RU2450023C1 - Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы - Google Patents

Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы Download PDF

Info

Publication number
RU2450023C1
RU2450023C1 RU2010142561/04A RU2010142561A RU2450023C1 RU 2450023 C1 RU2450023 C1 RU 2450023C1 RU 2010142561/04 A RU2010142561/04 A RU 2010142561/04A RU 2010142561 A RU2010142561 A RU 2010142561A RU 2450023 C1 RU2450023 C1 RU 2450023C1
Authority
RU
Russia
Prior art keywords
perfluoro
vinyl ether
emulsion
copolymer
pfepve
Prior art date
Application number
RU2010142561/04A
Other languages
English (en)
Inventor
Сергей Степанович Иванчев (RU)
Сергей Степанович Иванчев
Валерий Георгиевич Барабанов (RU)
Валерий Георгиевич Барабанов
Олег Николаевич Примаченко (RU)
Олег Николаевич Примаченко
Саул Янкелевич Хайкин (RU)
Саул Янкелевич Хайкин
Владимир Сергеевич Лихоманов (RU)
Владимир Сергеевич Лихоманов
Владимир Стефанович Мисин (RU)
Владимир Стефанович Мисин
Original Assignee
Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия" filed Critical Федеральное государственное унитарное предприятие "Российский научный центр "Прикладная химия"
Priority to RU2010142561/04A priority Critical patent/RU2450023C1/ru
Application granted granted Critical
Publication of RU2450023C1 publication Critical patent/RU2450023C1/ru

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Изобретение имеет отношение к способу получения перфторированного сополимера, содержащего сульфонилфторидные функциональные группы. Способ заключается в эмульсионной сополимеризации тетрафторэтилена и перфтор-2-фторсульфонилэтоксипропилвинилового эфира, проводимой при постоянном давлении тетрафторэтилена в присутствии радикального инициатора и стабилизатора эмульсии - соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, включающей стадию предварительного эмульгирования перфтор-2-фторсульфонилэтоксипропилвинилового эфира в водной среде с применением гомогенизатора типа ротор-статор при скорости вращения ротора 8000-12000 об/мин. Эмульсионную сополимеризацию тетрафторэтилена и перфтор-2-фторсульфонилэтоксипропилвинилового эфира осуществляют, применяя для стабилизации эмульсии уменьшенную на 10-30% концентрацию аммониевой соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, заменяя ее эквивалентным количеством одновалентной соли перфтор-2-сульфонатэтоксипропилвинилового эфира, предпочтительно, аммониевой солью перфтор-2-сульфонатэтоксипропилвинилового эфира, сохраняя условия проведения процесса. Технический результат - разработка экологичного способа получения перфторированного сополимера, а именно уменьшение расхода перфторированного ПАВ и снижение количества промывных вод. 1 з.п. ф-лы, 7 пр.

Description

Изобретение относится к получению перфторсополимеров, содержащих функциональные группы, конкретно сульфонилфторидные группы. Такие сополимеры являются основой для изготовления ионообменных мембран, используемых в топливных ячейках, различных электролизерах и т.д.
Сополимеры тетрафторэтилена с фторированными мономерами, содержащими сульфонилфторидные группы, являются исходными сополимерами, которые после гидролиза сульфонилфторидных групп превращаются в катионообменный сополимер, на основе которого получаются протонопроводящие мембраны.
Наиболее широкое распространение получили протонопроводящие мембраны на основе сополимеров тетрафторэтилена (ТФЭ) и перфтор-2-фторсульфонилэтоксипропилвинилового эфира (ПФЭПВЭ), впервые полученные и запатентованные фирмой DuPont и получившие торговое название Nation.
Мембраны типа Nafion при оптимальном соотношении ТФЭ и ПФЭПВЭ в сополимере или эквивалентной массе в сополимере в пределах 950-1100 отличаются высокой химической стойкостью, высокими физико-механическими и прочностными свойствами, хорошими электрохимическими и протонопроводящими свойствами. Поэтому эти мембраны широко распространены при изготовлении топливных ячеек и топливных элементов на их основе и используются в самых разных областях техники - на спутниках, подводных лодках и на других установках.
Известен ряд способов получения сополимеров ТФЭ и ПФЭПВЭ при проведении сополимеризации в среде галогенсодержащих углеводородов (хладонов), например, таких как трифторхлорэтан (хладон 113) [Патент США 3642742, МПК C08F 16/00, оп. 15.02.1972]. Эти способы имеют недостатки, связанные с необходимостью прекращения сополимеризации на низких глубинах превращения ПФЭПВЭ (не более 20-25%) из-за существенного нарастания вязкости реакционной массы, что затрудняет перемешивание системы, приводит к ее перегреву и соответственно изменению однородности состава сополимера. Невысокий выход сополимера усложняет технологию, вынуждает введение дополнительных стадий по отделению непрореагировавшего дорогостоящего ПФЭПВЭ, повышая стоимость получаемого сополимера. Попытка повышения конверсии ПФЭПВЭ выше 25% делает невозможным получение сополимера постоянного состава и с желаемой эквивалентной массой (ЭМ). К тому же известно, что процессы, в которых все компоненты являются фтор- или галогенсодержащими, являются потенциально опасными, в том числе экологически.
При сопоставлении с вышерассмотренной технологией очень перспективными представляются варианты осуществления сополимеризации ТФЭ с ПФЭПВЭ в водно-эмульсионной системе по механизму эмульсионной полимеризации. В этом случае проблема нарастания вязкости полимеризационной среды снимается, т.к. в процессе полимеризации эмульсия мономеров превращается в латекс - высокодисперсную суспензию полимера в воде.
Отказ от применения хладонов, перевод реакции в водную среду устраняет пожароопасность и придает технологии экологическую безоопасность. Существенным преимуществом, как оказалось, является возможность доведения полимеризации до существенно более высоких глубин превращения и более полного использования дорогого сульфосодержащего сомономера с сохранением ЭМ получаемого сополимера.
В некоторых ранее опубликованных патентах рассматривалась возможность реализации сополимеризации ТФЭ и ПФЭПВЭ в эмульсии.
Так, в патенте [Патент США 3282875, МПК C08F 28/00, оп. 11.01.1966] описана сополимеризация ТФЭ и ПФЭПВЭ в эмульсии, стабилизированной перфторкаприлатом аммония, в присутствии радикального инициатора - персульфата аммония при 85°С и давлении ТФЭ 0,34 МПа. Недостатком способа является невысокая конверсия ПФЭПВЭ (21%) и высокая эквивалентная масса сополимера (2590), исключающая возможность рационального практического использования.
Известен способ проведения эмульсионной сополимеризации ТФЭ и ПФЭПВЭ [Патент США 5608022, МПК C08F 2/16, оп. 04.03.1997, пример 15], в котором в качестве инициатора и стабилизатора эмульсии также использовались персульфат аммония и перфторкаприлат аммония соответственно, но процесс проводился при 60°С и давлении ТФЭ 1,6 МПа. Отличительный признак данного способа - эмульгирование в воде перфторуглеродного мономера, содержащего функциональные группы, до мелкой дисперсии со средним диаметром частиц в 2·10-9 или менее. Кроме того, в рассматриваемом способе давление тетрафторэтилена сокращают в соответствии с конверсией мономера, имеющего функциональные группы, для предотвращения изменения эквивалентной массы производимого сополимера.
Другой отличительный признак рассматриваемого способа заключается в использовании в рецептуре спирта в качестве агента передачи цепи. Предварительное эмульгирование ПФЭПВЭ осуществляют в водной среде, в биомиксере АВМ-4 производства фирмы Nippon Seiki K.K. со скоростью перемешивания 20000 об/мин в течение 30 мин. В результате образуется сополимер с эквивалентной массой, близкой к оптимальной (1025), и показателем текучести расплава 1,5 г/10 мин при 270°С и нагрузке 2,16 кг, указывающим на возможность переработки сополимера в мембрану традиционными способами, например экструзией. Недостатками способа являются проведение процесса при довольно высоком давлении ТФЭ и очень низкая конверсия ПФЭПВЭ (21%). Последнее обстоятельство авторы изобретения связывают с возможностью изменения эквивалентной массы сополимера при повышении его выхода.
Известен способ проведения эмульсионной полимеризации ТФЭ и ПФЭПВЭ [Патент США 6602968, МПК C08F 214/22, оп. 05.08.2003, примеры 7 и 8]. В данном способе также используется прием предварительного эмульгирования ПФЭПВЭ в воде при использовании гомогенизатора MicroFluidizer. Стабилизация эмульсии осуществляется с помощью перфтороктаноата аммония. В качестве инициатора применяется персульфат аммония или окислительно-восстановительная инициирующая система персульфат аммония - сульфит натрия. Процесс проводится в зависимости от типа инициирующей системы либо при 60°С, либо при 35°С. Давление ТФЭ варьируется от 0,34 до 1,38 МПа. Перед проведением сополимеризации реактор объемом 4 л подвергают специальной обработке водным раствором персульфата аммония и перфтороктаноата аммония (по 5 г каждого компонента в 2 л воды) при температуре 100°С и скорости перемешивания 150 об/мин. Затем реактор охлаждают и выгружают указанный раствор, после чего загружают заранее приготовленную эмульсию и другие компоненты, проводят дегазацию, продувку ТФЭ, нагревают до необходимой температуры, устанавливают требуемое давление ТФЭ, загружают компоненты инициирующей системы и ведут процесс при скорости перемешивания 200 об/мин. Если процесс проводится с использованием окислительно-восстановительной инициирующей системы, то в ходе сополимеризации одновременно с подпиткой ТФЭ производится дозировка эмульсии ПФЭПВЭ. Из полученного латекса полимер выделяют вымораживанием, многократно промывают водопроводной и деминерализованной водой, после чего высушивают при 100°С под вакуумом. В результате получают сополимер с эквивалентной массой 934 и конверсией ПФЭПВЭ 70% при инициировании сополимеризации окислительно-восстановительной инициирующей системой. Если в качестве инициатора применяют только персульфат аммония, то эквивалентная масса сополимера составляет 1228, а конверсия ПФЭПВЭ 80%.
Недостатками данного способа являются:
1. Очень сложная технология, предполагающая необходимость применения дорогостоящего и сложного оборудования (MicroFluidizer, дозаторы жидких компонентов, работающих под давлением) и проведения специальной подготовки полимеризационного реактора.
2. Большой расход дорогостоящего перфторированного ПАВ (12-16% от массы загруженного в реактор ПФЭПВЭ).
3. Следствием п.2 является большой объем воды, требуемой на проведение процесса и промывку полученного сополимера. В среднем на 1 кг полученного сополимера расходуется 225 л водопроводной воды и 66 л деминерализованной воды, что предполагает значительные расходы на очистку сточных вод.
4. Образующийся сополимер имеет низкий показатель текучести расплава (0,214 г/10 мин при 270°С и нагрузке 1,2 кг), что может затруднить его переработку методом экструзии.
Наиболее близким по технической сущности решением к заявляемому изобретению является способ [Патент РФ 2348649, МПК C08F 2/24; C08F 2/34, оп. 10.03.2009] получения перфторированного сополимера, содержащего функциональные группы, эмульсионной сополимеризацией ТФЭ и ПФЭПВЭ в присутствии радикального инициатора и стабилизатора эмульсии - соли перфторкарбоновой кислоты, включающий стадию предварительного эмульгирования ПФЭПВЭ в водной среде, причем эмульсионную сополимеризацию ТФЭ и ПФЭПВЭ проводят при постоянном давлении тетрафторэтилена 0,48-0,52 МПа, прекращая процесс при конверсии ПФЭПВЭ 49-77%, а на стадии предварительного эмульгирования ПФЭПВЭ в водной среде в качестве диспергатора используют гомогенизатор типа ротор-статор при скорости вращения ротора 8000-12000 об/мин, применяя для стабилизации эмульсии аммониевую соль перфторкарбоновой кислоты CnFn+1COONH4, где n=7-9, и эмульгирование осуществляют в среде инертного газа. При этом аммониевую соль перфторкарбоновой кислоты CnFn+1COONH4 применяют в количестве 2,5-3,5% от массы ПФЭПВЭ, эмульгирование осуществляют при массовом отношении ПФЭПВЭ/вода 0,141-0,152.
По этому способу при эмульсионной сополимеризации в качестве радикального инициатора используют окислительно-восстановительную инициирующую систему персульфат калия или аммония - метабисульфит натрия при содержании персульфата 0,82-1,53%, метабисульфита натрия 0,22-0,94% от массы ПФЭПВЭ и массовом отношении персульфат/метабисульфит натрия 1,62-3,75, и сополимеризацию проводят при 35-45°С.
При реализации рассмотренного решения есть проблемы с отмывкой используемого эмульгатора, избыток которого может оставаться в полимере, что делает необходимым использование большого объема промывных вод. Неотмытый эмульгатор может загрязнять мембранный полимер, ухудшая цвет и свойства мембраны.
Задачей, стоящей перед авторами предлагаемого изобретения, является уменьшение расхода перфторированного ПАВ и снижение количества промывных вод, то есть улучшение экологичности разрабатываемой технологии.
Авторами рассматриваемого изобретения предложено использовать в рецептуре смесевой эмульгатор, состоящий из меньшей концентрации аммониевой соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, и одноосновной соли перфтор-2-сульфонатэтоксипропилвинилового эфира, предпочтительно аммониевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира, в концентрации, эквивалентной уменьшению количества аммониевой соли перфторкарбоновой кислоты CnF2n+1COONH4.
Сущность изобретения состоит в том, что предложен способ получения перфторированного сополимера, содержащего функциональные группы, эмульсионной сополимеризацией ТФЭ и ПФЭПВЭ, проводимой при постоянном давлении ТФЭ в присутствии радикального инициатора и стабилизатора эмульсии -смеси перфторированных ПАВ, с предварительным эмульгированием ПФЭПВЭ в водной среде, и этот способ отличается тем, что его осуществляют при давлении ТФЭ 0,5 МПа, стадию эмульгирования ПФЭПВЭ в водной среде проводят в течение 15-20 минут, при этом в качестве стабилизатора эмульсии используют смесь аммониевой соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, и одновалентной соли перфтор-2-сульфонатэтоксипропилвинилового эфира, где М-катион Na+, K+, NH4+.
Предпочтительно использование аммониевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира.
Относительно массы перфтор-2-фторсульфонилэтоксипропилвинилового эфира применяют 1,76-2,26% аммониевой соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, и до 0,75% соли перфтор-2-сульфонатэтоксипропилвинилового эфира, и таким образом, соотношение добавляемых солей в их смеси составляет (70-90)(30-10) соответственно.
Предварительное эмульгирование ПФЭПВЭ в водной среде осуществляют с применением гомогенизатора типа ротор-статор при скорости вращения ротора 8000-12000 об/мин, с прекращением процесса при достижении определенной конверсии ПФЭПВЭ. Отличие способа состоит в том, что для снижения количества ПАВ в образующемся латексе и облегчения отмывки скоагулированного сополимера от ПАВ эмульсионную сополимеризацию ТФЭ и ПФЭПВЭ осуществляют при постоянном давлении ТФЭ 0,5 МПа, проводя процесс до конверсии ПФЭПВЭ не ниже 50%, а стадию эмульгирования ПФЭПВЭ в водной среде проводят в течение 15-20 минут, применяя для стабилизации эмульсии уменьшенную на 10-30% концентрацию аммониевой соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, заменяя ее эквивалентным количеством одновалентной соли перфтор-2-сульфонатэтоксипропилвинилового эфира, предпочтительно аммониевой солью перфтор-2-сульфонатэтоксипропилвинилового эфира
Соединение перфтор-2-сульфонатэтоксипропилвинилового эфира в виде калиевой, натриевой или аммониевой соли характеризуется хорошими поверхностно-активными свойствами (критическая концентрация мицелообразования (ККМ) несколько ниже ККМ перфторнонаата натрия или аммония). Наряду с этим бифункциональная структура ионной формы сомономера сохраняет способность участвовать в процессе сополимеризации, входя в состав образующегося сополимера и снижая концентрацию фторированного ПАВ, требующего отмывки после коагуляции. Исходя из сказанного выше такой прием формирования рецептуры эмульсионной сополимеризации ТФЭ и ПФЭПВЭ позволит облегчить выделение продукта реакции из получаемого латекса и снизить затраты воды при отмывке эмульгатора.
Свойства полученных сополимеров определяли следующим образом:
1. Показатель текучести расплава (ПТР) определяли по ГОСТ 11645-73 на пластометре типа ИИРТ-М при 270±0,5°С, нагрузке 2,16 кг, диаметре капилляра 2,095±0,005 мм при времени выдержки образца в экструзионной камере в течение 5 мин.
2. Эквивалентную массу сополимера (ЭМ) определяли методом ИК Фурье-спектроскопии на образцах прессованных пленок толщиной 0,20±0,05 мм в сульфонилфторидной форме. Измеряли интегральные интенсивности А полос поглощения 2704 см-1 (комбинированная частота колебаний -SO2F-группы) и 2363 см-1 (обертон колебаний -СF2-группы).
ЭМ вычисляют по формуле:
ЭМ=446[1+k(A23632704)/А2704],
где коэффициент k определяют по эталонным образцам с известной обменной емкостью, определенной титрованием.
3. Конверсию ПФЭПВЭ вычисляли исходя из величин ЭМ, выхода сополимера (W), количества ПФЭПВЭ, загруженного в реакционную смесь (W1), по формуле:
Конверсия ПФЭПВЭ (%)=[446·W·100]/[W1·ЭМ],
где 446 - молекулярная масса ПФЭПВЭ.
4. Мембранный пленочный материал получают из сополимера в сульфофторидной форме методам прессования.
Методом прессования получают мембранный материал фиксированной толщины 100 или 200 мкм из порошка сополимера путем прессования в обогреваемой пресс-форме при температуре 250-270°С, удельном давлении пуансона 23-25 МПа в течение 5 мин с последующим охлаждением пленки под давлением до 100°С, снятием давления, охлаждением пленки до комнатной температуры.
5. Перевод мембранного пленочного сополимера в сульфокислотную форму.
Пленку из сополимера в сульфофторидной форме, полученную методами прессования или экструзии (толщина 100-200 мкм), помещали в сосуд с 15% раствором гидроксида калия (натрия) в смешанном растворителе диметилсульфоксид (ДМСО) - деионизированная вода (массовое отношение ДМСО - вода = 35:50) и подвергали гидролизу при 80°С в течение 5 часов. Массовое отношение сополимер - раствор щелочи = 1:10. После гидролиза удаляли раствор щелочи, мембрану промывали порциями деионизированной воды (из расчета 100 мл воды на 1 г сополимера) в течение 30 мин после каждой промывки. Процесс повторяют до нейтральной реакции промывных вод, получая мембрану в щелочной форме.
Полноту гидролиза сульфонилфторидных групп сополимера проверяли методом FTIR-спектроскопии на приборе Bruker Tensor 27 по исчезновению полосы поглощения -SO2F-групп в области 1470 см-1.
Перевод щелочных групп сополимера в кислотную форму -SO3H проводят путем обработки мембраны 2-3 порциями 10-15% раствора азотной кислоты в течение 2 час при комнатной температуре. После каждой обработки кислотой проводят промывку мембраны 2-3 порциями дистиллированной воды до нейтральной реакции промывных вод. В результате получают катионообменную мембрану в -SO3H форме.
6. Равновесное содержание воды в мембране (водопоглощение) определяют следующим образом. Мембрану в -SO3H форме выдерживают в дистиллированной воде при 25°С течение 24 час. Определяют массу влажной мембраны (W2), после чего высушивают ее в вакууме при 70°С до постоянной массы (W3). Определяют влагосодержание мембраны (Cw) по формуле:
Cw(%)=(W2-W3)·100/W2
7. Испытание механических свойств гидратированных мембран в условиях равновесного набухания (выдержка мембраны в -SO3H форме в дистиллированной воде при 25°С течение 24 час) проводили на универсальной установке для механических испытаний UTS 10 (Германия) на образцах, представляющих собой лопаточки размерами рабочей части 20×3,5 мм толщиной 0,1 или 0,2 мм, при скорости растяжения образцов 10 мм/мин. Испытания проводили при температуре 25°С, измеряя предел прочности при растяжении (σр), модуль упругости (Е) и относительное удлинение при разрыве (ε).
8. Удельную электропроводность мембран (σн) в состоянии равновесного насыщения водой при 20°С измеряли методом импендансметрии на импендансметре Z-3000X фирмы «Элине» с помощью ячейки с электродами из нержавеющей стали по четырехэлектродной схеме в диапазоне частот 100-100000 Гц. Расчет удельной электропроводности проводили по формуле:
σн=L/(Rcp·h·b),
где L - расстояние между электродами напряжения измерительной ячейки, см; (L=1,77 см - паспортные данные измерительной ячейки);
h - средняя толщина мембраны, см;
b - средняя ширина мембраны, см;
Rcp - сопротивление мембраны, Ом.
9. Измерение рН реакционной системы проводили на иономере И-500 по ТУ 4215-002-81696414-2007 с электродной системой, включающей измерительный и вспомогательный электроды.
10. Измерение критической концентрации мицеллообразования (ККМ) эмульгатора - аммониевой соли перфторкарбоновой кислоты CnFn+1COONH4, где n=7-9, проводили с помощью измерения поверхностного натяжения водно-солевых растворов эмульгатора различных концентраций методом отрыва кольца на тензиометре модели ST-PLUS фирмы Tantec Inc. (США).
Сущность изобретения иллюстрируется следующими примерами:
Пример 1
В промытый, отвакуумированный и заполненный аргоном реактор объемом 260 мл загружают 130 мл предварительно продутой аргоном дистиллированной воды и растворяли 0,4395 г (1,89% от массы ПФЭПВЭ) перфторнонаата аммония, 0,1463 г (0,63% от массы ПФЭПВЭ) аммониевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира, что составляет 25% от общей загрузки поверхностно-активного вещества, 0,78 г (3,35% от массы ПФЭПВЭ) фосфата натрия двузамещенного 12-водного; 0,02 г (0,085% от массы ПФЭПВЭ) фосфата натрия однозамещенного 2-водного, 0,195 г (0,84% от массы ПФЭПВЭ) персульфата калия. Затем в полученный раствор загружали 23,27 г ПФЭПВЭ, вводили рабочий элемент гомогенизатора типа ротор-статор и диспергировали реакционную смесь в течение 15 минут при комнатной температуре при скорости оборотов ротора 10000 об./мин в атмосфере аргона. Полученная эмульсия имела рН 8,0. Концентрация перфторнонаата аммония в эмульсии составляет 5,85 ммоль/л водной фазы. Затем реактор подсоединяли к полимеризационной установке, включали обогрев реактора, нагревая полученную эмульсию ПФЭПВЭ до рабочей температуры 40°С. Затем в реактор добавляли 26 мл водного раствора, содержащего 0,0585 г (0,25% от массы ПФЭПВЭ) метабисульфита натрия. Реактор заполняли ТФЭ до давления 0,1 МПа, после чего снижали давления в реакторе до атмосферного и снова подавали ТФЭ. Операцию повторяли три раза. После этого заполняли реактор ТФЭ до рабочего давления 0,5 МПа и вели процесс сополимеризации при давлении 0,5 МПа, поддерживаемом автоматическим клапаном с точностью 0,001 МПа, за 5 часов при 40°С в реакцию сополимеризации вступило 15,8 г ТФЭ.
После завершения процесса реакционную массу охлаждали до комнатной температуры, производили сдувку непрореагировавшего ТФЭ, полученный латекс выделяли вымораживанием и отмывали полученный сополимер от эмульгатора горячей деионизированной водой с температурой 80°С.
Всего на промывку сополимера израсходовали 1,0 л воды или 36,4 л на 1 кг сополимера.
Отмытый сополимер сушили в вакууме при 60°С до постоянной массы.
Выход сополимера 27,5 г.
ПТР (270°С, 2,16 кг, 2,095 мм) сополимера в сульфофторидной форме составляет 28,0 г/10 мин.
Эквивалентная масса (ЭМ) сополимера в сульфофторидной форме, определенная методом ИК Фурье-спектроскопии на прессованных пленках толщиной 100 мкм, составляет 1052 г/моль SO2F.
Исследование ИК-спектра сополимерной пленки показывает отсутствие поглощения в области 1840 см-1, что указывает на полное удаление из сополимера непрореагировавшего ПФЭПВЭ.
Конверсия по ПФЭПВЭ, рассчитанная по вышеприведенной формуле, составляет 50,1%.
Гидролиз сульфофторидных групп сополимера с переводом их в -SO3H-форму осуществляют по оригинальной методике фирмы DuPont®.
Свойства катионообменной мембраны изучали в равновесно гидратированном состоянии.
Мембраны, изготовленные в соответствии с настоящим примером, имели следующие характеристики:
- содержание воды 17,1%;
- удельная электропроводность 0,09 См/см;
- σр 15,0 МПа;
- ε 87%;
- Е 132 МПа.
Пример 2
Отличается от примера 1 тем, что вместо аммониевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира используют 0,1470 г (0,63%) натриевую соль перфтор-2-сульфонатэтоксипропилвинилового эфира, что составляет 25% от общей загрузки поверхностно-активного вещества, а в реакционную смесь добавляют 23,41 г ПФЭПВЭ.
За 6 часов при 40°С в реакцию сополимеризации вступило 18,0 г ТФЭ.
Всего на промывку сополимера израсходовали 0,9 л воды или 29,8 л на 1 кг сополимера.
Выход сополимера 30,6 г.
ПТР (270°С, 2,16 кг, 2,095 мм) 34,6 г/10 мин.
ЭМ 1052 г/моль SO2F.
Конверсия ПФЭПВЭ 55,4%.
Мембраны, изготовленные в соответствии с настоящим примером, имели следующие характеристики:
- содержание воды 17,0%;
- удельная электропроводность 0,085 См/см;
- σр 16,0 МПа;
- ε 82%;
- Е 140 МПа.
Пример 3
Отличается от примера 1 тем, что вместо аммониевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира используют 0,1460 г (0,63%) калиевую соль перфтор-2-сульфонатэтоксипропилвинилового эфира, что составляет 25% от общей загрузки поверхностно-активного вещества, а в реакционную смесь добавляют 23,21 г ПФЭПВЭ.
За 6 часов при 40°С в реакцию сополимеризации вступило 16,1 г ТФЭ.
Всего на промывку сополимера израсходовали 0,94 л воды или 34,0 л на 1 кг сополимера.
Выход сополимера 27,7 г.
ПТР (270°С, 2,16 кг, 2,095 мм) 36,8 г/10 мин.
ЭМ 1062 г/моль SO2F.
Конверсия ПФЭПВЭ 50,2%.
Мембраны, изготовленные в соответствии с настоящим примером, имели следующие характеристики:
- содержание воды 16,5%;
- удельная электропроводность 0,08 См/см;
- σр 16,5 МПа;
- ε 75%;
- Е 146 МПа.
Пример 4
Отличается от примера 1 тем, что используют 0,5268 г (2,26%) перфторнонаата аммония и 0,0590 г (0,25%) аммониевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира, что составляет 10% от общей загрузки поверхностно-активного вещества, а в реакционную смесь добавляют 23,35 г ПФЭПВЭ.
За 5 часов при 40°С в реакцию сополимеризации вступило 14,0 г ТФЭ. Всего на промывку сополимера израсходовали 1,25 л воды или 44,3 л на 1 кг сополимера.
Выход сополимера 28,2 г.
ПТР (270°С, 2,16 кг, 2,095 мм) 25,1 г/10 мин.
ЭМ 1070 г/моль SO2F.
Конверсия ПФЭПВЭ 50,3%.
Мембраны, изготовленные в соответствии с настоящим примером, имели следующие характеристики:
- содержание воды 17,0%;
- удельная электропроводность 0,085 См/см;
- σр 16,0 МПа;
- ε 82%;
- Е 140 МПа.
Пример 5
Отличается от примера 1 тем, что используют 0,4100 г (1,76%) перфторнонаата аммония и 0,1758 г (0,75%) аммониевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира, что составляет 30% от общей загрузки поверхностно-активного вещества, а в реакционную смесь добавляют 23,30 г ПФЭПВЭ.
За 7 часов при 40°С в реакцию сополимеризации вступило 22,6 г ТФЭ. Всего на промывку сополимера израсходовали 1,1 л воды или 28,4 л на 1 кг сополимера.
Выход сополимера 38,7 г.
ПТР (270°С, 2,16 кг, 2,095 мм) 18,3 г/10 мин.
ЭМ 1075 г/моль SO2F.
Конверсия ПФЭПВЭ 68,9%.
Мембраны, изготовленные в соответствии с настоящим примером, имели следующие характеристики:
- содержание воды 17,0%;
- удельная электропроводность 0,085 См/см;
- σр 16,0 МПа;
- ε 82%;
- Е 140 МПа.
Пример 6
Отличается от примера 1 тем, что используют 0,2930 г (1,26%) перфторнонаата аммония и 0,2927 г (1,26%) натриевой соли перфтор-2-сульфонатэтоксипропилвинилового эфира, что составляет 50% от общей загрузки поверхностно-активного вещества, а в реакционную смесь добавляют 23,27 г ПФЭПВЭ.
За 5 часов при 40°С в реакцию сополимеризации вступило 5,3 г ТФЭ. Всего на промывку сополимера израсходовали 0,17 л воды или 20,2 л на 1 кг сополимера.
Выход сополимера 8,4 г.
ПТР (270°С, 2,16 кг, 2,095 мм) 14,0 г/10 мин.
ЭМ 1049 г/моль SO2F.
Конверсия ПФЭПВЭ 16,0%.
Мембраны, изготовленные в соответствии с настоящим примером, имели следующие характеристики:
- содержание воды 17,5%;
- удельная электропроводность 0,087 См/см;
- σр 14,5 МПа;
- ε 90%;
- Е 120 МПа.
Данный пример показывает, что при замене половины поверхностно-активного вещества (перфторнонаата аммония) на натриевую соль перфтор-2-сульфонатэтоксипропилвинилового эфира резко снижается выход сополимера и конверсия по ПФЭПВЭ при сохранении приемлемых физико-химических и протонопроводящих свойств мембранного материала.
Пример 7 (сопоставительный, по прототипу)
Синтез, выделение сополимера из латекса и исследование его свойств проводят так же, как в примере 1, но при следующих параметрах процесса.
Рецептура:
ПФЭПВЭ 23,27 г
ТФЭ 15,2 г
Перфторнонаат аммония 0,5859 г (2,5%).
Персульфат калия 0,195 г (0,84%).
Метабисульфит натрия 0,0585 г (0,25%).
Фосфат натрия двузамещенный 12-водный 0,78 г (3,35%)
Фосфат натрия однозамещенный 2-водный 0,02 г (0,086%)
Процесс сополимеризации ТФЭ и ПФЭПВЭ проводят при 40°С и давлении ТФЭ 0,5 МПа в течение 5 час.
Всего на промывку сополимера израсходовали 1,4 л воды или 51,7 л на 1 кг сополимера.
Выход сополимера 27,1 г.
ПТР (270°С, 2,16 кг, 2,095 мм) 13,0 г/10 мин.
ЭМ 1075 г/моль SO2F.
Конверсия ПФЭПВЭ 48,3%.
Мембраны, изготовленные в соответствии с настоящим примером, имели следующие характеристики:
- содержание воды 17,5%;
- удельная электропроводность 0,09 См/см;
- σр 16,1 МПа;
- ε 85%;
- Е 137 МПа.
Таким образом, приведенные примеры показывают, что замена части фторированного ПАВ - перфторнонаата аммония на эквивалентную часть одновалентной соли перфтор-2-сульфонатэтоксипропилвинилового эфира, предпочтительно, на аммониевую соль, позволяет провести эмульсионную сополимеризацию ТФЭ и ПФЭПВЭ с образованием сополимеров с оптимальной эквивалентной массой с сохранением временных режимов сополимеризации. При этом соль перфтор-2-сульфонатэтоксипропилвинилового эфира может войти в состав образующегося сополимера, не изменяя ЭМ сополимера и снижая концентрацию перфторированного ПАВ в системе, облегчая отмывку примеси ПАВ.
Таким образом, решена задача, стоящая перед авторами предлагаемого изобретения: способ получения сополимеров ТФЭ с ПФЭПВЭ в соответствии с настоящим изобретением по сравнению со способом-прототипом, отличается улучшенными технико-экономическими показателями (уменьшение расхода перфторированного ПАВ на 10-30% и промывных вод на 13-42,5%) при проведении технологического цикла получения сополимера. Данный способ снижает количество сточных вод и таким образом более экологичен.

Claims (2)

1. Способ получения перфторированного сополимера, содержащего функциональные группы, эмульсионной сополимеризацией тетрафторэтилена и перфтор-2-фторсульфонилэтоксипропилвинилового эфира, проводимой при постоянном давлении тетрафторэтилена в присутствии радикального инициатора и стабилизатора эмульсии - соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, включающий стадию предварительного эмульгирования перфтор-2-фторсульфонилэтоксипропилвинилового эфира в водной среде с применением гомогенизатора типа ротор-статор при скорости вращения ротора 8000-12000 об/мин, отличающийся тем, что эмульсионную сополимеризацию тетрафторэтилена и перфтор-2-фторсульфонилэтоксипропилвинилового эфира осуществляют, применяя для стабилизации эмульсии уменьшенную на 10-30% концентрацию аммониевой соли перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, заменяя ее эквивалентным количеством одновалентной соли перфтор-2-сульфонатэтоксипропилвинилового эфира, предпочтительно аммониевой солью перфтор-2-сульфонатэтоксипропилвинилового эфира, сохраняя условия проведения процесса.
2. Способ по п.1, отличающийся тем, что аммониевую соль перфторкарбоновой кислоты CnF2n+1COONH4, где n=7-9, используют в количестве 1,76-2,26% от массы перфтор-2-фторсульфонилэтоксипропилвинилового эфира в смеси с одновалентной солью перфтор-2-сульфонатэтоксипропилвинилового эфира в количестве до 0,75% от массы перфтор-2-фторсульфонилэтоксипропилвинилового эфира.
RU2010142561/04A 2010-10-18 2010-10-18 Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы RU2450023C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010142561/04A RU2450023C1 (ru) 2010-10-18 2010-10-18 Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010142561/04A RU2450023C1 (ru) 2010-10-18 2010-10-18 Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы

Publications (1)

Publication Number Publication Date
RU2450023C1 true RU2450023C1 (ru) 2012-05-10

Family

ID=46312259

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010142561/04A RU2450023C1 (ru) 2010-10-18 2010-10-18 Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы

Country Status (1)

Country Link
RU (1) RU2450023C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545182C1 (ru) * 2013-09-06 2015-03-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения сополимера тетрафторэтилена с 2-фторсульфонилперфторэтилвиниловым эфиром - прекурсора протонопроводящих мембран - методом эмульсионной сополимеризации
RU2771278C2 (ru) * 2017-09-01 2022-04-29 ЭйДжиСи Инк. Полимер, содержащий фторсульфонильную группу или группу сульфоновой кислоты, способ его получения и его применение

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
US3642742A (en) * 1969-04-22 1972-02-15 Du Pont Tough stable tetrafluoroethylene-fluoroalkyl perfluorovinyl ether copolymers
US5608022A (en) * 1993-10-12 1997-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Perfluorocarbon copolymer containing functional groups and a method for producing it
RU2195465C1 (ru) * 2001-05-08 2002-12-27 Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова" Способ получения сополимера тетрафторэтилена с перфторпропилвиниловым эфиром
US6602968B1 (en) * 1999-03-02 2003-08-05 Paul Gregory Bekiarian Free radical polymerization method for fluorinated copolymers
RU2348649C1 (ru) * 2007-12-20 2009-03-10 Институт катализа имени Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Способ получения перфторированного сополимера, содержащего функциональные группы

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3282875A (en) * 1964-07-22 1966-11-01 Du Pont Fluorocarbon vinyl ether polymers
US3642742A (en) * 1969-04-22 1972-02-15 Du Pont Tough stable tetrafluoroethylene-fluoroalkyl perfluorovinyl ether copolymers
US5608022A (en) * 1993-10-12 1997-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Perfluorocarbon copolymer containing functional groups and a method for producing it
US6602968B1 (en) * 1999-03-02 2003-08-05 Paul Gregory Bekiarian Free radical polymerization method for fluorinated copolymers
RU2195465C1 (ru) * 2001-05-08 2002-12-27 Открытое акционерное общество "Кирово-Чепецкий химический комбинат им. Б.П.Константинова" Способ получения сополимера тетрафторэтилена с перфторпропилвиниловым эфиром
RU2348649C1 (ru) * 2007-12-20 2009-03-10 Институт катализа имени Г.К. Борескова Сибирского отделения Российской академии наук (статус государственного учреждения) Способ получения перфторированного сополимера, содержащего функциональные группы

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2545182C1 (ru) * 2013-09-06 2015-03-27 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук Способ получения сополимера тетрафторэтилена с 2-фторсульфонилперфторэтилвиниловым эфиром - прекурсора протонопроводящих мембран - методом эмульсионной сополимеризации
RU2771278C2 (ru) * 2017-09-01 2022-04-29 ЭйДжиСи Инк. Полимер, содержащий фторсульфонильную группу или группу сульфоновой кислоты, способ его получения и его применение

Similar Documents

Publication Publication Date Title
US6602968B1 (en) Free radical polymerization method for fluorinated copolymers
US6025092A (en) Fluorinated ionomers and their uses
CA1336222C (en) Low equivalent weight sulfonic fluoropolymers
JP5577411B2 (ja) パーフルオロイオン交換樹脂、その調製法および使用
EP1290041B1 (en) Sulfonated perfluorocyclobutane ion-conducting membranes
CN100579996C (zh) 带有磺酰氟及醚端基侧基的氟树脂及其合成方法与应用
WO1994003503A2 (en) Fluorinated polymers
CN113717310B (zh) 具有高效离子传输通道的全氟离子交换树脂及其制备方法
US20130253157A1 (en) Ionomers and ionically conductive compositions for use as one or more electrode of a fuel cell
JP2004269875A (ja) イオン性又はイオン化可能な官能基を含有する非過フッ素化ポリマー樹脂及び当該樹脂を含有する生成物
JP4412171B2 (ja) スルホン酸官能基含有フッ素化単量体、それを含有する含フッ素共重合体、およびイオン交換膜
EP0053455A1 (en) Preparation of a fluorocarbon cation-exchange membrane and electrolysis process using the membrane
JP5486693B2 (ja) 高交換容量過フッ化イオン交換樹脂、その調製方法、及び使用
RU2450023C1 (ru) Способ получения перфторированного сополимера перфторэтилена, содержащего сульфонилфторидные функциональные группы
RU2348649C1 (ru) Способ получения перфторированного сополимера, содержащего функциональные группы
CN115991817B (zh) 膦酸磺酸共聚离子交换膜及其制备方法
RU2454431C1 (ru) Способ получения перфторированного функционализированного сополимера методом эмульсионной сополимеризации
RU2671812C1 (ru) Способ получения сополимера перфтор-3-оксапентенсульфонилфторида и тетрафторэтилена в качестве прекурсора перфторированных протонопроводящих мембран
RU2545182C1 (ru) Способ получения сополимера тетрафторэтилена с 2-фторсульфонилперфторэтилвиниловым эфиром - прекурсора протонопроводящих мембран - методом эмульсионной сополимеризации
RU2820658C1 (ru) Получение стабилизированного сополимера для протонпроводящих мембран
Sharif et al. Fluorinated ionomers and ionomer membranes containing the bis [(perfluoroalkyl) sulfonyl] imide protogenic group
MXPA00007297A (en) Fluorinated ionomers and their uses
Lochhaas et al. The Development of New Membranes for Proton Exchange Membrane Fuel Cells a a

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141019

NF4A Reinstatement of patent

Effective date: 20151227

PD4A Correction of name of patent owner
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20220425