WO2009082264A1 - Procédé de fabrication d'un copolymères perfluoré contenant des groupes fonctionnels - Google Patents

Procédé de fabrication d'un copolymères perfluoré contenant des groupes fonctionnels Download PDF

Info

Publication number
WO2009082264A1
WO2009082264A1 PCT/RU2008/000737 RU2008000737W WO2009082264A1 WO 2009082264 A1 WO2009082264 A1 WO 2009082264A1 RU 2008000737 W RU2008000737 W RU 2008000737W WO 2009082264 A1 WO2009082264 A1 WO 2009082264A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
vinyl ether
carried out
emulsion
pfepve
Prior art date
Application number
PCT/RU2008/000737
Other languages
English (en)
Russian (ru)
Inventor
Sergei Stepanovich Ivanchev
Vladimir Stefanovich Misin
Valery Nikolayevich Pavlyuchenko
Oleg Nikolaevich Primachenko
Lev Fedorovich Sokolov
Valery Petrovich Tyulmankov
Saul Yankelevich Khaikin
Original Assignee
Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk filed Critical Institut Kataliza Imeni G.K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
Publication of WO2009082264A1 publication Critical patent/WO2009082264A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/184Monomers containing fluorine with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems

Definitions

  • the invention relates to the production of perfluoropolymers containing functional groups, in particular sulfonyl fluoride groups.
  • Such copolymers are the basis for the manufacture of ion-exchange membranes used in fuel cells, various electrolyzers, etc.
  • Membranes with the trade name Nafup based on the cation-exchange copolymer obtained by hydrolysis of the perfluoropolymer tetrafluoroethylene (TFE) - perftop-2-fluorophenyl ethoxy-propyl vinyl ether (PFEPVE) with a value of 100 equivalent masses, are widely known. Membranes based on this copolymer are characterized by high chemical and thermal resistance, high strength and electrochemical properties. The combination of this set of properties allows the use of membranes of this type for the manufacture of fuel cells with a long resource of continuous operation.
  • TFE perfluoropolymer tetrafluoroethylene
  • PFEPVE perftop-2-fluorophenyl ethoxy-propyl vinyl ether
  • a number of methods are known for producing TFE and PFEPVE copolymers during copolymerization in a medium of halogen-containing hydrocarbons, for example, trifluorotrichloroethane (freon 113) [US 3528954, C08F15 / 06, 09.15.1970, US 3642742, C08F16 / 00, 02.15.1972].
  • the main disadvantage of these methods is the low yield of the copolymer, while the conversion of PFEPVE, as a rule, does not exceed 20-25%.
  • a known method for conducting emulsion copolymerization of TFE and PFEPVE [US 5608022, C08F2 / 16, 03/04/1997, example 15], in which ammonium perfluorocaprylate and ammonium persulfate were also used as initiator and stabilizer of the emulsion, respectively, but the process was carried out at 60 ° C and pressure TFE 1.6 MPa.
  • a distinctive feature of this method is the preliminary emulsification of PFEPVE in water in the presence of ammonium perfluorocaprylate on an ABM-4 biomixer manufactured by Nippon Seiki K. K. with a stirring speed of 20,000 rpm for 30 minutes.
  • Another distinguishing feature is the use of aliphatic alcohol in the formulation as a chain transfer agent.
  • AT the result is a copolymer with an equivalent mass close to optimal (1025) and a melt flow rate of 1.5 g / 10 min at 270 0 C and a load of 2.16 kg, indicating the possibility of processing the copolymer into the membrane by traditional methods, for example, extrusion.
  • the disadvantages of the method are the process at a fairly high pressure TFE and a very low conversion of PFEPVE (12%). The latter circumstance, the inventors associate with the possibility of changing the equivalent mass of the copolymer with increasing its yield.
  • a 4-liter reactor Before copolymerization, a 4-liter reactor is subjected to special treatment with an aqueous solution of ammonium persulfate and ammonium perfluorooctanoate (5 g of each component in 2 liters of water) at a temperature of 100 0 C and a stirring speed of 150 rpm. Then the reactor is cooled and the indicated solution is unloaded, after which the prepared emulsion and other components are loaded, degassing, TFE purging are carried out, heated to the required temperature, the required TFE pressure is set, the components of the initiating system are loaded and the process is conducted at a stirring speed of 200 rpm.
  • an aqueous solution of ammonium persulfate and ammonium perfluorooctanoate 5 g of each component in 2 liters of water
  • degassing, TFE purging are carried out, heated to the required temperature, the required TFE pressure is set, the components of the initiating system are loaded and the process
  • the process is carried out using a redox initiating system, then during the copolymerization simultaneously with the addition of TFE, the PFEPVE emulsion is dosed. From the obtained latex, the polymer is isolated by freezing, washed repeatedly with tap and demineralized water, and then dried at 100 ° C in vacuo.
  • the resulting copolymer has a low melt flow rate (0.214 g / 10 min at 270 ° C and a load of 1.2 kg), which may complicate its processing by extrusion.
  • the invention solves the problem of simplifying the technology for producing the TFE-PFEPVE perfluoropolymer using the emulsion copolymerization method, reducing the consumption of perfluorinated surfactant and water in the process of isolating the copolymer from latex (reducing the volume of wastewater), achieving high conversion of PFEPVE while maintaining optimal characteristics of the resulting copolymer (equivalent weight 920- 1075, melt flow rate 13-27 g / 10 min at a temperature of 270 ° C and a load of 2.16 kg or 7-13 g / 10 min at a load of 1.2 kg, proton conductivity of the membrane made from a copolymer of at least 0.10 S / cm).
  • the emulsion of PFEPVE in water is produced in the presence of an emulsifier - ammonium salt of perfluorocarboxylic acid, buffer additives (monosubstituted sodium phosphate and disubstituted sodium phosphate) and one of the components of the redox initiating system - potassium or ammonium persulfate.
  • Emulsification on a homogenizer rotor-stator is carried out for 15 minutes
  • Emulsion copolymerization is carried out in a stainless steel reactor with stirring by an anchor mixer at a speed of 200-250 rpm with a reactor volume of 200 cm 3 . The process is carried out for 3-7 hours.
  • the resulting latex is discharged from the reactor and coagulated when the reaction product is acidified with an inorganic acid.
  • the isolated copolymer is washed several times with chloroform to remove unreacted PFEPVE and distilled water in order to wash the emulsifier and inorganic salts.
  • the washed copolymer is dried first in air for 10-20 hours, and then under vacuum at 100 ° C for 5-10 hours.
  • the equivalent mass and melt flow rate are determined, and then samples are produced from the copolymer by compression molding under pressure, which are subjected to hydrolytic processing in order to transfer - SO 2 F - groups into acid groups -SO 3 H.
  • hydrolytic processing in order to transfer - SO 2 F - groups into acid groups -SO 3 H.
  • electrochemical and mechanical characteristics are measured.
  • the authors of the present invention unexpectedly found that with the selected parameters of the polymerization process, a copolymer with a uniform chemical composition is formed even at a very high degree of conversion of PFEPVE (see example 5). As you know, a similar effect is impossible when the process is carried out in a solvent.
  • PFEPVE PFEPVE
  • a homogenizer working element is introduced, nitrogen flow is generated over the surface of the prepared mixture, and the rotor begins to rotate at a speed of 10,000 rpm.
  • Emulsification is stopped after 15 minutes and the resulting emulsion is left under a stream of nitrogen for 30 minutes to settle the foam.
  • a reactor with a volume of 200 cm 3 is prepared for copolymerization.
  • the reactor is successively evacuated and filled with TFE to a pressure of 0.05 MPa. This operation is carried out three times.
  • the resulting emulsion is loaded into the reactor and a nitrogen purge is performed for 30 minutes.
  • 0.045 g (0.25% by weight of PFEPVE) of sodium metabisulfite dissolved in 20 cm 3 of degassed distilled water is loaded into the reactor, the reactor is closed and TFE is supplied to a pressure of 0.1 MPa. Then the pressure is reduced to atmospheric and TFE is fed again. This operation is carried out three times. After this, the reaction mass is heated to 40 ° C, the working pressure of TFE is established (0.52 MPa) and the process is conducted for 5 hours with constant feeding of TFE. Make-up is produced when TFE pressure is reduced by 0.02 MPa. During the reaction, 15.43 g of TFE is consumed.
  • the reaction mass is cooled to room temperature, TFE is blown off, the resulting latex unload and produce coagulation by adding 50 ml of concentrated hydrochloric acid.
  • the copolymer released is separated from the liquid phase on a Buchner funnel, washed several times with water, then placed in a glass and washed with vigorous stirring with a mixture (emulsion) of chloroform and water, after which the copolymer is separated from the liquid phase on a Buchner funnel.
  • the described procedures are carried out three times.
  • a total of 1.6 liters of water or 51 liters per 1 kg of copolymer are used to flush the copolymer.
  • the washed copolymer is dried in air at room temperature for 16 hours and then under vacuum at 100 ° C.
  • the copolymer yield was 31.3 g.
  • the melt flow rate (MFR) determined on the IIRT-M plastometer at 270 ° C with a load of 2.16 kg is 27 g / 10 min. or 13 g / 10 min. at a load of 1.2 kg.
  • films are made from the obtained copolymer by extrusion.
  • a portion of the copolymer for pressing (G) is calculated by the formula:
  • V V r K
  • p the density of the copolymer equal to 2.1 g / cm 3
  • K is a correction factor of 1.1, taking into account the excess copolymer.
  • a portion of the copolymer in the form of powder is poured onto a stainless steel plate X 18Hl OT with a thickness of aluminum foil
  • the powder is leveled according to the shape limiter with dimensions of 7O x 130 x 0.1 mm, closed with an aluminum foil gasket and a massive stainless steel plate.
  • the form with the copolymer is kept at a pressing temperature (230-250 ° C) for 15 minutes, the specific pressure is set to 20.0-23.0
  • a film with a thickness of 100 ⁇ m is obtained with an even smooth surface without any melt, inclusions, shells and other visible defects with dimensions of 70x130x0.1 mm with a thickness difference of not more than 10%.
  • the study of the IR spectrum of copolymer films shows the absence of absorption in the regions of 1840 and 1055 cm "1 , which indicates the complete removal of unreacted PFEPVE from the copolymer and the absence of sulfonic acid groups in its structure. The latter fact indicates that in the process of emulsion copolymerization and processing of the copolymer hydrolysis of sulfonyl fluoride groups occurs.
  • the conversion of -SO 3 Na-group of the copolymer into the acid form of -SO 3 H is carried out by treating the membrane with a 3% aqueous hydrochloric acid solution. To do this, fill the membrane with 400 ml of a 3% aqueous solution of hydrochloric acid, making sure that the solution completely covers the membrane. The membrane is kept in solution for 2 hours at room temperature. After this, the hydrochloric acid solution is drained, the membrane is washed with two portions of 400 ml of distilled water, and the membrane is again filled with 400 ml of a fresh 3% hydrochloric acid solution.
  • the membrane is kept in the solution for 2 hours at room temperature, the hydrochloric acid solution is drained and the membrane is washed 2-3 times in 400 ml portions of distilled water until the washings are neutral.
  • the result is a fluoropolymer membrane in -SO 3 H-form.
  • the properties of the cation exchange membrane are studied in a hydrated state.
  • the water content in the membrane, soaked in distilled water at 25 ° C for 24 hours, is determined as follows:
  • the process is carried out at 40 ° C and a TFE pressure of 0.52 MPa for 5 hours.
  • the copolymer yield is 20.83 g.
  • PFEPVE conversion is 49.0%.
  • Ammonium perfluorononanoate 0.60 g (3.53%). Ammonium persulfate 0.26 g (1.53%). Sodium metabisulfite 0.16 g (0.94%). Monosubstituted sodium phosphate 0.60 g (3.53%).
  • the process is carried out at 45 ° C and a TFE pressure of 0.48 MPa for 4 hours.
  • the copolymer yield is 22.0 g.
  • the conversion of PFEPVE is 63.0%.
  • TFE option 1 - 7.74 g, option 2 - 10.96 g, option 3 - 13.22 g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

L'invention concerne la fabrication de perfluorocopolymères comprenant des groupes fonctionnels et notamment des groups sulfonylfluorés. Ces copolymères sont utilisés comme matière de base dans la fabrication de membranes échangeuses d'ions utilisées dans des piles à combustibles, dans différents électrolyseurs, etc. L'invention décrit un procédé de fabrication de copolymère perfluoré de tétrafluoréthylène (TFE) et de l'éther perfluor-2-( 2-fluorosulphonyl-éthoxy) propyl-vinylique (PFEPVE) par procédé de copolymérisation d'émulsion comprenant les stades d'émulsification préalable de PFEPVE dans l'eau suivie de la copolymérisation des monomères dans l'émulsion. Le copolymère est extrait par la coagulation du latex sous l'action d'un acide inorganique. L'émulsification préalable de PFEPVE dans l'eau est effectuée en présence d'un sel ammonical de l'acide perfluorocarbonique au moyen d'un homogénéisateur du type rotor-stator à une vitesse de rotation de 800-12000 t/min, et la copolymérisation dans l'émulsion s'effectue sous l'action d'un système d'initiation d'oxydation-réduction persulfate de sodium ou d'ammonium à une pression constante du TFE de (0,48 - 0,52). L'invention vise à simplifier la technologie, à porter la conversion de PFEPVE jusqu'à 79 % et à former un copolymère avec des caractéristiques technologiques et d'exploitation optimales permettant de transformer le copolymère suivant des technologies traditionnelles en une membrane performée échangeuse de cations possédant des propriétés mécaniques et électrochimiques élevées qui peut s'utiliser dans des piles à combustibles et dans différents électrolyseurs.
PCT/RU2008/000737 2007-12-20 2008-12-03 Procédé de fabrication d'un copolymères perfluoré contenant des groupes fonctionnels WO2009082264A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2007147725/04A RU2348649C1 (ru) 2007-12-20 2007-12-20 Способ получения перфторированного сополимера, содержащего функциональные группы
RU2007147725 2007-12-20

Publications (1)

Publication Number Publication Date
WO2009082264A1 true WO2009082264A1 (fr) 2009-07-02

Family

ID=40528618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2008/000737 WO2009082264A1 (fr) 2007-12-20 2008-12-03 Procédé de fabrication d'un copolymères perfluoré contenant des groupes fonctionnels

Country Status (2)

Country Link
RU (1) RU2348649C1 (fr)
WO (1) WO2009082264A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2450023C1 (ru) * 2010-10-18 2012-05-10 Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы
RU2454431C1 (ru) * 2011-02-07 2012-06-27 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Способ получения перфторированного функционализированного сополимера методом эмульсионной сополимеризации
RU2545182C1 (ru) * 2013-09-06 2015-03-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения сополимера тетрафторэтилена с 2-фторсульфонилперфторэтилвиниловым эфиром - прекурсора протонопроводящих мембран - методом эмульсионной сополимеризации
CN113736003B (zh) * 2021-09-06 2022-11-25 浙江巨化股份有限公司氟聚厂 一种全氟乙烯基醚类改性聚四氟乙烯树脂的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
US3807291A (en) 1972-03-27 1974-04-30 Du Pont Improved painting system
DE3408087A1 (de) 1984-03-05 1985-09-05 Viktor Durst Apparate und Behälter, 7129 Pfaffenhofen Spritzkabine zum spritzen und trocknen von gegenstaenden
US4587927A (en) 1983-09-22 1986-05-13 Rmg-Beierling Gmbh, Industriestr Painting- and evaporation cabin with air-return ventilation
SU1233804A3 (ru) * 1979-05-31 1986-05-23 Асахи Касеи Когио Кабусики Кайся (Фирма) Способ получени фторированного сополимера
US5395285A (en) 1990-12-03 1995-03-07 Monarch Industries (Aust) Pty. Ltd. Dehumidifier
US5608022A (en) * 1993-10-12 1997-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Perfluorocarbon copolymer containing functional groups and a method for producing it
WO1998028088A2 (fr) 1996-12-20 1998-07-02 Waelti Ag Geb Cabine de peinture au pistolet et systeme de mise en circulation pour une chambre de travail
RU2138515C1 (ru) * 1997-12-17 1999-09-27 Горбатенко Игорь Викторович Способ получения фторуглеродных полимеров с функциональными сульфонилфторидными группами
WO2000052060A1 (fr) * 1999-03-02 2000-09-08 E.I. Du Pont De Nemours And Company Procede de polymerisation radicalaire pour copolymeres fluorines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
US3807291A (en) 1972-03-27 1974-04-30 Du Pont Improved painting system
SU1233804A3 (ru) * 1979-05-31 1986-05-23 Асахи Касеи Когио Кабусики Кайся (Фирма) Способ получени фторированного сополимера
US4587927A (en) 1983-09-22 1986-05-13 Rmg-Beierling Gmbh, Industriestr Painting- and evaporation cabin with air-return ventilation
DE3408087A1 (de) 1984-03-05 1985-09-05 Viktor Durst Apparate und Behälter, 7129 Pfaffenhofen Spritzkabine zum spritzen und trocknen von gegenstaenden
US5395285A (en) 1990-12-03 1995-03-07 Monarch Industries (Aust) Pty. Ltd. Dehumidifier
US5608022A (en) * 1993-10-12 1997-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Perfluorocarbon copolymer containing functional groups and a method for producing it
WO1998028088A2 (fr) 1996-12-20 1998-07-02 Waelti Ag Geb Cabine de peinture au pistolet et systeme de mise en circulation pour une chambre de travail
RU2138515C1 (ru) * 1997-12-17 1999-09-27 Горбатенко Игорь Викторович Способ получения фторуглеродных полимеров с функциональными сульфонилфторидными группами
WO2000052060A1 (fr) * 1999-03-02 2000-09-08 E.I. Du Pont De Nemours And Company Procede de polymerisation radicalaire pour copolymeres fluorines

Also Published As

Publication number Publication date
RU2348649C1 (ru) 2009-03-10

Similar Documents

Publication Publication Date Title
EP0289869B1 (fr) Polymères fluorés sulfoniques à bas poids équivalent
US6602968B1 (en) Free radical polymerization method for fluorinated copolymers
US10968298B2 (en) Synthesis of 2,3,3,3-tetrafluoropropene/vinylidene fluoride copolymers
CN102083873A (zh) 偏二氟乙烯/2,3,3,3-四氟丙烯共聚物
EP2946426B1 (fr) Procédé de fabrication d'un électrolyte
CN113717310B (zh) 具有高效离子传输通道的全氟离子交换树脂及其制备方法
WO2009082264A1 (fr) Procédé de fabrication d'un copolymères perfluoré contenant des groupes fonctionnels
JP5486693B2 (ja) 高交換容量過フッ化イオン交換樹脂、その調製方法、及び使用
CN108350112B (zh) 制造碘原子含量得以减少的含氟化合物的方法
JPS60250009A (ja) スルホン酸型官能基を有するパ−フルオロカ−ボン重合体の製造方法
RU2450023C1 (ru) Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы
JPH06345824A (ja) 含フッ素共重合体の製造方法
RU2454431C1 (ru) Способ получения перфторированного функционализированного сополимера методом эмульсионной сополимеризации
CN116217780A (zh) 一种全氟聚合物制备方法及其在离子交换膜中的应用
JP2004018673A (ja) 含フッ素成形体、含フッ素成形体製造方法、含フッ素ポリマー及び含フッ素ポリマー製造方法
US5650472A (en) Fluorine-containing copolymer, process for preparing the same and fluorine-containing elastomer
RU2545182C1 (ru) Способ получения сополимера тетрафторэтилена с 2-фторсульфонилперфторэтилвиниловым эфиром - прекурсора протонопроводящих мембран - методом эмульсионной сополимеризации
RU2820658C1 (ru) Получение стабилизированного сополимера для протонпроводящих мембран
RU2138515C1 (ru) Способ получения фторуглеродных полимеров с функциональными сульфонилфторидными группами
JPH01115933A (ja) テトラフルオロエチレン系共重合体の安定化方法
RU2671812C1 (ru) Способ получения сополимера перфтор-3-оксапентенсульфонилфторида и тетрафторэтилена в качестве прекурсора перфторированных протонопроводящих мембран
JPH06199958A (ja) スルホン酸型官能基を有するパーフルオロカーボン重合体の製造方法
CA2958922A1 (fr) Ionomere a bloc fonctionnalise par un acide perfluorosulfonique destine a ameliorer le rendement des piles a combustible
US20110245357A1 (en) Process for Dissolution of Highly Fluorinated Ion-Exchange Polymers
EP4365210A1 (fr) Procédé pour la production de polymère contenant du fluor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864692

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864692

Country of ref document: EP

Kind code of ref document: A1