WO2009081724A1 - 窒化物半導体素子およびその製造方法 - Google Patents

窒化物半導体素子およびその製造方法 Download PDF

Info

Publication number
WO2009081724A1
WO2009081724A1 PCT/JP2008/072319 JP2008072319W WO2009081724A1 WO 2009081724 A1 WO2009081724 A1 WO 2009081724A1 JP 2008072319 W JP2008072319 W JP 2008072319W WO 2009081724 A1 WO2009081724 A1 WO 2009081724A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
concentration
magnesium
type
Prior art date
Application number
PCT/JP2008/072319
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Ooshika
Original Assignee
Dowa Electronics Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co., Ltd. filed Critical Dowa Electronics Materials Co., Ltd.
Publication of WO2009081724A1 publication Critical patent/WO2009081724A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a nitride semiconductor device and a method for manufacturing the same, and more particularly to p-type formation of a nitride semiconductor layer in the nitride semiconductor device.
  • ultraviolet LEDs using nitride semiconductor elements are expected to be used in applications such as liquid crystal backlights, sterilization, excitation light sources for white LEDs for illumination, and medical use. It has been broken.
  • an ultraviolet LED is formed, for example, by providing a laminated body including an n-AlGaN layer, an AlInGaN active layer, a p-AlGaN layer, and a p-GaN contact layer on a substrate.
  • a conductivity type of each layer can be determined by doping a semiconductor with an impurity.
  • Patent Document 1 discloses that in a gallium nitride-based compound semiconductor layer doped with Mg, the semiconductor layer is grown and then annealed to thermally dissociate hydrogen bonded to Mg, and Mg Discloses a method of forming a p-type gallium nitride compound semiconductor having a high activation rate by allowing the semiconductor to function normally as an acceptor.
  • Patent Document 2 discloses that, in a gallium nitride semiconductor doped with Mg or the like, by growing the semiconductor at a high temperature, the hydrogen atoms are prevented from bonding with Mg or the like, and Mg or the like works normally as an acceptor.
  • a method for manufacturing a p-type gallium nitride based semiconductor in which generation of cracks and the like is suppressed by cooling to room temperature after forming the semiconductor is disclosed.
  • Patent Document 3 discloses that in a gallium nitride compound semiconductor doped with Mg or the like, after the semiconductor is grown, heat treatment is performed together with a metal or alloy having the ability to occlude hydrogen, so that Mg or the like is normally used as an acceptor.
  • a method of manufacturing a p-type gallium nitride-based compound semiconductor that works and promotes activation of Mg or the like is disclosed.
  • the ultraviolet LED can be used for sterilization.
  • a conventional mercury lamp for sterilization that is required to be replaced with mercury-free uses ultraviolet light of about 250 nm.
  • the center wavelength of an ultraviolet LED that is currently in practical use is about 365 nm, and an example of practical use of an ultraviolet LED having a shorter wavelength (for example, 350 nm or less) is the low power-light exchange efficiency. Therefore, at present, there is hardly any.
  • ultraviolet LEDs having a wavelength of 320 to 340 nm as a resin curing light source but the efficiency is still low.
  • short-wavelength ultraviolet LEDs can be achieved by increasing the Al (aluminum) composition of each layer except for the contact layer, but the high Al composition increases the ionization energy of Mg itself, which is high. It was difficult to obtain an activation rate.
  • H in the semiconductor is affected by the detachability depending on the depth from the surface, and the layer located at a deep position has a tendency that H does not easily escape, hydrogen dissociation is insufficient, and the activation rate tends to be low. It was difficult to intentionally control the activation rate of each layer in the laminate.
  • An object of the present invention is to form a p-type nitride semiconductor layer by doping magnesium and carbon so that the concentration ratio in the magnesium and carbon layers is a predetermined concentration ratio, thereby forming p-type nitride.
  • the magnesium activation rate after annealing can be set to a predetermined value or more without depending on the concentration of hydrogen remaining after annealing.
  • the gist of the present invention is as follows. (1) A method of manufacturing a nitride semiconductor device having a p-type stacked body formed by stacking a plurality of p-type nitride semiconductor layers represented by Al x Ga 1-x N (0 ⁇ x ⁇ 1). Each of the p-type nitride semiconductor layers is formed by doping magnesium and carbon so that the concentration ratio in the magnesium and carbon layers becomes a predetermined concentration ratio, and activation of magnesium after annealing. A method for manufacturing a nitride semiconductor device, wherein the rate is equal to or greater than a predetermined value.
  • the p-type stack includes a p-type GaN layer or a p-type AlGaN layer as the p-type nitride semiconductor layer, and the magnesium concentration in the layer is 2 ⁇ 10 19 to 3 ⁇ 10 20 cm ⁇ 3. And the carbon concentration is 1 ⁇ 10 18 to 1 ⁇ 10 20 cm ⁇ 3 .
  • a nitride semiconductor device having a p-type stacked body formed by stacking a plurality of p-type nitride semiconductor layers represented by Al x Ga 1-x N (0 ⁇ x ⁇ 1),
  • the p-type nitride semiconductor layer is characterized in that the carbon concentration in the layer is in the range of 0.05 to 1 as a ratio to the magnesium concentration.
  • the p-type laminate includes a p-type GaN layer or a p-type AlGaN layer as the p-type nitride semiconductor layer, and the magnesium concentration in the layer is 2 ⁇ 10 19 to 3 ⁇ 10 20 cm ⁇ 3.
  • the p-type nitride semiconductor layer is formed by doping magnesium and carbon so that the concentration ratio in the magnesium and carbon layers is a predetermined concentration ratio, thereby forming p-type nitride.
  • the magnesium activation rate after annealing can be set to a predetermined value or more.
  • a p-type laminate an electron block layer, a guide layer, a contact layer, a window layer, etc. In this manner, even when layers having different roles are stacked, a method for manufacturing a nitride semiconductor device having a carrier concentration optimized for each layer can be provided.
  • the AlGaN layer may be an AlInGaN layer
  • the GaN layer may be an AlGaN layer.
  • the above-mentioned layers can be crystal-grown by a low pressure or atmospheric pressure MOCVD method at a growth temperature of about 850 to 1100 ° C., or can be crystal-grown by a MOVPE method, an HVPE method, an MBE method, or the like.
  • TMGa, TMAl, TMIn, TEGa, and NH 3 as the reaction gas and H 2 , N 2 , or a mixed gas of H 2 and N 2 as the carrier gas.
  • Each of the p-type nitride semiconductor layers is formed by doping magnesium and carbon so that the concentration ratio in the magnesium and carbon layers is a predetermined concentration ratio.
  • Examples of the impurity gas for adding magnesium (Mg) include Cp 2 Mg, and examples of the impurity gas for adding carbon (C) include CBr 4 or CCl 4 .
  • zinc (Zn), cadmium (Cd), beryllium (Be), calcium (Ca), barium (Ba), etc., which have the same number of valence electrons as Mg, may be used as the p-type impurity.
  • the subsequent annealing treatment is preferably performed at about 600 to 800 ° C., and the semiconductor element after the treatment is preferably furnace-cooled.
  • the annealing treatment may be performed inside the crystal growth apparatus, or may be performed after being taken out from the crystal growth apparatus and moved to an annealing furnace.
  • the magnesium activation rate in the layer is set to a predetermined value or more.
  • the magnesium activation rate refers to the ratio of the carrier concentration to the magnesium concentration in the layer.
  • the magnesium concentration in the layer is preferably 2 ⁇ 10 19 to 3 ⁇ 10 20 cm ⁇ 3 and the carbon concentration is preferably 1 ⁇ 10 18 to 1 ⁇ 10 20 cm ⁇ 3 . If the magnesium concentration is less than 2 ⁇ 10 19 cm ⁇ 3 , even if a good activation rate is obtained, the carrier concentration is insufficient and sufficient luminous efficiency cannot be obtained, and 3 ⁇ 10 20 cm When it exceeds ⁇ 3 , excessive Mg easily forms a compound of nitrogen and Mg 3 N 2 , and sufficient supply of carriers is hindered.
  • the carbon concentration is less than 1 ⁇ 10 18 cm ⁇ 3 , the effect of improving the activation rate due to the addition of carbon is weakened, and if it exceeds 1 ⁇ 10 20 cm ⁇ 3 , excess carbon is in the gallium occupied position. This is because when it enters, it starts to function as a donor and newly binds to and compensates for Mg holes, and the activation rate decreases. In order to effectively increase the activation rate by adding carbon, it is more preferably 6 ⁇ 10 18 to 1 ⁇ 10 20 cm ⁇ 3 .
  • the carbon concentration can be controlled by controlling the amount of CBr 4 or CCl 4 added as impurity gas.
  • hydrazine or the like for example, dimethylhydrazine (DMHZ), chemical formula (CH 3 ) 2 NNH 2 , phenylhydrazine (PHHZ), chemical formula C 6 H 5 NHNH 2 ) is used before the growth of each layer. Or tertiary butylamine (TBAM), chemical formula N (C 4 H 9 ) H 2, etc.) to keep the atmosphere in the apparatus C rich, or to increase the pressure conditions in the apparatus
  • methods for reducing the carbon concentration include lowering the pressure condition in the apparatus and increasing the growth rate.
  • the carbon concentration in the layer is preferably in the range of 0.05 to 1 as a ratio to the magnesium concentration. If the ratio is less than 0.05, the effect of adding carbon is not so much seen. If the ratio exceeds 1, the carbon concentration is higher than the Mg concentration to be activated, and the excess carbon atoms As a result of being present at the Ga site and emitting electrons to compensate for the holes emitted from Mg, the carrier concentration is lowered and the activation rate is reduced. Further, it is more preferably in the range of 0.1 to 0.7 because the activation rate is improved and carriers are effectively supplied.
  • the magnesium activation rate is preferably 1% or more, and the carrier concentration is preferably 1 ⁇ 10 18 cm ⁇ 3 or more. If the magnesium activation rate is less than 1%, the light emission efficiency may be reduced. If the carrier concentration is less than 1 ⁇ 10 18 cm ⁇ 3 , the forward voltage increases and the current efficiency may decrease. Concerned.
  • the ionization energy of Mg increases and the activation rate itself may decrease, so carbon does not exceed 100% with respect to the magnesium concentration. It is preferable to increase the magnesium activation rate by increasing the concentration.
  • the carbon concentration in the layer is preferably in the range of 0.1 to 1 as a ratio to the hydrogen concentration in the layer. If the ratio is less than 0.1, sufficient carbon for compensating electrons generated by hydrogen bonding between nitrogen atoms and hydrogen atoms penetrating into the crystal is not supplied, and the effect of improving the activation rate is weakened. It is because it ends. On the other hand, when the ratio exceeds 1, the concentration of hydrogen atoms to be compensated is larger, so that the electron compensation effect of hydrogen atoms by carbon, ie, the Mg activation effect is weakened. In order to effectively supply carriers, the range of 0.2 to 0.8 is more preferable.
  • Example 1 A p-GaN layer (layer thickness: 500 nm) was formed on the sapphire substrate via the LT-GaN layer.
  • the growth temperature was set to 850 ° C., and H 2 , N 2 , NH 3 , TMG, TMA, Cp 2 Mg, and CBr 4 were supplied and grown by MOCVD.
  • the growth pressure was 200 Torr, and then an annealing process was performed at 800 ° C. for 30 minutes in an N 2 atmosphere.
  • the growth temperature was set to 850 ° C., and H 2 , N 2 , NH 3 , TMG, TMA, Cp 2 Mg, and CBr 4 were supplied and grown by MOCVD.
  • the growth pressure was 200 Torr. Thereafter, annealing was performed at 800 ° C. for 5 minutes in an N 2 atmosphere.
  • the growth temperature was set to 850 ° C., and H 2 , N 2 , NH 3 , TMG, TMA, Cp 2 Mg, and CBr 4 were supplied and grown by MOCVD.
  • the growth pressure was 200 Torr. Thereafter, annealing was performed at 800 ° C. for 5 minutes in an N 2 atmosphere.
  • Comparative Example 2 The same processing as in Example 2 was performed except that CBr 4 was not supplied.
  • Table 1 shows the carbon concentration, magnesium concentration, hydrogen concentration, carrier concentration, magnesium activation rate, ratio of carbon concentration to magnesium concentration, and ratio of carbon concentration to hydrogen concentration in Examples 1 to 3 and Comparative Examples 1 to 3. Indicates. Each element concentration was measured by secondary ion mass spectrometry (SIMS), and the carrier concentration was measured by a Hall measuring device.
  • SIMS secondary ion mass spectrometry
  • Example 1 to 3 and Comparative Examples 1 to 3 were compared, respectively, in this example in which CBr 4 was supplied, the carrier concentration and the magnesium activation rate were high, and by adding carbon, hydrogen atoms were added. It can be seen that there is an effect of facilitating activation of magnesium by compensating the electrons emitted from the carbon with holes emitted from the carbon. Further, the carrier concentration can be controlled by the carbon concentration.
  • Example 3 and Comparative Example 3 are compared, the activation rate is improved in Example 3 although Example 3 has a higher hydrogen concentration than Comparative Example 3. This is nothing but promoting the activation of magnesium by adding carbon.
  • Example A In order to fabricate an ultraviolet LED having a wavelength of 340 nm, as shown in FIG. 1, the contact layer 3, the cladding layer 4, and the guide layer 5 are arranged on the sapphire substrate 1 through the AlN buffer layer 2 in this order. After forming a plurality of n-AlGaN layers 6 (total layer thickness 3000 nm), an AlInGaN active layer 7 (total layer thickness 90 nm), a plurality of p-Al x Ga 1-x N layers 8 (total layer thickness 220 nm) and A p-GaN contact layer 9 (layer thickness: 20 nm) was sequentially stacked.
  • the electron blocking layer 10 is grown in the same manner as in Example 3, the cladding layer 12 is grown in Example 2, and the p-GaN contact layer 9 is grown in the same manner as in Example 1. It was.
  • the growth temperature was set to 850 ° C., and growth was performed by supplying H 2 , N 2 , NH 3 , TMG, TMA, and Cp 2 Mg by the MOCVD method.
  • the growth pressure was 200 Torr.
  • the Mg amount assumed in each layer is 3 ⁇ 10 19 to 2 ⁇ 10 20 cm ⁇ 3 , based on the results of Examples 1 to 3, the C concentration ratio to Mg is within 0.01 to 1.
  • the p-AlGaN layer and the p-GaN contact layer having a carbon concentration controlled to 1 ⁇ 10 18 to 1 ⁇ 10 20 cm ⁇ 3 were grown by adjusting the input gas flow rate. Thereafter, the supply of the reaction gas was stopped together with cooling, annealing was performed at 800 ° C. for 5 minutes in an N 2 atmosphere, and further cooling was performed.
  • n-AlGaN layer was exposed by dry etching, and electrodes 13 and 14 were attached to both p and n, and the element structure shown in FIG. 2 was fabricated.
  • Comparative Example A The same processing as in Example A was performed except that CBr 4 was not supplied.
  • Example A The IV characteristics of Example A and Comparative Example A were compared.
  • Comparative Example A I f
  • V f 10.5 V was obtained at 20 mA, and it can be seen that the forward voltage was smaller in Example A and the device characteristics were improved.
  • FIG. 3 shows the results of the concentration profile of the carbon element in the depth direction by SIMS.
  • the horizontal axis represents the depth from the surface of the laminate, and the vertical axis represents each element concentration in logarithm. Even in the case of lamination, the same tendency as in the case of a single layer was obtained in the carbon element concentration of each layer.
  • Each concentration of the contact layer 9, the clad layer 12, and the electron block layer 10 shows the same value as in Examples 1, 2, and 3.
  • the ratio of the carbon concentration to the hydrogen concentration could be increased as compared with the case where CBr 4 was not supplied. It is difficult to measure the carrier concentration at each position in the laminate, and the activation rate is not required.
  • the laminate It is obvious that the carrier concentration of each layer can be controlled by the carbon concentration.
  • the present invention forms a p-type nitride semiconductor layer by doping magnesium and carbon so that the concentration ratio of the magnesium and carbon layers is a predetermined concentration ratio, thereby forming a p-type nitride semiconductor.
  • the magnesium activation rate after annealing can be set to a predetermined value or more.
  • an electron block layer, a guide layer, a contact layer, a window layer, etc. as a p-type laminate As described above, even when layers having different roles are stacked, a method of manufacturing a nitride semiconductor device having a carrier concentration optimized for each layer can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Led Devices (AREA)

Abstract

 p型窒化物半導体層を、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成することにより、p型窒化物半導体層のAl組成や残留する水素濃度にかかわらず、アニール後のマグネシウム活性化率を所定値以上とすることができる窒化物半導体素子の製造方法を提供することを課題とする。AlxGa1-xN(0≦x≦1)で表されるp型窒化物半導体層を複数層積層してなるp型積層体を有する窒化物半導体素子の製造方法であって、前記各p型窒化物半導体層は、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成され、かつ、アニール後のマグネシウム活性化率が、所定値以上であることを特徴とする。

Description

窒化物半導体素子およびその製造方法
 本発明は、窒化物半導体素子およびその製造方法に関するものであって、特に、窒化物半導体素子中の窒化物半導体層のp型化に関する。
 近年、窒化物半導体素子を使用した紫外LEDは、液晶のバックライト、殺菌用、照明用白色LEDの励起光源および医療用等の用途に用いられることが期待され、盛んに研究および技術開発が行われている。
 一般に、紫外LEDは、例えば、n-AlGaN層、AlInGaN活性層、p-AlGaN層およびp-GaNコンタクト層を含む積層体を基板上に設けることにより形成される。このような各層の伝導型は、半導体に不純物をドープすることで決定することができる。
 しかし、半導体をp型化する場合に関しては、単に、半導体にp型不純物をドープするだけでは、半導体中の不純物濃度に対するキャリア濃度の割合、すなわち、活性化率の高い半導体を得ることはできない。この理由の1つとしては、半導体成長中に供給されるガスの一部が結晶中に取り込まれて発生したH(水素)原子が、結晶中のN(窒素)原子と水素結合して電子を放出し、Ga(ガリウム)原子の配置するべき位置に配置されたp型不純物であるMg(マグネシウム)原子から放出される正孔と結合して、電気的に補償しあい、結果としてp型化のためにドープしたMgがアクセプタとして働くのを妨げていることが挙げられる。
 そこで、特許文献1は、Mgをドープした窒化ガリウム系化合物半導体層において、前記半導体層を成長させた後アニーリング処理を行うことにより、Mgと結合している水素を熱的に解離させて、Mgがアクセプタとして正常に働くようにすることで、高い活性化率のp型窒化ガリウム系化合物半導体を形成する方法について開示する。
特許第3301345号
 また、特許文献2は、Mg等をドープした窒化ガリウム系半導体において、前記半導体を高温で成長させることにより、水素原子がMg等と結合するのを抑制して、Mg等がアクセプタとして正常に働くようにし、また、前記半導体の形成後に室温まで冷却することにより、クラック等の発生を抑制したp型窒化ガリウム系半導体を製造する方法について開示する。
特許第3341948号
 さらに、特許文献3は、Mg等をドープした窒化ガリウム系化合物半導体において、前記半導体を成長させた後、水素を吸蔵する能力を有する金属又は合金と共に熱処理することにより、Mg等がアクセプタとして正常に働くようにし、Mg等の活性化を促進した、p型窒化ガリウム系化合物半導体を製造する方法について開示する。
特許第3555512号
 しかしながら、特許文献1、2および3に記載したような、従来のp型不純物活性化方法では、水素の解離の程度により、各層の活性化率が一義的に決まってしまい、水素の解離が不十分だと十分な活性化率を得ることはできなかった。
 ところで、上述したとおり、紫外LEDの用途として、殺菌用途が挙げられるが、例えば、水銀フリーへの置き換えの要望がある従来の殺菌用の水銀ランプは、およそ250nmの紫外光を利用しているのに対して、現在実用化に至っている紫外LEDの中心波長はおよそ365nmであり、これよりも短波長(例えば350nm以下)の紫外LEDの実用化の例は、その電力―光交換効率の低さから、現状では、ほとんど存在しない。また、樹脂硬化用光源として320~340nmレベルの波長を有した紫外LEDも存在するが、いまだ、効率は低い状態である。
 一般に、短波長の紫外LEDは、コンタクト層を除く各層のAl(アルミニウム)組成を上げることにより達成できるということが知られているが、高いAl組成ではMg自体のイオン化エネルギーが大きくなるため、高い活性化率を得ることは困難であった。
 さらに、半導体中のHは、その表面からの深さによって、離脱性が左右され、深い位置にある層はHが抜けにくく、水素の解離が不十分で活性化率が低くなる傾向があり、積層体における各層の活性化率を意図的に制御することは困難であった。
 すなわち、積層体の各層で最適なキャリア濃度を有する、良好なLED素子を作製することは困難であった。
 本発明の目的は、p型窒化物半導体層を、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成することにより、p型窒化物半導体層のAl組成にかかわらず、さらに、アニール後に残留した水素濃度にも依存せず、アニール後のマグネシウム活性化率を所定値以上とすることができ、また、例えば、p型積層体として電子ブロック層、ガイド層、コンタクト層または窓層等の様に、役割の異なる層を積層した場合であっても、各層でそれぞれ最適化したキャリア濃度を有する窒化物半導体素子の製造方法を提供することにある。
 上記目的を達成するため、本発明の要旨構成は以下の通りである。
 (1)AlGa1-xN(0≦x≦1)で表されるp型窒化物半導体層を複数層積層してなるp型積層体を有する窒化物半導体素子の製造方法であって、前記各p型窒化物半導体層は、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成され、かつ、アニール後のマグネシウム活性化率が、所定値以上であることを特徴とする窒化物半導体素子の製造方法。
 (2)前記p型積層体は、前記p型窒化物半導体層として、p型GaN層またはp型AlGaN層を具え、前記層中のマグネシウム濃度は2×1019~3×1020cm-3であり、かつ、炭素濃度は1×1018~1×1020cm-3である上記(1)に記載の窒化物半導体素子の製造方法。
 (3)前記層中の炭素濃度は、マグネシウム濃度に対する比で0.05~1の範囲である上記(1)または(2)に記載の窒化物半導体素子の製造方法。
 (4)前記マグネシウム活性化率は1%以上であり、かつ、キャリア濃度は1×1018cm-3以上である上記(1)、(2)または(3)に記載の窒化物半導体素子の製造方法。
 (5)前記層中のマグネシウム濃度は、層中の水素濃度に対する比で0.1~1の範囲である上記(1)~(4)のいずれか1に記載の窒化物半導体素子の製造方法。
 (6)AlGa1-xN(0≦x≦1)で表されるp型窒化物半導体層を複数層積層してなるp型積層体を有する窒化物半導体素子であって、前記各p型窒化物半導体層は、前記層中の炭素濃度が、マグネシウム濃度に対する比で0.05~1の範囲であることを特徴とする窒化物半導体素子。
 (7)前記p型積層体は、前記p型窒化物半導体層として、p型GaN層またはp型AlGaN層を具え、前記層中のマグネシウム濃度は2×1019~3×1020cm-3であり、かつ、炭素濃度は1×1018~1×1020cm-3である上記(6)に記載の窒化物半導体素子。
 (8)前記p型AlGaN層は、AlGa1-xN(0.3≦x)である上記(7)に記載の窒化物半導体素子。
 (9)前記層中のマグネシウム活性化率は1%以上であり、かつ、キャリア濃度は1×1018cm-3以上である上記(6)、(7)または(8)に記載の窒化物半導体素子。
 (10)前記層中の炭素濃度は、層中の水素濃度に対する比で0.1~1の範囲である上記(6)~(9)のいずれか1に記載の窒化物半導体素子。
 本発明によれば、p型窒化物半導体層を、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成することにより、p型窒化物半導体層のAl組成にかかわらず、アニール後のマグネシウム活性化率を所定値以上とすることができ、また、例えば、p型積層体として電子ブロック層、ガイド層、コンタクト層または窓層等の様に、役割の異なる層を積層した場合であっても、各層でそれぞれ最適化したキャリア濃度を有する窒化物半導体素子の製造方法を提供することができる。
本発明に従う窒化物半導体素子の積層体を示す断面図である。 本発明に従う窒化物半導体素子の積層体を示す断面図である。 各元素のSIMSプロファイルを示すグラフである。
 次に、本発明の実施形態について説明する。
 以下に示す本発明の実施形態では、例として、基板上にn-AlGaN層、AlGaN系活性層、p-AlGaN層およびp-GaNコンタクト層を成長させた例について説明するが、前記AlGaN層は、AlInGaN層としてもよく、前記GaN層は、AlGaN層としてもよい。
 前記各層は、成長温度を約850~1100℃とする低圧若しくは常圧MOCVD法により結晶成長させることができ、または、MOVPE法、HVPE法、MBE法等によっても結晶成長させることができる。
 また、反応ガスとして、TMGa、TMAl、TMIn、TEGa、およびNHを用い、キャリアガスとして、H、N、またはHとNとの混合ガスを用いるのが好ましい。
 前記各p型窒化物半導体層は、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成される。
 前記マグネシウム(Mg)を添加するための不純物ガスとしては、例えば、CpMg等が挙げられ、前記炭素(C)を添加するための不純物ガスとしては、CBrまたはCCl等が挙げられる。
 なお、p型不純物として、Mgと荷電子数が同じである亜鉛(Zn)、カドミウム(Cd)、ベリリウム(Be)、カルシウム(Ca)、バリウム(Ba)等を用いてもよい。
 その後のアニール処理は、約600~800℃で行い、処理後の半導体素子は炉冷されるのが好ましい。なお、前記アニール処理は、結晶成長装置内部で行ってもよく、結晶成長装置から取り出した後にアニール炉へ移動させて行ってもよい。
 前記層中のマグネシウム活性化率は、所定値以上とする。マグネシウム活性化率とは、層中のマグネシウム濃度に対するキャリア濃度の割合のことをいう。
 前記層中のマグネシウム濃度は2×1019~3×1020cm-3であり、かつ、炭素濃度は1×1018~1×1020cm-3であるのが好ましい。前記マグネシウム濃度が2×1019cm-3未満だと、良好な活性化率が得られたとしても、キャリア濃度が不足して、十分な発光効率を得ることができないし、3×1020cm-3を超えると、過剰に入ったMgが窒素とMgなる化合物を形成しやすくなり、キャリアの十分な供給が阻害されてしまう。また、前記炭素濃度が1×1018cm-3未満だと、炭素添加による活性化率の向上効果が弱くなり、1×1020cm-3を超えると、過剰な炭素がガリウムの占有位置に入ることによりドナーとして機能し始めて新たにMgの正孔と結合、補償して活性化率が下がってしまうからである。炭素添加による活性化率の向上を効果的にあげるには、6×1018~1×1020cm-3であるのがより好ましい。
 前記炭素濃度の制御方法としては、不純物ガスとして添加するCBr若しくはCCl等の量を制御することにより行うことができる。または、炭素濃度を増加させる方法としては、各層の成長前に、ヒドラジン等(たとえば、ジメチルヒドラジン(DMHZ)、化学式(CHNNH、フェニルヒドラジン(PHHZ)、化学式CNHNH、または第3ブチルアミン(TBAM)、化学式N(C)H等)を供給して、装置内の雰囲気をCリッチな状態にしておくことや、装置内の圧力条件を高くすること等が挙げられ、炭素濃度を減少させる方法としては、装置内の圧力条件を低くする、成長速度を速くすること等が挙げられる。
 前記層中の炭素濃度は、マグネシウム濃度に対する比で0.05~1の範囲であるのが好ましい。比が0.05未満だと、炭素を添加することによる効果があまり見られず、比が1を超えると、活性化すべきMg濃度よりも炭素濃度のほうが高くなり、過剰となった炭素原子はGaサイトに存在する様になり、電子を放出して、Mgから放出された正孔を補償した結果、逆にキャリア濃度が低下し、活性化率が低減するという逆効果をもたらしてしまう。さらに、活性化率を向上させ、効果的にキャリアを供給するという理由から、0.1~0.7の範囲であるのがさらに好ましい。
 前記マグネシウム活性化率は1%以上であり、かつ、キャリア濃度は1×1018cm-3以上であるのが好ましい。前記マグネシウム活性化率が1%未満だと、発光効率が低下するおそれがあり、前記キャリア濃度が1×1018cm-3未満だと、順方向電圧が大きくなり、電流効率が低減することが懸念される。
 特に、高Al組成(xが0.3以上)では、Mgのイオン化エネルギーが上昇して、活性化率そのものが低下する恐れがあるため、マグネシウム濃度に対して100%を超えない範囲で、炭素濃度を上げることにより、マグネシウム活性化率を上げるのが好ましい。
 前記層中の炭素濃度は、層中の水素濃度に対する比で0.1~1の範囲であるのが好ましい。比が0.1未満だと、窒素原子と結晶中に侵入した水素原子が水素結合して生成した電子を補償するための十分な炭素が供給されず、活性化率の向上効果が弱くなってしまうためである。また、比が1を超えると、補償すべき水素原子の濃度よりも大きいため、炭素による水素原子の電子補償効果、すなわちMgの活性化効果は弱くなってしまう。効果的にキャリアを供給するためには0.2~0.8の範囲であることがさらに好ましい。
 (実験例1)
 実施例1
 サファイア基板上に、LT-GaN層を介して、p-GaN層(層厚500nm)を形成した。成長温度は850℃とし、MOCVD法により、H、N、NH、TMG、TMA、CpMgおよびCBrを供給して成長させた。成長圧力は、200Torrとし、その後、N雰囲気にて800℃、30minのアニール処理を行った。
 実施例2
 サファイア基板上に、LT-GaN層を介して、p-AlGa1-xN層(層厚500nm、x=0.3)を形成した。成長温度は850℃とし、MOCVD法により、H、N、NH、TMG、TMA、CpMgおよびCBrを供給して成長させた。成長圧力は、200Torrとした。その後、N雰囲気にて800℃、5minのアニール処理を行った。
 実施例3
 サファイア基板上に、LT-GaN層を介して、p-AlGa1-xN層(層厚500nm、x=0.5)を形成した。成長温度は850℃とし、MOCVD法により、H、N、NH、TMG、TMA、CpMgおよびCBrを供給して成長させた。成長圧力は、200Torrとした。その後、N雰囲気にて800℃、5minのアニール処理を行った。
 比較例1
 CBrを供給しないこと以外は、実施例1と同様の処理を行った。
 比較例2
 CBrを供給しないこと以外は、実施例2と同様の処理を行った。
 比較例3
 CBrを供給しないこと以外は、実施例3と同様の処理を行った。
 表1に、実施例1~3と比較例1~3における、炭素濃度、マグネシウム濃度、水素濃度、キャリア濃度、マグネシウム活性化率、マグネシウム濃度に対する炭素濃度の比、および水素濃度に対する炭素濃度の比を示す。各元素濃度は二次イオン質量分析法(SIMS)により測定し、キャリア濃度はホール測定装置により計測した。
Figure JPOXMLDOC01-appb-T000001
 実施例1~3と比較例1~3とをそれぞれ比較すると、いずれもCBrの供給を行った本実施例において、キャリア濃度およびマグネシウム活性化率が高く、炭素を追加することによって、水素原子から放出される電子を炭素から放出される正孔で補償することで、マグネシウムを活性化しやすくする効果があることが分かる。また、炭素濃度によって、キャリア濃度を制御できる。実施例3と比較例3を比較すると、実施例3のほうでは比較例3よりも水素濃度が高いにもかかわらず、実施例3のほうで活性化率が向上している。このことは炭素を追加したことによって、マグネシウムの活性化を促したことに他ならない。
 (実験例2)
 実施例A
 340nmの波長を持った紫外LEDを作成するために、図1に示されるように、サファイア基板1上に、AlNバッファ層2を介して、コンタクト層3、クラッド層4、ガイド層5の順からなる複数のn-AlGaN層6(総層厚3000nm)、AlInGaN活性層7(総層厚90nm)を形成した後、複数のp-AlGa1-xN層8(総層厚220nm)およびp-GaNコンタクト層9(層厚20nm)を順に積層して形成した。前記複数のp-AlGa1-xN層8は、電子ブロック層10(層厚20nm、x=0.5)、ガイド層11(層厚50nm、x=0.4)、クラッド層12(層厚150nm、x=0.3)の順に各1層積層させた。
 前記複数のp-AlGa1-xN層8のうち、電子ブロック層10は実施例3、クラッド層12は実施例2、またp-GaNコンタクト層9は実施例1と同様に成長させた。成長温度を850℃とし、MOCVD法によりH、N、NH、TMG、TMAおよびCpMgを供給して成長させた。成長圧力は、200Torrとした。
 各層で想定されるMg量が3×1019~2×1020cm-3であるため、実施例1~3の結果を元に、Mgに対するC濃度比が0.01~1に収まるように、投入ガス流量を調整することによって、炭素濃度を1×1018~1×1020cm-3に制御したp-AlGaN層およびp-GaNコンタクト層を成長させた。その後、冷却と共に反応ガスの供給を停止し、N雰囲気にて800℃、5minのアニールを行い、さらに冷却した。
 その後、ドライエッチング法により、n-AlGaN層の一部を露出させ、p、nともに電極13、14を付して、図2に示す素子構造を作製した。
 比較例A
 CBrを供給しないこと以外は、実施例Aと同様の処理を行った。
 実施例Aと比較例AについてI-V特性の比較を行ったところ、実施例Aにおいて、I=20mAにてV=7.2Vであったのに対し、比較例Aでは、I=20mAにおいてV=10.5Vという結果が得られ、実施例Aの方が順電圧が小さく、素子特性が改善されたことがわかる。
 図3にSIMSによる炭素元素の深さ方向濃度プロファイルの結果を示す。横軸は積層体表面からの深さを表し、縦軸は各元素濃度を対数で表したものである。積層した場合でも、各層の炭素元素濃度は、単層の場合と同様の傾向が得られた。コンタクト層9、クラッド層12、電子ブロック層10の各濃度は実施例1、2、3と同等の値を示し、各層の成長ごとに炭素濃度をコントロールすることで、表面から深い位置にある層でも、CBrの供給を行わなかったものに比べて水素濃度に対する炭素濃度の比を上げることができた。積層体での各位置でのキャリア濃度の測定は困難であり、活性化率は求められていないが、以上の結果から、単層での炭素、マグネシウム濃度分布の結果を踏まえることにより、積層体においても炭素濃度によって各層のキャリア濃度を制御できることは明らかである。
 本発明は、p型窒化物半導体層を、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成することにより、p型窒化物半導体層のAl組成ないし水素濃度にかかわらず、アニール後のマグネシウム活性化率を所定値以上とすることができ、また、例えば、p型積層体として電子ブロック層、ガイド層、コンタクト層または窓層等の様に、役割の異なる層を積層した場合であっても、各層でそれぞれ最適化したキャリア濃度を有する窒化物半導体素子の製造方法を提供することができる。

Claims (10)

  1.  AlGa1-xN(0≦x≦1)で表されるp型窒化物半導体層を複数層積層してなるp型積層体を有する窒化物半導体素子の製造方法であって、
     前記各p型窒化物半導体層は、マグネシウムおよび炭素を、それらマグネシウムと炭素の層中の濃度比が所定の濃度比になるようにドープすることによって形成され、かつ、アニール後のマグネシウム活性化率が、所定値以上であることを特徴とする窒化物半導体素子の製造方法。
  2.  前記p型積層体は、前記p型窒化物半導体層として、p型GaN層またはp型AlGaN層を具え、
     前記層中のマグネシウム濃度は2×1019~3×1020cm-3であり、かつ、炭素濃度は1×1018~1×1020cm-3である請求項1に記載の窒化物半導体素子の製造方法。
  3.  前記層中の炭素濃度は、マグネシウム濃度に対する比で0.05~1の範囲である請求項1または2に記載の窒化物半導体素子の製造方法。
  4.  前記マグネシウム活性化率は1%以上であり、かつ、キャリア濃度は1×1018cm-3以上である請求項1、2または3に記載の窒化物半導体素子の製造方法。
  5.  前記層中の炭素濃度は、層中の水素濃度に対する比で0.1~1である請求項1~4のいずれか1項に記載の窒化物半導体素子の製造方法。
  6.  AlGa1-xN(0≦x≦1)で表されるp型窒化物半導体層を複数層積層してなるp型積層体を有する窒化物半導体素子であって、
     前記各p型窒化物半導体層は、前記層中の炭素濃度が、マグネシウム濃度に対する比で0.05~1の範囲であることを特徴とする窒化物半導体素子。
  7.  前記p型積層体は、前記p型窒化物半導体層として、p型GaN層またはp型AlGaN層を具え、
     前記層中のマグネシウム濃度は2×1019~3×1020cm-3であり、かつ、炭素濃度は1×1018~1×1020cm-3である請求項6に記載の窒化物半導体素子。
  8.  前記p型AlGaN層は、AlGa1-xN(0.3≦x)である請求項7に記載の窒化物半導体素子。
  9.  前記層中のマグネシウム活性化率は1%以上であり、かつ、キャリア濃度は1×1018cm-3以上である請求項6、7または8に記載の窒化物半導体素子。
  10.  前記層中の炭素濃度は、層中の水素濃度に対する比で0.1~1である請求項6~9のいずれか1項に記載の窒化物半導体素子。
PCT/JP2008/072319 2007-12-21 2008-12-09 窒化物半導体素子およびその製造方法 WO2009081724A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-330165 2007-12-21
JP2007330165A JP2009152448A (ja) 2007-12-21 2007-12-21 窒化物半導体素子およびその製造方法

Publications (1)

Publication Number Publication Date
WO2009081724A1 true WO2009081724A1 (ja) 2009-07-02

Family

ID=40801032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072319 WO2009081724A1 (ja) 2007-12-21 2008-12-09 窒化物半導体素子およびその製造方法

Country Status (2)

Country Link
JP (1) JP2009152448A (ja)
WO (1) WO2009081724A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5635246B2 (ja) 2009-07-15 2014-12-03 住友電気工業株式会社 Iii族窒化物半導体光素子及びエピタキシャル基板
KR102062382B1 (ko) * 2012-04-19 2020-01-03 서울반도체 주식회사 반도체 장치 및 이를 제조하는 방법
US10153394B2 (en) 2012-11-19 2018-12-11 Genesis Photonics Inc. Semiconductor structure
TWI511325B (zh) * 2012-11-19 2015-12-01 Genesis Photonics Inc 氮化物半導體結構及半導體發光元件
TWI535055B (zh) 2012-11-19 2016-05-21 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
TWI499080B (zh) 2012-11-19 2015-09-01 Genesis Photonics Inc 氮化物半導體結構及半導體發光元件
TWI524551B (zh) 2012-11-19 2016-03-01 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
JP2014127708A (ja) 2012-12-27 2014-07-07 Toshiba Corp 半導体発光素子及び半導体発光素子の製造方法
JP6453542B2 (ja) * 2013-02-14 2019-01-16 ソウル セミコンダクター カンパニー リミテッド 半導体装置及びこれの製造方法
TWI738640B (zh) * 2016-03-08 2021-09-11 新世紀光電股份有限公司 半導體結構
TWI717386B (zh) 2016-09-19 2021-02-01 新世紀光電股份有限公司 含氮半導體元件
JP7489269B2 (ja) 2020-09-01 2024-05-23 旭化成株式会社 紫外線発光素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144378A (ja) * 1999-08-31 2001-05-25 Sharp Corp 化合物半導体発光素子及びその製造方法
JP2003264345A (ja) * 2002-03-11 2003-09-19 Sharp Corp 窒化物半導体発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3537246B2 (ja) * 1995-11-14 2004-06-14 三菱電機株式会社 化合物半導体装置の製造方法
JP3648386B2 (ja) * 1998-07-08 2005-05-18 株式会社東芝 半導体素子およびウェーハならびにそれらの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144378A (ja) * 1999-08-31 2001-05-25 Sharp Corp 化合物半導体発光素子及びその製造方法
JP2003264345A (ja) * 2002-03-11 2003-09-19 Sharp Corp 窒化物半導体発光素子

Also Published As

Publication number Publication date
JP2009152448A (ja) 2009-07-09

Similar Documents

Publication Publication Date Title
WO2009081724A1 (ja) 窒化物半導体素子およびその製造方法
US10283671B2 (en) Method of producing III nitride semiconductor light-emitting device
US10193016B2 (en) III-nitride semiconductor light emitting device and method of producing the same
US9882088B2 (en) III nitride semiconductor light-emitting device
US7709284B2 (en) Method for deposition of magnesium doped (Al, In, Ga, B)N layers
JP5306254B2 (ja) 半導体発光素子
CN110729631B (zh) 一种基于氮化镓单晶衬底的激光二极管及其制备方法
US8120013B2 (en) Nitride semi-conductor light emitting device and a process of producing a nitride semi-conductor light emitting device
JP4510934B2 (ja) 窒化物系半導体発光素子およびその製造方法
WO2012140844A1 (ja) 窒化ガリウム系化合物半導体発光素子およびその製造方法
JP2007184353A (ja) 窒化物系化合物半導体素子の製造方法、および、窒化物系化合物半導体素子
WO2011070768A1 (ja) 窒化物系半導体発光素子およびその製造方法
JPH11220169A (ja) 窒化ガリウム系化合物半導体素子及びその製造方法
US10062806B2 (en) Method of producing III nitride semiconductor light-emitting device and III nitride semiconductor light-emitting device
KR20090011885A (ko) 반도체 발광소자 및 그 제조방법
JP2007027248A (ja) p型III族窒化物半導体層の製造方法および発光素子
US8815621B2 (en) Method of forming p-type gallium nitride based semiconductor, method of forming nitride semiconductor device, and method of forming epitaxial wafer
JP2007012809A (ja) 窒化ガリウム系化合物半導体装置およびその製造方法
JP2022167231A (ja) 紫外半導体発光素子
US20150263220A1 (en) Semiconductor light-emitting element and method for manufacturing the same
JP6084196B2 (ja) Iii族窒化物半導体発光素子の製造方法およびiii族窒化物半導体発光素子
WO2016092822A1 (ja) Iii族窒化物半導体発光素子の製造方法
WO2024085201A1 (ja) 紫外半導体発光素子
JP2008091962A (ja) 半導体発光素子
KR20030079056A (ko) 질화물 반도체의 발광소자 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08865329

Country of ref document: EP

Kind code of ref document: A1