (PES), Polystyrol (PS), Styrol-Copolymeren, Polysulfonen (PSU), Polyetheretherketonen (P E E K), Polyphenylensulfiden (P PS), Polyphenylenoxiden (PPO), Poly-(4- phenoxybenzoyl-1 ,4-phenylen) (PPBP), Polyphenylenen (PP), und Gemischen der vorstehend genannten Polymere. Ganz besonders bevorzugt ist das Basispolymer A ein Polyarylethersulfon (PES).
Geeignete Styrol-Copolymere sind dem Fachmann bekannt. Beispiele für geeignete Styrol-Copolymere sind Poly(styrol-co-acrylnitril), Poly(styrol-c-buatdien), Poly(styrol- co-ethylen), Poly(styrol-co-propylen), Poly(styrol-co-butadien), Poly(styrol-co-i-buten), Poly(styrol-co-1 -penten), Poly(styrol-co-1 -hexen), Poly(styrol-co-acrylnitril-co-butadien), Poly(styrol-co-poly(ethylen-ran-butylen)), Poly(styrol-co-ethylenoxid) und Poly(styrol- co-propylenoxid). Die vorstehend genannten Copolymere können die Monomere in beliebigen Mengenverhältnissen enthalten. Die Monomereinheiten können in den Co- polymeren in statistischer, alternierender oder blockartiger Abfolge vorliegen.
Unter dem Ausdruck „Copolymere" sind im Sinne der vorliegenden Anmeldung sowohl Polymere zu verstehen, die aus zwei verschiedenen Monomereinheiten aufgebaut sind, als auch Polymere, die aus drei oder mehr verschiedenen Monomereinheiten aufgebaut sind.
Die vorstehend genannten wasserunlöslichen Polymere sind dem Fachmann bekannt und kommerziell erhältlich bzw. können nach dem Fachmann bekannten Verfahren hergestellt werden.
Zur kovalenten Verknüpfung des Basispolymers A mit der Polydiallylammoniumverbin- dung B ist eine Funktionalisierung des Basispolymers A an mindestens einem der Kohlenwasserstoffreste, bevorzugt an mindestens einem der aromatischen Kohlenwasser- Stoffreste, der Polymerkette des Basispolymers A erforderlich. Die Funktionalisierung ist abhängig von der Art der kovalenten Verknüpfung des Basispolymers mit den PoIy- diallylammoniumverbindungen. Bevorzugt weist das Basispolymer A an mindestens einem der Kohlenwasserstoffreste, bevorzugt an mindestens einem der aromatischen Kohlenwasserstoffreste, in der Polymerkette eine funktionelle Gruppe -SO2-Y oder -Z- Y auf, wobei Z und Y die folgenden Bedeutungen aufweisen:
Z -(CR3R4)o- oder substituiertes oder unsubstituiertes C5- bis Ci4-
Cycloalkylen;
R3, R4 unabhängig voneinander H, substituiertes oder unsubstituiertes CrC8- Alkyl, wobei R3 und R4 in den o verschiedenen Gruppen -(CR3R4)-gleich oder verschieden sein können; bevorzugt H; o 1 bis 8, bevorzugt 1 bis 4, besonders bevorzugt 1 ; und
Y Halogenid, ausgewählt aus Fluorid, Chlorid, Bromid und lodid, bevorzugt
Chlorid, oder Sulfonat, z.B. Benzolsulfonat, Toluolsulfonat, Methansulfonat oder Trifluormethansulfonat.
Bevorzugt ist die Gruppe -Z-Y ausgewählt aus der Gruppe bestehend aus -CH2Y, wobei Y Halogenid ausgewählt aus Fluorid, Chlorid, Bromid und lodid, bevorzugt Chlorid, oder Sulfonat, z.B. Benzolsulfonat, Toluolsulfonat, Methansulfonat oder Trifluormethansulfonat bedeuten kann, besonders bevorzugt ist die funktionelle Gruppe -Z-Y -CH2CI.
Die Funktionalisierung eines oder mehrerer Kohlenwasserstoff reste, bevorzugt eines oder mehrerer aromatischer Kohlenwasserstoffreste, in der Polymerkette des Basispo- lymers A mit funktionellen Gruppen -Z-Y kann nach dem Fachmann bekannten Verfahren, insbesondere Verfahren zur Funktionalisierung von Aromaten, erfolgen. Die besonders bevorzugte funktionelle Gruppe -Z-Y: -CH2CI wird im Allgemeinen durch Chlormethylierung einer oder mehrerer aromatischer Kohlenwasserstoff reste in der Polymerkette des Basispolymers A durchgeführt. Dabei folgt die Chlormethylierung der aromatischen Kohlenwasserstoff reste bevorzugt im Sinne einer Blanc-Reaktion, das heißt durch Umsetzung des Basispolymers A enthaltend einen oder mehrere aromatische Kohlenwasserstoff reste in der Polymerkette mit Formaldehyd und Chlorwasserstoff in Anwesenheit eines Katalysators, zum Beispiel ZnCI2 oder ZnCI4. Es ist auch möglich, andere Verfahren zur Chlormethylierung der aromatischen Kohlenwasserstoffreste des Basispolymers A einzusetzen, zum Beispiel die Umsetzung des entsprechenden Polymers mit Chlormethyloctylether in Anwesenheit von SnCI4. Geeignete Reaktionsbedingungen der Chlormethylierung von Polymeren, die einen oder mehrere aromatische Kohlenwasserstoffreste in der Polymerkette enthalten, sind dem Fach- mann bekannt.
Bevorzugt sind 2 bis 50 mol-%, besonders bevorzugt 5 bis 30 mol-%, ganz besonders bevorzugt 5 bis 22 mol-% der aromatischen Kohlenwasserstoff reste des Basispolymers A mit funktionellen Gruppen -Z-Y funktionalisiert.
Wesentlich für die Herstellung der erfindungsgemäßen wasserunlöslichen Polymere ist die Bereitstellung von funktionalisierten Polydiallylammoniumverbindungen, die geeignet sind, kovalente Bindungen mit dem funktionalisierten Basispolymer zu knüpfen.
Um die kovalente Verknüpfung des mindestens einen funktionalisierten Basispolymers A mit mindestens einer Gruppe basierend auf Polydiallylammoniumverbindungen B zu erzielen wird gemäß der vorliegenden Erfindung bevorzugt eine Polydiallylammonium- verbindung eingesetzt, die terminale funktionelle Gruppen aufweist. Solche terminale Gruppen aufweisenden Polydiallylammoniumverbindungen sind neu und in der zeit- gleich eingereichten Anmeldung mit dem Titel „Herstellung von Endgruppen funktionalisierten Polydiallylammoniumverbindungen definierter Molmasse durch radikalische Polymerisation" offenbart. Die bevorzugt eingesetzten Polydiallylammoniumverbindun- gen, die terminale funktionelle Gruppen aufweisen, werden gemäß der vorstehend genannten Anmeldung durch radikalische Polymerisation von Diallylammoniumsalzen in Anwesenheit mindestens einer Verbindung der allgemeinen Formel
Figure imgf000007_0001
hergestellt, worin bedeuten: R3, R4 unabhängig voneinander H, substituiertes oder unsubstituiertes CrCs- Alkyl, substituiertes oder unsubstituiertes C5-Ci4-Cycloalkyl oder substituiertes oder unsubstituiertes C6-Ci4-Aryl, bevorzugt unabhängig voneinander H , Methyl, Ethyl, iso-Propyl, n-Propyl, iso-Butyl, n-Butyl, sec.-Butyl, tert- Butyl, Cyclohexyl oder Phenyl, besonders bevorzugt ist mindestens einer der Reste R3 oder R4 H, ganz besonders bevorzugt sind sowohl R3 als auch R4 H;
n 1 bis 6, bevorzugt 2 bis 4, besonders bevorzugt 2 oder 3, ganz besonders bevorugt 2;
X (NHR1R2)", (NR1NHR1R2)", NHR1, OH, bevorzugt (NHR1R2)";
R1, R2 unabhängig voneinander H, substituiertes oder unsubstituiertes CrCs-
Alkyl, substituiertes oder unsubstituiertes C5-Ci4-Aryl oder substituiertes oder unsubstituiertes C5-Ci4-Cycloalkyl, bevorzugt unabhängig voneinander H oder su bstitu iertes oder unsu bstitu iertes CrCs-Alkyl, besonders bevorzugt unabhängig voneinander H, Methyl, Ethyl, iso-Propyl, n-Propyl, iso-Butyl, n-Butyl, sec.-Butyl oder tert. -Butyl, ganz besonders bevorzugt unabhängig voneinander H, Methyl oder n-Butyl;
R5 H, eine Gruppe der Formel Z
Figure imgf000008_0001
, wobei R3, R4, X und n unabhängig die vorstehend genannten Bedeutungen aufweisen; substituiertes oder unsubstituiertes CrCs-Alkyl, bevorzugt H, Methyl, Ethyl, iso-Propyl, n-Propyl, iso-Butyl, n-Butyl, sec.-Butyl oder tert. -Butyl, oder substituiertes oder unsubstituiertes C6- bis Ci4-Aryl, bevorzugt unsubstituiertes Phenyl; besonders bevorzugt bedeutet R5 H oder eine Gruppe der Formel Z; ganz besonders bevorzugt bedeutet R5 H.
Weiter ganz besonders bevorzugt erfolgt die radikalische Polymerisation der Dially- lammoniumsalze in Anwesenheit einer Verbindung ausgewählt aus der Gruppe bestehend aus
Figure imgf000008_0002
Geeignete Diallylammoniumsalze weisen bevorzugt die allgemeine Formel
Figure imgf000009_0001
auf, worin bedeuten: R6, R7 unabhängig voneinander substituiertes oder unsubstituiertes C-i-Cs-Alkyl, bevorzugt unabhängig voneinander Methyl, Ethyl, iso-Propyl, n-Propyl, iso- Butyl, n-Butyl, sec.-Butyl, tert.-Butyl, besonders bevorzugt Methyl; oder
R9 und R10 bilden gemeinsam mit dem Stickstoffatom einen 5-gliedrigen he- terocyclischen Ring, der substituiert oder unsubstituiert und gegebenenfalls mit einem 6-gliedrigen aromatischen Ring annelliert sein kann;
A" Halogenid, insbesondere Chlorid, Bromid, Trifluoracetat, OH", Tetrafluoro- borat oder Hexafluorophosphat.
Besonders bevorzugte Diallylammoniumsalze sind ausgewählt aus der Gruppe bestehend aus:
Figure imgf000009_0002
worin
A" Halogenid, bevorzugt Chlorid, Bromid, Trifluoracetat, OH", Tetrafluoroborat oder Hexafluorophosphat bedeutet.
Besonders bevorzugt weisen die zur Herstellung des erfindungsgemäßen wasserun- löslichen Polymers eingesetzten terminale funktionelle Gruppen aufweisenden Polydi- allylammoniumverbindungen B Aminogruppen oder Ammoniumgruppen als terminale funktionelle Gruppen auf. Diese werden dadurch hergestellt, dass die Gruppe X in den bei der Polymerisation der Diallylammoniumsalze eingesetzten Verbindungen eine
Amino- oder Ammoniumgruppe ist. Geeignete Amino- und Ammoniumgruppen X sind bereits vorstehend genannt. Die terminale funktionelle Gruppen tragenden Polydiallylammoniumverbindungen können eine oder mehrere funktionelle Gruppen X tragen. Bevorzugt tragen sie eine funktionelle Gruppe.
In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung ein erfindungsgemäßes wasserunlösliches Polymer, wobei die mindestens eine Gruppe basierend auf Polydiallylammoniumverbindungen B auf Polydiallylammonium-hydroxiden basiert. Es wurde überraschenderweise gefunden, dass Anionenaustauschermembra- nen basierend auf Polydiallylammoniumhydroxiden eine besonders hohe Basenstabilität aufweisen. Ganz besonders bevorzugt weisen die erfindungsgemäßen wasserunlöslichen Polymere mindestens eine Gruppe basierend auf Polydiallylammoniumver- bindungen B auf, wobei die Polydiallylammoniumverbindungen ausgewählt sind aus der Gruppe bestehend aus Polydiallyldimethylammoniumhydroxid und Polydiallylisoin- doliniumhydroxid.
Im Folgenden sind beispielhaft die allgemeinen Strukturen von Polydiallyldimethylam- moniumhydroxid (PDADMAH) (I) und Polydiallylisoindoliumhydroxid (PDAIH) (II) dargestellt:
Figure imgf000010_0001
(I) (H)
worin bedeuten: n 2 bis 100, bevorzugt 2 bis 50, besonders bevorzugt 5 bis 30.
Ein Beispiel für ein bevorzugtes erfindungsgemäßes wasserunlösliches Polymer ist ein
Polymer basierend auf i) einer Polymerkette basierend auf einem Polyarylethersulfon als Basispolymer A, und ii) mindestens einer Gruppe basierend auf mit Amino- oder Ammoniumgruppen terminal funktionalisierter Polydiallylammoniumverbindungen, wobei die Polydiallyammoniumverbindungen kovalent mit den aromatischen Kohlenwasserstoffresten der Polymerkette verknüpft sind. Bevorzugte Verknüpfungen sind vorstehend genannt.
Besonders bevorzugt weist das vorstehend genannte Polymer OH"-Ionen als anionische Gegenionen auf.
Zwei geeignete Polymere sind im Folgenden beispielhaft dargestellt:
Figure imgf000011_0001
worin bedeuten: m Zahl der Wiederholungseinheiten des Basispolymers, bevorzugt 10 bis 250, besonders bevorzugt 25 bis 100, ganz besonders bevorzugt 40 bis 70;
L Linker, d. h. kovalente Verknüpfung zwischen dem Basispolymer und der terminal funktionalisierten Polydiallylammoniumverbindung, bevorzugt
Figure imgf000011_0002
besonders bevorzugt
Figure imgf000012_0001
wobei Z, R1 und R2 bereits vorstehend definiert wurden; n Zahl der positiven Ladungen der Gruppe B basierend auf Polydiallylammonium- verbindungen und gleichzeitig Zahl der OH"-Gruppen, bevorzut 2 bis 100, besonders bevorzugt 5 bis 30;
B Gruppe, basierend auf terminal funktionalisierten Polydiallylammoniumverbin- düngen, wobei bevorzugte Polydiallylammoniumverbindungen vorstehend genannt sind.
Die erfindungsgemäßen wasserunlöslichen Polymere zeichnen sich durch Unlöslichkeit in den zum Einsatz der Anionenaustauschermembranen verwendeten verwendeten Prozesslösungen, hohe Ladungsträgerdichte und Langzeitstabilität der Polymerstruktur unter Betriebsbedingungen, insbesondere unter alkalischen Bedingungen bei pH- Werten von > 13 bei erhöhter Temperatur aus. Des Weiteren zeigen die erfindungsgemäßen wasserunlöslichen Polymere ein geringes Quellungsverhalten in den Prozesslösungen, insbesondere in Wasser oder Mischungen aus Wasser mit Alkoholen, zum Beispiel Methanol, auf. Überraschenderweise ist das Quellungsverhalten der erfindungsgemäßen wasserunlöslichen Polymere in den genannten Lösungsmitteln deutlich geringer als das Quellungsverhalten von Polykationen, bei denen die kationischen Ladungen statistisch entlang der Polymerhauptkette verteilt sind.
Die erfindungsgemäßen wasserunlöslichen Polymere werden durch Verknüpfung mindestens eines funktionalisierten Basispolymers A enthaltend einen oder mehrere Kohlenwasserstoffreste, bevorzugt einen oder mehrere aromatische Kohlenwasserstoff res- te, in der Polymerkette mit mindestens einer funktionalisierten Polydiallylammonium- verbindung B hergestellt.
Ein weiterer Gegenstand der vorliegenden Anmeldung ist daher ein Verfahren zur Herstellung der erfindungsgemäßen wasserunlöslichen Polymere umfassend: Reaktion einer oder mehrere terminale funktionelle Gruppen X aufweisenden Polydial- lylammoniumverbindung B mit mindestens einem funktionalisierten Basispolymer A enthaltend einen oder mehrere Kohlenwasserstoffreste, bevorzugt einen oder mehrere aromatische Kohlenwasserstoffreste, wobei die Kohlenwasserstoff reste zumindest teilweise funktionelle Gruppen -Z-Y tragen, die geeignet sind, mit den funktionellen Gruppen X eine kovalente Bindung auszubilden. Geeignete Basispolymere A sowie bevorzugte Funktionalisierungsgrade der Basispolymere mit den funktionellen Gruppen -Z-Y sind bereits vorstehend genannt.
Geeignete kovalente Verknüpfungen (Linker) sowie geeignete funktionelle Gruppen X und -Z-Y sind bereits vorstehend genannt. In einer bevorzugten Ausführungsform handelt es sich bei den terminalen Gruppen X der Polydiallylammoniumverbindung B um Aminogruppen oder Ammoniumgruppen. Bei den funktionellen Gruppen -Z-Y des Basispolymers A handelt es sich bevorzugt um -CH2-Y-Gruppen, wobei Y Halogenid, ausgewählt aus Fluorid, Chlorid, Bromid und lodid, bevorzugt Chlorid, oder Sulfonat, z.B. Benzolsulfonat, Toluolsulfonat, Methansulfonat oder Trifluormethansulfonat, bedeutet.
Die Reaktionsbedingungen des Verfahrens zur Verknüpfung des funktionalisierten Basispolymers A mit den terminale funktionelle Gruppen aufweisenden Polydiallylammo- niumverbindungen B sind von den eingesetzten funktionellen Gruppen abhängig.
Bei der Durchführung der Reaktion zur Verknüpfung des funktionalisierten Basispolymers A mit den terminale funktionelle Gruppen aufweisenden Polydiallylammonium- verbindungen B ist auffällig, dass die beiden Ausgangsprodukte A und B orthogonale Lösungseigenschaften aufweisen. Insbesondere die Lösungseigenschaften der terminale funktionelle Gruppen aufweisenden Polydiallylammoniumverbindungen sind deutlich von der Natur des Polykations und in ausgeprägtem Maß auch von der Natur des Gegenanions abhängig. Die Endgruppen funktionalisierten Polydiallylammoniumver- bindungen werden daher gegebenenfalls - in Abhängigkeit von ihrer Löslichkeit - vor der Reaktion mit dem funktionalisierten Basispolymer A modifiziert, um die Lösungseigenschaften der Endgruppen funktionalisierten Polydiallylammoniumverbindungen zu verbessern. Es wurde gefunden, dass sich die Lösungseigenschaften der Endgruppen funktionalisierten Polydiallylammoniumverbindungen durch Variation des eingesetzten Gegenions verändern lassen. Das üblicherweise bei der Herstellung der terminale funktionelle Gruppen aufweisenden Polydiallylammoniumverbindungen vorliegende Chloridion kann zum Beispiel durch Trifluoracetationen ausgetauscht werden, wobei Polydiallylammoniumverbindungen erhalten werden, die sich besser in organischen Lösungsmitteln lösen, als die entsprechenden Chloride. Während die mit Aminogruppen terminierten Polydiallylammoniumchloride im Wesentlichen in Wasser, Methanol und in aus diesen Lösungsmitteln hergestellten Mischungen löslich sind, können die entsprechenden Trifluoracetate zum Beispiel in polar aprotischen Lösungsmitteln wie DMF, DMSO, γ-Butyrolacton oder Cyclopentanon gelöst werden. Die Löslichkeit der Endgruppen funktionalisierten Polydiallylammoniumverbindungen hängt jedoch nicht nur von den eingesetzten Gegenionen ab, sondern unter anderem auch von der Struk- tur der Polydiallylammoniumverbindungen selbst. So sind Endgruppen terminierte (funktionalisierte) Polydiallylisoindoliniumverbindungen besser in organischen Lösungsmitteln löslich, als Polydiallyldimethylammoniumverbindungen. Des Weiteren ist die Löslichkeit der Endgruppen funktionalisierten Polydiallylammoni- umverbindungen abhängig von dem mittleren Polymerisationsgrad der Polydiallylam- moniumverbindungen. Polydiallylammoniumverbindungen, zum Beispiel Polydially- lammoniumchloride, mit mittleren Polymerisationsgraden von m < 3 lösen sich bei- spielsweise auch in organischen Lösungsmitteln wie Ethanol, Isopropanol und DMSO.
Die Löslichkeit der in dem erfindungsgemäßen Verfahren eingesetzten Endgruppen funktionalisierten Polydiallylammoniumverbindungen in organischen Lösungsmitteln ist wichtig, um gemeinsame Lösungsmittel zu finden, worin sowohl die Endgruppen funk- tionalisierten Polydiallylammoniumverbindungen als auch die funktionalisierten Basispolymere löslich sind. Zwar ist eine Löslichkeit der beiden Ausgangsprodukte in einem gemeinsamen Lösungsmittel keine zwingende Voraussetzung für das erfindungsgemäße Verfahren, jedoch ist es bevorzugt, das erfindungsgemäße Verfahren in Lösungsmitteln oder Lösungsmittelgemischen durchzuführen, worin sowohl die Endgrup- pen funktionalisierte Polydiallylammoniumverbindung als auch das funktionalisierte Basispolymer löslich sind.
Während die Endgruppen funktionalisierten Polydiallylammoniumverbindungen somit im Wesentlichen in Wasser und kurzkettigen Alkoholen oder Gemischen davon löslich sind, sind die funktionalisierten Basispolymere üblicherweise in Wasser, kurzkettigen Alkoholen oder Gemischen davon unlöslich. Diese funktionalisierten Basispolymere sind demgegenüber üblicherweise in polaren organischen Lösungsmitteln wie THF, CHCI3, CH2CI2, 1 ,2-Dichlorethan, Dioxan, Acetophenon, Cyclopentanon, Dimethylacet- amid, Dimethylformamid, DMSO, γ-Butyrolacton oder Gemischen davon löslich.
Als gemeinsame Lösungsmittel kommen somit - gegebenenfalls nach Austausch des üblicherweise bei der Herstellung der Endgruppen funktionalisierten Polydiallylammo- niumverbindungen enthaltenden Chloridions durch organische Anionen wie Trifluorace- tationen - bevorzugt stark polare organische Lösungsmittel wie DMF, DMSO, NMP oder Cyclopentanon oder Gemische davon in Frage.
Für die Umsetzung zur Herstellung der erfindungsgemäßen wasserunlöslichen Polymere werden das aus Ausgangsprodukt eingesetzte funktionalisierte Basispolymer und die als Ausgangsprodukt eingesetzte Endgruppen funktionalisierte Polydiallylammoni- umverbindung bevorzugt getrennt in einem geeigneten Lösungsmittel gelöst, so dass Lösungen mit 5 bis 25 Gew.-%, bevorzugt 5 bis 20 Gew.-%, besonders bevorzugt 5 bis 15 Gew.-% des jeweiligen Ausgangsproduktes entstehen. Geeignete Lösungsmittel und Lösungsmittelgemische sind bereits vorstehend genannt. Anschließend werden die beiden erhaltenen Lösungen der Ausgangsprodukte in einer bevorzugten Ausfüh- rungsform vereinigt. Die Reaktionsmischung kann neben den beiden Ausgangsprodukten ionische Zusätze enthalten, die das Aggregationsverhalten der Polykationen beeinflussen. Geeignete ionische Zusätze sind beispielsweise LiBF4 oder LiPF4. Sie werden im Allgemeinen in Anteilen von 0,05 bis 10 Gew.-%, bevorzugt 0,5 bis 5 Gew.-%, besonders bevorzugt 0,5 bis 2 Gew.-%, bezogen auf die Trockenmasse der Endgruppen funktionalisierten Polydiallylammoniumverbindung eingesetzt. Die ionischen Zusätze können zu einer der beiden Ausgangslösungen oder zu der Lösung, die aus den verei- nigten Ausgangslösungen gebildet wird, zugegeben werden. Weiterhin kann die Reaktionsmischung eine Hilfsbase enthalten, um zu verhindern, dass das zum Beispiel bei der Reaktion eines chlormethylierten Basispolymers mit einer aminoendgruppenfunkti- onalisierten Polydiallylammoniumverbindung entstehende HCl die Aminoendgruppen der Polydiallylammoniumverbindung protoniert und damit für eine weitere Umsetzung deaktiviert. Als Hilfsbase können dabei raumerfüllend substituierte und damit sterisch abgeschirmte Amine verwendet werden. Geeignete Amine sind dem Fachmann bekannt, wobei beispielhaft Ethyldiisopropylamin (Hünig Base) genannt wird. Die Hilfsbase kann in Anteilen von im Allgemeinen 25 bis 1000 mol-%, bevorzugt 25 bis 300 mol-%, besonders bevorzugt 50 bis 150 mol-%, bezogen auf die Stoffmenge der eingesetzten Chlormethylgruppen, zugesetzt werden.
Die Reaktionsmischung wird anschließend typischerweise 10 bis 1000 Minuten, bevorzugt 15 bis 600 Minuten, besonders bevorzugt 15 Minuten bis 120 Minuten bei Temperaturen von im Allgemeinen 25 bis 150 0C, bevorzugt 25 bis 120 0C, besonders bevor- zugt 25 bis 80 0C gerührt. Anschließend kann aus der erhaltenen Reaktionsmischung ohne Isolierung der erfindungsgemäßen wasserunlöslichen Polymere eine Membran hergestellt werden. Es ist jedoch ebenfalls möglich, die erfindungsgemäßen wasserunlöslichen Polymere zunächst zu isolieren und die isolierten wasserunlöslichen Polymere zur Herstellung einer Membran zu verwenden. Dabei ist es z. B. vor der Herstellung der Membran möglich, das Anion der wasserunlöslichen Polymere, z. B. Halogenid oder Trifluoracetat, durch z. B. OH"-Ionen auszutauschen. Ein solcher Anionenaus- tausch ist auch nach der Herstellung der Membran möglich. Geeignete Verfahren zum Austausch der Anionen in dem erfindungsgemäßen wasserunlöslichen Polymer (vor oder nach Membranherstellung) sind dem Fachmann bekannt.
Die erfindungsgemäßen wasserunlöslichen Polymere weisen bevorzugt 5 bis
60 mol-%, bevorzugt 5 bis 45 mol-%, besonders bevorzugt 10 bis 35 mol-% Gruppen basierend auf Polydiallylammoniumverbindungen B, bezogen auf den molaren Anteil der aromatischen Kohlenwasserstoffe in dem Basispolymer A auf.
Das zahlenmittlere Molekulargewicht der erfindungsgemäßen wasserunlöslichen Polymere beträgt im Allgemeinen 10000 g/mol bis 200000g/mol, bevorzugt 15000 g/mol bis 150000g/mol, besonders bevorzugt 20000 g/mol bis 80000g/mol, ermittelt mittels GPC in DM F mit 1 Gew.-% Lithiumtrifluoracetat als Lösungsmittel an Polystylrol- Standards. Die nach dem erfindungsgemäßen Verfahren hergestellten Polymere zeichnen sich durch Unlöslichkeit und begrenzte Quellung in den zur Herstellung von Membranen eingesetzten Prozesslösungsmitteln, zum Beispiel Wasser, Methanol, Ethanol und aus diesen Lösungsmitteln hergestellten Mischungen, aus. Des Weiteren weisen sie auf- grund der Anknüpfung der Polydiallylammoniumverbindungen an das Basispolymer eine hohe lokale Ladungsträgerdichte auf. Überraschenderweise wurde gefunden, dass sich die nach dem erfindungsgemäßen Verfahren hergestellten Polymere durch eine hohe Stabilität unter alkalischen Bedingungen auszeichnen, insbesondere durch eine chemische Beständigkeit in stark alkalischem Milieu von pH > 13 bei erhöhten Temperaturen. Damit sind die erfindungsgemäßen wasserunlöslichen Polymere insbesondere zur Herstellung von Membranen geeignet, die im alkalischen Milieu stabil sein müssen. Solche Membranen werden zum Beispiel in alkalischen Brennstoffzellen (SAFC) und alkalischen Batterien eingesetzt.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Polymer hergestellt gemäß dem erfindungsgemäßen Verfahren.
Wie bereits vorstehend erwähnt, sind die erfindungsgemäßen Polymere zur Herstellung von Membranen geeignet. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher eine Membran enthaltend mindestens ein erfindungsgemäßes Polymer.
Die Herstellung der Membranen erfolgt nach üblichen, dem Fachmann bekannten Verfahren.
Im Allgemeinen wird zur Herstellung der Membranen eine Gießlösung oder Gießdis- persion auf mindestens ein geeignetes Trägermaterial aufgebracht. Bei der Gießlösung oder Gießdispersion kann es sich um die bei der Herstellung der erfindungsgemäßen Polymere erhaltene Lösung handeln. Es ist jedoch auch möglich, das erfindungsgemäße Polymer zu isolieren und zur Herstellung der Gießlösung erneut in geeigneten Lösungsmitteln oder Lösungsmittelgemischen zu lösen. Geeignete Lösungsmittel oder Lösungsmittelgemische sind zum Beispiel DMF, DMSO, NMP, DMAc, Kresole, γ- Butyrolacton, Cyclopentanon oder Mischungen von zwei oder mehr der genannten Lösungsmittel.
Die Konzentration des erfindungsgemäßen Polymers in der Gießlösung oder Gießdis- persion beträgt im Allgemeinen 2 bis 30 Gew.-%, bevorzugt 5 bis 15 Gew.-%.
Als geeignete Träger sind zum Beispiel Glasplatten oder Kunstofffolien, z. B. aus Polyester oder Polyolefinen, geeignet. Bevorzugt wird als Träger eine Glasplatte eingesetzt.
Die Aufbringung der Gießlösung oder Gießdispersion kann nach jedem dem Fachmann bekannten Verfahren erfolgen. Beispielsweise kann die Aufbringung durch Gießen, Rakeln, Tauchen, Spincoaten, Walzenbeschichten, Spritzbeschichten, Bedrucken im Hoch-, Tief-, Flach- oder Siebdruckverfahren oder gegebenenfalls durch Extrusion erfolgen. Die Nassfilmdicke beträgt nach Aufbringung im Allgemeinen 0,01 mm bis 2 mm, bevorzugt 0,05 bis 1 mm, besonders bevorzugt 0,2 bis 1 mm.
Die weitere Aufarbeitung zum Erhalt der Membran kann nach dem Fachmann bekann- ten Verfahren, zum Beispiel durch Entfernen des eingesetzten Lösungsmittels, erfolgen. Die Entfernung des Lösungsmittels erfolgt im Allgemeinen bei Temperaturen von 20 0C bis 120 0C, bevorzugt 40 0C bis 120 0C, besonders bevorzugt 60 bis 120 0C, jeweils bei einem Druck von im Allgemeinen 100 mbar bis 1000 mbar.
Die erfindungsgemäßen Membranen weisen in einer bevorzugten Ausführungsform der vorliegenden Erfindung Dicken von 20 bis 300 μm, bevorzugt 40 bis 200 μm, besonders bevorzugt 50 bis 150 μm, ganz besonders bevorzugt 50 bis 120 μm auf.
Die lonenaustauschkapazitäten der erfindungsgemäßen Membranen betragen im AII- gemeinen bis zu 3 meq/g, bevorzugt bis zu 2,5 meq/g, besonders bevorzugt bis zu
2 meq/g. Die untere Grenze der lonenaustauschkapazitäten beträgt im Allgemeinen
0,1 meq/g. Ganz besonders bevorzugte lonenaustauschkapazitäten sind 0,5 bis 2 meq/g, insbesondere ganz besonders bevorzugt sind lonenaustauschkapazitäten von
1 bis 2 meq/g. Die lonenaustauschkapazitäten wurden ermittelt wie in T. N. Danks, R,C.T. Slade and J. R. Varcoe, Journal of Materials Chemistry, 13, (2003), 712 bis 721 beschrieben.
Überraschenderweise wurde gefunden, dass erfindungsgemäße Polymere, deren anionisches Gegenion OH" ist, besonders stabil gegen alkalische Reagentien sind. Es ist möglich, bereits zur Herstellung der erfindungsgemäßen Membranen erfindungsgemäße Polymere einzusetzen, die OH"-Gegenionen aufweisen. Aufgrund des Lösungsverhaltens der zur Herstellung der erfindungsgemäßen Polymere eingesetzten Polydially- lammoniumverbindungen ist es jedoch in einigen Fällen hilfreich, anstelle von Polymeren, die OH"-Gegenionen erhalten, Polymere mit anderen Gegenionen herzustellen. Um dennoch die hervorragende Basenstabilität der erfindungsgemäßen Polymere, die OH"-Gegenionen tragen, nutzen zu können, können die erfindungsgemäßen Membranen, soweit sie keine OH"-Gegenionen aufweisen, durch lonenaustauschprozesse oder andere dem Fachmann bekannte Verfahren mit OH"-Gegenionen ausgestattet werden. In einer weiteren Ausführungsform betrifft die vorliegende Erfindung daher eine Memb- ran enthaltend mindestens ein erfindungsgemäßes wasserunlösliches Polymer, wobei das in der Membran vorliegende Polymer OH"-Gegenionen aufweist.
Die erfindungsgemäßen Membranen zeigen hohe ionische Leitfähigkeiten. So können ionische Leitfähigkeiten von im Allgemeinen bis 0,1 S/cm, bevorzugt bis 0,080 S/cm, besonders bevorzugt bis 0,07 S/cm, ganz besonders bevorzugt 0,02 bis 0,07 S/cm, insbesondere ganz besonders bevorzugt 0,02 bis 0,06 S/cm erzielt werden. Die erfindungsgemäßen Membranen sind als Anionenaustauschermembran geeignet und können in allen Anwendungen, worin Anionenaustauschermembranen eingesetzt werden, verwendet werden. Bevorzugt werden die erfindungsgemäßen Membranen als Anionenaustauschermembran in alkalischen Brennstoffzellen (SAFC), alkalischen Bat- terien, Elektrolysezellen oder in Trenn- und Aufreinigungsprozessen, zum Beispiel in der Elektrodialyse oder Diffusionsdialyse verwendet.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung einer erfindungsgemäßen Membran als Anionenaustauschermembran, bevorzugt die Ver- wendung als Anionenaustauschermembran in alkalischen Brennstoffzellen (SAFC), alkalischen Batterien, Elektrolysezellen oder in Trenn- und Aufreinigungsprozessen, zum Beispiel in der Elektrodialyse oder Diffusionsdialyse.
Beispiele für geeignete alkalische Brennstoffzellen (SAFC) sind:
- SAFC umfassend Wasserstoff, Natriumborhydrid oder andere direkte Metallhydride
- SAFC umfassend Ethanol, Ethylenglykol, Glycerin oder Formiat,
- SAFC umfassend Ammoniak, Harnstoff oder Hydrazin
- SAFC unter Einsatz von Methanol (alkalische DMFC) - Wasserstoff/Luft-Brennstoffzellen eingesetzt werden.
Beispiele für geeignete Elektrolysezellen sind:
- Elektrolysezellen zur Generierung von Wasserstoff aus Ammoniak; - Elektrolysezellen zur Generierung von Wasserstoff aus Ammoniakderivaten, z. B. Harnstoff
- Elektrolysezellen zur Wasserelektrolyse.
Neben einer Anwendung des erfindungsgemäßen Polymers zur Herstellung von Membranen, ist es ebenfalls denkbar, dass das erfindungsgemäße Polymer als lono- mer, zum Beispiel in alkalischen Brennstoffzellen oder Elektrolysezellen, eingesetzt wird.
In einer bevorzugten Ausführungsform werden die erfindungsgemäßen Polymere, z. B. in Form von lonomeren oder in Form von Membranen in alkalischen Brennstoffzellen (SAFC) oder Elektrolysezellen eingesetzt. Ein weiterer Gegenstand der vorliegenden Erfindung ist somit eine Membran-Elektroden-Einheit (MEA) umfassend mindestens zwei Elektroden und mindestens eine erfindungsgemäße Membran. Geeignete Membran-Elektroden-Einheiten sind dem Fachmann bekannt.
Des Weiteren betrifft die vorliegende Erfindung eine Brennstoffzelle, insbesondere eine alkalische Brennstoffzelle (SAFC) enthaltend mindestens ein erfindungsgemäßes Polymer, das als lonomer oder Membran vorliegen kann, mindestens eine erfindungsge- mäße Membran und/oder mindestens eine erfindungsgemäße Membran-Elektroden- Einheit.
Die nachfolgenden Beispiele erläutern die Erfindung zusätzlich.
Beispiele
Beispiel 1 :
Herstellung von chlormethyliertem Polysulfon mit einem Chlormethylierungsgrad von 0,8 Chlormethylgruppen pro Wiederholungseinheit (gemäß Warshawski, Journal of Polymer Science: Part A: Polymer Chemistry 28 (1990) 2885)
Zu einer Lösung aus 40,1 g Polysulfon (Ultrason 6020) in 400 ml 1 ,2 Dichlorethan wird 80 g Chlormethyloctylether gegeben. Zu dieser Lösung wird bei 45 0C eine Lösung aus 3,0 ml Zinntetrachlorid und 40 ml 1 ,2-Dichlorethan innerhalb von 20 min zugetropft, und die entstandene Reaktionsmischung wird weitere 130 min bei 45 0C gerührt. Anschließend wird das Polymer aus dieser Reaktionsmischung durch Eintropfen derselben in 4,3 I Methanol ausgefällt. Der polymere Feststoff wird danach für 48 h mit Methanol extrahiert und bei 40 0C in Vakuum getrocknet. Es werden 41 ,8 g chlormethylier- tes Polysulfon erhalten. Der Chlormethylierungsgrad kann durch Auswertung von 1H- NMR Analysen ermittelt werden. Er beträgt 0,8 Chlormethylgruppen pro Wiederholungseinheit.
Beispiel 2 (nicht erfindungsgemäß): Herstellung von chlormethyliertem Polysulfon mit einem Chlormethylierungsgrad von 1 ,6 Chlormethylgruppen pro Wiederholungseinheit (gemäß Warshawski, Journal of Polymer Science: Part A: Polymer Chemistry 28 (1990) 2885)
Die Umsetzung und Aufreinigung des chlormethylierten Polysulfons wird wie unter Beispiel 1 beschrieben durchgeführt, jedoch mit der Variation, dass die Reaktionszeit 27 h beträgt. Der Chlormethylierungsgrad beträgt 1 ,6 Chlormethylgruppen pro Wiederholungseinheit.
Beispiel 3:
Herstellung einer Membran aus Polysulfon-graff-Polydiallyldimethylammoniurritrifluor- acetat unter Verwendung von Polydiallydimethylammoniumtrifluor-acetat (PE = 7) mit n- Butylamino-Endgruppen
1 ,71 g Polydiallylmethylammoniumtrifluoracetat mit einem Polymerisationsgrad von Pn = 7 das mit n-Butylaminoendgruppen funktionalisiert wurde, wird zusammen mit 85 mg Lithiumtetrafluorborat in 20 g DMF gelöst. Zu dieser Lösung wird eine weitere Lösung aus 1 ,0 g chlormethyliertem Polysulfon (Chlormethylierungsgrad: 0,8 CH2CI pro Wiederholungseinheit, Beispiel 1 ) in 9,5 g DMF zugegeben. Weiterhin wird der Reaktionsmischung 0,25 ml Ethyldiisopropylamin zugesetzt und die Lösung 30 min bei 60 0C gerührt.
Anschließend werden 18 ml dieser Lösung in eine Petrischale mit einem Durchmesser von 11 cm gegeben und bei 80 0C über einen Zeitraum von 4 h eingetrocknet.
Durch Zugabe von Wasser kann eine ca. 170 μm dicke Membran aus der Glasschale abgelöst werden. Die Membran wird anschließend gründlich mit entionisiertem Wasser gespült und zeigt in Wasser bei 60 0C eine ionische Leitfähigkeit von ca. 25 mS/cm.
Beispiel 4:
Überführung der Membran aus Beispiel 3 in Polysulfon-graft-Polydiallyldimethyl- ammoniumhydroxid
Die Membran aus Beispiel 3 wird bei Raumtemperatur in ca. 500 ml 2-N-NaOH einge- legt und nach mindestens 4 h wird die wässrige Lösung ausgetauscht. Dieser Prozess wird insgesamt sechsmal durchgeführt. Anschließend wird die Membran mit entionisiertem Wasser gespült bis die überschüssige NaOH vollständig entfernt ist. Die Membran zeigt in Wasser bei 60 0C eine ionische Leitfähigkeit von ca. 50 mS/cm.
Die Bestimmung der lonenaustauschkapazität dieser Membran ergibt einen Wert von 2,0 meq/g.
Beispiel 5:
H erstel l u n g ei ner M em bra n a us Polysu lfon-graff-PolydiallvImethylammonium- trifluoracetat unter Verwendung von Polydiallyldimethylammoniumtrifluoracetat (PE = 10) mit Dimethylaminoendgruppen
Zu 4,1 g einer Lösung von 9, 1 Gewichtsanteilen von Polydiallyldimethylammoni- umtrifluoracetat (Pn = 10) mit Dimethylaminoendgruppen in Dimethylsulfoxid werden 2,9 g einer Lösung von 5,0 Gewichtsanteilen von chlormethyliertem Polysulfon (Chlor- methylierungsgrad = 0,8, Beispiel 1 ) in Cyclopentanon gegeben.
Die resultierende Reaktionsmischung wird bei Raumtemperatur 24 h gerührt, und anschließend werden 1 ,3 g der Reaktionsmischung in eine in eine Petrischale mit einem Durchmesser von 5,5 cm gegeben und die Lösung bei 60 0C über einen Zeitraum von 24 h eingetrocknet.
Durch Zugabe von Wasser kann eine ca. 120 μm dicke Membran aus der Glasschale abgelöst werden. Die Membran wird anschließend gründlich mit entionisiertem Wasser gespült und zeigt in Wasser bei 60 0C eine ionische Leitfähigkeit von ca. 12 mS/cm.
Beispiel 6:
Überführung der Membran aus Beispiel 5 in Polysulfon-graft-Polydiallyldimethyl- ammoniumhydroxid Die Membran aus Beispiel 5 wird nach dem Verfahren, das in Beispiel 4 beschrieben ist, behandelt. Die Membran zeigt in Wasser bei 60 0C eine ionische Leitfähigkeit von ca. 20 mS/cm.
Die Bestimmung der lonenaustauschkapazität dieser Membran ergibt einen Wert von 0,8 meq/g.
Beispiel 7: Herstellung von Polvsulfon-qraff-Polvdiallylisoindoliumbromid unter Verwendung von Polvdiallylisoindoliumbromid (Pa=5) mit n-Butylamino-Endgruppen
3,0 g chlormethyliertes Polysulfon (Chlormethylierungsgrad: 1 ,55 CH2CI pro Wiederholungseinheit, Beispiel 2) wird in 30 ml DMF gelöst und über einen 5 μm PTFE- Filter filtriert. Dem Filtrat werden 200 mg LiBr und 2,6 g Ethyldiisopropylamin zugegeben. 14,3 g Polydiallylisoindoliumbromid mit einem Polymerisationsgrad von Pn = 5, das mit N-Butylaminoendgruppen funktionalisiert wurde, wird in 100 ml DMF gelöst und über einen 5 μm PTFE-Filter filtriert. Das Filtrat der Lösung von Polydiallylisoindoliumbromid wird innerhalb von 15 min. zur Polysulfonlösung gegeben und das Reaktionsgemisch für 18 h bei 60 0C gerührt. Anschließend wird die Reaktionslösung zur Trockene eingedampft, der Rückstand mit 1 ,5 I Isopropanol versetzt und für 2 h bei 60 0C gerührt. Vom Feststoff wird abdekantiert und der Rückstand wird noch zweimal mit jeweils 0,5 I Isopropanol bei 60 0C gerührt und anschließend bis zur Gewichtskonstanz getrocknet. Die Ausbeute beträgt 6,4 g.
Beispiel 8:
Herstellung einer Membran aus Polvsulfon-graft-Polvdiallylisoindoliumbromid
1 ,0 g Polysulfon-graft-Polydiallylisoindoliumbromid aus Beispiel 7 wird in 100 ml DMF und 100 mg LiBr bei 60 0C gelöst. Die Lösung wird anschließend über einen 5 μm
PTFE-Filter filtriert und zu einer gießfähigen Lösung (ca. 15 Gew.-%) eingeengt. Zu dieser Lösung gibt man 50 mg α,α-Dichlor-p-xylol. Aus dieser Lösung wird ein Film auf eine Glasplatte geräkelt (Spaltbreite: 400 μm) und die beschichtete Glasplatte für 3,5 h bei 80 0C getrocknet. Durch Zugabe von Wasser wird eine Membran von der Glasplat- te abgelöst, deren Dicke ca. 45 μm beträgt.
Beispiel 9:
Ü b e r f ü h r u n g d e r M e m b r a n a u s B e i s p i e l 8 i n P o I y sulfon-graft- Polydiallylisoindoliumhydroxid Die Membran aus Beispiel 8 wird bei Raumtemperatur in ca. 500 ml 2-N-NaOH eingelegt, und nach mindestens 4 h wird die wässrige Lösung ausgetauscht. Dieser Prozess wird insgesamt sechsmal durchgeführt. Anschließend wird die Membran mit entionisiertem Wasser gespült bis die überschüssige NaOH vollständig entfernt ist. Die Membran (Membrandicke: 45 μm) zeigt in Wasser bei 60 0C eine ionische Leitfähigkeit von ca. 12 mS/cm.
Die lonenaustauschkapazität dieser Membran beträgt 0,7 meq/g.

Claims

Patentansprüche
1. Wasserunlösliches Polymer aufgebaut aus i) einer Polymerkette basierend auf mindestens einem Basispolymer A ent- haltend einen oder mehrere Kohlenwasserstoff reste in der Polymerkette, und ii) mindestens einer Gruppe basierend auf Polydiallylammoniumverbindun- gen B, dadurch gekennzeichnet, dass die mindestens eine Gruppe basierend auf PoIy- diallylammoniumverbindungen kovalent mit den Kohlenwasserstoff resten der Polymerkette verknüpft ist.
2. Wasserunlösliches Polymer nach Anspruch 1 , dadurch gekennzeichnet, dass die Kohlenwasserstoff reste aromatische Kohlenwasserstoff reste sind.
3. Wasserunlösliches Polymer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die kovalente Verknüpfung der Polydiallylammoniumverbindung mit den Kohlenwasserstoff resten der Polymerkette des Basispolymers A über eine der folgenden Gruppen erfolgt
R2
, , I+ , ,
A — Z N — B A — Z N— B A-SO2-N — B R , R , oder R ;
worin bedeuten:
R1, R2 unabhängig voneinander H, substituiertes oder unsubstituiertes d- C8-Alkyl, substituiertes oder unsubstituiertes C6-Ci4-Aryl oder substi- tuiertes oder unsubstituiertes C5-Ci4-Cycloalkyl, bevorzugt unabhängig voneinander H , d-Cs-Alkyl, besonders bevorzugt unabhängig voneinander H, Methyl, Ethyl, iso-Propyl, n-Propyl, iso-Butyl, n-Butyl, sec.-Butyl, tert.-Butyl, ganz besonders bevorzugt unabhängig voneinander H, Methyl, n-Butyl;
A Polymerkette basierend auf mindestens einem Basispolymer A,
B Gruppe basierend auf Polydiallylammoniumverbindungen B;
Z -(CR3R4)o- oder substituiertes oder unsubstituiertes C5- bis Ci4-
Cycloalkylen; R3, R4 unabhängig voneinander H, substituiertes oder unsubstituiertes d-
Cs-Alkyl, wobei R3 und R4 in den o verschiedenen Gruppen -(CR3R4)- gleich oder verschieden sein können; bevorzugt H; o 1 bis 8, bevorzugt 1 bis 4, besonders bevorzugt 1.
4. Wasserunlösliches Polymer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Basispolymer A ausgewählt ist aus der Gruppe bestehend aus Polyarylethersulfonen (PES), Polystyrol (PS), Styrol-Copolymeren, Polysul- fonen (PSU), Polyetherketonen (PEK), Polyetheretherketonen (PEEK), PoIy- etheretherketonketonen (PEEKK), Polyphenylensulfiden (PPS), Polyphenylen- oxiden (PPO), Poly-(4-phenoxybenzoyl-1 ,4-phenylen) (PPBP), Polybenzimidazo- len (PBI), Polybenzoxazolen, Polybenzothiazolen, Polyimiden (PI), Polyphenyle- nen (PP), Polybenzazolen (PBZ), Polythiophenylenen, Polyphenylenchinoxali- nen, Polyphosphazenen und Gemischen der vorstehend genannten Polymere.
5. Wasserunlösliches Polymer nach Anspruch 4, dadurch gekennzeichnet, dass das Basispolymer A ein Polyarylethersulfon ist.
6. Wasserunlösliches Polymer nach einem der Ansprüche 1 bis 5, dadurch gekenn- zeichnet, dass die Polydiallylammoniumverbindungen B terminale funktionelle
Gruppen aufweisen.
7. Wasserunlösliches Polymer nach Anspruch 6, dadurch gekennzeichnet, dass die terminalen funktionellen Gruppen Aminogruppen oder Ammoniumgruppen sind.
8. Wasserunlösliches Polymer nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die mindestens eine Gruppe B auf Polydiallylammoniumhydroxi- den basiert.
9. Wasserunlösliches Polymer nach Anspruch 8, dadurch gekennzeichnet, dass die Polydiallylammoniumhydroxide ausgewählt sind aus der Gruppe bestehend aus Polydiallyldimethylammoniumhydroxid und Polydiallyldiisoindoliniumhydroxid.
10. Verfahren zur Herstellung von wasserunlöslichen Polymeren nach einem der Ansprüche 1 bis 9 umfassend:
Reaktion mindestens einer eine oder zwei terminale funktionelle Gruppen X aufweisenden Polydiallylammoniumverbindung B mit mindestens einem funktionali- sierten Basispolymer enthaltend einen oder mehrere Kohlenwasserstoffreste, bevorzugt einen oder mehrere aromatische Kohlenwasserstoffreste, wobei die
Kohlenwasserstoff reste zumindest teilweise funktionelle Gruppen -Z-Y tragen, die geeignet sind, mit den funktionellen Gruppen X eine kovalente Bindung auszubilden.
1 1. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die terminalen Gruppen X der Polydiallylammoniumverbindung B Aminogruppen oder Ammoniumgruppen sind.
12. Verfahren nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass die funnkti- onellen Gruppen -Z-Y -CH2Hal-Gruppen sind, wobei Z und Y die folgenden Bedeutungen aufweisen:
Z -(CR3R4)o- oder substituiertes oder unsubstituiertes C5- bis Ci4- Cycloalkylen;
R3, R4 unabhängig voneinander H, substituiertes oder unsubstituiertes d- Cs-Alkyl, wobei R3 und R4 in den o verschiedenen Gruppen -(CR3R4)- gleich oder verschieden sein können; bevorzugt H; o 1 bis 8, bevorzugt 1 bis 4, besonders bevorzugt 1 ; und Y Halogenid, ausgewählt aus Fluorid, Chlorid, Bromid und lodid, bevorzugt Chlorid, oder Sulfonat, z. B. Benzolsulfonat, Toluolsulfonat, Me- thansulfonat oder Trifluormethansulfonat.
13. Verfahren zur Herstellung von wasserunlöslichen Polymeren nach einem der Ansprüche 1 bis 9 umfassend:
i) Chlormethylierung von einem oder mehreren der Kohlenwasserstoffreste, bevorzugt von einem oder mehreren der aromatischen Kohlenwasserstoffreste, in der Polymerkette des Basispolymers A, wobei ein funktionalisier- tes Basispolymer erhalten wird, wobei mindestens ein Kohlenwasserstoffrest des funktionalisierten Basispolymers eine funktionelle Gruppe -Z-Y = - CH2CI trägt; ii) Reaktion der mindestens einen funktionellen Gruppe -Z-Y des funktionalisierten Basispolymers mit mindestens einer eine oder zwei terminale Ami- nogruppen X aufweisenden Polydiallylammoniumverbindung.
14. Polymer hergestellt nach einem Verfahren nach einem der Ansprüche 10 bis 13.
15. Membran enthaltend mindestens ein Polymer gemäß einem der Ansprüche 1 bis 9 oder 14.
16. Verwendung einer Membran nach Anspruch 15 als Anionenaustauschermem- bran in alkalischen Brennstoffzellen, alkalischen Batterien, Elektrolysezellen oder in Trenn- und Aufreinigungsprozessen.
17. Membran-Elektroden-Einheit umfassend mindestens zwei Elektroden und mindestens eine Membran nach Anspruch 15.
18. Brennstoffzelle enthaltend mindestens ein Polymer nach einem der Ansprüche 1 bis 9 oder 14, mindestens einer Membran nach Anspruch 15 und/oder mindestens einer Membran-Elektroden-Einheit nach Anspruch 17.
PCT/EP2008/068086 2008-01-03 2008-12-19 Polymere auf der basis von polydiallylammoniumverbindungen, anionenaustauschermembranen enthaltend die polymere und deren verwendung in brennstoffzellen WO2009083509A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08150014 2008-01-03
EP08150014.2 2008-01-03

Publications (1)

Publication Number Publication Date
WO2009083509A1 true WO2009083509A1 (de) 2009-07-09

Family

ID=40364360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/068086 WO2009083509A1 (de) 2008-01-03 2008-12-19 Polymere auf der basis von polydiallylammoniumverbindungen, anionenaustauschermembranen enthaltend die polymere und deren verwendung in brennstoffzellen

Country Status (1)

Country Link
WO (1) WO2009083509A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132797A1 (en) * 2014-01-21 2015-09-11 Council Of Scientific And Industrial Research Blend membranes based on polybenzimidazole (pbi) and polymeric ionic liquids (pils) and a process for the preparation thereof
CN108586745A (zh) * 2018-04-16 2018-09-28 常州大学 一种基于氟化聚苯并咪唑的阴离子交换膜及其制备方法
US11377526B2 (en) 2017-10-02 2022-07-05 Colorado School Of Mines High performance cross-linked triblock cationic functionalized polymer for electrochemical applications, methods of making and methods of using
US11745148B2 (en) 2017-08-22 2023-09-05 Colorado School Of Mines Functionalized poly(diallylpiperidinium) and its copolymers for use in ion conducting applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183914B1 (en) * 1998-09-17 2001-02-06 Reveo, Inc. Polymer-based hydroxide conducting membranes
EP1612874A1 (de) * 2004-07-02 2006-01-04 SOLVAY (Société Anonyme) Alkalische Festelektrolyt-Brennstoffzelle mit Ionenaustauschmembrane
US20070238842A1 (en) * 2002-08-15 2007-10-11 Zhiqiang Song High molecular weight cationic polymers obtained by post-polymerization crosslinking reaction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6183914B1 (en) * 1998-09-17 2001-02-06 Reveo, Inc. Polymer-based hydroxide conducting membranes
US20070238842A1 (en) * 2002-08-15 2007-10-11 Zhiqiang Song High molecular weight cationic polymers obtained by post-polymerization crosslinking reaction
EP1612874A1 (de) * 2004-07-02 2006-01-04 SOLVAY (Société Anonyme) Alkalische Festelektrolyt-Brennstoffzelle mit Ionenaustauschmembrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132797A1 (en) * 2014-01-21 2015-09-11 Council Of Scientific And Industrial Research Blend membranes based on polybenzimidazole (pbi) and polymeric ionic liquids (pils) and a process for the preparation thereof
US20160340484A1 (en) * 2014-01-21 2016-11-24 Council Of Scientific And Industrial Research Blend membranes based on polybenzimidazole (pbi) and polymeric ionic liquids (pils) and a process for the preparation thereof
US9663624B2 (en) 2014-01-21 2017-05-30 Council Of Scientific And Industrial Research Blend membranes based on polybenzimidazole (PBI) and polymeric ionic liquids (PILs) and a process for the preparation thereof
US11745148B2 (en) 2017-08-22 2023-09-05 Colorado School Of Mines Functionalized poly(diallylpiperidinium) and its copolymers for use in ion conducting applications
US11377526B2 (en) 2017-10-02 2022-07-05 Colorado School Of Mines High performance cross-linked triblock cationic functionalized polymer for electrochemical applications, methods of making and methods of using
CN108586745A (zh) * 2018-04-16 2018-09-28 常州大学 一种基于氟化聚苯并咪唑的阴离子交换膜及其制备方法
CN108586745B (zh) * 2018-04-16 2020-05-05 常州大学 一种基于氟化聚苯并咪唑的阴离子交换膜及其制备方法

Similar Documents

Publication Publication Date Title
EP1105433B1 (de) Modifikation von engineeringpolymeren mit n-basischen gruppen und mit ionenaustauschergruppen in der seitenkette
DE102009020232B4 (de) Sulfonierte Polyperfluorcyclobutan-Polyphenylen-Polymere für PEM-Brennstoffzellenanwendungen
DE102009020181B4 (de) Sulfonierte Perfluorcyclobutanblockcopolymere und protonenleitende Polymermembranen
EP1639153B1 (de) Composites und compositemembranen
DE69933129T2 (de) Ionenaustauschpolymere
DE102014009170A1 (de) Kombinatorisches Materialsystem für Ionenaustauschermembranen und dessen Verwendung in elektrochemischen Prozessen
EP1175254A1 (de) Stufenweise alkylierung von polymeren aminen
DE60025101T2 (de) Protonenleitendes Polymer, Herstellungsverfahren dafür, fester Polymerelektrolyt und Elektrode
WO1999054407A2 (de) Engineering-ionomerblends und engineering-ionomerblendmembranen
EP1373379A2 (de) Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle
DE102016007815A1 (de) Vernetzte hochstabile Anionenaustauscherblendmembranen mit Polyethylenglycolen als hydrophiler Membranphase
DE19817376A1 (de) Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen
DE112010004052T5 (de) Polymerelektrolytmembran, Membran-Elektroden-Anordnung und Festkörperpolymer-Brennstoffzelle
WO2007082660A1 (de) Protonenleitende polymermembran
DE102010041224A1 (de) Neuartiges amphiphiles Block-Copolymer, Verfahren zum Herstellen desselben und Polymer-Elektrolyt-Membran, in welche dieses eingesetzt wird
DE102017206213A1 (de) Wasserunlösliche Anionenaustauschermaterialien
DE112009002581T5 (de) Polymerelektrolyt-Syntheseverfahren, Polymerelektrolytmembran und Festpolymerelektrolyt-Brennstoffzelle
DE4328226A1 (de) Stark basische Anionenaustauschermembran und Verfahren zu deren Herstellung
WO2009083509A1 (de) Polymere auf der basis von polydiallylammoniumverbindungen, anionenaustauschermembranen enthaltend die polymere und deren verwendung in brennstoffzellen
DE20217178U1 (de) Protonenleitende Elektrolytmembran
WO2003072641A1 (de) Sulfinatgruppen enthaltende oligomere und polymere und verfahren zu ihrer herstellung
WO2003060011A2 (de) Modifizierte kovalent vernetzte polymere
EP4061879A1 (de) Kationenaustauscher- und anionenaustauscherpolymere und -(blend)membranen aus hochfluorierte aromatische gruppen enthaltenden polymeren mittels nucleophiler substitution
DE10019732A1 (de) Säure-Base-Polymermembranen
DE112004003007T5 (de) Sulfoniertes Polymer, umfassend einen hydrophoben Block des Nitriltyps, und Festpolymerelektrolyt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08868919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08868919

Country of ref document: EP

Kind code of ref document: A1