WO2009080155A1 - Verfahren zur trocknung von keramischen wabenkörpern - Google Patents

Verfahren zur trocknung von keramischen wabenkörpern Download PDF

Info

Publication number
WO2009080155A1
WO2009080155A1 PCT/EP2008/009567 EP2008009567W WO2009080155A1 WO 2009080155 A1 WO2009080155 A1 WO 2009080155A1 EP 2008009567 W EP2008009567 W EP 2008009567W WO 2009080155 A1 WO2009080155 A1 WO 2009080155A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb body
drying
during
frozen
honeycomb
Prior art date
Application number
PCT/EP2008/009567
Other languages
English (en)
French (fr)
Inventor
Ralf Dotzel
Jörg Münch
Original Assignee
Argillon Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Argillon Gmbh filed Critical Argillon Gmbh
Priority to PL08865303T priority Critical patent/PL2227447T3/pl
Priority to EP08865303.5A priority patent/EP2227447B1/de
Priority to US12/809,852 priority patent/US20100295218A1/en
Priority to DK08865303.5T priority patent/DK2227447T3/en
Publication of WO2009080155A1 publication Critical patent/WO2009080155A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying

Definitions

  • the invention relates to a method for drying a ceramic honeycomb body.
  • SCR catalysts for the selective reduction of nitrogen oxides are frequently used for exhaust gas purification both in power plant firing systems and in vehicle technology.
  • SCR catalysts usually comprise a honeycomb body traversed with a plurality of channels.
  • SCR catalysts are used whose honeycomb body is formed entirely from a porous, catalytically active material.
  • the honeycomb body itself is of a non-catalytically active material, but carries a catalytic coating.
  • the honeycomb body is usually made by extruding a wet ceramic mass. The thus prepared honeycomb body is then dried.
  • shrinkage During drying, the ceramic material of the honeycomb body loses volume, which is referred to below as shrinkage.
  • shrinkage leads to material stresses, especially in the case of uneven drying. In order to avoid the formation of stress cracks and thus rejects, attention must be paid to the most homogeneous possible drying and thus uniform shrinkage of the honeycomb body.
  • Another problem is that the shrinkage is relatively large in conventional drying. On the one hand, this has the consequence that the porosity of the honeycomb body can be reduced and thus the catalytic properties of the catalyst can be impaired. On the other hand, the shrinkage of the honeycomb body even with uniform drying still a relatively high risk of cracking. In addition, the packing and unpacking of the honeycomb body in cartons means a considerable amount of operation.
  • the invention has for its object to provide a gentle and at the same time efficient drying method for a ceramic honeycomb body.
  • the honeycomb body present in a wet prefabrication state - for example after extrusion - is frozen and the moisture - i. the water to be removed - removed under vacuum from the frozen honeycomb body.
  • the inventive method has a number of advantages.
  • the process is carried out with simple means and comparatively little work.
  • honeycomb body to be dried Since the honeycomb body to be dried is in the frozen state during the drying process, it becomes one compared to the wet prefabrication state achieved higher strength and stability of the honeycomb body.
  • the honeycomb body can thus absorb greater stresses during the drying process than in the wet state.
  • the vacuum applied to the honeycomb body during the drying process also acts on the shell of the honeycomb body in the same way as within the catalyst channels.
  • the moisture is therefore no longer removed mainly via the jacket of the honeycomb body, but also on the inner walls of the honeycomb body, whereby the transfer area is increased.
  • a significantly reduced drying time is achieved in comparison to drying processes, which are mainly based on moisture diffusion.
  • the high porosity of the honeycomb body also has a positive effect. For if the sublimation boundary migrates into the honeycomb body during the drying process, the sublimation takes place increasingly over the pore surface, which is many times greater than the geometric (inner and outer) surface of the honeycomb body. This further reduces the drying time.
  • the honeycomb body is first frozen at room pressure by lowering the ambient temperature.
  • a conventional refrigeration system in particular a blast freezer, used.
  • the honeycomb body can also be frozen by application of a cold fluid, in particular gaseous or liquid nitrogen. The negative pressure is hereby applied only when the honeycomb body is already in the frozen state.
  • the freezing of the honeycomb body takes place simultaneously with, and in particular by the application of the negative pressure.
  • the negative pressure is applied in the latter embodiment such that the moisture of the honeycomb body partially evaporated, so that the cooling resulting from the Joule-Thomson effect leads to the freezing of the honeycomb body.
  • the external cooling energy otherwise required for cooling the honeycomb body can be completely or at least partially saved.
  • even a separate cooling unit can be omitted, whereby the method is inexpensive feasible and in particular also energetically particularly favorable.
  • a solid extrudate of a catalytically active material is used as the honeycomb body.
  • the method described above is particularly applicable to a honeycomb body consisting essentially of titanium oxide.
  • the atmospheric pressure in the drying chamber is preferably reduced abruptly.
  • the honeycomb body to be dried is shock-frozen.
  • a negative pressure application is referred to as abrupt, in which the atmospheric pressure in the drying chamber within a period of about 5 minutes to about 30 minutes, in particular within about 10 minutes of room pressure (about 1000 mbar) to a final pressure of less than 6 mbar, in particular to about 4 mbar is lowered.
  • the vacuum at less than 6 mbar to keep substantially constant. In this case, there are favorable external conditions with regard to the desired sublimation of the ice, ie the direct transition from the solid phase to the gas phase. An approximately constant negative pressure of about 4 mbar has been found in numerous experiments to be preferred.
  • the frozen dry product i. the honeycomb body
  • the honeycomb body advantageously actively heated during drying at reduced pressure.
  • the drying times can be further shortened. It has been found that, for example, for a honeycomb body with a diameter of 250 mm, a length of 200 mm and a wall thickness of 0.3 mm only a drying time of a few hours is needed.
  • the drying of the honeycomb body takes place at reduced pressure.
  • a convection heating is eliminated.
  • the heating of the honeycomb body can be done so far either by heat radiation or directly by means of heat conduction.
  • the honeycomb body is placed on a carrier during the drying process, and this carrier is heated during drying.
  • this offers an electric heating.
  • a carrier for the honeycomb body for example, a metal sheet, in particular made of metal, which is brought by an electrical resistance heater to the appropriate temperature.
  • the honeycomb body is preferably irradiated from several sides by means of suitably mounted infrared radiators. Numerous experiments have shown that the use of infrared radiation leads to a desired accelerated sublimation of the ice. As long as the honeycomb body still contains water and is in negative pressure, the temperature of the dry material does not change. The temperature is coupled to the pressure according to the vapor pressure diagram for water. However, once all ice or water is removed from the honeycomb body, the temperature of the honeycomb increases.
  • a cooling step should be connected expediently after the drying process under radiation heating by means of infrared. By means of this additional cooling step, the honeycomb body is cooled to room temperature before removal.
  • the drying of the honeycomb body under vacuum by additional irradiation by means of infrared can be significantly accelerated, however, it is expedient to carry out an additional process step before removal. Due to the naturally adjusting drying of the honeycomb body from outside to inside, the core of the honeycomb body always has a higher humidity than the outside area. Sufficient drying of the center of the honeycomb body thus always leads to complete drying of the outer areas.
  • the described disadvantages can certainly be tolerated in the course of the invention for accelerating the drying of the honeycomb body.
  • the microwave range includes frequencies between 300 MHz and 300 GHz.
  • the short-wave or HF range adjoins the microwave range at low frequency and in this case comprises radiation down to a frequency of 3 MHz.
  • the long wave range comprises in particular electromagnetic table radiation with a frequency between 30 and 300 kHz.
  • radiation is used in the short wave range and in particular in the microwave range.
  • the energy input by the electromagnetic radiation takes place in the ideal case approximately constant over the entire honeycomb volume, so that there is no formation of temperature gradients on the honeycomb body.
  • the radiated energy is used directly for the sublimation of the ice and not for heating the honeycomb.
  • the honeycomb body remains cool.
  • a desired degree of drying for the honeycomb body can be set. Conveniently, for this purpose, the duration and / or the energy of the irradiation is controlled according to the desired degree of drying.
  • the honeycomb body can be removed in particular with a certain residual moisture the drying process.
  • the drying is preferably carried out under irradiation of the electromagnetic radiation in the long, short and microwave range continuously in a continuous process.
  • the honeycomb bodies are continuously subjected to the drying process using electromagnetic radiation according to a conveyor belt principle.
  • the continuous drying is realized by means of a belt dryer.
  • the honeycomb body are continuously retracted for drying and irradiation in the belt dryer and leave this after passing through the drying section.
  • a belt dryer also offers the great advantage that each one of the honeycomb body is moved through different zones of the irradiated electromagnetic field, so that for each honeycomb body, an approximately homogeneous radiation entry is ensured.
  • the evacuated drying chamber is advantageously heated during the drying process. This advantageously leads to an increased rate of sublimation and thus to a shortened drying time.
  • honeycomb body for an SCR catalyst is prepared.
  • the honeycomb body has e.g. a diameter of about 150 mm, a length of about 100 mm and an average wall thickness of about 0.3 mm. After the extrusion process, the honeycomb body is in a wet prefabrication state.
  • the thus prepared honeycomb body is introduced into an evacuable drying chamber.
  • the atmospheric pressure in the drying chamber is reduced from room pressure to a final pressure of about 4 mbar, with the honeycomb body freezing, with partial evaporation of the moisture stored therein.
  • the honeycomb body is then dried at said final pressure for a drying time of about 10 hours and a temperature of 60 ° C, during which drying time the moisture to be removed sublimes.
  • the extracted moisture is frozen in a condensation chamber adjacent to the drying chamber.
  • a honeycomb body of the above-described composition with a diameter of 250 mm, a length of about 200 mm and an average wall thickness of about 0.3 mm is frozen according to Example 1 and dried at a reduced pressure of about 4 mbar.
  • the honeycomb body passes through a belt dryer in which along the drying section a microwave field with a power of 650 watts is generated.
  • the volumetric heat input due to the microwaves achieves a drying time of only 3.5 hours. When appropriate Higher performance can even be achieved drying times to below one hour.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Drying Of Solid Materials (AREA)
  • Catalysts (AREA)

Abstract

Ein Verfahren zur schonenden und rationellen Trocknung eines keramischen Wabenkörpers wird angegeben. Das Verfahren ist dazu geeignet, bei einer gleichmäßigen Trocknung des Wabenkörpers eine kurze Trocknungszeit und eine geringe Schwindung des Wabenkörpers zu erreichen. Hierzu wird der in einem feuchten Vorfertigungszustand vorliegende Wabenkörper eingefroren und die Feuchtigkeit aus dem gefrorenen Wabenkörper unter Unterdruck entfernt.

Description

Beschreibung Verfahren zur Trocknung von keramischen Wabenkörpern
Die Erfindung bezieht sich auf ein Verfahren zur Trocknung eines keramischen Wabenkörpers.
Zur Abgasreinigung werden sowohl in Kraftwerksfeuerungen als auch in der Fahrzeugtechnik häufig Katalysatoren zur selektiven Reduktion von Stickoxiden eingesetzt. Diese sogenannten SCR-Katalysatoren umfassen in der Regel einen mit einer Vielzahl von Kanälen durchzogenen Wabenkörper. Es werden hierbei zum einen SCR- Katalysatoren eingesetzt, deren Wabenkörper vollständig aus einem porösen, kataly- tisch aktiven Material gebildet ist. Bei anderen SCR-Katalysatoren ist der Wabenkörper selbst aus einem nicht-katalytisch aktiven Material, trägt aber eine katalytische Be- schichtung. In beiden Fällen wird der Wabenkörper üblicherweise durch Extrusion einer feuchten keramischen Masse hergestellt. Der solchermaßen vorgefertigte Wabenkörper wird anschließend getrocknet.
Ähnliche Wabenkörper werden auch für Partikelfilter eingesetzt.
Bei der Trocknung verliert das keramische Material des Wabenkörpers an Volumen, was im Folgenden als Schwindung bezeichnet wird. Die Schwindung führt insbesondere bei ungleichmäßiger Trocknung zu Materialspannungen. Um die Bildung von Spannungsrissen und damit Ausschuss zu vermeiden, muss auf eine möglichst homogene Trocknung und damit gleichmäßige Schwindung des Wabenkörpers geachtet werden.
In einem herkömmlichen Verfahren wird versucht, eine homogene Trocknung zu erreichen, indem der noch feuchte Wabenkörper in einen Karton verpackt wird. Der verpackte Wabenkörper wird anschließend in eine Trocknungskammer eingebracht. Der Karton schützt den Wabenkörper vor äußerer Konvektion, d.h. vor einer Luftbewegung, die eine ungleichmäßige Trocknung des Wabenkörpers begünstigen würde. Mangels Luftbewegung muss innerhalb des Kartons die Feuchtigkeit im Wesentlichen durch bloße Diffusion abtransportiert werden. Durch die langen Katalysatorkanäle im Inneren des Wabenkörpers entstehen hierbei lange Diffusionswege, die einer effektiven Trocknung entgegenwirken. Hierdurch trägt die innere Oberfläche des Katalysators, d.h. die Oberfläche der Katalysatorkanäle nur in geringem Maße zur Trocknung des Wabenkörpers bei. Vielmehr wird bei diesem Verfahren die Feuchtigkeit weitestgehend über die äußere Mantelfläche des Wabenkörpers an die umgebende Luft im Karton abgegeben und von dort an die Luft in der Trocknungskammer übertragen. Dies führt zu einer sehr langen Trocknungszeit im Bereich von mehreren Wochen.
Problematisch ist außerdem, dass die Schwindung bei herkömmlicher Trocknung vergleichsweise groß ist. Zum einen hat dies zur Folge, dass die Porosität des Wabenkörpers reduziert und damit die katalytischen Eigenschaften des Katalysators beeinträchtigt werden können. Zum anderen besteht durch die Schwindung des Wabenkörpers selbst bei gleichmäßiger Trocknung noch ein vergleichsweise hohes Risiko einer Rissbildung. Zudem bedeutet das Ver- und Entpacken der Wabenkörper in Kartons einen erheblichen Betriebsaufwand.
Der Erfindung liegt die Aufgabe zugrunde, ein schonendes und gleichzeitig rationelles Trocknungsverfahren für einen keramischen Wabenkörper anzugeben.
Diese Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Bei dem angegebenen Trocknungsverfahren wird der in einem feuchten Vorfertigungszustand - beispielsweise nach dem Extrudieren - vorliegende Wabenkörper eingefroren und die Feuchtigkeit - d.h. das zu entfernende Wasser - unter Unterdruck aus dem gefrorenen Wabenkörper entfernt.
Das erfindungsgemäße Verfahren weist eine Reihe von Vorteilen auf.
So ist das Verfahren mit einfachen Mitteln und vergleichsweise wenig Arbeitsaufwand durchzuführen. Insbesondere kann auf weitere Betriebsmittel wie beispielsweise Kartons verzichtet werden.
Da der zu trocknende Wabenkörper sich während des Trocknungsvorgangs im gefrorenen Zustand befindet, wird eine im Vergleich zu dem feuchten Vorfertigungszustand höhere Festigkeit und Stabilität des Wabenkörpers erreicht. Der Wabenkörper kann so während des Trocknungsvorgangs größere Spannungen aufnehmen als im feuchten Zustand.
Zudem hat sich gezeigt, dass durch die Trocknung des Katalysatorköpers in gefrorenem Zustand eine besonders geringe Schwindung erzielt wird. Dies führt zum einen zu einem geringeren Risiko einer Spannungsrissbildung und damit zu einer höheren Ausbeute bei der Herstellung. Zum anderen bewirkt die geringere Schwindung eine höhere Porosität des getrockneten Wabenkörpers bei einer geänderten Porenradienverteilung, was sich positiv auf seine katalytischen Eigenschaften auswirkt. Dieser Vorteil kommt besonders nach einer durch hohe Temperaturen im Betrieb des Katalysators hervorgerufenen Alterung zum Tragen, da die altersbedingte Verringerung der spezifischen Oberfläche des Katalysators wegen der von Haus aus höheren Porosität des erfindungsgemäß hergestellten Wabenkörpers eine geringere Rolle spielt.
Da im gefrorenen Zustand die Feuchtigkeit durch Sublimation direkt von der festen Phase in die Gasphase überführt wird, entstehen im Wabenkörper keine Feuchtegradienten und damit keine Bereiche, welche mit unterschiedlicher Schwindung behaftet sind. Das Risiko einer Spannungsrissbildung wird hierdurch weiter reduziert.
Das während des Trocknungsvorgangs an dem Wabenkörper anliegende Vakuum wirkt ferner am Mantel des Wabenkörpers in gleicher Weise wie innerhalb der Katalysatorkanäle. Die Feuchtigkeit wird daher nicht mehr hauptsächlich über den Mantel des Wabenkörpers abtransportiert, sondern auch über die Innenwände des Wabenkörpers, wodurch die Übertragungsfläche vergrößert wird. Hierdurch wird im Vergleich zu Trocknungsverfahren, die maßgeblich auf Feuchtigkeitsdiffusion beruhen, eine wesentlich verkürzte Trocknungszeit erreicht. Auch die hohe Porosität des Wabenkörpers wirkt sich hierbei positiv aus. Wandert nämlich die Sublimationsgrenze während des Trocknungsvorgangs in den Wabenkörper hinein, so erfolgt die Sublimation in zunehmendem Maß über die Porenoberfläche, welche um ein Vielfaches größer ist als die geometrische (innere und äußere) Oberfläche des Wabenkörpers. Dadurch wird die Trocknungszeit noch weiter verkürzt. - A -
In einer Ausführung der Erfindung wird der Wabenkörper zunächst bei Raumdruck durch Absenkung der Umgebungstemperatur eingefroren. Hierzu wird insbesondere eine herkömmliche Kälteanlage, insbesondere ein Schockfroster, herangezogen. Alternativ oder zusätzlich kann der Wabenkörper auch durch Applikation eines kalten Fluids, insbesondere gasförmigen oder flüssigen Stickstoffs, eingefroren werden. Der Unterdruck wird hierbei erst dann angelegt, wenn der Wabenkörper bereits in gefrorenem Zustand vorliegt.
In einer besonders vorteilhaften alternativen Ausführung des Verfahrens erfolgt dagegen das Einfrieren des Wabenkörpers gleichzeitig mit, und insbesondere durch das Anlegen des Unterdrucks. Der Unterdruck wird in der letzteren Ausführungsvariante derart angelegt, dass die Feuchtigkeit des Wabenkörpers teilweise verdampft, so dass die nach dem Joule-Thomson-Effekt resultierende Abkühlung zum Einfrieren des Wabenkörpers führt. Bei dieser Verfahrensvariante kann die ansonsten zur Kühlung des Wabenkörpers erforderliche externe Kühlenergie ganz oder zumindest teilweise eingespart werden. Gegebenenfalls kann sogar ein eigenes Kühlaggregat entfallen, wodurch das Verfahren preiswert durchführbar und insbesondere auch energetisch besonders günstig wird.
In bevorzugter Ausführung wird als Wabenkörper ein Vollextrudat aus einem katalytisch aktiven Material herangezogen. Das vorstehend beschriebene Verfahren ist insbesondere gut auf einen Wabenkörper anwendbar, der im Wesentlichen aus Titanoxid besteht.
Der Atmosphärendruck in der Trocknungskammer wird bevorzugt schlagartig reduziert. Dadurch wird der zu trocknende Wabenkörper schockgefroren. Dies hat zur Folge, dass die Vorteile des Verfahrens, die sich durch den gefrorenen Zustand des Wabenkörpers ergeben, wie beispielsweise die höhere Stabilität und die kleine Schwindung des Wabenkörpers, in besonderem Maße zum Tragen kommen. Als schlagartig wird insbesondere eine Unterdruckanlegung bezeichnet, bei der der Atmosphärendruck in der Trocknungskammer innerhalb einer Zeitspanne von ca. 5 min bis ca. 30 min, insbesondere innerhalb von ca. 10 min von Raumdruck (ca. 1000 mbar) auf einen Enddruck von unter 6 mbar, insbesondere auf ca. 4 mbar abgesenkt wird. Generell hat es sich für das Verfahren als vorteilhaft herausgestellt, während der Trocknung des Wabenkörpers den Unterdruck bei weniger als 6 mbar im Wesentlichen konstant zu halten. Hierbei liegen günstige äußere Bedingungen hinsichtlich der gewünschten Sublimation des Eises, d.h. dem direkten Übergang aus der Fest- in die Gasphase, vor. Ein annähernd konstanter Unterdruck von etwa 4 mbar hat sich hierbei in zahlreichen Versuchen als bevorzugt herausgestellt.
Um die Sublimationsgeschwindigkeit und damit die Dauer der Trocknung des keramischen Wabenkörpers weiter zu beschleunigen, wird das gefrorene Trockengut, d.h. der Wabenkörper, vorteilhafterweise aktiv während der Trocknung bei Unterdruck beheizt. Durch eine entsprechende Beheizung des Wabenkörpers lassen sich die Trocknungszeiten weiter verkürzen. Es hat sich herausgestellt, dass beispielsweise für einen Wabenkörper mit einem Durchmesser von 250 mm, einer Länge von 200 mm und einer Wandstärke von 0,3 mm nur noch eine Trocknungszeit von einigen Stunden benötigt wird.
Die Trocknung des Wabenkörpers findet bei Unterdruck statt. Infolge dessen scheidet eine Konvektionsbeheizung aus. Die Beheizung des Wabenkörpers kann insofern entweder mittels Wärmestrahlung oder direkt mittels Wärmeleitung erfolgen. In einer vorteilhaften Ausgestaltung einer direkten Beheizung wird der Wabenkörper während des Trocknungsvorgangs einem Träger aufgelegt, und dieser Träger während der Trocknung beheizt. Insbesondere bietet sich hierbei eine elektrische Beheizung an. Als Träger für den Wabenkörper eignet sich beispielsweise ein Blech, insbesondere aus Metall, das durch eine elektrische Widerstandsheizung auf die entsprechende Temperatur gebracht wird.
Alternativ oder zusätzlich zu einer direkten Beheizung mittels Wärmeleitung kann wie erwähnt eine Strahlungsbeheizung des Wabenkörpers erfolgen. Eine solche Strahlungsbeheizung wird zweckmäßigerweise mittels Infrarotstrahlung vorgenommen. Für ein gutes Trocknungsergebnis wird der Wabenkörper dabei bevorzugt von mehreren Seiten mittels geeignet angebrachter Infrarotstrahler bestrahlt. Durch zahlreiche Versuche hat sich herausgestellt, dass es bei Verwendung von Infrarotstrahlung zu einer gewünschten, beschleunigten Sublimation des Eises kommt. Solange der Wabenkörper noch Wasser enthält und sich im Unterdruck befindet, ändert sich die Temperatur des Trockenguts nicht. Die Temperatur ist entsprechend des Dampfdruckdiagramms für Wasser an den Druck gekoppelt. Sobald jedoch alles Eis oder Wasser aus dem Wabenkörper entfernt ist, steigt die Temperatur der Wabe an. Wegen der schlechten Wärmeleitfähigkeit einer Keramik erfolgt zudem die Sublimation bzw. Trocknung im Inneren des Wabenkörpers deutlich langsamer als an einer angestrahlten Wabenseite. Somit ergeben sich relativ hohe Temperaturgradienten über den Wabenquerschnitt (innen gefroren - außen heiß). Da der Wabenkörper nicht ohne Gefahr heiß aus der Trocknung entnommen werden kann, sollte zweckmäßigerweise nach dem Trocknungsvorgang unter Strahlungsbeheizung mittels Infrarot ein Kühlschritt angeschlossen werden. Mittels dieses zusätzlichen Kühlschritts wird der Wabenkörper vor Entnahme auf Raumtemperatur abgekühlt.
Somit kann die Trocknung des Wabenkörpers unter Unterdruck durch zusätzliche Bestrahlung mittels Infrarot deutlich beschleunigt werden, jedoch muss zweckmäßigerweise ein zusätzlicher Verfahrensschritt vor Entnahme erfolgen. Aufgrund der sich naturgemäß einstellenden Trocknung des Wabenkörpers von außen nach innen weist der Kern des Wabenkörpers zudem immer eine höhere Feuchte auf als der Außenbereich. Eine ausreichende Trocknung des Zentrums des Wabenkörpers führt somit immer zu einer vollständigen Trocknung der Außenbereiche.
Die geschilderten Nachteile können im Zuge der Erfindung zur Beschleunigung der Trocknung des Wabenkörpers durchaus toleriert werden. In einer weiteren vorteilhaften Ausbildung des Trocknungsverfahren werden die genannten Nachteile hinsichtlich des Einsatzes einer Infrarotstrahlung zur Aufheizung des Wabenkörpers während der Trocknung unter Unterdruck aber dadurch vermieden, dass der Wabenkörper während des Trocknungsvorgangs mittels elektromagnetischer Strahlung im Lang,- Kurz-, oder Mikrowellenbereich beheizt wird. Der Mikrowellenbereich umfasst hierbei Frequenzen zwischen 300 MHz und 300 GHz. Der Kurzwellen- oder HF-Bereich schließt sich niederfrequent dem Mikrowellenbereich an und umfasst hierbei Strahlung bis hinab zu einer Frequenz von 3 MHz. Der Langwellenbereich umfasst insbesondere elektromagne- tische Strahlung mit einer Frequenz zwischen 30 und 300 kHz. Vorteilhafterweise wird Strahlung im Kurzwellenbereich und insbesondere im Mikrowellenbereich eingesetzt. Der Energieeintrag durch die elektromagnetische Strahlung erfolgt im Idealfall annähernd konstant über das gesamte Wabenvolumen, so dass es nicht zu einer Ausbildung von Temperaturgradienten über den Wabenkörper kommt. Die eingestrahlte Energie wird unmittelbar für die Sublimation des Eises und nicht zur Aufheizung der Wabe verwendet. Der Wabenkörper bleibt insofern kühl.
Da die Trocknung mittels der elektromagnetischen Strahlung im angegebebenen Frequenzbereich gleichmäßig im gesamten Wabenkörper abläuft, ist im Gegensatz zu einer Beheizung mittels Infrarotstrahlern ein gewünschter Trocknungsgrad für den Wabenkörper einstellbar. Zweckmäßigerweise wird hierzu die Dauer und/oder die Energie der Einstrahlung entsprechend dem gewünschten Trocknungsgrad gesteuert. Der Wabenkörper kann insbesondere mit einer gewissen Restfeuchte dem Trocknungsvorgang entnommen werden.
Bevorzugt erfolgt die Trocknung unter Einstrahlung der elektromagnetischen Strahlung im Lang-, Kurz- und Mikrowellenbereich kontinuierlich in einem Durchlaufverfahren. Dabei werden die Wabenkörper kontinuierlich nach einem Fließbandprinzip dem Trocknungsvorgang unter Einsatz der elektromagnetischen Strahlung unterzogen. In einer weiter vorteilhaften Ausgestaltung wird die kontinuierliche Trocknung mittels eines Bandtrockners realisiert. Dabei werden die Wabenkörper zur Trocknung und zur Einstrahlung kontinuierlich in den Bandtrockner eingefahren und verlassen diesen nach Durcheilen der Trocknungsstrecke. Ein Bandtrockner bietet zudem den großen Vorteil, dass jeder einzelne der Wabenkörper durch unterschiedliche Zonen des eingestrahlten elektromagnetischen Feldes bewegt wird, so dass für jeden Wabenkörper ein annähernd homogener Strahlungseintrag gewährleistet ist. Um die Auswirkungen der Inhomogenität des eingestrahlten Feldes hinsichtlich des Trocknungsergebnisses weiter zu verringern, empfiehlt es sich, den Wabenkörper während des Durchlaufens des Trocknungsvorgangs bzw. während der Einstrahlung zusätzlich zu drehen. Die natürliche Inhomogenität eines beispielsweise nach dem Stand der Technik erzeugten Mikrowellenfeldes hat insofern keinen nennenswerten Einfluss mehr auf das Trocknungsergebnis. Weiterhin wird die evakuierte Trocknungskammer vorteilhafterweise während des Trocknungsvorganges beheizt. Dies führt vorteilhafterweise zu einer erhöhten Sublimationsgeschwindigkeit und damit zu einer verkürzten Trocknungszeit.
Im Folgenden werden Ausführungsbeispiele der Erfindung näher erläutert.
Beispiel 1 :
Zunächst wird durch Extrusion von eines feuchtem Katalysator-Materials, das aus Titanoxid mit ca. 20% Beimischungen besteht, ein Wabenkörper für einen SCR- Katalysator hergestellt. Der Wabenkörper hat z.B. einen Durchmesser von ca. 150 mm, eine Länge von ca. 100 mm und eine durchschnittliche Wandstärke von ca. 0,3 mm. Nach dem Extrusionsvorgang liegt der Wabenkörper in einem feuchten Vorfertigungszustand vor.
Der derart vorgefertigte Wabenkörper wird in eine evakuierbare Trocknungskammer eingebracht. Innerhalb von etwa 10 Minuten wird der Atmosphärendruck in der Trocknungskammer von Raumdruck auf einen Enddruck von circa 4 mbar reduziert, wobei der Wabenkörper unter teilweiser Verdampfung der in ihm gespeicherten Feuchtigkeit einfriert. Der Wabenkörper wird nun bei dem genannten Enddruck während einer Trocknungszeit von etwa 10 Stunden und einer Temperatur von 60 °C getrocknet, wobei während dieser Trocknungszeit die zu entfernende Feuchtigkeit sublimiert. Die entzogene Feuchtigkeit wird in einer an die Trocknungskammer angrenzenden Kondensationskammer ausgefroren.
Beispiel 2:
Ein Wabenkörper der vorbeschriebenen Zusammensetzung mit einem Durchmesser von 250 mm, einer Länge von ca. 200 mm und einer durchschnittlichen Wandstärke von ca. 0,3 mm wird entsprechend Beispiel 1 eingefroren und bei einem Unterdruck von etwa 4 mbar getrocknet. Zur Trocknung durchläuft der Wabenkörper einen Bandtrockner, in dem entlang der Trocknungsstrecke ein Mikrowellenfeld mit einer Leistung von 650 Watt generiert ist. Durch den volumetrischen Wärmeeintrag infolge der Mikrowellen wird eine Trocknungszeit von lediglich 3,5 Stunden erzielt. Bei entsprechend höheren Leistungen können sogar Trocknungszeiten bis unterhalb einer Stunde erreicht werden.

Claims

Ansprüche
1. Verfahren zur Trocknung eines porösen keramischen Wabenkörpers für einen Katalysator oder einen Partikelfilter, bei dem der in einem feuchten Vorfertigungszustand vorliegende Wabenkörper eingefroren wird, und bei dem Feuchtigkeit unter Unterdruck aus dem gefrorenen Wabenkörper entfernt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Unterdruck derart an den feuchten Wabenkörper angelegt wird, dass die zu entfernende Feuchtigkeit infolge der Druckänderung gefriert.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zum Einfrieren des Wabenkörpers der Atmosphärendruck in der Trocknungskammer schlagartig reduziert wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Wabenkörper ein Vollextrudat aus einem katalytisch wirkenden Material, insbesondere einem im Wesentlichen aus Titanoxid bestehenden Material, herangezogen wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Unterdruck während der Trocknung im Wesentlichen konstant bei weniger als 6 mbar gehalten wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Trocknungskammer während des Trocknungsvorgangs beheizt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wabenkörper während des Trocknungsvorgangs einem Träger aufliegt, und dass der Träger, insbesondere elektrisch, beheizt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wabenkörper während des Trocknungsvorgangs mittels elektromagnetischer Strahlung im Lang-, Kurz-, oder Mikrowellenbereich beheizt wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Dauer und/oder die Energie der elektromagnetischen Strahlung entsprechend einem gewünschten Trockungsgrad des Wabenkörpers gesteuert wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Trocknung unter der elektromagnetischen Strahlung kontinuierlich in einem Durchlaufverfahren erfolgt.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die kontinuierliche Trocknung des Wabenkörpers während des Durchlaufens eines Bandtrockners erfolgt.
12. Verfahren nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass der Wabenkörper während des Durchlaufs zusätzlich gedreht wird.
PCT/EP2008/009567 2007-12-20 2008-11-13 Verfahren zur trocknung von keramischen wabenkörpern WO2009080155A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL08865303T PL2227447T3 (pl) 2007-12-20 2008-11-13 Sposób osuszania korpusów ceramicznych o strukturze plastra pszczelego
EP08865303.5A EP2227447B1 (de) 2007-12-20 2008-11-13 Verfahren zur trocknung von keramischen wabenkörpern
US12/809,852 US20100295218A1 (en) 2007-12-20 2008-11-13 Process for Drying Ceramic Honeycomb Bodies
DK08865303.5T DK2227447T3 (en) 2007-12-20 2008-11-13 A process for drying ceramic honeycomb bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007061776.5 2007-12-20
DE102007061776A DE102007061776A1 (de) 2007-12-20 2007-12-20 Verfahren zur Trocknung von keramischen Wabenkörpern

Publications (1)

Publication Number Publication Date
WO2009080155A1 true WO2009080155A1 (de) 2009-07-02

Family

ID=40436473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/009567 WO2009080155A1 (de) 2007-12-20 2008-11-13 Verfahren zur trocknung von keramischen wabenkörpern

Country Status (6)

Country Link
US (1) US20100295218A1 (de)
EP (1) EP2227447B1 (de)
DE (1) DE102007061776A1 (de)
DK (1) DK2227447T3 (de)
PL (1) PL2227447T3 (de)
WO (1) WO2009080155A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011092521A1 (en) 2010-02-01 2011-08-04 Johnson Matthey Plc Extruded scr filter
DE102011016066A1 (de) * 2011-04-05 2012-10-11 Püschner Gmbh & Co. Kg Verfahren zur kontinuierlichen Mikrowellenvakuumtrocknung von wabenkeramischen Körpern sowie Vorrichtung zur Durchführung derselben
WO2013017873A1 (en) 2011-08-03 2013-02-07 Johnson Matthey Plc Extruded honeycomb catalyst
CN105294145A (zh) * 2015-11-23 2016-02-03 三峡大学 一种柴油机用壁流式微粒捕集器陶瓷过滤体制备方法
US20170007991A1 (en) * 2014-01-23 2017-01-12 Johnson Matthey Catalysts (Germany) Gmbh Catalytic extruded, solid honeycomb body
US10441918B2 (en) 2014-07-31 2019-10-15 Johnson Matthey Public Limited Company Process for producing a catalyst and catalyst article
WO2020260669A1 (en) 2019-06-26 2020-12-30 Johnson Matthey Public Limited Company Composite, zoned oxidation catalyst for a compression ignition internal combustion engine
WO2021074605A1 (en) 2019-10-16 2021-04-22 Johnson Matthey Public Limited Company Composite, zoned oxidation catalyst for a compression ignition internal combustion engine
WO2021074652A1 (en) 2019-10-16 2021-04-22 Johnson Matthey Public Limited Company Composite, zone-coated, dual-use ammonia (amox) and nitric oxide oxidation catalyst
WO2021220010A1 (en) 2020-04-30 2021-11-04 Johnson Matthey Public Limited Company Method of forming a catalyst article
EP3957387A1 (de) 2019-06-26 2022-02-23 Johnson Matthey Public Limited Company Zusammengesetzter zonenoxidationskatalysator für einen kompressionszündungsverbrennungsmotor
WO2023067134A1 (en) 2021-10-22 2023-04-27 Johnson Matthey Catalysts (Germany) Gmbh Method and catalyst article
EP4227002A1 (de) 2022-02-09 2023-08-16 Johnson Matthey Catalysts (Germany) GmbH Vanadiumfreier titanbasierter scr-katalysatorartikel
WO2023194805A1 (en) 2022-04-08 2023-10-12 Johnson Matthey Public Limited Company An exhaust gas treatment system
EP4283100A2 (de) 2019-10-16 2023-11-29 Johnson Matthey Public Limited Company Zusammengesetzter zonenoxidationskatalysator für einen kompressionszündungsverbrennungsmotor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9957200B2 (en) 2013-11-27 2018-05-01 Corning Incorporated Composition for improved manufacture of substrates
DE102015216647A1 (de) 2015-08-31 2017-03-02 Johnson Matthey Catalysts (Germany) Gmbh Anlage für Wabenkörper sowie Verfahren zum Trocknen von Wabenkörpern
US11168033B2 (en) * 2017-03-24 2021-11-09 Ngk Insulators, Ltd. Method for drying columnar honeycomb formed body and method for producing columnar honeycomb structure
JP7199988B2 (ja) 2019-02-08 2023-01-06 日本碍子株式会社 ハニカム構造体の製造方法
CN113198544B (zh) * 2021-04-28 2023-10-20 浙江新火原新材料科技有限公司 一种成型收缩率低的纳米氧化物催化剂蜂窝的制备方法
WO2023096781A1 (en) * 2021-11-29 2023-06-01 Corning Incorporated Methods and systems for stiffening extrudates

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3738992A1 (de) 1987-11-17 1988-04-28 Roedel Andreas Verfahren und vorrichtung zur strahlungs-vakuum-kondensations-trocknung
DE19741065A1 (de) * 1997-09-18 1999-04-29 Zirbus Apparate Und Maschinenb Verfahren zur Trocknung von Werkstücken aus plastischen Massen und Vorrichtung zur Durchführung des Verfahrens
US5914294A (en) 1996-04-23 1999-06-22 Applied Ceramics, Inc. Adsorptive monolith including activated carbon and method for making said monlith
EP1441191A1 (de) * 2002-12-30 2004-07-28 Ustav Chemickych Procesu Akademie Ved Ceské Republiky Verfahren und Vorrichtung zum Trocknen von Büchern oder ähnlichem auf Papier basierenden Material
JP2005305417A (ja) 2004-03-26 2005-11-04 Ngk Insulators Ltd 触媒機能を有するハニカムフィルタとその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE28965E (en) * 1962-03-08 1976-09-21 Pennwalt Corporation Flow through type drying apparatus
US4115928A (en) * 1973-12-17 1978-09-26 Armour Pharmaceutical Company Freeze-dry process and product
JP4069613B2 (ja) * 2001-11-09 2008-04-02 株式会社デンソー セラミックハニカム構造体の製造方法及び乾燥装置
CN101151096B (zh) * 2005-06-09 2014-05-07 株式会社日本触媒 钛氧化物、废气处理用催化剂及废气净化方法
FR2889184B1 (fr) * 2005-07-29 2007-10-19 Saint Gobain Ct Recherches Procede de preparation d'une structure poreuse utilisant des agents porogenes a base de silice
DE102006020158B4 (de) * 2006-05-02 2009-04-09 Argillon Gmbh Extrudierter Vollkatalysator sowie Verfahren zu seiner Herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3738992A1 (de) 1987-11-17 1988-04-28 Roedel Andreas Verfahren und vorrichtung zur strahlungs-vakuum-kondensations-trocknung
US5914294A (en) 1996-04-23 1999-06-22 Applied Ceramics, Inc. Adsorptive monolith including activated carbon and method for making said monlith
DE19741065A1 (de) * 1997-09-18 1999-04-29 Zirbus Apparate Und Maschinenb Verfahren zur Trocknung von Werkstücken aus plastischen Massen und Vorrichtung zur Durchführung des Verfahrens
EP1441191A1 (de) * 2002-12-30 2004-07-28 Ustav Chemickych Procesu Akademie Ved Ceské Republiky Verfahren und Vorrichtung zum Trocknen von Büchern oder ähnlichem auf Papier basierenden Material
JP2005305417A (ja) 2004-03-26 2005-11-04 Ngk Insulators Ltd 触媒機能を有するハニカムフィルタとその製造方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815190B2 (en) 2010-02-01 2014-08-26 Johnson Matthey Public Limited Company Extruded SCR filter
WO2011092523A1 (en) 2010-02-01 2011-08-04 Johnson Matthey Plc NOx ABSORBER CATALYSTS
DE102011010105A1 (de) 2010-02-01 2011-08-04 Johnson Matthey Public Ltd. Co. Oxidationskatalysator
DE102011010103A1 (de) 2010-02-01 2011-08-04 Johnson Matthey Public Ltd. Co. NOx-Absorber-Katalysatoren
WO2011092517A1 (en) 2010-02-01 2011-08-04 Johnson Matthey Plc Three way catalyst comprising extruded solid body
WO2011092519A1 (en) 2010-02-01 2011-08-04 Johnson Matthey Plc Oxidation catalyst
DE102011010104A1 (de) 2010-02-01 2011-08-04 Johnson Matthey Public Ltd. Co. Dreiwegekatalysator, der einen extrudierten festen Körper umfaßt
DE102011010106A1 (de) 2010-02-01 2011-08-04 Johnson Matthey Public Limited Company Extrudiertes SCR-Filter
US8263032B2 (en) 2010-02-01 2012-09-11 Johnson Matthey Public Limited Company Oxidation catalyst
WO2011092521A1 (en) 2010-02-01 2011-08-04 Johnson Matthey Plc Extruded scr filter
US9283519B2 (en) 2010-02-01 2016-03-15 Johnson Matthey Public Limited Company Filter comprising combined soot oxidation and NH3-SCR catalyst
DE202011110610U1 (de) 2010-02-01 2015-07-02 Johnson Matthey Public Limited Company Extrudiertes SCR-Filter
US9040003B2 (en) 2010-02-01 2015-05-26 Johnson Matthey Public Limited Company Three way catalyst comprising extruded solid body
US8603423B2 (en) 2010-02-01 2013-12-10 Johnson Matthey Public Limited Co. Three way catalyst comprising extruded solid body
US8609047B2 (en) 2010-02-01 2013-12-17 Johnson Matthey Public Limited Company Extruded SCR filter
US8641993B2 (en) 2010-02-01 2014-02-04 Johnson Matthey Public Limited Co. NOx absorber catalysts
DE102011016066A1 (de) * 2011-04-05 2012-10-11 Püschner Gmbh & Co. Kg Verfahren zur kontinuierlichen Mikrowellenvakuumtrocknung von wabenkeramischen Körpern sowie Vorrichtung zur Durchführung derselben
DE102011016066B4 (de) * 2011-04-05 2013-06-13 Püschner Gmbh & Co. Kg Verfahren zur kontinuierlichen Mikrowellenvakuumtrocknung von wabenkeramischen Körpern sowie Vorrichtung zur Durchführung derselben
DE102012213639A1 (de) 2011-08-03 2013-02-07 Johnson Matthey Public Ltd., Co. Extrudierter Wabenkatalysator
US9138731B2 (en) 2011-08-03 2015-09-22 Johnson Matthey Public Limited Company Extruded honeycomb catalyst
WO2013017873A1 (en) 2011-08-03 2013-02-07 Johnson Matthey Plc Extruded honeycomb catalyst
US9937488B2 (en) * 2014-01-23 2018-04-10 Johnson Matthey Catalysts (Germany) Gmbh Catalytic extruded, solid honeycomb body
US20170007991A1 (en) * 2014-01-23 2017-01-12 Johnson Matthey Catalysts (Germany) Gmbh Catalytic extruded, solid honeycomb body
EP3721997A1 (de) 2014-07-31 2020-10-14 Johnson Matthey Public Limited Company Verfahren zur herstellung eines katalysators und katalysatorartikel
US10441918B2 (en) 2014-07-31 2019-10-15 Johnson Matthey Public Limited Company Process for producing a catalyst and catalyst article
CN105294145A (zh) * 2015-11-23 2016-02-03 三峡大学 一种柴油机用壁流式微粒捕集器陶瓷过滤体制备方法
WO2020260669A1 (en) 2019-06-26 2020-12-30 Johnson Matthey Public Limited Company Composite, zoned oxidation catalyst for a compression ignition internal combustion engine
EP3957387A1 (de) 2019-06-26 2022-02-23 Johnson Matthey Public Limited Company Zusammengesetzter zonenoxidationskatalysator für einen kompressionszündungsverbrennungsmotor
WO2021074605A1 (en) 2019-10-16 2021-04-22 Johnson Matthey Public Limited Company Composite, zoned oxidation catalyst for a compression ignition internal combustion engine
WO2021074652A1 (en) 2019-10-16 2021-04-22 Johnson Matthey Public Limited Company Composite, zone-coated, dual-use ammonia (amox) and nitric oxide oxidation catalyst
EP4283100A2 (de) 2019-10-16 2023-11-29 Johnson Matthey Public Limited Company Zusammengesetzter zonenoxidationskatalysator für einen kompressionszündungsverbrennungsmotor
WO2021220010A1 (en) 2020-04-30 2021-11-04 Johnson Matthey Public Limited Company Method of forming a catalyst article
WO2023067134A1 (en) 2021-10-22 2023-04-27 Johnson Matthey Catalysts (Germany) Gmbh Method and catalyst article
EP4227002A1 (de) 2022-02-09 2023-08-16 Johnson Matthey Catalysts (Germany) GmbH Vanadiumfreier titanbasierter scr-katalysatorartikel
WO2023152047A1 (en) 2022-02-09 2023-08-17 Johnson Matthey Catalysts (Germany) Gmbh Vanadium-free titania-based scr catalyst article
WO2023194805A1 (en) 2022-04-08 2023-10-12 Johnson Matthey Public Limited Company An exhaust gas treatment system

Also Published As

Publication number Publication date
EP2227447B1 (de) 2015-04-01
DE102007061776A1 (de) 2009-06-25
PL2227447T3 (pl) 2015-08-31
DK2227447T3 (en) 2015-06-29
EP2227447A1 (de) 2010-09-15
US20100295218A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
EP2227447A1 (de) Verfahren zur trocknung von keramischen wabenkörpern
DE69613998T2 (de) Verfahren und vorrichtung zum heissisostatischen pressen von teilen
DE2314584A1 (de) Verfahren und vorrichtung zum gleichmaessigen trocknen von poroesem material
WO2007132014A2 (de) Hochfrequenzgestützte vakuumtrocknung
EP0823190B1 (de) Verfahren, vorrichtung zur thermischen behandlung von stoffen in einem mikrowellenofen und verwendung dieses verfahrens und dieser vorrichtung
DE10027685A1 (de) Verfahren zur Herstellung von Molekularsieb-Membranen auf porösen Trägern
DE69719662T2 (de) Verfahren zur herstellung eines getrockneten porösen keramischen körpers
DE102013018863B4 (de) Verfahren und Vorrichtung zur Rohstoffaufbereitung und effektiven Herstellung von Rohdauerwaren auf Fleisch-und Wurstbasis
EP1673001A1 (de) Geschirrspüler mit variabler wärmedämmung
DE2758501C2 (de) Verfahren und Vorrichtung zur Lyophilisierung zuvor gefrorener Materialien
DE102011016066B4 (de) Verfahren zur kontinuierlichen Mikrowellenvakuumtrocknung von wabenkeramischen Körpern sowie Vorrichtung zur Durchführung derselben
EP0512481B1 (de) Verfahren und Einrichtung zum Trocknen von zu trocknendem Gut
EP0624561A1 (de) Verfahren zur Herstellung von dampfgehärteten Bauteilen
DE102015216647A1 (de) Anlage für Wabenkörper sowie Verfahren zum Trocknen von Wabenkörpern
DE19741065C2 (de) Verfahren und Vorrichtung zur Formfixierung eines Werkstückes aus plastischen Massen
AT408575B (de) Verfahren zum dielektrischen trocknen von holz
EP0968803A2 (de) Verfahren und Vorrichtung zum thermischen Verbinden von geschäumten Polymerpartikeln
DE102018204430A1 (de) Verfahren zum trocknen von säulenförmigen wabenkörpern und verfahren zum herstellen von säulenförmigen wabenkörpern
EP2665838B1 (de) Verfahren zum aufheizen und trocknen eines gutes
WO2023111284A1 (de) Vorrichtung und verfahren zur wärmeerzeugung/speicherung und gaserhitzung mittels keramikelementen
DE3026182A1 (de) Schaumstoffe, verfahren zu ihrer herstellung und ihre verwendung
WO2020161207A1 (de) Verfahren zum behandeln eines lebensmittels in einem lagerfach eines haushaltskältegeräts durch ein temperieren und gleichzeitiges einwirken mit elektromagnetischer strahlung, sowie haushaltskältegerät
EP2599603B1 (de) Vorrichtung zur Herstellung von Grünfolien aus keramischem und/oder metallischem Werkstoff
DE102010007111A1 (de) Verfahren zur Beschichtung von Substraten aus der Dampfphase
DE102009039702A1 (de) Verfahren zum Beschichten eines Substrates mit einer keramischen Schicht

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08865303

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008865303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12809852

Country of ref document: US