WO2009081711A1 - 取付姿勢測定装置 - Google Patents

取付姿勢測定装置 Download PDF

Info

Publication number
WO2009081711A1
WO2009081711A1 PCT/JP2008/072085 JP2008072085W WO2009081711A1 WO 2009081711 A1 WO2009081711 A1 WO 2009081711A1 JP 2008072085 W JP2008072085 W JP 2008072085W WO 2009081711 A1 WO2009081711 A1 WO 2009081711A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
reflecting mirror
measuring device
reflecting
reflecting mirrors
Prior art date
Application number
PCT/JP2008/072085
Other languages
English (en)
French (fr)
Inventor
Kazuaki Ezawa
Kazumasa Fujiwara
Original Assignee
Mitsui Engineering & Shipbuilding Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering & Shipbuilding Co., Ltd. filed Critical Mitsui Engineering & Shipbuilding Co., Ltd.
Priority to CN2008801213864A priority Critical patent/CN101903818B/zh
Priority to ES201090036A priority patent/ES2421280B1/es
Priority to US12/809,266 priority patent/US8355142B2/en
Priority to AU2008341935A priority patent/AU2008341935B2/en
Publication of WO2009081711A1 publication Critical patent/WO2009081711A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/45Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
    • F24S30/452Vertical primary axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • This relates to a mounting posture measuring device for a reflecting mirror (facet) constituting a heliostat that collects sunlight.
  • the heliostat 3 for concentrating sunlight increases the condensing rate by a concave mirror.
  • This concave surface is desired to be manufactured in three dimensions having a rotating conic curve surface, and a highly durable concave mirror has been proposed. (For example, refer to Patent Document 1.)
  • the plurality of facets 31 are adjusted and fixed so as to follow the shape of the rotating conic curve surface 53, for example, the shape of a spherical surface. At this time, the accuracy of the mounting position of the facet 31 was low, and it was necessary to adjust it many times.
  • JP 2002-154179 A JP 2002-154179 A
  • the facet 31 is fixed on a facet frame 35 by a facet bolt 34 so as to follow a pseudo rotational conic curve surface 53.
  • a large paper pattern of the rotating conic curve surface 53 is prepared, the paper pattern is supported by two persons, and one person adjusts the mounting position of the facet. There was a problem that workability was low.
  • the facet 31 which is a plane is combined to form a pseudo rotation conic curve surface 53, the center of the plane of the facet 31 is in contact with the paper pattern, and the facet is fixed at an angle at which the facet is tangent to the rotation cone curve surface.
  • This work has extremely low work accuracy.
  • the facet 31 appears to be adjusted along the pattern, the reflected light often does not focus when sunlight, which is actually parallel light, hits it. The work is extremely difficult.
  • the mounting posture of the facet 31 greatly affects the sunlight condensing efficiency in solar thermal power generation, and improvement in the mounting posture accuracy of the facet 31 is indispensable for improving the efficiency of solar thermal power generation.
  • the object of the present invention is to mount the facet 31 in order to perform an efficient and simple mounting adjustment in the operation of fitting the reflecting mirror (facet 31) attached to the heliostat 3 to the rotational conic curve surface in a pseudo manner. It is an object of the present invention to provide an adjustment method and a mounting posture measuring device that accurately measure the angle. In addition, when fixing the heliostat 3 for which the mounting posture adjustment of the facet 31 has been completed so as to be linked to each other by a coupling tool, the adjustment method and the mounting posture measurement are adjusted so that each heliostat 3 has a focal point. Providing equipment.
  • the solar light collecting heliostat including a plurality of reflecting mirrors tiltably mounted on a gantry according to the invention described in claim 1 has the same direction as the plurality of reflecting mirrors 31.
  • the reflecting mirror 52 so that the laser reflected light 52 obtained by irradiating a plurality of parallel laser beams is focused on the focal point 51 of the pseudo rotating conical curved surface 53 formed by the plurality of reflecting mirrors 31.
  • the reflector installation method for adjusting the mounting angle of the reflector 31 is arranged so as to cross the virtual path in the vicinity of the laser generator 11 and the virtual path formed so as to connect the reflector 31 and the focal point 51, and the laser beam
  • the intersection with the laser point measuring unit 12 for measuring the irradiated position is set as a virtual passing point 52b of the laser beam, and the reflected laser beam 52 reflected by the reflecting mirror 31 reaches the virtual passing point 52b.
  • a plurality of reflecting mirrors 31 are provided so as to be tiltable on a gantry, and the plurality of reflecting mirrors 31 are focused on a focal point 51 of a pseudo rotating conic curve surface 53.
  • the connection adjustment method of the heliostat unit comprised by connecting the adjusted heliostat 3 for sunlight condensing with the connection tool 33 so that it may operate
  • the virtual path of the laser beam is arranged in the vicinity of the laser generator 11 so as to cross the virtual path, and the laser point measurement unit 12 for measuring the position irradiated with the laser beam is used as a virtual point of the laser beam.
  • the connecting point 33 is adjusted so that the laser reflected light 52 reflected by the reflecting mirror 31 reaches the virtual passing point 52b.
  • the solar light collecting heliostat 3 comprising a plurality of reflecting mirrors 31 tiltably installed on a gantry is obtained by irradiating the plurality of reflecting mirrors 31 with laser light.
  • Reflecting mirror used when adjusting the mounting angle of the reflecting mirror 31 so that the laser reflected light 52 is focused on the focal point 51 of the pseudo rotating conical curved surface 53 formed by the plurality of reflecting mirrors 31.
  • the mounting posture measuring apparatus 1 that measures the mounting posture 31 receives a plurality of laser generators 11 whose laser light emission directions are parallel and in the same direction, and receives the laser light of the laser generator 11 to detect an irradiation position. And a supporting member 13 on which the laser generator 11 and the laser point measuring unit 12 are installed.
  • a plurality of reflecting mirrors 31 are provided so as to be tiltable on a gantry, and the plurality of reflecting mirrors 31 are focused on a focal point 51 of a pseudo rotating conic curve surface 53.
  • the heliostat unit mounting posture measuring device 1 configured by connecting the adjusted solar light collecting heliostats 3 with the connecting tool 33 so as to operate in a linked manner, the laser beam emission direction is parallel and A plurality of laser generators 11 in the same direction, a laser point measuring unit 12 that receives the laser light of the laser generator 11 and detects an irradiation position, and the laser generator 11 and the laser point measuring unit 12 are installed.
  • the support member 13 is provided.
  • the mounting posture measuring apparatus 1 according to the invention described in claim 5 is characterized in that a moving mechanism 14 is provided on the support member 13.
  • the mounting posture measuring apparatus 1 is characterized in that the laser generator 11 and the laser point measuring unit 12 are installed on a gate-type support member 13.
  • the mounting posture measuring apparatus 1 according to the invention described in claim 7 is characterized in that the laser generator 11 uses different laser light wavelengths and emits different colors.
  • the mounting angle of the reflecting mirror 31 is adjusted so that the laser reflected light 52 obtained by irradiating the light is focused on the focal point 51 of the pseudo rotating conical curved surface 53 formed by the plurality of reflecting mirrors 31.
  • a laser distance measuring device 15 for measuring a distance using laser light is installed on a reference line 54 provided in front of the reflecting mirror 31, and the reference line 54 and the reflecting mirror 31 are installed. And adjusting the reflecting mirror 31 so that this distance is equal to the distance between the reference line 54 and the pseudo rotating conical curve surface 53 to be formed by the reflecting mirror 31.
  • a plurality of reflecting mirrors 31 are provided so as to be tiltable on a gantry, and the plurality of reflecting mirrors 31 are focused on a focal point 51 of a pseudo rotating conic curve surface 53.
  • a coupling tool adjustment method of a heliostat unit in which a plurality of adjusted solar light collecting heliostats 3 are linked by a coupling tool 33 so as to operate in conjunction with each other is a laser distance measuring distance using laser light.
  • the measuring device 15 is installed on a reference line 54 provided in front of the reflecting mirror 31, and the distance between the reference line 54 and the reflecting mirror 31 is measured. This distance is the reference line 54 and the reflecting mirror 31.
  • the connecting tool 33 is adjusted so as to be equal to the distance between the pseudo rotation conic curve surfaces 53 to be formed.
  • the solar light collecting heliostat 3 comprising a plurality of reflecting mirrors 31 tiltably mounted on a gantry according to the invention of claim 10 is obtained by irradiating the plurality of reflecting mirrors 31 with laser light.
  • the mounting posture measuring device 1 for measuring the mounting posture 31 includes a laser distance measuring device 15 that measures a distance using laser light, and the laser distance measuring device 15 is provided in front of the reflecting mirror 31. It is characterized by being installed on the line 54.
  • a plurality of reflecting mirrors 31 are provided so as to be tiltable on the gantry, and the plurality of reflecting mirrors 31 are focused on the focal point 51 of the pseudo rotating conical curved surface 53.
  • a mounting posture measuring device 1 of a heliostat unit in which a plurality of adjusted solar light collecting heliostats 3 are connected by a connecting tool 33 so as to operate in conjunction with each other is a laser that measures a distance using laser light.
  • a distance measuring device 15 is provided, and the laser distance measuring device 15 is installed on a reference line 54 provided in front of the reflecting mirror 31.
  • the mounting posture measuring apparatus 1 is characterized in that the supporting member 13 is provided with a moving mechanism 14 for moving along a reflecting mirror.
  • the mounting posture measuring device 1 according to the invention described in claim 13 is characterized in that the laser distance measuring device 15 is installed on a portal support member 13.
  • FIG. 1 shows an example of the mounting posture measuring device of the present invention.
  • the facet 31 reflects the laser emission light emitted from the laser generator 11, and the laser reflected light 52 that is the reflected light is received by the laser point measurement unit 12.
  • the mounting posture measuring apparatus 1 of the present invention In order to measure the mounting posture from that position, it is possible to measure even in a limited space such as a factory, and since a laser beam that is actual light is used, a mold was used Compared with the conventional method, the accuracy of the mounting posture of the facet 31 is improved.
  • the mounting posture measuring apparatus 1 of the present invention can easily cope with the case where the distance of the focal point 51 is different.
  • the plurality of heliostats 3 used for solar thermal power generation have focal lengths depending on the installation location.
  • the virtual passing point 52b to which the laser reflected light 52 should reach in the laser point measuring unit 12 is obtained by calculation based on the position of the focal point 51, and the virtual passage obtained by this calculation is obtained.
  • the mounting angle of the facet 31 in the heliostat 3 having different focal lengths is changed by changing the virtual passing point 52b of the laser reflected light 52. Can be quickly and precisely measured and adjusted.
  • FIG. 1 is a schematic view of a mounting posture measuring apparatus according to the present invention.
  • FIG. 2 shows an example of measurement and facet adjustment by the mounting posture measuring apparatus of the present invention.
  • FIG. 3 is a schematic view of the optical path of the laser beam reflected by the facet.
  • FIG. 4 is an enlarged view of the optical path of the laser beam reflected by the facet.
  • FIG. 5A is a plan view of a facet of a heliostat.
  • FIG. 5B is a side view of the facet of the heliostat.
  • FIG. 5C is a schematic side view of the heliostat.
  • FIG. 6 is a schematic view of a facet mounting posture measuring device equipped with a laser distance measuring device.
  • FIG. 7 shows an example of measurement by a facet mounting posture measuring device equipped with a laser distance measuring device.
  • FIG. 1 shows the configuration of the mounting posture measuring apparatus 1.
  • the laser generator 11 is arranged so as to be aligned in a straight line with the gate-shaped support member 13 and the laser emission light is parallel, and a laser point measuring unit 12 is provided on the back surface of the laser generator 11.
  • the support member 13 includes a moving mechanism 14. Moreover, the state which has arrange
  • FIG. 1 shows the configuration of the mounting posture measuring apparatus 1.
  • the laser generator 11 is arranged so as to be aligned in a straight line with the gate-shaped support member 13 and the laser emission light is parallel, and a laser point measuring unit 12 is provided on the back surface of the laser generator 11.
  • the support member 13 includes a moving mechanism 14. Moreover, the state which has arrange
  • each of the three facet units fixed with a plurality of facets 31 is provided with a rotation mechanism 36 that can rotate while maintaining a horizontal plane, and is installed on a mounting base 38 fixed to the ground.
  • the heliostat 3 is coupled so as to operate in conjunction with a coupling tool 33, and the length of the coupling tool 33 can be adjusted by a coupling link adjusting mechanism 32.
  • the solar light tracking sensor 4 shown in FIG. 5C includes a tracking guide 41 and a solar sensor 42 that senses a state in which the corresponding heliostat is tracking the sun, and the heliostat 3 with respect to the movement of the sun. Is a sensor for controlling the movement so that the angle becomes the most efficient angle.
  • FIG. 5A shows a state in which a plurality of facets 31 are arranged and mounted on the heliostat 3.
  • FIG. 5B shows the facet 31 from the side, and a plurality of facets 31 as reflecting mirrors are installed on the facet frame 35 so as to be tiltable by facet mounting bolts 34 so that the reflected light is condensed at one point. Further, the facet mounting bolt 34 adjusts along a pseudo rotational conic curve surface 53 having a focal point 51.
  • FIG. 2 shows a state in which the mounting posture of the facet 31 is measured by the mounting posture measuring apparatus 1, and is a perspective view of FIG.
  • the mounting posture measuring method of the facet 31 includes a plurality of laser generators in which the mounting posture measuring device 1 of the present invention is arranged so as to cover the upper surface of the heliostat 3 and the laser beams are arranged in parallel.
  • the laser point is emitted from 11 and the position of the laser reflected light 52 reflected by the facet 31 is measured by the laser point measuring unit 12.
  • the sunlight concentrating heliostat 3 adjusts the angle so that the facet 31 follows the pseudo-rotary conical curved surface 53 having the focal point 51. Therefore, if the facet 31 is in the normal position, the reflection is performed. The light 52 always reaches one point on the determined laser point measurement unit 12.
  • the laser reflected light 52 reflected by the laser reflecting point 52a of the facet 31 shown in FIGS. 3 and 4 is directed to the focal point 51, it always reaches the virtual passing point 52b on the laser point measuring unit 12. I understand.
  • the facet 31 with the facet mounting bolt 34 so that the laser reflected light 52 reaches the position of the virtual passing point 52b obtained in advance, It is possible to adjust the posture of the facet 31 to a normal position where the irradiated parallel light is condensed at the focal point 51.
  • the posture of the facet 31 is measured using actual light, the measurement is performed in the same state as when used in solar thermal power generation, and the facet 31 can be adjusted with extremely high accuracy. It is possible to guarantee the light collection rate at a high level and to improve the efficiency of solar thermal power generation.
  • the mounting angle of the facet 31 can be measured and adjusted while the mounting posture measuring device 1 is moved by the moving mechanism 14.
  • the moving posture 14 moves the mounting posture measuring device 1 in the solar power plant.
  • the three heliostats 3 connected to each other are tilted to an angle at which the sunlight can be received most, thereby collecting sunlight. It enables highly efficient light collection to the place where light should be emitted.
  • the efficiency improvement by the solar light tracking system here can be expected to further increase the efficiency by increasing the accuracy of the mounting posture of the facet 31.
  • the mounting posture measuring apparatus 1 of the present invention enables precise measurement and adjustment of the mounting angle of the facet 31 mounted on the solar concentrating heliostat 3, for example, in a large-scale solar power plant or the like.
  • the stat 3 When adjusting the stat 3 from several tens to several hundreds, the workability has become extremely high, and it has become possible to quickly adjust the facets 31 regardless of the factory or the installation site. .
  • FIG. 6 shows a configuration of a different embodiment of the mounting posture measuring apparatus 1.
  • a laser distance measuring device 15 that measures a distance using laser light is on a gate-type support member 13 and moves along a reference line 54 that is arbitrarily determined to be parallel to the support member 13.
  • the support member 13 includes a moving mechanism 14. Moreover, the state which has arrange
  • the method for measuring the mounting orientation of the facet 31 is to emit laser light from the laser distance measuring device 15 and measure the distance from the arbitrarily set reference line 54 to the facet 31.
  • the sunlight concentrating heliostat 3 adjusts the angle so that the facet 31 follows the pseudo-rotary conical curved surface 53 having the focal point 51, the distance to the focal point of the heliostat 3 to be adjusted is adjusted. Therefore, the pseudo rotation conic curve surface 53 is determined, and the distance d1 between the rotation cone curve surface 53 and the arbitrarily determined reference line 54 is naturally determined. At this time, the distance L1 between the reference line 54 and the facet 31 measured using the laser distance measuring device 15 moving on the reference line 54 is compared with the obtained distance d1, and the lengths d1 and L1 are compared. The facet 31 is adjusted to be equal.
  • the reference line 54 is relative to the installation surface on which the heliostat 3 is installed. It is desirable to decide so that they are parallel. For example, when the reference line 54 extends in a direction away from the facet 31, it is necessary to move the laser distance measuring device 15 along the reference line 54, so that the support member 13 may become huge.
  • FIG. 7 shows a schematic diagram when measuring the mounting orientation of the facet 31.
  • the distance L ⁇ b> 1 between the arbitrarily determined reference line 54 and the facet 31 is measured.
  • d1 which is the distance between the reference line 54 and the rotating conical curve surface 53 does not match L1.
  • the distances coincide with each other as d2 and L2.
  • the laser distance measuring device 15 As described above, by using the laser distance measuring device 15, it is possible to obtain the same effect as the facet 31 and heliostat 3 mounting posture measuring device 1 including the laser generator 11 and the laser point measuring unit 12 described above. is there.

Abstract

 ヘリオスタット3に取付けられる反射鏡(ファセット31)を擬似的に回転円錐曲線面53に合わせる作業において、効率的且つ簡易な取付調整を行うために、ファセット31の取付姿勢を正確に測定する、調整方法及び取付姿勢測定装置を提供する。  太陽光集光用のヘリオスタット3を構成している反射鏡(ファセット31)の設置方法であって、ファセット31のレーザ反射光52が、レーザポイント測定部12の仮想通過点52bに到達するよう前記ファセット31を設置する。

Description

取付姿勢測定装置
 太陽光を集光するヘリオスタットを構成している反射鏡(ファセット)の取付姿勢測定装置に関する。
 太陽光を集光してエネルギとして使用する太陽熱発電等において、太陽光集光のためのヘリオスタット3(反射鏡)は、凹面の鏡により集光率を上げている。この凹面は回転円錐曲線面を持った三次元で製作されることが望まれ、耐久性の高い凹面鏡は提案されている。(例えば特許文献1参照。)
 しかしながら、製作コストが高く、精度確保及び大型化が困難であるため、図5に示すように小型で平板な反射鏡(ファセット31)を擬似的に回転円錐曲線面53に合わせたものが使用されている。
 具体的には図5に示すよう複数のファセット31を回転円錐曲線面53の型、例えば球面の型に沿うように調整、固定していく。この際、ファセット31の取付位置の精度が低く、何度も調整する必要があった。
特開2002-154179
 上記のファセット31は図5に示すように、ファセットフレーム35上にファセットボルト34により擬似的な回転円錐曲線面53に沿うように固定されている。従来、前記回転円錐曲線面53の大型の型紙を作成し、該型紙を2名で支持し、1名がファセットの取付位置を調整していく作業を行っており、作業中に型がずれる等、作業性が低いという問題があった。
 また、平面であるファセット31を組み合わせて、擬似的な回転円錐曲線面53を形成するため、ファセット31の平面の中心が型紙に接し、且つファセットが前記回転円錐曲線面の接線となる角度に固定しなければならず、この作業は極めて低い作業精度となる。さらに、前記ファセット31が型紙に沿って調整されているように見えたとしても、実際に平行光である太陽光が当たった際、反射光が焦点を結ばないことも多くあり、ファセット31の調整作業は極めて困難な作業である。
 加えて、ファセット31をヘリオスタット3に搭載後も、ヘリオスタット3の機械精度に起因して光の集光率が低下し、ファセット31の取付姿勢の調整を繰り返すのが現状であり、ファセット31の設置には多大な労力を必要としながら、高い精度を実現することが困難であった。
 ここで、ファセット31の取付姿勢は、太陽熱発電における太陽光の集光効率に大きく影響し、太陽熱発電の高効率化にファセット31の取付姿勢精度の向上は不可欠となっている。
 以上より、本発明の目的はヘリオスタット3に取付けられる反射鏡(ファセット31)を擬似的に回転円錐曲線面に合わせる作業において、効率的且つ簡易な取付調整を行うために、ファセット31の取付姿勢を正確に測定する、調整方法及び取付姿勢測定装置を提供することにある。加えて、ファセット31の取付姿勢調整を完了したヘリオスタット3を複数基毎に連結具で連動するように固定する際、ヘリオスタット3毎の焦点があるように調整する、調整方法及び取付姿勢測定装置を提供する。
 上記の課題を解決するため、請求項1に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡を備える太陽光集光用ヘリオスタットの、前記複数の反射鏡31に同一方向且つ平行な複数のレーザ光を照射して得られるレーザ反射光52が、前記複数の反射鏡31により形成される擬似的な回転円錐曲線面53の焦点51に集光するように、前記反射鏡31の取付角度を調整する反射鏡設置方法は、前記反射鏡31と前記焦点51を結ぶよう形成された仮想経路と、レーザ発生器11近傍で前記仮想経路を横切るように配置され、レーザ光が照射された位置を測定するためのレーザポイント計測部12との、交点をレーザ光の仮想通過点52bとし、該仮想通過点52bに前記反射鏡31により反射されたレーザ反射光52が到達するよう、傾動自在の前記反射鏡31を調整していくことを特徴とする。
 請求項2に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡31を備え、且つ該複数の反射鏡31が擬似的な回転円錐曲線面53の焦点51に集光するよう調整された太陽光集光用ヘリオスタット3を、複数基連動して動作するよう連結具33で連結することで構成したヘリオスタットユニットの連結具調整方法は、前記反射鏡31と前記焦点を結ぶよう形成された仮想経路と、レーザ発生器11近傍で前記仮想経路を横切るように配置され、レーザ光が照射された位置を測定するためのレーザポイント計測部12との、交点をレーザ光の仮想通過点52bとし、該仮想通過点52bに前記反射鏡31により反射されたレーザ反射光52が到達するよう、前記連結具33を調整することを特徴とする。
 請求項3に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡31を備える太陽光集光用ヘリオスタット3の、前記複数の反射鏡31にレーザ光を照射して得られるレーザ反射光52が、前記複数の反射鏡31により形成される擬似的な回転円錐曲面53の焦点51に集光するように、前記反射鏡31の取付角度を調整する際に使用する、反射鏡31の取付姿勢を測定する取付姿勢測定装置1は、レーザ光の発射方向が平行且つ同一方向である複数のレーザ発生器11と、該レーザ発生器11のレーザ光を受光し、照射位置を検出するレーザポイント計測部12と、前記レーザ発生器11及び前記レーザポイント計測部12を据付けた支持部材13と、を具備したことを特徴とする。
 請求項4に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡31を備え、且つ該複数の反射鏡31が擬似的な回転円錐曲線面53の焦点51に集光するよう調整された太陽光集光用ヘリオスタット3を、複数基連動して動作するよう連結具33で連結することで構成したヘリオスタットユニットの取付姿勢測定装置1は、レーザ光の発射方向が平行且つ同一方向である複数のレーザ発生器11と、該レーザ発生器11のレーザ光を受光し、照射位置を検出するレーザポイント計測部12と、前記レーザ発生器11及び前記レーザポイント計測部12を据付けた支持部材13と、を具備したことを特徴とする。
 請求項5に記載の発明に係る取付姿勢測定装置1は、前記支持部材13に移動機構14を設けたことを特徴とする。
 請求項6に記載の発明に係る取付姿勢測定装置1は、前記レーザ発生器11及び前記レーザポイント計測部12を門型支持部材13に据付けたことを特徴とする。
 請求項7に記載の発明に係る取付姿勢測定装置1は、前記レーザ発生器11において、レーザ光の波長が異なり、異なる色を発色するものを使用することを特徴とする。
 請求項8に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡31を備える太陽光集光用ヘリオスタット3の、前記複数の反射鏡31に同一方向且つ平行な複数のレーザ光を照射して得られるレーザ反射光52が、前記複数の反射鏡31により形成される擬似的な回転円錐曲線面53の焦点51に集光するように、前記反射鏡31の取付角度を調整する反射鏡設置方法は、レーザ光を利用して距離を測定するレーザ距離測定装置15を、前記反射鏡31の前方に設けた基準線54上に設置し、前記基準線54と前記反射鏡31の間の距離を測定し、この距離が基準線54と前記反射鏡31が形成すべき擬似的な回転円錐曲線面53の間の距離と等しくなるように、前記反射鏡31を調整することを特徴とする。
 請求項9に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡31を備え、且つ該複数の反射鏡31が擬似的な回転円錐曲線面53の焦点51に集光するよう調整された太陽光集光用ヘリオスタット3を、複数基連動して動作するよう連結具33で連結したヘリオスタットユニットの、連結具調整方法は、レーザ光を利用して距離を測定するレーザ距離測定装置15を、前記反射鏡31の前方に設けた基準線54上に設置し、前記基準線54と前記反射鏡31の間の距離を測定し、この距離が基準線54と前記反射鏡31が形成すべき擬似的な回転円錐曲線面53の間の距離と等しくなるように、前記連結具33を調整することを特徴とする。
 請求項10に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡31を備える太陽光集光用ヘリオスタット3の、前記複数の反射鏡31にレーザ光を照射して得られるレーザ反射光52が、前記複数の反射鏡31により形成される擬似的な回転円錐曲面53の焦点51に集光するように、前記反射鏡31の取付角度を調整する際に使用する、反射鏡31の取付姿勢を測定する取付姿勢測定装置1は、レーザ光を利用して距離を測定するレーザ距離測定装置15を具備し、前記レーザ距離測定装置15を前記反射鏡31の前方に設けた基準線54上に設置したことを特徴とする。
 請求項11に記載の発明に係る、架台に傾動自在に設置された複数の反射鏡31を備え、且つ該複数の反射鏡31が擬似的な回転円錐曲線面53の焦点51に集光するよう調整された太陽光集光用ヘリオスタット3を、複数基連動して動作するよう連結具33で連結したヘリオスタットユニットの、取付姿勢測定装置1は、レーザ光を利用して距離を測定するレーザ距離測定装置15を具備し、前記レーザ距離測定装置15を前記反射鏡31の前方に設けた基準線54上に設置したことを特徴とする。
 請求項12に記載の発明に係る取付姿勢測定装置1は、前記支持部材13に、反射鏡に沿って移動するための移動機構14を設けたことを特徴とする。
 請求項13に記載の発明に係る取付姿勢測定装置1は、前記レーザ距離測定装置15を門型支持部材13に据付けたことを特徴とする。
 本発明の取付姿勢測定装置の装置例を図1に示す。図1に示すように本発明の取付姿勢測定装置1は、レーザ発生器11から発射したレーザ発射光をファセット31が反射し、この反射光であるレーザ反射光52をレーザポイント計測部12で受光し、その位置から取付姿勢を測定するため、工場等の限られた空間であっても測定可能となっており、さらに、実際の光であるレーザ光を使用しているため、型を使用した従来の方法に比べ、ファセット31の取付姿勢の精度向上が実現されている。
 また、本発明の取付姿勢測定装置1は焦点51の距離が異なる場合にも容易に対応することが可能となっており、例えば、太陽熱発電に用いる複数のヘリオスタット3は各々設置場所により焦点距離が異なるが、前記取付姿勢測定装置1はレーザポイント計測部12におけるレーザ反射光52の到達すべき仮想通過点52bは、焦点51の位置をもとに計算によって求め、この計算によって求まった仮想通過点52bにレーザ反射光52が到達するようファセット31の取付角度を調整するため、レーザ反射光52の仮想通過点52bを変更することで、異なる焦点距離を持つヘリオスタット3におけるファセット31の取付角度の迅速且つ精密な測定及び調整が可能となる。
 加えて、移動機構14を設けることで図2に示すようにファセット31に対して移動しながら測定を連続的に行うことが可能であるため、ファセット取付作業の作業効率の向上が実現されている。
図1は本発明の取付姿勢測定装置の概略図である。 図2は本発明の取付姿勢測定装置による測定及びファセット調整の1例である。 図3はファセットで反射したレーザ光の光路概略図である。 図4はファセットで反射したレーザ光の光路の拡大図である。 図5Aはヘリオスタットのファセットの平面図である。 図5Bはヘリオスタットのファセットの側面図である。 図5Cはヘリオスタットの概略側面図である。 図6はレーザ距離測定装置を具備したファセット取付姿勢測定装置の概略図である。 図7はレーザ距離測定装置を具備したファセット取付姿勢測定装置による測定の1例である。
符号の説明
 1 取付姿勢測定装置
 11 レーザ発生器
 12 レーザポイント計測部
 15 レーザ距離測定装置
 3 ヘリオスタット
 31 ファセット(反射鏡)
 32 連結リンク調整機構
 51 焦点
 52 レーザ反射光
 52a レーザ反射点
 52b 仮想通過点
 53 回転円錐曲線面
 54 基準線
 以下、本発明の実施例を図に示す取付姿勢測定装置を参照して具体的に説明する。図1に取付姿勢測定装置1の構成を示す。レーザ発生器11は門型の支持部材13に直線上に並ぶように、且つレーザ発射光が平行になるように配置され、前記レーザ発生器11の背面にはレーザポイント計測部12を設けており、前記支持部材13は移動機構14を備えている。また、前記取付姿勢測定装置1を測定対象であるヘリオスタット3の上部に配置している状態を示しており、ヘリオスタット3の太陽光を集光すべき位置を焦点51として示している。
 図5Cに示すヘリオスタット3では、ファセット31を複数枚固定したファセットユニット3基を各々、水平面を維持したまま回転可能とする回転機構36を備え、地盤に固定された据付架台38に設置し、前記ヘリオスタット3は連結具33により連動して動作するよう結合されており、連結リンク調整機構32より前記連結具33の長さを調整可能なよう構成されている。また、図5Cに示す太陽光追尾センサ4は、追尾ガイド41と、対応するヘリオスタットが太陽を追尾している状態を感知する太陽センサ42から構成され、太陽の移動に対して、ヘリオスタット3を最も効率のよい角度となるように移動を制御するためのセンサである。
 図5Aはファセット31が複数枚並んで、ヘリオスタット3に搭載されている状態を示している。図5Bはファセット31を側面から示しており、反射鏡である複数枚のファセット31は、ファセットフレーム35上にファセット取付ボルト34で傾動自在に設置され、反射光が1点に集光されるような、焦点51を持つ擬似的な回転円錐曲線面53に沿うように前記ファセット取付ボルト34によって調整される。
 図2は前記取付姿勢測定装置1により、ファセット31の取付姿勢を測定している様子を示しており、図1の斜視図となっている。ファセット31の取付姿勢測定方法は、図2に示すよう本発明の取付姿勢測定装置1を前記ヘリオスタット3の上面を覆うよう配置し、レーザ光が平行になるよう設置された複数のレーザ発生器11からレーザ光を発射し、ファセット31で反射されたレーザ反射光52の位置をレーザポイント計測部12で測定する。
 ここで、太陽光集光用ヘリオスタット3は、ファセット31が焦点51をもつ擬似的な回転円錐曲線面53に沿うよう角度を調整するため、前記ファセット31が正規の位置であるならば、反射光52は決まったレーザポイント計測部12上の1点に必ず到達する。
 具体的には、図3、図4に示すファセット31のレーザ反射点52aで反射されたレーザ反射光52は、焦点51に向かうためレーザポイント計測部12上の仮想通過点52bに必ず到達することがわかる。予め求めておいた仮想通過点52bの位置にレーザ反射光52が到達するようファセット取付ボルト34によりファセット31を調整することで、
照射された平行光を焦点51に集光する正規位置にファセット31の姿勢を調整していくことが可能となっている。
 ここで、実際の光を使用してファセット31の姿勢を測定しているため、太陽熱発電で使用する際と同様の状態における測定となり、極めて高い精度でファセット31の調整が可能となり、焦点51への集光率も高い水準で保障可能であり、太陽熱発電の効率向上が実現する。
 さらに、移動機構14により取付姿勢測定装置1を移動させながら、ファセット31の取付角度を測定及び調整が可能となっている。特に、ヘリオスタット3を太陽熱発電プラントに設置し、発電を開始している時点にて、ファセット31の取付姿勢を点検する場合、移動機構14により太陽熱発電プラント内を取付姿勢測定装置1を移動させながら、迅速に作業を進めていくことが可能であり、点検の実施等が容易になるため、高い頻度でファセット31の取付姿勢を点検することが容易である。そのため、風の影響によるファセット31の取付姿勢変化等、ファセット31の集光率低下に伴う、太陽熱発電の効率低下を早期に検知し、結果として太陽熱発電の効率を維持することが可能となっている。
 また、太陽の位置を測定する太陽光センサ42により得られた情報を元に、前記連結された3基のヘリオスタット3が、太陽光を最も受光できる角度に傾動することで、太陽光を集光するべき場所への、高効率な集光を可能としている。ここでの、太陽光追尾システムによる効率化はファセット31の取付姿勢の精度が上がることで、更なる効率上昇が見込める。
 上述のように本発明の取付姿勢測定装置1によって、太陽光集光用ヘリオスタット3に搭載されたファセット31の取付角度の精密な測定及び調整が可能となり、例えば大規模太陽熱発電プラント等でヘリオスタット3を数十台から数百台の調整をする際には、作業性は極めて高くなり、工場又は設置現場と場所を選ばず迅速なファセット31の調整作業を実施することが可能となった。
 また、太陽熱発電の効率に多大な影響を与えるファセット31の取付姿勢を高い精度で実現及び維持することが可能となったことで、太陽熱発電の大幅な効率向上を実現可能とした。
 図6に取付姿勢測定装置1の異なる実施例の構成を示す。レーザ光を利用して距離を測定するレーザ距離測定装置15は門型の支持部材13上であり、且つ前記支持部材13と平行となるように任意に決定した基準線54に沿って移動するように設置され、前記支持部材13は移動機構14を備えている。また、前記取付姿勢測定装置1を測定対象であるヘリオスタット3の上部に配置している状態を示している。
 ファセット31の取付姿勢測定方法は、レーザ距離測定装置15からレーザ光を発射し、任意に設定した基準線54からファセット31までの距離を測定する。
 ここで、太陽光集光用ヘリオスタット3は、ファセット31が焦点51を持つ擬似的な回転円錐曲線面53に沿うように角度を調節するため、ヘリオスタット3の調整されるべき焦点までの距離から、擬似的な回転円錐曲線面53は決定されており、前記回転円錐曲線面53と任意に決定された基準線54の間の距離d1は自ずと決まる。この時、求められた距離d1に対して、基準線54上を移動するレーザ距離測定装置15を用いて測定した基準線54とファセット31の間の距離L1を比較し、長さd1とL1が等しくなるようにファセット31を調整していく。上記のように、レーザ距離測定装置15を基準線54上に沿って移動させながら、ファセット31の取付姿勢を調整していくため、基準線54はヘリオスタット3の設置されている設置面に対して平行になるように決定することが望ましい。例えば、基準線54がファセット31から離れる方向に伸びている場合は、それに沿ってレーザ距離測定装置15を移動させる必要があるので、支持部材13が巨大になってしまう恐れがある。
 図7にファセット31の取付姿勢測定時の概略図を示した。まず、レーザ距離測定装置15を用いて、任意に決められた基準線54とファセット31の間の距離L1を計測する。この時、ファセット31があるべき姿勢にない場合は、基準線54と回転円錐曲線面53の間の距離であるd1がL1と一致しない。ファセット31があるべき姿勢のときはd2とL2のように距離が一致する。上記のように、基準線54とファセット31との間の距離を数点測定することで、回転円錐曲線面53に対するファセット31の姿勢のずれを把握することが可能であり、それに伴いファセット31の姿勢を調整していくことを可能としている。
 以上により、レーザ距離測定装置15を用いることで、前述のレーザ発生器11とレーザポイント計測部12からなるファセット31及びヘリオスタット3の取付姿勢測定装置1と、同様の効果を得ることが可能である。

Claims (13)

  1.  架台に傾動自在に設置された複数の反射鏡を備える太陽光集光用ヘリオスタットの、前記複数の反射鏡に同一方向且つ平行な複数のレーザ光を照射して得られるレーザ反射光が、前記複数の反射鏡により形成される擬似的な回転円錐曲線面の焦点に集光するように、前記反射鏡の取付角度を調整する反射鏡設置方法において、
     前記反射鏡と前記焦点を結ぶよう形成された仮想経路と、レーザ発生器近傍で前記仮想経路を横切るように配置され、レーザ光が照射された位置を測定するためのレーザポイント計測部との、交点をレーザ光の仮想通過点とし、該仮想通過点に前記反射鏡により反射されたレーザ反射光が到達するよう、前記反射鏡を調整することを特徴とする反射鏡設置方法。
  2.  架台に傾動自在に設置された複数の反射鏡を備え、且つ該複数の反射鏡が擬似的な回転円錐曲線面の焦点に集光するよう調整された太陽光集光用ヘリオスタットを、複数基連動して動作するよう連結具で連結することで構成したヘリオスタットユニットの、連結具調整方法において、
     前記反射鏡と前記焦点を結ぶよう形成された仮想経路と、レーザ発生器近傍で前記仮想経路を横切るように配置され、レーザ光が照射された位置を測定するためのレーザポイント計測部との、交点をレーザ光の仮想通過点とし、該仮想通過点に前記反射鏡により反射されたレーザ反射光が到達するよう、前記連結具を調整することを特徴とする連結具調整方法。
  3.  架台に傾動自在に設置された複数の反射鏡を備える太陽光集光用ヘリオスタットの、前記複数の反射鏡にレーザ光を照射して得られるレーザ反射光が、前記複数の反射鏡により形成される擬似的な回転円錐曲面の焦点に集光するように、前記反射鏡の取付角度を調整する際に使用する、反射鏡の取付姿勢を測定する取付姿勢測定装置であって、
     レーザ光の発射方向が平行且つ同一方向である複数のレーザ発生器と、該レーザ発生器のレーザ光を受光し、照射位置を検出するレーザポイント計測部と、前記レーザ発生器及び前記レーザポイント計測部を据付けた支持部材と、を具備したことを特徴とする取付姿勢測定装置。
  4.  架台に傾動自在に設置された複数の反射鏡を備え、且つ該複数の反射鏡が擬似的な回転円錐曲線面の焦点に集光するよう調整された太陽光集光用ヘリオスタットを、複数基連動して動作するよう連結具で連結することで構成したヘリオスタットユニットの、取付姿勢測定装置であって、
     レーザ光の発射方向が平行且つ同一方向である複数のレーザ発生器と、該レーザ発生器のレーザ光を受光し、照射位置を検出するレーザポイント計測部と、前記レーザ発生器及び前記レーザポイント計測部を据付けた支持部材と、を具備したことを特徴とする取付姿勢測定装置。
  5.  前記支持部材に、反射鏡に沿って移動するための移動機構を設けたことを特徴とする請求項3又は4に記載の取付姿勢測定装置。
  6.  前記レーザ発生器及び前記レーザポイント計測部を門型支持部材に据付けたことを特徴とする請求項3乃至5のいずれか1つに記載の取付姿勢測定装置。
  7.  前記レーザ発生器において、レーザ光の波長が異なり、異なる色を発色するものを使用することを特徴とする請求項3乃至6のいずれか1つに記載の取付姿勢測定装置。
  8.  架台に傾動自在に設置された複数の反射鏡を備える太陽光集光用ヘリオスタットの、前記複数の反射鏡に同一方向且つ平行な複数のレーザ光を照射して得られるレーザ反射光が、前記複数の反射鏡により形成される擬似的な回転円錐曲線面の焦点に集光するように、前記反射鏡の取付角度を調整する反射鏡設置方法において、
     レーザ光を利用して距離を測定するレーザ距離測定装置を、前記反射鏡の前方に設けた基準線上に設置し、前記基準線と前記反射鏡の間の距離を測定し、この距離が基準線と前記反射鏡が形成すべき擬似的な回転円錐曲線面の間の距離と等しくなるように、前記反射鏡を調整することを特徴とする反射鏡設置方法。
  9.  架台に傾動自在に設置された複数の反射鏡を備え、且つ該複数の反射鏡が擬似的な回転円錐曲線面の焦点に集光するよう調整された太陽光集光用ヘリオスタットを、複数基連動して動作するよう連結具で連結したヘリオスタットユニットの、連結具調整方法において、
     レーザ光を利用して距離を測定するレーザ距離測定装置を、前記反射鏡の前方に設けた基準線上に設置し、前記基準線と前記反射鏡の間の距離を測定し、この距離が基準線と前記反射鏡が形成すべき擬似的な回転円錐曲線面の間の距離と等しくなるように、前記連結具を調整することを特徴とする連結具調整方法。
  10.  架台に傾動自在に設置された複数の反射鏡を備える太陽光集光用ヘリオスタットの、前記複数の反射鏡にレーザ光を照射して得られるレーザ反射光が、前記複数の反射鏡により形成される擬似的な回転円錐曲面の焦点に集光するように、前記反射鏡の取付角度を調整する際に使用する、反射鏡の取付姿勢を測定する取付姿勢測定装置であって、
     レーザ光を利用して距離を測定するレーザ距離測定装置を具備し、前記レーザ距離測定装置を前記反射鏡の前方に設けた基準線上に設置したことを特徴とする取付姿勢測定装置。
  11.  架台に傾動自在に設置された複数の反射鏡を備え、且つ該複数の反射鏡が擬似的な回転円錐曲線面の焦点に集光するよう調整された太陽光集光用ヘリオスタットを、複数基連動して動作するよう連結具で連結したヘリオスタットユニットの、取付姿勢測定装置であって、
     レーザ光を利用して距離を測定するレーザ距離測定装置を具備し、前記レーザ距離測定装置を前記反射鏡の前方に設けた基準線上に設置したことを特徴とする取付姿勢測定装置。
  12.  前記支持部材に、反射鏡に沿って移動するための移動機構を設けたことを特徴とする請求項10又は11に記載の取付姿勢測定装置。
  13.  前記レーザ距離測定装置を門型支持部材に据付けたことを特徴とする請求項10乃至12のいずれか1つに記載の取付姿勢測定装置。
PCT/JP2008/072085 2007-12-21 2008-12-04 取付姿勢測定装置 WO2009081711A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008801213864A CN101903818B (zh) 2007-12-21 2008-12-04 安装姿势测定装置
ES201090036A ES2421280B1 (es) 2007-12-21 2008-12-04 Dispositivo de medición de la posición de montaje
US12/809,266 US8355142B2 (en) 2007-12-21 2008-12-04 Mounting position measuring device
AU2008341935A AU2008341935B2 (en) 2007-12-21 2008-12-04 Mounting position measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007330749A JP4471999B2 (ja) 2007-12-21 2007-12-21 取付姿勢測定装置
JP2007-330749 2007-12-21

Publications (1)

Publication Number Publication Date
WO2009081711A1 true WO2009081711A1 (ja) 2009-07-02

Family

ID=40801022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072085 WO2009081711A1 (ja) 2007-12-21 2008-12-04 取付姿勢測定装置

Country Status (6)

Country Link
US (1) US8355142B2 (ja)
JP (1) JP4471999B2 (ja)
CN (1) CN101903818B (ja)
AU (1) AU2008341935B2 (ja)
ES (1) ES2421280B1 (ja)
WO (1) WO2009081711A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006802A (ko) * 2010-11-09 2014-01-16 가부시키가이샤 니콘 반사 광학 부재, 광학계, 노광 장치 및 디바이스의 제조 방법
US20140043705A1 (en) * 2011-04-15 2014-02-13 Heliosystems Pty Ltd. Toroidal heliostat

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009032584B4 (de) * 2009-07-10 2011-06-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Ausrichten der Heliostate eines Heliostatfeldes
CN102564351A (zh) * 2010-12-17 2012-07-11 益科博能源科技(上海)有限公司 集热器激光检测系统
CN102354224B (zh) * 2011-08-30 2014-09-17 浙江大学 基于人造光源的日光反射装置校正系统及校正方法
CN102589433B (zh) * 2012-02-23 2014-04-09 上海晶电新能源有限公司 基于gps定位技术的槽式镜安装精度测量系统
ES2422806B1 (es) * 2012-03-12 2014-09-17 Ingemetal Energias, S.A. Sistema, procedimiento y programa informático de calibración del posicionamiento de los espejos en heliostatos
CN103353666A (zh) * 2013-06-20 2013-10-16 北京航空航天大学 一种便捷抛物聚光镜调试方法与装置
CN103673338B (zh) * 2013-12-21 2016-10-05 大连宏海新能源发展有限公司 一种高精度定日镜曲面调整校正装置
CN105717606B (zh) * 2016-03-18 2019-04-16 东方宏海新能源科技发展有限公司 太阳能聚光镜片调焦系统和调焦方法
CN105676411B (zh) * 2016-03-18 2018-05-18 东方宏海新能源科技发展有限公司 一种太阳能聚光镜片的调焦数据处理方法
JP6870493B2 (ja) * 2017-06-22 2021-05-12 トヨタ自動車株式会社 燃料電池モジュール及びその製造方法、コネクタ
US20190190445A1 (en) * 2017-11-28 2019-06-20 Alion Energy, Inc. Diagnostic vehicles for maintaining solar collector systems
CN108458661B (zh) * 2018-05-15 2020-07-10 绍兴盈顺机电科技有限公司 偏心轮式定日镜型面安装在线检测定位装置及方法
CN110398579B (zh) * 2019-06-27 2020-09-04 中国地质大学(武汉) 考虑长边方向下加速度一致的土工离心机箱及实验方法
CN113548495A (zh) * 2021-07-21 2021-10-26 北京林业大学 一种智能转轮式接线端子分装装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184061U (ja) * 1983-05-25 1984-12-07 日本板硝子株式会社 太陽熱集熱装置のミラ−取付角調整装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4283887A (en) * 1977-10-21 1981-08-18 General Electric Company Solar heliostat enclosure, enclosure foundation and installation method and machine therefor
US4219729A (en) * 1978-06-16 1980-08-26 Smith Otto J M Method of aligning and locating the mirrors of a collector field with respect to a receptor tower
US4509501A (en) * 1982-01-13 1985-04-09 Hunter Larry D Solar energy collecting system using a primary reflector based on a pyramid structure
WO1987006012A1 (en) * 1986-03-31 1987-10-08 Nauchno-Proizvodstvennoe Obiedinenie "Solntse" Aka Solar radiation concentrator
US5982481A (en) * 1996-10-01 1999-11-09 Mcdonnell Douglas Corporation Alignment system and method for dish concentrators
WO2001051962A2 (en) * 2000-01-07 2001-07-19 Midwest Research Institute Multi-facet concentrator of solar setup for irradiating the objects placed in a target plane with solar light
US6597709B1 (en) * 2000-10-05 2003-07-22 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for aligning a solar concentrator using two lasers
JP2002154179A (ja) 2000-11-21 2002-05-28 Kobe Steel Ltd アルミニウム合金薄板材及びそれを用いたヘリオスタット用凹面反射鏡並びにその製造方法
AUPR419301A0 (en) * 2001-04-03 2001-05-03 Solar Systems Pty Ltd Solar mirror testing and alignment
ATE521537T1 (de) * 2002-11-26 2011-09-15 Solaren Corp Energiesystem auf raumbasis
CN101017033A (zh) * 2006-12-27 2007-08-15 中国科学院电工研究所 一种定日镜支撑装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184061U (ja) * 1983-05-25 1984-12-07 日本板硝子株式会社 太陽熱集熱装置のミラ−取付角調整装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140006802A (ko) * 2010-11-09 2014-01-16 가부시키가이샤 니콘 반사 광학 부재, 광학계, 노광 장치 및 디바이스의 제조 방법
KR102100472B1 (ko) * 2010-11-09 2020-04-13 가부시키가이샤 니콘 반사 광학 부재, 광학계, 노광 장치 및 디바이스의 제조 방법
US20140043705A1 (en) * 2011-04-15 2014-02-13 Heliosystems Pty Ltd. Toroidal heliostat
US9454001B2 (en) * 2011-04-15 2016-09-27 Heliosystems Pty Ltd. Toroidal heliostat

Also Published As

Publication number Publication date
US20110235202A1 (en) 2011-09-29
CN101903818B (zh) 2012-08-08
CN101903818A (zh) 2010-12-01
AU2008341935B2 (en) 2011-09-08
JP2009151211A (ja) 2009-07-09
JP4471999B2 (ja) 2010-06-02
US8355142B2 (en) 2013-01-15
AU2008341935A1 (en) 2009-07-02
ES2421280A1 (es) 2013-08-30
ES2421280B1 (es) 2014-12-12

Similar Documents

Publication Publication Date Title
JP4471999B2 (ja) 取付姿勢測定装置
JP4564553B2 (ja) ヘリオスタットの校正方法とその校正装置
US7423767B2 (en) Method and apparatus for transmitting energy via a laser beam
CN102736075B (zh) 激光雷达装置
US7207327B2 (en) Feedback control method for a heliostat
US8801188B2 (en) Method for aligning the heliostats of a heliostat field
WO2012083383A1 (en) Heliostat calibration and control
US20040154402A1 (en) Remote laser beam delivery system and method for use with a robotic positioning system for ultrasonic testing purposes
JP2009109923A (ja) 取付姿勢測定装置
CN103649647B (zh) 太阳能收集器模块
JP5153953B1 (ja) ヘリオスタット及びその制御方法
JP2009109443A (ja) 取付姿勢測定装置
CN109702330A (zh) 一种激光入射角调节装置
US20140009762A1 (en) Measurement assembly with fiber optic array
CN113776464B (zh) 一种定日镜安装孔共线偏差测量系统及方法
EP0071550B1 (fr) Focaliseur semi-statique Fresnel à miroirs croisés
US20120186059A1 (en) Target for large scale metrology system
WO2024056209A1 (en) Heliostat arrangement
CN203216858U (zh) 一种聚焦太阳能热波成像无损检测装置
AU2012203234B2 (en) Heliostat control
JPH037798Y2 (ja)
CN108633302A (zh) 反射表面倾斜系统
TWM330478U (en) Optical axes calibration apparatus with five parallel laser beams
GB2443877A (en) A Laser Beam apparatus for a measuring system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880121386.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08864642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008341935

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008341935

Country of ref document: AU

Date of ref document: 20081204

Kind code of ref document: A

Ref document number: 201090036

Country of ref document: ES

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P201090036

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 12809266

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08864642

Country of ref document: EP

Kind code of ref document: A1