WO2009081952A1 - 基板ホルダー、基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置、プログラム - Google Patents

基板ホルダー、基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置、プログラム Download PDF

Info

Publication number
WO2009081952A1
WO2009081952A1 PCT/JP2008/073477 JP2008073477W WO2009081952A1 WO 2009081952 A1 WO2009081952 A1 WO 2009081952A1 JP 2008073477 W JP2008073477 W JP 2008073477W WO 2009081952 A1 WO2009081952 A1 WO 2009081952A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
bias voltage
insulating substrate
supporting
applying
Prior art date
Application number
PCT/JP2008/073477
Other languages
English (en)
French (fr)
Inventor
Shinya Houman
Hiroshi Torii
Original Assignee
Canon Anelva Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corporation filed Critical Canon Anelva Corporation
Priority to JP2009519729A priority Critical patent/JP4358905B2/ja
Priority to CN2008801139921A priority patent/CN101842513B/zh
Publication of WO2009081952A1 publication Critical patent/WO2009081952A1/ja
Priority to US12/754,364 priority patent/US7927473B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture
    • G11B23/02Containers; Storing means both adapted to cooperate with the recording or reproducing means
    • G11B23/04Magazines; Cassettes for webs or filaments
    • G11B23/041Details
    • G11B23/042Auxiliary features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68728Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of separate clamping members, e.g. clamping fingers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting substrates others than wafers, e.g. chips

Definitions

  • the present invention relates to a substrate holder used when continuously forming a plurality of layers of thin films on both main surfaces of an insulating substrate in a manufacturing process of a hard disk, a film forming method using the substrate holder, and a hard disk manufacturing method
  • the present invention relates to a film forming apparatus and the like.
  • Patent Document 1 discloses an apparatus provided with a substrate transfer chamber and a substrate transfer mechanism. It is disclosed.
  • FIG. 6 shows a schematic view of the main part of the apparatus according to FIG.
  • the substrate holder includes a main body 21 and a plurality of substrate support claws 23a and 23b, and holds the insulating substrate 22 so that both main surfaces are parallel to each other in the vertical direction.
  • the substrate 22 held by the substrate holder is held by the substrate transfer mechanism 31, and the substrate support claw 23b is pushed down by a release mechanism (not shown), thereby 22 is released from the substrate support claws 23a and 23b.
  • the substrate 22 is rotated so that the positions of the substrate support claws 23a and 23b are on the surface of the underlying layer to support the substrate 22 again, whereby the underlying layer on the substrate 22 and the main body 21 of the substrate holder are electrically connected.
  • the substrate holder is moved to a film forming chamber for performing a bias voltage applying step, and an electrode movable portion (not shown) of the bias voltage supply electrode is brought into contact with the main body 21 of the substrate holder, via the main body 21 and the substrate support claws 23a and 23b. Then, the next film is formed while applying a bias voltage to the underlayer.
  • the substrate 22 is once transferred from the substrate holder to the substrate holding mechanism 31 after the base layer is formed, and the substrate 22 is rotated and then re-supported by the substrate holder. There was a risk of the substrate falling during re-support.
  • the substrate transfer mechanism 31 has a complicated structure, and a dedicated vacuum chamber equipped with the mechanism is required, resulting in a problem that the entire apparatus is increased in size.
  • Patent Documents 2 to 4 provide a nail for applying a bias voltage separately from the substrate supporting nail originally provided in the substrate holder, and the bias is applied only in the bias voltage applying film forming process.
  • An apparatus for forming a film by bringing a nail for voltage application into contact with a substrate is disclosed. Schematic diagrams of the substrate holder of such an apparatus are shown in FIGS. 6A, B, 7A, and B, respectively.
  • 6A and 6B includes a main body 41 and a plurality of substrate support claws 43, and further includes a bias voltage application claw 44.
  • the substrate support claws 43 are all in contact with the substrate 42, and the bias voltage application-specific claws 44 are pushed down by a mechanism (not shown) when forming the base layer (FIG. 6A).
  • the mechanism that pushed down the bias voltage application nail 44 is released to bring the bias voltage application nail 44 into contact with the underlayer, and a bias voltage is applied to the underlayer from the bias voltage power supply 45 via the bias voltage application nail 44.
  • Film formation is performed while applying (FIG. 6B).
  • FIG. 7A and 7B includes a main body 51 and a plurality of substrate support claws 53, and further includes a bias voltage application claw 54.
  • the substrate 52 is normally supported only by the substrate support claws 53, and the bias voltage application-specific claws 54 are detached from the substrate (FIG. 7A).
  • underlayer film formation is performed, and then, in the bias voltage application film formation process, the bias voltage application nail 54 is pushed up by the bias voltage supply bar 56 and brought into contact with the underlayer (FIG. 7B).
  • film formation is performed while a bias voltage is applied to the underlying layer from the bias voltage power supply 55 via the bias voltage supply bar 56 and the bias voltage application dedicated claw 54.
  • the structure is simple because only the bias voltage application claw is brought into contact with the substrate only in the step of applying the bias voltage.
  • the present invention is used in a continuous film forming process of a plurality of thin films including a bias voltage applying film forming process and a bias voltage non-applying film forming process, and has a simple structure and does not cause a problem of upsizing of a film forming apparatus.
  • An object of the present invention is to provide a substrate holder having a small shadow area during film formation.
  • Another object of the present invention is to provide a film forming apparatus and a film forming method using the substrate holder.
  • a substrate holder according to the present invention that achieves the above object is a substrate holder for supporting an insulating substrate, A conductive substrate holder body having an opening; A first support member that is formed so as to protrude from the inner periphery of the opening into the opening and includes a clamping member for supporting one end of the insulating substrate; A holding member for supporting the other end of the insulating substrate, and a second support member that protrudes into the opening or is movable so as to be retracted from the opening.
  • At least one of the first support members is a bias voltage application support member capable of applying a bias voltage to the insulating substrate
  • the second support member includes the opening so that the sandwiching member of the bias voltage application support member is separated from the insulating substrate. Projecting toward the inside, When the insulating substrate is supported by the holding member of the bias voltage application supporting member, the second supporting member is configured such that the other end of the insulating substrate is held by the holding member of the second supporting member. The retraction movement is performed from a supported position to a position where the insulating substrate is supported by a holding member of the bias voltage application supporting member.
  • a film forming apparatus that achieves the above object is a film forming apparatus that continuously forms a plurality of thin films simultaneously on both surfaces of an insulating substrate, A first deposition chamber for depositing a conductive film on the insulating substrate without applying a voltage to the insulating substrate; A second deposition chamber for depositing a thin film on the insulating substrate while applying a voltage to the insulating substrate; A conductive substrate holder main body having an opening, a projecting member projecting from the inner periphery of the opening into the opening, and a holding member for supporting one end of the insulating substrate; and A first support member including a bias voltage applying support member capable of applying a bias voltage to the insulating substrate; and a holding member for supporting the other end of the insulating substrate, and facing the opening.
  • a substrate holder having a second support member that protrudes or is movable so as to be retracted from within the opening;
  • the second film-forming chamber is provided in the first film forming chamber and supports the substrate by the holding member of the second supporting member so that the holding member of the first supporting member is separated from the substrate.
  • the insulating member is moved by the holding member of the first supporting member from a position where the other end portion of the insulating substrate is supported by the holding member of the second supporting member.
  • Drive means for moving the second support member to a position where the substrate is supported;
  • a voltage applying means provided in the second film forming chamber for applying a voltage to the first support member;
  • Control means for controlling movement by the drive means, application of the voltage by the voltage application means, operation of the first film formation chamber, and operation of the second film formation chamber;
  • the first film formation chamber controlled by the control means forms a conductive film on the substrate at a position where the holding member of the first support member is separated from the substrate,
  • the control means controls the driving means to lower the second support member to a position where the substrate on which the conductive film is formed is supported by the clamping member of the first support member.
  • the control means controls the voltage application means so that the voltage is applied to the first support member, and controls the operation of the second film formation chamber while applying the voltage, thereby controlling the conductivity.
  • a thin film is formed on an insulating substrate on which a film is formed.
  • the film forming method according to the present invention that achieves the above object is a method in which an insulating substrate is supported by a substrate support member in a vacuum processing chamber, and a plurality of thin films are sequentially formed on the surface of the insulating substrate.
  • the plurality of thin films at least one layer is formed by a bias sputtering method, A conductive substrate holder main body having an opening, and a pinching member formed to project from the inner periphery of the opening toward the opening, and for supporting one end of the insulating substrate; and A first support member including a bias voltage applying support member capable of applying a bias voltage to the insulating substrate; and a holding member for supporting the other end of the insulating substrate, and facing the opening.
  • a substrate holder having a second support member that protrudes or is movable so as to be retracted from within the opening; Transporting the substrate holder into a first deposition chamber; Forming a base layer, which is a conductive film, on the insulating substrate while supporting the insulating substrate by the second supporting member and a first supporting member other than the bias voltage applying supporting member; , Transporting the substrate holder to a second deposition chamber; Supporting the insulating substrate with a first support member, and forming a thin film on the insulating substrate while applying a bias voltage to the insulating substrate from the bias voltage applying support member; It is characterized by having.
  • a program according to the present invention that achieves the above object is a method of supporting an insulating substrate by a substrate support member in a vacuum processing chamber and sequentially forming a plurality of thin films on the surface of the insulating substrate.
  • a program for causing a computer to execute a film forming method in which at least one of the plurality of thin films is formed by a bias sputtering method, and the film forming method includes: A conductive substrate holder main body having an opening, and a pinching member formed to project from the inner periphery of the opening toward the opening, and for supporting one end of the insulating substrate; and A first support member including a bias voltage applying support member capable of applying a bias voltage to the insulating substrate; and a holding member for supporting the other end of the insulating substrate, and facing the opening.
  • a substrate holder having a second support member that protrudes or is movable so as to be retracted from within the opening; Transporting the substrate holder into a first deposition chamber; Forming a base layer, which is a conductive film, on the insulating substrate while supporting the insulating substrate by the second supporting member and a first supporting member other than the bias voltage applying supporting member; , Transporting the substrate holder to a second deposition chamber; Supporting the insulating substrate with a first support member, and forming a thin film on the insulating substrate while applying a bias voltage to the insulating substrate from the bias voltage applying support member; It is characterized by having.
  • the present invention it is used in a continuous film forming process of a plurality of thin films including a bias voltage applying film forming process and a bias voltage non-applying film forming process, and there is a problem that the structure is simple and the film forming apparatus is enlarged.
  • a substrate holder having a small shadow area at the time of film formation a film formation apparatus using the substrate holder, and a film formation method.
  • the structure is simple and the size of the apparatus is not increased, the number of times the nail is detached from the substrate as a whole is reduced, the generation of particles is suppressed, and the shadow area is also reduced as compared with the prior art.
  • the present invention it is possible to perform film formation with a reduced shadow area more efficiently and with a higher yield than in the past, and it is possible to obtain a member having a higher quality by continuously forming a plurality of thin layers such as a hard disk. And can be provided at low cost.
  • FIG. 1 shows the state which hold
  • 3 is a block diagram showing a functional configuration of a control unit 100.
  • FIG. 11B shows the state which the drive means 14 descend
  • FIG. 11B shows the state supported.
  • the driving means 14 is raised to come into contact with the auxiliary board support claw 6, and the auxiliary board support claw 6 is raised and brought into contact with the board 2.
  • FIG. 11A It is a figure which expands and shows the state of the board
  • FIG. 4 is a perspective view of the configuration example of FIG. 3 in which a driving unit 14 and a bias voltage applying unit 16 are arranged in a direction perpendicular to the main body 1 of the substrate holder.
  • FIGS. 1 and 2 are views showing a state in which a substrate is held in a preferred embodiment of the first substrate holder of the present invention.
  • FIG. 1 shows a case where a bias voltage is applied and
  • FIG. 2 shows a case where a bias voltage is not applied. Shows the state.
  • 1 is a substrate holder main body
  • 2 is an insulating substrate
  • 3 and 5 are substrate support claws
  • 6 is an auxiliary substrate support claw
  • 7 is an elastic member constituted by, for example, a leaf spring.
  • the substrate holder of the present invention includes a plurality of substrate support claws 3, 3, 5, and 5 that support the insulating substrate 2, and a conductive substrate holder main body (hereinafter referred to as "main body 1").
  • the auxiliary substrate support claw 6 is provided.
  • the main body 1 has a flat plate shape, and has an opening larger than the outer shape of the insulating substrate 2 at the center, and the substrate support claws 3, 3, 5, and 5 from the inner periphery of the opening from the main body 1 in the opening. Projects into the opening.
  • the main body 1 is configured so that a bias voltage applying means provided outside can be contacted or non-contacted and a bias voltage can be applied from the outside.
  • the substrate support claws 3, 3, 5, and 5 are formed so as to protrude from the inner periphery of the opening formed in the main body 1 of the substrate holder into the opening, and are arranged at one end around the insulating substrate (the outer periphery of the substrate).
  • Part) which functions as a first support member provided with a clamping member for supporting.
  • at least one of the first support members functions as a bias voltage application support member for applying a bias voltage to the substrate.
  • the plurality of substrate support claws 3, 3, 5, and 5 are all made of a conductive material and are electrically connected to the main body 1.
  • the substrate 2 is held at a predetermined distance from the main body 1 by the substrate support claw in the opening of the main body 1 arranged vertically. That is, the substrate support claws 3, 3, 5, and 5 come into contact with the outer end surface of the substrate 2 to hold the substrate 2 vertically in the opening of the main body 1.
  • the auxiliary substrate support claw 6 is disposed such that its tip is located below the substrate 2 and can be moved up and down.
  • the lower end of the auxiliary substrate support claw 6 is connected to the drive means 14, and the operation of the drive means 14 causes the auxiliary substrate support claw 6 to be raised (projected into the opening) or lowered (retracted from the opening). Is possible.
  • the control unit 100 is connected to the driving unit 14 and raises (projects) the driving unit 14 or moves down (retracts) depending on the bias voltage application film forming process or the bias voltage non-application film forming process. It is possible to control the vertical movement to be performed.
  • substrate support claws 3, 3 and 5, 5 are arranged in two places in the upper half of the substrate 2 and two places in the lower half, respectively.
  • the substrate 2 is supported by all of the substrate support claws 3, 3, 5, and 5.
  • the auxiliary substrate support claw 6 is pushed upward to bring the auxiliary substrate support claw 6 into contact with the substrate 2.
  • the driving means 14 pushes up the auxiliary substrate support claw 6 as it is, the substrate 2 is pushed upward by the gap with the main body 1 as shown in FIG. 2, and the substrate support that supported the substrate 2 from below the substrate 2 is supported.
  • the auxiliary substrate support claw 6 includes a holding member for supporting the other end portion of the insulating substrate, protrudes toward the opening formed in the main body 1 of the substrate holder, or retracts from the opening. It functions as a second support member that can move.
  • the holding member of the bias voltage application support member for example, the substrate support claws 5 and 5
  • the holding member of the bias voltage application supporting member for example, the substrate supporting claws 5, 5
  • the holding member of the auxiliary substrate supporting claw 6 (second supporting member) is separated from the substrate and supports the auxiliary substrate.
  • the substrate moves from the position supported by the clamping member of the claw 6 (second support member) to the position supported by the clamping member of the bias voltage application support member (substrate support claw 5, 5).
  • the holding members of the substrate support claws 3, 3, 5, 5 and the auxiliary substrate support claws 6 are V-shaped or U-shaped in the normal direction cross section of the main surface of the substrate 2 so that the substrate 2 can be held well. It is preferable to have a configuration in which a concave portion such as the above is provided and the end surface of the substrate 2 is sandwiched in the concave portion.
  • an elastic member 7 composed of, for example, a leaf spring is attached below the auxiliary substrate support claw 6 and pushes the auxiliary substrate support claw 6 upward in accordance with the ascending operation of the driving means 14. At that time, the elastic member 7 is pressed. Therefore, if the force that pushes up the auxiliary substrate support claw 6 upward is released by the lowering operation of the driving means 14, the auxiliary substrate support claw 6 is automatically moved downward by the restoring force of the elastic member 7 and the substrate 2. The substrate support claws 5 and 5 come into contact with the substrate 2 again at the same time as the substrate 2 returns downward, and the substrate support claws 5 and 5 support the substrate 2 returned downward.
  • the auxiliary substrate support claws 6 are moved up and down to come into contact / non-contact with the substrate 2 so that the substrate support claws 5, 5 are not in contact with the substrate 2. ⁇ Can be contacted. Therefore, the substrate 2 takes two states, a state where it is supported by the substrate support claws 3, 3 and the auxiliary substrate support claws 6, and a state where it is supported by the substrate support claws 3, 3, 5, 5.
  • the number of the substrate support claws is small as long as the substrate 2 can be stably held, because the shadow area by the claws is reduced.
  • the substrate support claws 3 and 3 may be one above the substrate 2. Further, only one of the substrate support claws 5 and 5 may be used.
  • FIG. 1 An embodiment of the film forming apparatus of the present invention using the substrate holder illustrated in FIGS. 1 and 2 is schematically shown in FIG.
  • the film forming apparatus of the present invention includes a plurality of film forming chambers, and a transport unit for transporting between the plurality of film forming chambers while holding the insulating substrate 2 vertically on a substrate holder.
  • FIG. 3 is a diagram illustrating a part of the film forming apparatus.
  • reference numerals 11a and 11b denote film forming chambers
  • the film forming chamber 11a is used for film formation without applying a bias voltage
  • the film forming chamber 11b is used for film formation with a bias voltage applied.
  • Reference numerals 13a to 13c denote gate valves.
  • the film forming chambers 11a and 11b of this apparatus are both provided with a sputter cathode for both main surfaces of the substrate 2, and can form films simultaneously from both surfaces of the substrate 2. Further, the substrate holder transport means (not shown) can transport the substrate holder in the left-right direction on the paper surface. In this example, the film forming chambers 11a and 11b are arranged in a line in the horizontal direction.
  • the film forming apparatus of the present invention is not limited to the line-shaped film forming apparatus. For example, a form in which a plurality of film forming chambers surround a chamber located in the center may be employed.
  • a film forming chamber 11a for forming a bias voltage non-applied film which is positioned in front of a film forming chamber 11b for performing a bias voltage applying film formation, pushes up the auxiliary substrate support claw 6 from below and moves up, or an auxiliary substrate.
  • Drive means 14 for lowering the support claw 6 is provided.
  • the operation of the driving unit 14 is controlled by the control unit 100. Under the control of the control means 100, the driving means 14 pushes up the auxiliary substrate support claw 6 to contact the substrate 2 to support the substrate 2 on the auxiliary substrate support claw 6, and at the same time from the substrate 2 to the substrate support claws 5, 5. Can be removed.
  • the driving means 14 pushes up the auxiliary substrate support claws 6, and the driving means 14 is released under the control of the control means 100 (in the direction of the arrow). ), The auxiliary substrate support claw 6 also moves downward, and the auxiliary substrate support claw 6 is detached from the substrate 2.
  • FIG. 3 only one film forming chamber for performing bias voltage non-application film formation provided with a driving means 14 is shown in front of the chamber 11b for performing bias voltage application film formation. The invention is not limited to this. In the case where the bias voltage non-application film formation is performed a plurality of times before the bias voltage application film formation, the bias voltage non-application film including the driving unit 14 is provided in the front stage of the chamber 11b in which the bias voltage application film formation is performed. A plurality of film forming chambers are arranged.
  • FIG. 11A, B to 13A, B are perspective views of the main body 1 of the substrate holder.
  • the driving unit 14 is lowered by the control unit 100, the auxiliary substrate support claw 6 and the substrate 2 are not in contact with each other, and the substrate 2 is supported by the substrate support claw 5 and the substrate support claw 3.
  • the drive means 14 is raised by the control means 100, the auxiliary substrate support claw 6 and the substrate 2 are in contact, the substrate support claw 5 is not in contact with the substrate, the auxiliary substrate support claw 6 and the substrate support claw 3 are Thus, the substrate 2 is supported.
  • FIG. 12A is a diagram illustrating a state in which the driving unit 14 is lifted to come into contact with the auxiliary board support claw 6 and the auxiliary board support claw 6 is raised and brought into contact with the board 2 in FIG. 12B is an enlarged view showing a state where the auxiliary substrate support claw 6 is in contact with the substrate and the substrate support claw 5 is not in contact with the substrate 2.
  • FIG. 13A the driving means 14 is lowered in FIG. 11A, the auxiliary substrate support claw 6 is not in contact with the substrate 2, the substrate support claw 5 is in contact with the substrate 2, and the substrate support claw 3 and the substrate support claw 5 It is a figure which shows the state which supported the board
  • the film forming chamber 11b for performing bias voltage application film formation includes, for example, a bias voltage applying unit 16 for applying a bias voltage to the main body 1 from below and a power source 15 for supplying a voltage to the bias voltage applying unit 16.
  • the bias voltage application means 16 has an electrode that can be raised or lowered (hereinafter, the “electrode of the bias voltage application means 16” is also simply referred to as “bias voltage application means 16”).
  • the electrode of the bias voltage applying means 16 rises and comes into contact with the main body 1, a bias voltage is applied from the bias voltage applying means 16 to at least one of the substrate support claws 3, 3, 5, 5 through the main body 1 of the substrate holder. Is done.
  • the control means 100 is connected to the power supply 15 and the bias voltage application means 16 and can control ON / OFF control of the power supply 15 and the rise or fall of the electrodes of the bias voltage application means 16.
  • FIG. 3 shows a state in which the electrode of the bias voltage applying means 16 is raised and brought into contact with the main body 1 in the film forming chamber 11b of FIG. From this state, the electrode of the bias voltage applying means 16 is lowered in the direction of the arrow under the control of the control means 100, so that the electrode of the bias voltage applying means 16 is not in contact with the main body 1, and the bias voltage is applied to the main body 1. Can not be applied.
  • FIG. 14A and 14B are perspective views when the bias voltage applying means 16 is arranged in a direction perpendicular to the main body 1 of the substrate holder.
  • FIG. 14A shows a state in which the electrode of the bias voltage applying unit 16 is lowered and is not in contact with the main body 1 and no bias voltage is applied to the substrate 2.
  • FIG. 14B shows a state in which the electrode of the bias voltage application unit 16 controlled by the control unit 100 is raised, is in contact with the main body 1, and a bias is applied to the substrate 2.
  • FIG. 17 is a perspective view of the configuration example of FIG. 3 in which the driving means 14 and the bias voltage applying means 16 are arranged in a direction perpendicular to the main body 1 of the substrate holder.
  • the driving means 14 is raised by the control means 100, the auxiliary substrate support claw 6 comes into contact with the substrate 2, and when the substrate 2 is raised, the substrate support claw 5 is not in contact with the substrate 2.
  • the substrate 2 is supported by the substrate support claws 3 and the auxiliary substrate support claws 6.
  • the bias voltage supply means 16 is raised by the control means 100 and comes into contact with the main body 1 of the substrate holder, a bias is applied to the substrate 2.
  • FIG. 17B since there is no driving means 14, the auxiliary substrate support claw 6 is lowered and separated from the substrate 2, and the auxiliary substrate support claw 6 is not in contact with the substrate 2, and the substrate support claw 3, the substrate support claw 5, The substrate 2 is supported.
  • FIG. 8 is a block diagram showing a functional configuration of the control means 100.
  • a film forming apparatus 800 (including a first film forming chamber 11a and a second film forming chamber 11b) is connected to the control means 100.
  • the control means 100 receives input signals from the first film formation chamber 11a and the second film formation chamber 11b.
  • the control means 100 operates a drive program 14, a power supply 15, a bias voltage application means 16, and a control program programmed to control a process executed in a chamber constituting the film forming apparatus 800, and issues an operation instruction. Output to the membrane device 800.
  • the control means 100 has the configuration of the computer (information processing apparatus) shown in FIG.
  • the control unit 100 receives an input signal 802 from the film formation apparatus 800, outputs a computer-readable storage medium 803 having a program and data, a processor 804, and an operation instruction including the control signal to the film formation apparatus 800. Part 805.
  • the input unit 802 can accept an input of a command from another external apparatus connected via a network, for example.
  • the control means 100 makes the auxiliary substrate support claw 6 (second support member) and the insulating substrate 2 in contact with each other.
  • the drive means 14 is moved so that the control means 100 brings the bias voltage application support member (substrate support claw 5) into a non-contact state with the insulating substrate 2.
  • the control means 100 supports the substrate 2 with the substrate support claw 3 (first support member) and the auxiliary substrate support claw 6 (second support member) other than the bias voltage application support member (substrate support claw 5). Control is performed so that the base layer, which is a conductive film, is sputtered on the substrate.
  • the auxiliary substrate support claw 6 (second support member) is in the second film formation chamber (11b in FIG. 3). Since there is no drive means 14 that moves the substrate up and down, the auxiliary substrate support claw 6 (second support member) moves so as to be in a non-contact state with the substrate 2 and is in a non-contact state with the substrate 2.
  • the control unit 100 moves the electrode of the bias applying unit 16 so as to be in contact with the main body 1 of the substrate holder, and the insulating substrate with the conductive film attached thereto by the substrate support claw 3 (first support member). Holding and controlling the bias voltage application support member (substrate support claw 5) to form a thin film on the substrate while applying a bias to the insulating substrate with the conductive film.
  • FIG. 9 is a perspective view showing a modification of FIG.
  • the bias voltage applying means 16 is provided below the main body 1, and the contact of the bias voltage applying means 16 moves up and down.
  • the gist of the present invention is not limited to the configuration of FIG. 3.
  • the bias voltage applying means 16 is arranged in parallel with the main body 1, and the electrodes are moved in a horizontal manner. It is also possible to apply a bias voltage to the main body 1.
  • FIG. 10A is a diagram showing a configuration example of the bias voltage applying means 16 arranged with the electrodes movable in the vertical direction and the bias voltage applying means 16 arranged with the electrodes movable in the horizontal direction. is there.
  • FIG. 10A shows a state where the electrodes of each bias voltage applying means 16 are not in contact with the main body 1 of the substrate holder.
  • the control means 100 controls the electrodes of each bias voltage applying means 16 to come into contact with the main body 1 of the substrate holder, the result is as shown in FIG. 10B.
  • FIG. 15A and 15B are perspective views when the bias voltage applying means 16 is disposed in the horizontal direction with respect to the main body 1 of the substrate holder.
  • the bias voltage applying means 16 provided in the horizontal direction is controlled by the control means 100 and the electrode moves to the right in the horizontal direction (the direction of the arrow 1501) in the figure, the electrode of the bias voltage applying means 16 The body 1 is not in contact with the substrate 2 and no bias voltage is applied to the substrate 2 (FIG. 15A).
  • the bias voltage applying means 16 provided in the horizontal direction is controlled by the control means 100 and the electrode moves to the left in the horizontal direction (in the direction of the arrow 1502) in the drawing, the electrode of the bias voltage applying means 16 becomes the substrate holder. Then, a bias voltage is applied to the substrate 2 (FIG. 15B).
  • FIG. 16 is a diagram illustrating a configuration example in which the driving unit 14 using the motor driving mechanism and the bias voltage applying unit 16 are arranged in the horizontal direction with respect to the main body 1 of the substrate holder.
  • the driving amount of the motor is controlled by the control means 100, the driving means 14 rises and comes into contact with the auxiliary substrate support claw 6, and as the driving means 14 rises, the auxiliary substrate support claw 6 rises and comes into contact with the substrate 2.
  • the substrate 2 is supported by the substrate support claw 3 and the auxiliary substrate support claw 6. In this state, the substrate support claws 5 are not in contact with the substrate 2.
  • control means 100 moves the electrodes of the bias voltage applying means 16 in the horizontal direction, it comes into contact with the main body 1 of the substrate holder and a bias voltage is applied to the substrate 2.
  • the auxiliary substrate support claw 6 is not in contact with the substrate 2, and the substrate 2 is supported by the substrate support claw 3 and the substrate support claw 5.
  • the film forming method of the present invention will be described by taking the case of using the apparatus of FIG. 3 as an example.
  • the film forming method of the present invention is a method for continuously forming a plurality of thin layers on both main surfaces of an insulating substrate.
  • a conductive first layer made of metal or the like is formed on the insulating substrate 2 in the film forming chamber 11a by non-bias voltage forming (first film forming step).
  • the auxiliary substrate support claws 6 are pushed up by the driving means 14 to come into contact with the substrate 2, and at the same time, the substrate support claws 5, 5 are detached from the substrate 2. , 3 support the substrate 2.
  • the substrate support claw 5 that functions as a bias voltage application support member is not in contact with the insulating substrate. Therefore, before the substrate supporting claws 5 and 5 are held in a non-contact state, a conductive first layer made of metal or the like is also formed at a position where the substrate supporting claws 5 and 5 are in contact with the substrate 2.
  • the driving means 14 of the auxiliary substrate support claw 6 is released, and the auxiliary substrate support claw 6 is moved downward by the restoring force of the leaf spring 7.
  • the auxiliary substrate support claws 6 are detached from the substrate 2, and the substrate support claws 5 and 5 support the substrate 2 that has come down downward.
  • the substrate support claws 5 and 5 are in contact with the first layer.
  • the substrate 2 on which the first layer has been formed is transferred to the film formation chamber 11b together with the substrate holder, the electrode of the bias voltage applying means 16 is brought into contact with the main body 1 of the substrate holder, and a bias voltage is applied to the main body 1. Since the substrate 2 is supported by the substrate support claws 3, 3, 5 and 5, a bias voltage is applied to the first layer via at least one of the main body 1 and the substrate support claws 3, 3, 5, and 5. Is done. By performing film formation in this state, a new thin layer (second layer) is formed on the first layer by bias voltage application film formation (second film formation step).
  • the first layer is also formed in the region where the substrate support claws 5 and 5 are in contact with the substrate 2.
  • the contact area between the substrate support claws 5 and 5 and the first layer is wide, and an efficient voltage application can be performed.
  • the bias voltage application film forming step is repeated a plurality of times, it is not necessary to separate the substrate support claws 5 and 5 from the substrate 2 for each step, and the substrate 2 of the substrate support claws 5 and 5 is removed. Generation of particles due to detachment from is minimized.
  • 4 is an insulating member.
  • the second substrate holder uses the substrate support claws 5 and 5 as bias voltage application substrate support claws (bias voltage application support member), and the substrate support claws 3 and 3 other than the bias voltage application substrate support claws have bias voltage applied thereto.
  • a substrate supporting claw for non-bias voltage application bias voltage non-application support member
  • the substrate support claws 5, 5 are made of a conductive material and are electrically connected to the main body 1. Is electrically insulated.
  • the conductive substrate support claws 3 and 3 are attached to the main body 1 via the insulating member 4. However, by configuring the substrate support claws 3 and 3 with an insulating material, It may be attached directly to 1.
  • the second substrate holder even when a bias voltage is applied to the main body 1 from an external bias voltage applying means, no bias voltage is applied to the substrate support claws 3 and 3, so that the substrate support is applied when the bias voltage is applied. The occurrence of abnormal discharge at the part can be reduced.
  • the drive means 14 is moved up and down under the control of the control means 100 so that the auxiliary board support claws 6 are brought into contact / non-contact with the board 2, whereby the board support claws 5, 5 are brought into contact with the board 2.
  • the substrate 2 is supported by the substrate support claws 3, 3 and the auxiliary substrate support claws 6 (first state), and is supported by the substrate support claws 3, 3, 5, 5 (FIG. 4).
  • the second state shown in FIG. In other words, the substrate support claws 3, 3 for applying no bias voltage always contact the substrate 2 to support the substrate 2, and the substrate support claws for applying the bias voltage according to whether the bias voltage is applied or not applied.
  • Either 5, 5 or the auxiliary substrate support claw 6 is added to support the substrate 2. Switching between the first state and the second state is performed under the control of the control means 100.
  • the number of substrate support claws is the same as that of the first substrate holder described above with reference to FIGS. That is, at least one bias voltage application and no bias voltage application are required, but the total number is preferably smaller if the substrate 2 can be stably held because the shadow area due to the nail is reduced.
  • the substrate supporting claws 3 and 3 may be one vertically above the substrate 2.
  • the substrate support claws 5 and 5 only one of them may be used for applying a bias voltage, and the other may be configured similarly to the substrate support claws 3 and 3 for applying no bias voltage.
  • the film forming apparatus using the second substrate holder shown in FIG. 4 is basically the same as the film forming apparatus using the first substrate holder, and the apparatus illustrated in FIG. 3 is preferably used.
  • the auxiliary substrate support claw 6 of the second substrate holder is pushed up by the driving means 14 provided in the film forming chamber 11a of FIG. 3 so that the substrate 2 is supported by the auxiliary substrate support claw 6 and at the same time the substrate 2 supports the substrate. Remove the nails 5 and 5.
  • the bias voltage of the bias voltage applying unit 16 is applied to the substrate support claws 5, 5 through the main body 1 by bringing the electrode of the bias voltage applying unit 16 into contact with the main body 1.
  • the film forming method using the second substrate holder is the only one that the bias voltage is not applied from the substrate support claws 3 and 3 that are electrically insulated from the main body 1 at the time of bias voltage application film formation. This is different from the film forming method using one substrate holder.
  • the auxiliary substrate support claw 6 is made of an insulating material or is electrically insulated from the main body 1 so that the substrate 2 is supported during film formation with no bias voltage applied.
  • the substrate support claws 3, 3 and 6 can all be electrically insulated from the main body 1. Therefore, even when a bias voltage is applied to the main body 1, it is possible to form a film on the substrate 2 without applying a bias voltage. Even in a chamber, film formation without applying a bias voltage can be performed.
  • the present invention is particularly preferably used for hard disk manufacturing.
  • a hard disk at least an underlayer, a magnetic layer, and a protective layer are formed on both main surfaces of an insulating substrate.
  • the underlayer is first formed by the above-described film formation without applying a bias voltage. Then, a magnetic layer and a protective layer may be formed by applying a bias voltage.
  • the case of film formation by sputtering has been taken up, but it can also be applied to a bias application process such as CVD or etching. It is also possible to process a conductive substrate with the holder according to the invention.
  • the substrate holder of the present invention, the film forming method using the same, and the film forming apparatus are preferably used in addition to hard disk manufacturing.

Abstract

 絶縁性基板を支持するための基板ホルダーは、開口部を有する導電性の基板ホルダー本体と、開口部の内周から開口部内に向けて突出して形成されており、絶縁性基板の一端部を支持するための挟持部材を備える第1の支持部材と、絶縁性基板の他の端部を支持するための狭持部材を備え、開口部内に向けて突出し、または開口部内から退避するように移動可能な第2の支持部材と、を有する。

Description

基板ホルダー、基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置、プログラム
 本発明はハードディスクの製造工程等において絶縁性基板の両主面に連続して複数層の薄膜を成膜する際に用いられる基板ホルダーと、該基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置等に関する。
 ハードディスクの製造工程においては、絶縁性基板の両面に同時に、複数層の薄膜を連続して成膜している。より具体的には、金属膜からなる下地層を成膜した後、該下地層にバイアス電圧を印加しながら磁性層を成膜する。このような複数層の薄膜を連続して成膜する工程がバイアス電圧印加成膜工程を含む場合に用いられる成膜装置としては、特許文献1に基板持ち替えチャンバー及び基板持ち替え機構を備えた装置が開示されている。図5に係る装置の主要部分の模式図を示す。
 係る装置においては、基板ホルダーは本体21と複数の基板支持爪23a,23bとを備えており、絶縁性基板22を両主面が垂直方向に平行になるように保持している。係る基板22に金属膜からなる下地層を成膜した後、基板ホルダーに保持された基板22を基板持ち替え機構31によって保持し、基板支持爪23bを不図示のリリース機構により押し下げることにより、該基板22を基板支持爪23a,23bから開放する。その後、該基板支持爪23a,23bの位置が下地層付着面になるように基板22を回転させて再度基板22を支持することにより、基板22上の下地層と基板ホルダーの本体21とが電気導通状態となる。この基板ホルダーをバイアス電圧印加工程を行う成膜チャンバーに移動させ、バイアス電圧供給電極の電極可動部(不図示)を基板ホルダーの本体21に接触させ、本体21と基板支持爪23a,23bを介して下地層にバイアス電圧を印加しながら次の成膜を行う。
 しかしながら、特許文献1に記載された装置では、下地層成膜後に一旦基板22を基板ホルダーから基板持ち替え機構31に受け渡し、基板22を回転させた後に再度基板ホルダーに再支持させるため、上記受け渡しや再支持の際に基板が落下する恐れがあった。また、基板持ち替え機構31は複雑な構造であり、該機構を備えた専用真空チャンバーが必要となり、装置全体が大型化するという問題があった。
 このような問題を解決した装置として、特許文献2乃至4に、基板ホルダーに本来備えられた基板支持爪とは別にバイアス電圧印加用の爪を用意し、バイアス電圧印加成膜工程でのみ該バイアス電圧印加用の爪を基板に接触させて成膜を行う装置が開示されている。係る装置の基板ホルダーの模式図を図6A、B,図7A、Bにそれぞれ示す。
 図6A、Bの基板ホルダーは本体41と複数の基板支持爪43とを備え、さらに、バイアス電圧印加専用爪44を備えている。係る装置においては、基板支持爪43が全て基板42に接触する構造で、下地層成膜時に不図示の機構によりバイアス電圧印加専用爪44を押し下げる(図6A)。その後、バイアス電圧印加専用爪44を押し下げていた機構をリリースしてバイアス電圧印加専用爪44を下地層に接触させ、バイアス電圧電源45よりバイアス電圧印加専用爪44を介して下地層にバイアス電圧を印加しながら成膜を行う(図6B)。
 また、図7A、Bの基板ホルダーは本体51と複数の基板支持爪53とを備え、さらに、バイアス電圧印加専用爪54を備えている。係る装置においては、通常、基板支持爪53のみで基板52が支持されており、バイアス電圧印加専用爪54は基板から離脱している(図7A)。この状態で下地層成膜を行い、その後、バイアス電圧印加成膜工程ではバイアス電圧供給バー56によってバイアス電圧印加専用爪54を押し上げて下地層に接触させる(図7B)。この状態で、バイアス電圧電源55よりバイアス電圧供給バー56、バイアス電圧印加専用爪54を介してバイアス電圧を下地層に印加しながら成膜を行う。
特開平7-243037号公報 特表2003-521792号公報 特許第3002632号公報 特許第2926740号公報
 特許文献2乃至4に開示された装置ではバイアス電圧を印加する工程でのみバイアス電圧印加専用爪を基板に接触させるだけであるため、構造が簡易である。
 しかしながら、バイアス電圧印加成膜工程では、本来基板を支持している基板支持爪にバイアス電圧印加専用爪が加わるため、爪が基板を覆うことにより成膜されない領域(シャドウエリア)が多いという問題がある。
 本発明は、バイアス電圧印加成膜工程とバイアス電圧非印加成膜工程とを含む、複数層の薄膜の連続成膜工程において用いられ、構造が簡易で成膜装置の大型化といった問題を生じず、成膜時シャドウエリアの少ない基板ホルダーを提供することを目的とする。また、本発明は、係る基板ホルダーを用いた成膜装置と成膜方法を提供することを目的とする。
 上記の目的を達成する本発明にかかる基板ホルダーは、絶縁性基板を支持するための基板ホルダーであって、
 開口部を有する導電性の基板ホルダー本体と、
 前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備える第1の支持部材と、
 前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有し、
 前記第1の支持部材のうち少なくとも1つは前記絶縁性基板にバイアス電圧を印加することが可能なバイアス電圧印加支持部材であり、
 前記第2の支持部材の狭持部材により前記絶縁性基板を支持する時には、前記第2の支持部材は、前記バイアス電圧印加支持部材の狭持部材が前記絶縁性基板から離れるように、前記開口部内に向けて突出移動し、
 前記バイアス電圧印加支持部材の狭持部材により前記絶縁性基板を支持する時には、前記第2の支持部材は、前記絶縁性基板の前記他の端部が前記第2の支持部材の狭持部材により支持されている位置から前記バイアス電圧印加支持部材の挟持部材により前記絶縁性基板が支持される位置まで退避移動することを特徴とする。
 あるいは、上記の目的を達成する本発明にかかる成膜装置は、絶縁性基板の両面に同時に、複数層の薄膜を連続的に成膜する成膜装置であって、
 前記絶縁性基板に電圧を印加しないで前記絶縁性基板に導電性膜を成膜する第1の成膜チャンバーと、
 前記絶縁性基板に電圧を印加しながら前記絶縁性基板に薄膜を成膜する第2の成膜チャンバーと、
 開口部を有する導電性の基板ホルダー本体と、前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備え且つ前記絶縁性基板にバイアス電圧を印加可能なバイアス電圧印可支持部材を含む第1の支持部材と、前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有する基板ホルダーと、
 前記第1の成膜チャンバーに設けられ、前記第1の支持部材の前記狭持部材が前記基板から離れるように、前記第2の支持部材の狭持部材により前記基板を支持しながら前記第2の支持部材を移動させ、または、前記絶縁性基板の前記他の端部が前記第2の支持部材の狭持部材により支持されている位置から前記第1の支持部材の挟持部材により前記絶縁性基板が支持される位置まで前記第2の支持部材を移動させるための駆動手段と、
 前記第2の成膜チャンバーに設けられ、前記第1の支持部材へ電圧を印加する電圧印加手段と、
 前記駆動手段による移動と、前記電圧印加手段による前記電圧の印加と、前記第1の成膜チャンバーの動作と、前記第2の成膜チャンバーの動作と、を制御する制御手段と、を備え、
 前記第1の支持部材の前記挟持部材が前記基板から離れた位置で、前記制御手段により制御された前記第1の成膜チャンバーは前記基板の上に導電性膜を成膜し、
 前記制御手段は、前記駆動手段を制御して、前記導電性膜が成膜された前記基板を前記第1の支持部材の前記挟持部材により支持される位置まで前記第2の支持部材を下降させ、
 前記制御手段は、前記第1の支持部材に前記電圧が印加される様に前記電圧印加手段を制御し、前記電圧を印加しながら前記第2の成膜チャンバーの動作を制御して前記導電性膜が成膜された絶縁性基板に薄膜を成膜することを特徴とする。
 あるいは、上記の目的を達成する本発明にかかる成膜方法は、真空処理室内で、基板支持部材により絶縁性基板を支持し、該絶縁性基板の表面に複数層の薄膜を順次成膜する方法のうち、前記複数層の薄膜中、少なくとも一層がバイアススパッタリング法で成膜される成膜方法であって、
 開口部を有する導電性の基板ホルダー本体と、前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備え且つ前記絶縁性基板にバイアス電圧を印加可能なバイアス電圧印可支持部材を含む第1の支持部材と、前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有する基板ホルダーに前記絶縁性基板を載置する工程と、
 前記基板ホルダーを第1の成膜チャンバー内に搬送する工程と、
 前記絶縁性基板を前記第2の支持部材と前記バイアス電圧印可支持部材以外の第1の支持部材とで支持しながら、前記絶縁性基板上に導電性膜である下地層を成膜する工程と、
 前記基板ホルダーを第2の成膜チャンバーに搬送する工程と、
 前記絶縁性基板を第1の支持部材で支持し、前記バイアス電圧印可支持部材から前記絶縁性基板にバイアス電圧を印可しながら前記絶縁性基板上に薄膜を形成する工程と、
 を有することを特徴とする。
 あるいは、上記の目的を達成する本発明にかかるプログラムは、真空処理室内で、基板支持部材により絶縁性基板を支持し、該絶縁性基板の表面に複数層の薄膜を順次成膜する方法のうち、前記複数層の薄膜中、少なくとも一層がバイアススパッタリング法で成膜される成膜方法をコンピュータに実行させるプログラムであって、当該成膜方法が、
 開口部を有する導電性の基板ホルダー本体と、前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備え且つ前記絶縁性基板にバイアス電圧を印加可能なバイアス電圧印可支持部材を含む第1の支持部材と、前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有する基板ホルダーに前記絶縁性基板を載置する工程と、
 前記基板ホルダーを第1の成膜チャンバー内に搬送する工程と、
 前記絶縁性基板を前記第2の支持部材と前記バイアス電圧印可支持部材以外の第1の支持部材とで支持しながら、前記絶縁性基板上に導電性膜である下地層を成膜する工程と、
 前記基板ホルダーを第2の成膜チャンバーに搬送する工程と、
 前記絶縁性基板を第1の支持部材で支持し、前記バイアス電圧印可支持部材から前記絶縁性基板にバイアス電圧を印可しながら前記絶縁性基板上に薄膜を形成する工程と、
 を有することを特徴とする。
 本発明に拠れば、バイアス電圧印加成膜工程とバイアス電圧非印加成膜工程とを含む、複数層の薄膜の連続成膜工程において用いられ、構造が簡易で成膜装置の大型化といった問題を生じず、成膜時シャドウエリアの少ない基板ホルダー、係る基板ホルダーを用いた成膜装置、及び成膜方法を提供することが可能になる。
 本発明においては、構造が簡易で装置の大型化を招く恐れがなく、全体として爪の基板からの離脱着回数が少なく、パーティクルの発生が抑えられ、また、シャドウエリアも従来より低減される。
 さらに、常時基板を支持する基板支持爪を本体とは電気的に絶縁することで、バイアス電圧印加成膜時に基板支持部での異常放電発生を低減することができる。
 よって、本発明によれば、従来よりもシャドウエリアが低減された成膜を効率良く、且つ歩留まり良く行うことができ、ハードディスク等、複数の薄層を連続成膜してなる部材をより高品質で且つ安価に提供することができる。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述を共に本発明の原理を説明するために用いられる。
本発明の第1の基板ホルダーの一実施形態に基板を保持し、バイアス電圧印加成膜に用いる状態を示す図である。 本発明の第1の基板ホルダーの一実施形態に基板を保持し、バイアス電圧非印加成膜に用いる状態を示す図である。 本発明の成膜装置の一実施形態の一部を模式的に示す図である。 本発明の第2の基板ホルダーの一実施形態に基板を保持し、バイアス電圧印加成膜に用いる状態を示す図である。 従来の成膜装置の基板ホルダーと基板持ち替え機構の構成を模式的に示す斜視図である。 従来の成膜装置の基板ホルダーの模式図である。 従来の成膜装置の基板ホルダーの模式図である。 従来の成膜装置の基板ホルダーの模式図である。 従来の成膜装置の基板ホルダーの模式図である。 制御手段100の機能構成を示すブロック図である。 図3の変形例を示す斜視図である。 上下方向に電極が移動可能な状態で配置されたバイアス電圧印加手段16と、水平方向に電極が移動可能な状態で配置されたバイアス電圧印加手段16と、の構成例を示す図である(非接触状態)。 上下方向に電極が移動可能な状態で配置されたバイアス電圧印加手段16と、水平方向に電極が移動可能な状態で配置されたバイアス電圧印加手段16と、の構成例を示す図である(接触状態)。 制御手段100により駆動手段14が下降し、補助基板支持爪6と基板2とが非接触となり、基板支持爪5と基板支持爪3とで基板2を支持した状態を示す図である。 制御手段100により駆動手段14が上昇し、補助基板支持爪6と基板2とが接触し、基板支持爪5が基板と非接触となり、補助基板支持爪6と基板支持爪3とで基板2を支持した状態を示す図である。 図11Bにおいて、駆動手段14が上昇して、補助基板支持爪6と接触し、これに伴い補助基板支持爪6が上昇し、基板2と接触した状態を示す図である。 補助基板支持爪6が基板と接触し、基板支持爪5が基板2と非接触となった状態を拡大して示した図である。 図11Aにおいて、駆動手段14が下降し、補助基板支持爪6が基板2と非接触となり、基板支持爪5が基板2と接触し、基板支持爪3と基板支持爪5とで基板2を支持した状態を示す図である。 図13Aにおける基板支持爪3、基板支持爪5の状態を拡大して示す図である。 バイアス電圧印加手段16の電極が下降し、本体1と非接触となり、基板2にバイアス電圧が印加されていない状態を示す図である。 制御手段100により制御されたバイアス電圧印加手段16の電極が上昇し、本体1と接触し、基板2にバイアスが印加されている状態を示す図である。 バイアス電圧印加手段16が基板ホルダーの本体1に対して水平方向に配置された場合の斜視図である。 バイアス電圧印加手段16が基板ホルダーの本体1に対して水平方向に配置された場合の斜視図である。 モータ駆動機構を用いた駆動手段14と、バイアス電圧印加手段16が基板ホルダーの本体1に対して水平方向に配置された構成例を示す図である。 駆動手段14と、バイアス電圧印加手段16が基板ホルダーの本体1に対して垂直方向に配置された、図3の構成例の斜視図である。
 以下、本発明の実施形態について詳細に説明する。ただし、この実施形態に記載されている構成要素はあくまで例示であり、本発明の技術的範囲は、請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
 図1,図2は本発明の第1の基板ホルダーの好ましい実施形態に基板を保持した状態を示す図であり、図1はバイアス電圧印加成膜時、図2はバイアス電圧非印加成膜時の状態を示す。図中、1は基板ホルダーの本体、2は絶縁性基板、3,5は基板支持爪、6は補助基板支持爪、7は、例えば、板バネ等により構成される弾性部材である。
 本発明の基板ホルダーは、絶縁性基板2を支持する複数の基板支持爪3,3,5,5と導電性の基板ホルダー本体(以下、「本体1」という)とを有しており、さらに、補助基板支持爪6を備えている。本体1は、平板状であり、中央部に絶縁性基板2の外形よりも大きい開口部を備え、基板支持爪3,3,5,5は該開口部において本体1から開口部の内周から開口部内に向けて突出している。本体1は、後述するように外部に設けたバイアス電圧印加手段が接触・非接触可能で、外部よりバイアス電圧印加可能に構成されている。基板支持爪3,3,5,5は、基板ホルダーの本体1に形成された開口部の内周から開口部内に向けて突出して形成されており、絶縁性基板周辺の一端部(基板の外周部)を支持する挟持部材を備えた第1の支持部材として機能する。ここで、第1の支持部材の少なくとも1つは基板にバイアス電圧を印加するためのバイアス電圧印加支持部材として機能する。
 複数の基板支持爪3,3,5,5は全て導電性の素材で構成され、本体1に電気的に接続されている。
 本発明においては、垂直に立てて配置した本体1の開口部内において、基板支持爪により、基板2が本体1より所定の距離を置いて保持される。即ち、基板支持爪3,3,5,5が基板2の外形端面に接触して、該基板2を本体1の開口部内において垂直に保持する。尚、補助基板支持爪6は、先端を基板2の下方に位置して上下移動可能に配置されている。補助基板支持爪6の下端は、駆動手段14に接続されており、駆動手段14の動作により、補助基板支持爪6は上昇(開口部内に向けて突出)、または降下(開口部内から退避)が可能である。制御手段100は、駆動手段14と接続しており、バイアス電圧印加成膜プロセス、またはバイアス電圧非印加成膜プロセスに応じて、駆動手段14を上昇(突出移動)させ、あるいは降下(退避移動)させる上下動動作を制御することが可能である。
 本例においては、基板2の上半分の2箇所と、下半分の2箇所にそれぞれ基板支持爪3,3及び5,5を配置している。補助基板支持爪6を基板2に接触させない状態(図1)においては、基板支持爪3,3,5,5の全てによって基板2は支持されている。ここで、駆動手段14の上昇動作に従い、補助基板支持爪6を上方に突き上げて、補助基板支持爪6を基板2に接触させる。駆動手段14が、補助基板支持爪6をそのまま押し上げると、図2に示すように基板2が本体1との間隙分だけ上方に押し上げられ、基板2を基板2の下方から支持していた基板支持爪5,5が基板2から離脱して基板2に非接触となる。尚、この時、基板支持爪3,3も基板2によって上方に押し上げられるため、基板支持爪3,3はこれに耐えうる程度の可撓性を有する素材で構成しておくことが好ましい。ここで、補助基板支持爪6は、絶縁性基板の他の端部を支持するための狭持部材を備え、基板ホルダーの本体1に形成された開口部内に向けて突出し、または開口部内から退避するように移動可能な第2の支持部材として機能する。補助基板支持爪6(第2の支持部材)の狭持部材により基板2を支持する時には、バイアス電圧印加支持部材(例えば、基板支持爪5,5)の狭持部材が基板から離れる。バイアス電圧印加支持部材(例えば、基板支持爪5,5)の狭持部材により基板を支持する時には、補助基板支持爪6(第2の支持部材)の狭持部材は基板から離れ、補助基板支持爪6(第2の支持部材)の狭持部材により支持された位置からバイアス電圧印加支持部材(基板支持爪5,5)の挟持部材により支持される位置まで基板は移動する。
 基板支持爪3,3,5,5及び補助基板支持爪6の挟持部材は、基板2を良好に保持しうるように、基板2の主面の法線方向断面においてV字型やU字型などの凹部を有し、該凹部内に基板2の端面を挟み込む形態が好ましい。
 本例においては、補助基板支持爪6の下方には、例えば、板バネ等で構成される弾性部材7が取り付けられており、駆動手段14の上昇動作に従い、補助基板支持爪6を上方に突き上げる際には、弾性部材7が押圧される。よって、駆動手段14の降下動作によって、補助基板支持爪6を上方に突き上げている力を解除すれば、弾性部材7の復元力によって補助基板支持爪6は自動的に下方に移動して基板2から離脱し、基板2が下方に戻ると同時に基板2に再び基板支持爪5,5が接触し、基板支持爪5,5は、下方に戻った基板2を支持する。
 本発明においては、図1,図2に示したように、補助基板支持爪6を上下に移動させて基板2に接触・非接触させることにより、基板支持爪5,5を基板2に非接触・接触させることができる。よって、基板2は、基板支持爪3,3と補助基板支持爪6とに支持された状態と、基板支持爪3,3,5,5に支持された状態の2つの状態をとる。
 尚、本発明において基板支持爪の本数は、基板2を安定して保持できれば少ない方が爪によるシャドウエリアが少なくなるため好ましい。図1,図2においては、上方と下方にそれぞれ2本ずつとしたが、基板支持爪3,3については、基板2の鉛直上方に1本としてもかまわない。また、基板支持爪5,5については、どちらか一方のみとしてもかまわない。
 次に、図1,図2に例示した基板ホルダーを用いた、本発明の成膜装置の一実施形態を図3に模式的に示す。
 本発明の成膜装置は複数の成膜チャンバーと、基板ホルダーに絶縁性基板2を垂直保持して上記複数の成膜チャンバー間を搬送するための搬送手段とを備えている。図3は成膜装置の一部を例示する図である。図中、11a,11bは成膜チャンバーであり、成膜チャンバー11aはバイアス電圧非印加成膜に用いられ、成膜チャンバー11bはバイアス電圧印加成膜に用いられる。13a乃至13cはゲートバルブである。
 本装置の成膜チャンバー11a,11bはいずれも基板2の両主面に対してスパッタカソードを備えており、基板2の両面から同時成膜することができる。また、基板ホルダーの搬送手段(不図示)は、紙面左右方向に基板ホルダーを搬送可能である。尚、本例においては、成膜チャンバー11aと11bとが水平方向にライン状に並んだ状態を示したが、本発明の成膜装置はライン状の成膜装置に限定されるものではない。例えば中央に位置するチャンバーの周囲を複数の成膜チャンバーが取り囲んだ形態であっても良い。
 本装置において、バイアス電圧印加成膜を行う成膜チャンバー11bの前段に位置するバイアス電圧非印加成膜を行う成膜チャンバー11aは、下方から補助基板支持爪6を突き上げて上昇させ、あるいは補助基板支持爪6を降下させるための駆動手段14を備えている。駆動手段14の動作は制御手段100によって制御される。制御手段100の制御の下に、駆動手段14は補助基板支持爪6を突き上げ、基板2に接触させて基板2を補助基板支持爪6に支持させると同時に、基板2から基板支持爪5,5を離脱させることができる。図3の成膜チャンバー11aにおいては、駆動手段14が補助基板支持爪6を突き上げた状態を示しており、制御手段100の制御の下に駆動手段14が上昇した状態を解除する(矢印の方向に降下する)ことによって、補助基板支持爪6も下方に移動して基板2から補助基板支持爪6は離脱する。尚、図3においては、バイアス電圧印加成膜を行うチャンバー11bの前段に位置し、駆動手段14を備えたバイアス電圧非印加成膜を行う成膜チャンバーが一つだけ示されているが、本発明はこれに限定されない。バイアス電圧印加成膜を行う前に複数回のバイアス電圧非印加成膜を行う場合には、バイアス電圧印加成膜を行うチャンバー11bの前段に、駆動手段14を備えたバイアス電圧非印加成膜を行う成膜チャンバーが複数配置される。
 図11A、B乃至図13A、Bは、基板ホルダーの本体1の斜視図である。図11Aでは、制御手段100により駆動手段14が下降し、補助基板支持爪6と基板2とが非接触となり、基板支持爪5と基板支持爪3とで基板2を支持した状態になる。図11Bでは、制御手段100により駆動手段14が上昇し、補助基板支持爪6と基板2とが接触し、基板支持爪5が基板と非接触となり、補助基板支持爪6と基板支持爪3とで基板2を支持した状態になる。図12Aは、図11Bにおいて、駆動手段14が上昇して、補助基板支持爪6と接触し、これに伴い補助基板支持爪6が上昇し、基板2と接触した状態を示す図であり、図12Bは、補助基板支持爪6が基板と接触し、基板支持爪5が基板2と非接触となった状態を拡大して示した図である。図13Aは、図11Aにおいて、駆動手段14が下降し、補助基板支持爪6が基板2と非接触となり、基板支持爪5が基板2と接触し、基板支持爪3と基板支持爪5とで基板2を支持した状態を示す図であり、図13Bは、図13Aにおける基板支持爪3、基板支持爪5の状態を拡大して示す図である。
 また、バイアス電圧印加成膜を行う成膜チャンバー11bは、例えば、下方から本体1にバイアス電圧を印加するためのバイアス電圧印加手段16とバイアス電圧印加手段16に電圧を供給する電源15を備えている。バイアス電圧印加手段16は上昇または降下が可能な電極を有する(以下、「バイアス電圧印加手段16の電極」を単に「バイアス電圧印加手段16」ともいう)。バイアス電圧印加手段16の電極が上昇して本体1に接触すると、基板ホルダーの本体1を介して基板支持爪3,3,5,5の少なくとも1つにバイアス電圧印加手段16からバイアス電圧が印加される。制御手段100は、電源15及びバイアス電圧印加手段16と接続し、電源15のON/OFF制御や、バイアス電圧印加手段16が有する電極の上昇または降下を制御することが可能である。
 図3の成膜チャンバー11bにおいては、バイアス電圧印加手段16の電極を上昇させて本体1に接触させた状態を示している。この状態から、制御手段100の制御の下にバイアス電圧印加手段16の電極を矢印の方向に降下させることによって、バイアス電圧印加手段16の電極は本体1に非接触となり、本体1にバイアス電圧が印加できなくなる。
 図14A、Bは、バイアス電圧印加手段16が基板ホルダーの本体1に対して垂直方向に配置された場合の斜視図である。図14Aでは、バイアス電圧印加手段16の電極が下降し、本体1と非接触となり、基板2にバイアス電圧が印加されていない状態を示す。図14Bでは、制御手段100により制御されたバイアス電圧印加手段16の電極が上昇し、本体1と接触し、基板2にバイアスが印加されている状態を示す。
 図17は、駆動手段14と、バイアス電圧印加手段16が基板ホルダーの本体1に対して垂直方向に配置された、図3の構成例の斜視図である。成膜チャンバー11aにおいて、制御手段100により駆動手段14が上昇し、補助基板支持爪6が基板2と接触して、基板2を上昇させると基板支持爪5は基板2と非接触となる。この場合、基板支持爪3と補助基板支持爪6とで基板2が支持される。成膜チャンバー11bにおいて、制御手段100によりバイアス電圧供給手段16が上昇し、基板ホルダーの本体1と接触すると、基板2にバイアスが印加される。尚、図17Bでは、駆動手段14が無いため、補助基板支持爪6は降下して基板2から離れ、補助基板支持爪6は基板2と非接触となり、基板支持爪3と基板支持爪5とで基板2が支持される。
 図8は、制御手段100の機能構成を示すブロック図である。図8において、成膜装置800(第1の成膜チャンバー11a、第2の成膜チャンバー11bを含む)は、制御手段100に接続されている。制御手段100は、第1の成膜チャンバ11a、第2の成膜チャンバー11bからの入力信号を受け取る。制御手段100は、駆動手段14、電源15、バイアス電圧印加手段16、及び成膜装置800を構成するチャンバー内で実行されるプロセスを制御するようにプログラムされた制御プログラムを動かし、動作指示を成膜装置800に出力する。制御手段100は、図8に示すコンピュータ(情報処理装置)の構成を有する。制御手段100は、成膜装置800から入力信号の入力を受け付ける入力部802、プログラム及びデータを有するコンピュータ可読の記憶媒体803、プロセッサ804及び制御信号を含む動作指示を成膜装置800に出力する出力部805を有する。入力部802は、成膜装置800からのデータ入力機能の他に、例えば、ネットワークを介して接続している他の外部装置からの命令の入力を受け付けることが可能である。
 即ち、制御手段100は、基板ホルダーが第1の成膜チャンバー(図3の11a)内にある時には、補助基板支持爪6(第2の支持部材)と絶縁性の基板2とが接触状態となるように駆動手段14を移動させ、制御手段100は、バイアス電圧印加支持部材(基板支持爪5)を、絶縁性の基板2と非接触な状態にする。制御手段100は、バイアス電圧印加支持部材(基板支持爪5)以外の基板支持爪3(第1の支持部材)と補助基板支持爪6(第2の支持部材)とで基板2を支持しながら基板上に導電性膜である下地層のスパッタ成膜を行うように制御する。
 また、基板ホルダーが第2の成膜チャンバー(図3の11b)内にある時には、第2の成膜チャンバー(図3の11b)内には、補助基板支持爪6(第2の支持部材)を上下動させる駆動手段14はないため、補助基板支持爪6(第2の支持部材)は基板2と非接触状態となるよう移動し、基板2と非接触状態になる。
 制御手段100は、バイアス印加手段16の電極を基板ホルダーの本体1と接触状態となるように移動させ、基板支持爪3(第1の支持部材)で導電性の膜がついた絶縁性基板を保持し、バイアス電圧印加支持部材(基板支持爪5)から導電性の膜がついた絶縁性基板にバイアスを印加しながら、基板に薄膜を成膜するように制御する。
 図9は、図3の変形例を示す斜視図である。なお、図3では、バイアス電圧印加手段16は本体1の下方に設けられており、バイアス電圧印加手段16の接点が上下動する構成となっている。本発明の趣旨は、図3の構成に限定されるものではなく、例えば、図9に示すように、バイアス電圧印加手段16を本体1と平行に配置し、水平方法に電極を移動させて、本体1にバイアス電圧を印加する構成とすることも可能である。
 図10Aは上下方向に電極が移動可能な状態で配置されたバイアス電圧印加手段16と、水平方向に電極が移動可能な状態で配置されたバイアス電圧印加手段16と、の構成例を示す図である。図10Aは、各バイアス電圧印加手段16の電極は基板ホルダーの本体1に対して非接触な状態を示す。制御手段100は、各バイアス電圧印加手段16の電極を基板ホルダーの本体1に対して接触するように制御すると、図10Bに示すようになる。
 図15A、Bは、バイアス電圧印加手段16が基板ホルダーの本体1に対して水平方向に配置された場合の斜視図である。水平方向に設けられたバイアス電圧印加手段16が、制御手段100により制御されて、図中の水平方向右側(矢印1501の方向)に電極が移動すると、バイアス電圧印加手段16の電極は基板ホルダーの本体1と非接触となり、基板2にバイアス電圧が印加されていない状態になる(図15A)。また、水平方向に設けられたバイアス電圧印加手段16が、制御手段100により制御されて、図面中水平方向左側(矢印1502の方向)に電極が移動すると、バイアス電圧印加手段16の電極が基板ホルダーの本体1と接触し、基板2にバイアス電圧が印加されている状態になる(図15B)。
 図16は、モータ駆動機構を用いた駆動手段14と、バイアス電圧印加手段16が基板ホルダーの本体1に対して水平方向に配置された構成例を示す図である。制御手段100によりモータの駆動量が制御されると駆動手段14が上昇して補助基板支持爪6と接触し、駆動手段14の上昇に従って補助基板支持爪6が上昇して基板2と接触する。成膜チャンバー11aにおいて、基板支持爪3と補助基板支持爪6とで基板2が支持された状態になる。この状態では、基板支持爪5は、基板2に非接触な状態になる。制御手段100によりバイアス電圧印加手段16の電極が水平方向に移動すると、基板ホルダーの本体1と接触し、基板2にバイアス電圧が印加される。成膜チャンバー11bにおいて、補助基板支持爪6は、基板2と非接触であり、基板支持爪3と基板支持爪5とで基板2が支持される。
 本発明の成膜方法について、図3の装置を用いた場合を例に挙げて説明する。
 本発明の成膜方法は、絶縁性基板の両主面に複数層の薄層を連続的に成膜する方法である。本発明においては、先ず、成膜チャンバー11aにおいて絶縁性の基板2にバイアス電圧非印加成膜により金属等からなる導電性の第1層を成膜する(第1の成膜工程)。第1の成膜工程では、駆動手段14によって補助基板支持爪6を突き上げて基板2に接触させると同時に基板支持爪5,5を基板2から離脱させ、補助基板支持爪6と基板支持爪3,3とで基板2を支持する。この時、バイアス電圧印加支持部材として機能する基板支持爪5は、絶縁性基板と非接触な状態になる。従って、基板支持爪5,5が非接触な状態に保持される前に、基板2に接触していた位置にも、金属等からなる導電性の第1層が成膜される。
 第1層の成膜が終了したら、補助基板支持爪6の駆動手段14を解除して、板バネ7の復元力により補助基板支持爪6を下方に移動させる。これにより、基板2から補助基板支持爪6が離脱し、代わって基板支持爪5,5が下方に降りてきた基板2を支持する。この時、基板支持爪5,5が基板2に接触する位置には第1層が成膜されているため、基板支持爪5,5は第1層に接触する。
 第1層の成膜が終了した基板2を基板ホルダーごと成膜チャンバー11bに搬送し、基板ホルダーの本体1にバイアス電圧印加手段16の電極を接触させて、本体1にバイアス電圧を印加する。基板2は基板支持爪3,3,5,5によって支持されているため、本体1と基板支持爪3,3,5,5のうちの少なくとも1つを介して第1層にバイアス電圧が印加される。この状態で成膜を行うことにより、第1層の上にバイアス電圧印加成膜によって新たな薄層(第2層)が成膜される(第2の成膜工程)。
 この時、基板支持爪3,3,5,5はいずれにもバイアス電圧が印加されるが、基板支持爪3,3は第1層の成膜時に基板2を支持していたため、第1層との接触領域が非常に小さく、電圧印加効率が悪い。これに対して、基板支持爪5,5は第1層の成膜時に基板2から離脱していたため、基板支持爪5,5が基板2に接触する領域にも第1層が成膜されており、基板支持爪5,5と第1層との接触領域が広く、効率の良い電圧印加を行うことができる。
 本発明によれば、バイアス電圧印加成膜工程を複数回繰り返す場合であっても、工程毎に基板支持爪5,5を基板2から離脱させる必要がなく、基板支持爪5,5の基板2からの離脱によるパーティクルの発生が最小限に抑えられる。
 次に、本発明の第2の基板ホルダーについて図4を用いて説明する。図4において、4は絶縁性部材である。第2の基板ホルダーは、基板支持爪5,5をバイアス電圧印加用基板支持爪(バイアス電圧印加支持部材)とし、該バイアス電圧印加用基板支持爪以外の基板支持爪3,3をバイアス電圧が印加されないバイアス電圧非印加用基板支持爪(バイアス電圧非印加支持部材)とする。即ち、基板支持爪5,5は導電性の素材で構成して本体1に電気的に接続し、常時基板2に接触して支持している基板支持爪3,3を絶縁性或いは本体1とは電気的に絶縁した構成とする。尚、図4においては、導電性の基板支持爪3,3を絶縁性部材4を介して本体1に取り付けているが、基板支持爪3,3を絶縁性の素材で構成することにより、本体1に直接取り付けてもかまわない。
 第2の基板ホルダーでは、本体1に外部のバイアス電圧印加手段からバイアス電圧が印加された場合でも、該基板支持爪3,3にはバイアス電圧が印加されないため、バイアス電圧印加成膜時に基板支持部での異常放電発生を低減することができる。
 本例においても、制御手段100の制御の下に駆動手段14を上下に移動させて、補助基板支持爪6を基板2に接触・非接触させることにより、基板支持爪5,5を基板2に非接触・接触させることができる。よって、基板2は、基板支持爪3,3と補助基板支持爪6とに支持された状態(第1の状態)と、基板支持爪3,3,5,5に支持された状態(図4に示す第2の状態)と、の2つの状態をとる。換言すれば、バイアス電圧非印加用の基板支持爪3,3は常に基板2に接触して基板2を支持しており、バイアス電圧印加・非印加に応じて、バイアス電圧印加用の基板支持爪5,5または補助基板支持爪6のいずれかが基板2の支持に加わることになる。第1の状態または第2の状態の切替えは、制御手段100の制御の下に実行される。
 尚、本例において基板支持爪の本数は、例えば、先に図1、図2を参照して説明した第1の基板ホルダーと同様である。即ち、バイアス電圧印加用、バイアス電圧非印加用のそれぞれが少なくとも1本必要であるが、合計数は、基板2を安定して保持できれば少ない方が爪によるシャドウエリアが少なくなるため好ましい。図4においてはそれぞれ2本ずつとしたが、基板支持爪3,3については、基板2の鉛直上方に1本としてもかまわない。また、基板支持爪5,5については、どちらか一方のみをバイアス電圧印加用として、他方を基板支持爪3,3と同様の構成にしてバイアス電圧非印加用としてもかまわない。
 図4に示す第2の基板ホルダーを用いた成膜装置は、基本的に第1の基板ホルダーを用いた成膜装置と同様であり、図3に例示した装置が好ましく用いられる。
 即ち、図3の成膜チャンバー11aに設けた駆動手段14によって、第2の基板ホルダーの補助基板支持爪6を突き上げ、補助基板支持爪6に基板2を支持させると同時に、基板2から基板支持爪5,5を離脱させる。また、成膜チャンバー11bにおいては、バイアス電圧印加手段16の電極を本体1に接触させることで、本体1を介して基板支持爪5,5にバイアス電圧印加手段16のバイアス電圧が印加される。
 また、第2の基板ホルダーを用いた成膜方法は、バイアス電圧印加成膜時に、本体1とは電気的に絶縁された基板支持爪3,3からはバイアス電圧が印加されない点でのみ、第1の基板ホルダーを用いた成膜方法とは異なる。
 尚、本例においては、補助基板支持爪6を絶縁性の素材で構成するか、或いは本体1と電気的に絶縁した構成とすることにより、バイアス電圧非印加成膜時に、基板2を支持する基板支持爪3,3,6を全て本体1とは電気的に絶縁された状態とすることができる。よって、本体1にバイアス電圧が印加される状態であっても、基板2にはバイアス電圧を印加せずに成膜することができ、常時本体1にバイアス電圧が印加される装置、或いは成膜チャンバーであっても、バイアス電圧非印加成膜を行うことができる。
 本発明は、特にハードディスク製造に好ましく用いられる。ハードディスクの製造においては、絶縁性基板の両主面に、少なくとも下地層、磁性層、保護層が成膜されるが、本発明においては、先ず下地層を前記したバイアス電圧非印加成膜によって成膜し、次いで磁性層、保護層をバイアス電圧印加成膜によって成膜すれば良い。
 本発明においては、スパッタによる成膜の事例を取り上げたが、CVDやエッチングなどのバイアス印加工程にも適用できる。また、本発明によるホルダーによって、導電性基板を処理する事は可能である。
 尚、本発明の基板ホルダー及びこれを用いた成膜方法、成膜装置はハードディスクの製造以外にも好ましく用いられるものである。
 以上、本発明の好ましい実施形態を添付図面の参照により説明したが、本発明はかかる実施形態に限定されるものではなく、請求の範囲の記載から把握される技術的範囲において種々な形態に変更可能である。
 本願は、2007年12月26日提出の日本国特許出願特願2007-333836を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (13)

  1.  絶縁性基板を支持するための基板ホルダーであって、
     開口部を有する導電性の基板ホルダー本体と、
     前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備える第1の支持部材と、
     前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有し、
     前記第1の支持部材のうち少なくとも1つは前記絶縁性基板にバイアス電圧を印加することが可能なバイアス電圧印加支持部材であり、
     前記第2の支持部材の狭持部材により前記絶縁性基板を支持する時には、前記第2の支持部材は、前記バイアス電圧印加支持部材の狭持部材が前記絶縁性基板から離れるように、前記開口部内に向けて突出移動し、
     前記バイアス電圧印加支持部材の狭持部材により前記絶縁性基板を支持する時には、前記第2の支持部材は、前記絶縁性基板の前記他の端部が前記第2の支持部材の狭持部材により支持されている位置から前記バイアス電圧印加支持部材の挟持部材により前記絶縁性基板が支持される位置まで退避移動することを特徴とする基板ホルダー。
  2.  前記第2の支持部材は、絶縁性の素材で構成されるか、或いは前記基板ホルダー本体とは電気的に絶縁されていることを特徴とする請求項1に記載の基板ホルダー。
  3.  前記基板ホルダー本体の前記開口部内において、前記絶縁性基板は、前記第1の支持部材、または前記第1の支持部材と前記第2の支持部材とにより、絶縁性基板面の法線方向に対して垂直な方向に支持されることを特徴とする請求項1に記載の基板ホルダー。
  4.  前記第2の支持部材は、当該第2の支持部材の突出移動に応じて押圧され、当該第2の支持部材の退避移動に応じて復元する弾性部材を有することを特徴とする請求項1に記載の基板ホルダー。
  5.  絶縁性基板を支持する複数の基板支持爪と導電性の本体とを有し、該本体が外部のバイアス電圧印加手段よりバイアス電圧印加可能な基板ホルダーであって、
     前記複数の基板支持爪以外に、前記絶縁性基板に対して接触する状態または非接触の状態に移動可能な補助基板支持爪を有し、
     前記複数の基板支持爪の少なくとも1つが前記本体に電気的に接続された導電性のバイアス電圧印加用基板支持爪であり、該バイアス電圧印加用基板支持爪以外の基板支持爪は絶縁性の素材で構成されるか、或いは本体とは電気的に絶縁されたバイアス電圧非印加用基板支持爪であり、
     前記補助基板支持爪が前記絶縁性基板に接触した際には、前記バイアス電圧印加用基板支持爪と前記絶縁性基板とは非接触となり、前記バイアス電圧非印加用基板支持爪と前記補助基板支持爪とで前記絶縁性基板が保持され、
     前記補助基板支持爪が前記絶縁性基板に非接触の際には、前記基板支持爪が全て前記絶縁性基板と接触して当該絶縁性基板を保持し、前記外部のバイアス電圧印加手段より前記本体を介して前記バイアス電圧印加用基板支持爪にバイアス電圧が印加されることを特徴とする基板ホルダー。
  6.  少なくとも1工程のバイアス電圧印加成膜工程と、少なくとも1工程のバイアス電圧非印加成膜工程とを有する成膜方法であって、
     開口部を有する導電性の基板ホルダー本体と、前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備える第1の支持部材と、前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を備える基板ホルダーに絶縁性基板を保持する保持工程と、
     バイアス電圧を印加しないで成膜を行うバイアス電圧非印加成膜工程においては、前記第2の支持部材の狭持部材により前記絶縁性基板を支持するために、前記第1の支持部材を構成し前記絶縁性基板にバイアス電圧を印加することが可能な少なくとも1つのバイアス電圧印加支持部材の狭持部材が前記絶縁性基板から離れるように、前記第2の支持部材を前記開口部内に向けて突出移動させて、前記絶縁性基板に成膜を行う第1の成膜工程と、
     バイアス電圧を印加して成膜を行うバイアス電圧印加成膜工程においては、前記バイアス電圧印加支持部材の狭持部材により前記絶縁性基板を支持するために、前記絶縁性基板が前記第2の支持部材の狭持部材により支持されている位置から前記バイアス電圧印加支持部材の挟持部材により前記絶縁性基板が支持される位置まで前記第2の支持部材を退避移動させて、前記絶縁性基板に成膜を行う第2の成膜工程と、
     を有することを特徴とする成膜方法。
  7.  少なくとも1工程のバイアス電圧印加成膜工程と、少なくとも1工程のバイアス電圧非印加成膜工程とを有する成膜方法であって、
     請求項5に記載の基板ホルダーに絶縁性基板を保持する保持工程と、
     バイアス電圧を印加しないで成膜を行うバイアス電圧非印加成膜工程においては、基板ホルダーの補助基板支持爪を前記絶縁性基板に接触させ、前記バイアス電圧印加用基板支持爪を基板に非接触とし、バイアス電圧非印加用基板支持爪と補助基板支持爪とで基板を支持しながら前記絶縁性基板に成膜を行う第1の成膜工程と、
     バイアス電圧を印加して成膜を行うバイアス電圧印加成膜工程においては、基板ホルダーの補助基板支持爪を基板に非接触とし、前記基板支持爪の全てを前記絶縁性基板に接触させて該絶縁性基板を保持しながら、外部のバイアス電圧印加手段より本体を介してバイアス電圧印加用基板支持爪にバイアス電圧を印加しながら前記絶縁性基板に成膜を行う第2の成膜工程と、
     を有することを特徴とする成膜方法。
  8.  絶縁性基板の両主面に同時に、少なくとも下地層、磁性層、保護層を連続的に成膜するハードディスクの製造方法であって、
     請求項6または7に記載の成膜方法における前記第1の成膜工程により、前記下地層をバイアス電圧を印加しないで成膜する工程と、
     請求項6または8に記載の成膜方法における前記第2の成膜工程により、前記磁性層をバイアス電圧を印加して成膜する工程と、を有することを特徴とするハードディスクの製造方法。
  9.  絶縁性基板の両主面に同時に、複数層の薄膜を連続的に成膜する成膜装置であって、
     複数の成膜チャンバーと、
     請求項5に記載の基板ホルダーに絶縁性基板を保持して前記複数の成膜チャンバー間を搬送する搬送手段と、を備え、
     前記複数の成膜チャンバーのうち、バイアス電圧を印加しないで成膜を行う成膜チャンバーは、前記基板ホルダーの補助基板支持爪を前記絶縁性基板に接触させるために、前記補助基板支持爪を移動させる駆動手段を備え、
     前記複数の成膜チャンバーのうち、前記バイアス電圧を印加して成膜を行うチャンバーは、前記基板ホルダーの本体に接触してバイアス電圧を印加するバイアス電圧印加手段を備えることを特徴とする成膜装置。
  10.  絶縁性基板の両主面に同時に、少なくとも下地層、磁性層、保護層を連続的に成膜するハードディスクの製造方法において、
     バイアス電圧を印加しないで成膜を行う成膜チャンバーで前記下地層を成膜し、
     バイアス電圧を印加して成膜を行うチャンバーで前記磁性層を成膜することを特徴とする請求項9に記載の成膜装置。
  11.  絶縁性基板の両面に同時に、複数層の薄膜を連続的に成膜する成膜装置であって、
     前記絶縁性基板に電圧を印加しないで前記絶縁性基板に導電性膜を成膜する第1の成膜チャンバーと、
     前記絶縁性基板に電圧を印加しながら前記絶縁性基板に薄膜を成膜する第2の成膜チャンバーと、
     開口部を有する導電性の基板ホルダー本体と、前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備え且つ前記絶縁性基板にバイアス電圧を印加可能なバイアス電圧印可支持部材を含む第1の支持部材と、前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有する基板ホルダーと、
     前記第1の成膜チャンバーに設けられ、前記第1の支持部材の前記狭持部材が前記基板から離れるように、前記第2の支持部材の狭持部材により前記基板を支持しながら前記第2の支持部材を移動させ、または、前記絶縁性基板の前記他の端部が前記第2の支持部材の狭持部材により支持されている位置から前記第1の支持部材の挟持部材により前記絶縁性基板が支持される位置まで前記第2の支持部材を移動させるための駆動手段と、
     前記第2の成膜チャンバーに設けられ、前記第1の支持部材へ電圧を印加する電圧印加手段と、
     前記駆動手段による移動と、前記電圧印加手段による前記電圧の印加と、前記第1の成膜チャンバーの動作と、前記第2の成膜チャンバーの動作と、を制御する制御手段と、を備え、
     前記第1の支持部材の前記挟持部材が前記基板から離れた位置で、前記制御手段により制御された前記第1の成膜チャンバーは前記基板の上に導電性膜を成膜し、
     前記制御手段は、前記駆動手段を制御して、前記導電性膜が成膜された前記基板を前記第1の支持部材の前記挟持部材により支持される位置まで前記第2の支持部材を下降させ、
     前記制御手段は、前記第1の支持部材に前記電圧が印加される様に前記電圧印加手段を制御し、前記電圧を印加しながら前記第2の成膜チャンバーの動作を制御して前記導電性膜が成膜された絶縁性基板に薄膜を成膜することを特徴とする成膜装置。
  12.  真空処理室内で、基板支持部材により絶縁性基板を支持し、該絶縁性基板の表面に複数層の薄膜を順次成膜する方法のうち、前記複数層の薄膜中、少なくとも一層がバイアススパッタリング法で成膜される成膜方法であって、
     開口部を有する導電性の基板ホルダー本体と、前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備え且つ前記絶縁性基板にバイアス電圧を印加可能なバイアス電圧印可支持部材を含む第1の支持部材と、前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有する基板ホルダーに前記絶縁性基板を載置する工程と、
     前記基板ホルダーを第1の成膜チャンバー内に搬送する工程と、
     前記絶縁性基板を前記第2の支持部材と前記バイアス電圧印可支持部材以外の第1の支持部材とで支持しながら、前記絶縁性基板上に導電性膜である下地層を成膜する工程と、
     前記基板ホルダーを第2の成膜チャンバーに搬送する工程と、
     前記絶縁性基板を第1の支持部材で支持し、前記バイアス電圧印可支持部材から前記絶縁性基板にバイアス電圧を印可しながら前記絶縁性基板上に薄膜を形成する工程と、
     を有することを特徴とする成膜方法。
  13.  真空処理室内で、基板支持部材により絶縁性基板を支持し、該絶縁性基板の表面に複数層の薄膜を順次成膜する方法のうち、前記複数層の薄膜中、少なくとも一層がバイアススパッタリング法で成膜される成膜方法をコンピュータに実行させるプログラムであって、当該成膜方法が、
     開口部を有する導電性の基板ホルダー本体と、前記開口部の内周から当該開口部内に向けて突出して形成されており、前記絶縁性基板の一端部を支持するための挟持部材を備え且つ前記絶縁性基板にバイアス電圧を印加可能なバイアス電圧印可支持部材を含む第1の支持部材と、前記絶縁性基板の他の端部を支持するための狭持部材を備え、前記開口部内に向けて突出し、または当該開口部内から退避するように移動可能な第2の支持部材と、を有する基板ホルダーに前記絶縁性基板を載置する工程と、
     前記基板ホルダーを第1の成膜チャンバー内に搬送する工程と、
     前記絶縁性基板を前記第2の支持部材と前記バイアス電圧印可支持部材以外の第1の支持部材とで支持しながら、前記絶縁性基板上に導電性膜である下地層を成膜する工程と、
     前記基板ホルダーを第2の成膜チャンバーに搬送する工程と、
     前記絶縁性基板を第1の支持部材で支持し、前記バイアス電圧印可支持部材から前記絶縁性基板にバイアス電圧を印可しながら前記絶縁性基板上に薄膜を形成する工程と、
     を有することを特徴とするプログラム。
PCT/JP2008/073477 2007-12-26 2008-12-24 基板ホルダー、基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置、プログラム WO2009081952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009519729A JP4358905B2 (ja) 2007-12-26 2008-12-24 基板ホルダー、基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置、プログラム
CN2008801139921A CN101842513B (zh) 2007-12-26 2008-12-24 基板保持器、使用基板保持器的成膜方法、硬盘制造方法、成膜设备及程序
US12/754,364 US7927473B2 (en) 2007-12-26 2010-04-05 Substrate holder, deposition method using substrate holder, hard disk manufacturing method, deposition apparatus, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-333836 2007-12-26
JP2007333836 2007-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/754,364 Continuation US7927473B2 (en) 2007-12-26 2010-04-05 Substrate holder, deposition method using substrate holder, hard disk manufacturing method, deposition apparatus, and program

Publications (1)

Publication Number Publication Date
WO2009081952A1 true WO2009081952A1 (ja) 2009-07-02

Family

ID=40801252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/073477 WO2009081952A1 (ja) 2007-12-26 2008-12-24 基板ホルダー、基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置、プログラム

Country Status (4)

Country Link
US (1) US7927473B2 (ja)
JP (2) JP4358905B2 (ja)
CN (1) CN101842513B (ja)
WO (1) WO2009081952A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110287177A1 (en) * 2010-05-19 2011-11-24 Canon Anelva Corporation Vacuum processing apparatus, substrate rotation apparatus, and deposition method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371731B2 (ja) * 2009-12-24 2013-12-18 キヤノンアネルバ株式会社 成膜方法及び基板回転装置並びに真空処理装置
US8517364B1 (en) * 2010-10-07 2013-08-27 WD Media, LLC Disk holder with replaceable inserts to retain springs
TWI564988B (zh) * 2011-06-03 2017-01-01 Tel Nexx公司 平行且單一的基板處理系統
TWI470110B (zh) 2012-09-07 2015-01-21 Manz Taiwan Ltd 用於化學沉積設備的夾固裝置
JP6276816B2 (ja) * 2015-10-01 2018-02-07 キヤノントッキ株式会社 基板引張装置、成膜装置、膜の製造方法及び有機電子デバイスの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000222717A (ja) * 1999-02-02 2000-08-11 Mitsubishi Chemicals Corp 磁気記録媒体、その製造方法、製造装置及び磁気記録装置
JP2002319125A (ja) * 2001-04-20 2002-10-31 Hitachi Ltd 磁気ディスクの製造装置およびそれを用いた磁気ディスクの製造方法
JP2006216216A (ja) * 2005-01-07 2006-08-17 Fujitsu Ltd 磁気ディスク、その製造方法および磁気記憶装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926740B2 (ja) 1989-03-24 1999-07-28 ソニー株式会社 薄膜形成装置
JP3783106B2 (ja) 1994-03-07 2006-06-07 キヤノンアネルバ株式会社 薄膜形成方法および装置
JP3002632B2 (ja) 1995-06-22 2000-01-24 ホーヤ株式会社 磁気記録媒体の製造方法及び基板ホルダ
US6228429B1 (en) 2000-02-01 2001-05-08 Intevac, Inc. Methods and apparatus for processing insulating substrates
TW200532043A (en) * 2004-02-10 2005-10-01 Ulvac Inc Thin film forming apparatus
JP4691498B2 (ja) * 2004-08-30 2011-06-01 株式会社アルバック 成膜装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000222717A (ja) * 1999-02-02 2000-08-11 Mitsubishi Chemicals Corp 磁気記録媒体、その製造方法、製造装置及び磁気記録装置
JP2002319125A (ja) * 2001-04-20 2002-10-31 Hitachi Ltd 磁気ディスクの製造装置およびそれを用いた磁気ディスクの製造方法
JP2006216216A (ja) * 2005-01-07 2006-08-17 Fujitsu Ltd 磁気ディスク、その製造方法および磁気記憶装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110287177A1 (en) * 2010-05-19 2011-11-24 Canon Anelva Corporation Vacuum processing apparatus, substrate rotation apparatus, and deposition method

Also Published As

Publication number Publication date
US7927473B2 (en) 2011-04-19
JPWO2009081952A1 (ja) 2011-05-06
CN101842513A (zh) 2010-09-22
JP4358905B2 (ja) 2009-11-04
CN101842513B (zh) 2012-05-23
US20100189912A1 (en) 2010-07-29
JP2009277343A (ja) 2009-11-26

Similar Documents

Publication Publication Date Title
JP4358905B2 (ja) 基板ホルダー、基板ホルダーを用いた成膜方法、ハードディスクの製造方法、成膜装置、プログラム
JP4418032B2 (ja) 静電チャック
JP3005461B2 (ja) 静電チャック
JP5323317B2 (ja) 静電チャック方法
US8840754B2 (en) Polar regions for electrostatic de-chucking with lift pins
TW200929433A (en) Method and system for performing electrostatic chuck clamping in track lithography tools
US20060034032A1 (en) Method and apparatus for dechucking a substrate
JP2002151581A (ja) 基板のデチャック方法及び装置
JP5631206B2 (ja) デチャック中におけるウェーハ上の微粒子を減らすための方法及び装置
CN103026479A (zh) 基板运送方法和基板运送系统
JP2004022888A (ja) 静電吸着装置
KR20210119296A (ko) 에지 링, 기판 지지대, 플라즈마 처리 시스템 및 에지 링의 교환 방법
JP4771421B2 (ja) 保持装置及び基板受け渡し方法
US20220163845A1 (en) Structure and method of advanced lcos back-plane having robust pixel via metallization
KR20190077973A (ko) 터치 플레이트와 일체로 되고 스위칭 마그넷을 구비한 마그넷 플레이트 및 이를 적용한 얼라인먼트 시스템
US20170186631A1 (en) Apparatus and method for reducing substrate sliding in process chambers
US20170200815A1 (en) Casimir-effect device
CN111417742A (zh) 处理装置
KR20180133335A (ko) 웨이퍼 파지기 조립체, 시스템, 및 그 사용
JP2007184041A (ja) 磁気記録媒体の製造方法および製造装置
JP6153334B2 (ja) 剥離装置および剥離方法
JP6513508B2 (ja) 搬送装置、その制御方法及び基板処理システム
JP2002319125A (ja) 磁気ディスクの製造装置およびそれを用いた磁気ディスクの製造方法
KR101411377B1 (ko) 박막형 태양전지 제조용 선택적 박막 제거 장치
US20230197498A1 (en) Electrostatic end effector for manufacturing system robot

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880113992.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009519729

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08865102

Country of ref document: EP

Kind code of ref document: A1