WO2009071727A1 - Procedimiento de hidrogenación selectiva de compuestos nitroaromaticos sustituidos - Google Patents

Procedimiento de hidrogenación selectiva de compuestos nitroaromaticos sustituidos Download PDF

Info

Publication number
WO2009071727A1
WO2009071727A1 PCT/ES2008/070218 ES2008070218W WO2009071727A1 WO 2009071727 A1 WO2009071727 A1 WO 2009071727A1 ES 2008070218 W ES2008070218 W ES 2008070218W WO 2009071727 A1 WO2009071727 A1 WO 2009071727A1
Authority
WO
WIPO (PCT)
Prior art keywords
groups
combinations
metal
solvent
catalyst
Prior art date
Application number
PCT/ES2008/070218
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
Pedro Serna Merino
Original Assignee
Consejo Superior De Investigaciones Cientificas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Cientificas
Publication of WO2009071727A1 publication Critical patent/WO2009071727A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals

Definitions

  • the present invention relates to a process for the selective hydrogenation of nitroaromatic compounds in the presence of other reducible functional groups, using supported metal catalysts whose active phase is Pt, Ni, Ru, Rh, Pd, Re, Ir, Cu, Ag, Fe, obtaining amino compounds.
  • Patent FR-2,792,630 discloses the preparation of catalysts of group VIII to hydrogenate different functional groups in the structure of organic compounds, among which is the nitro group.
  • the simultaneous presence of two different metals of group VIII is always claimed in the catalyst composition.
  • the chemoselectivity of hydrogenation of nitro groups in the presence of other functional groups is not considered.
  • patent P200601011 the use of gold-based catalysts is proposed to selectively hydrogenate nitro groups in the presence, or not, of other reducible functional groups.
  • the use of said catalysts represents a versatile solution against a large number of functional groups, but a higher reaction rate would be desirable.
  • these catalysts are practically inactive for reactions in which the nitro group is strongly deactivated, as is the case in which the molecule to be reduced contains, for example, iodine.
  • the encapsulation can be carried out, for example, as described in G.Budroni, A. Corma, Angewandte Chemie, Int. Ed., 45 (20) 3328-3331, 2006.
  • the present invention relates to a process for selective hydrogenation of substituted nitroaromatic compounds using a catalyst based on a supported or encapsulated metal. Amino compounds are obtained by the process of the invention.
  • This process for the selective hydrogenation of nitroaromatic compounds can be carried out when the, or nitro groups are in the presence of other reducible functional groups, such as for example aldehydes, ketones, olefins, nitriles, esters, amides, halogens, triple bonds , etc.
  • reducible functional groups such as for example aldehydes, ketones, olefins, nitriles, esters, amides, halogens, triple bonds , etc.
  • the claimed catalysts are active and selective in monometallic form when properly supported and activated.
  • the metal is supported or encapsulated in an inorganic support.
  • the metal, or modified metal as explained later in this specification, is supported in order to increase its dispersion and decrease the particle size on supports of inorganic or carbonaceous nature, as is known in the field of metal catalysts. .
  • the present invention relates to a process for the hydrogenation of substituted nitroaromatic compounds using a catalyst comprising a metal selected from Ni, Pt, Ru, Pd, Rh, Ir, Fe, Cu, Ag and combinations thereof, encapsulated in, or supported on titanium oxide, iron oxide, cerium oxide, alumina, carbon, activated carbon, magnesium oxide, zirconium oxide, silica, silicic acid, lanthanum oxide, zinc oxide, calcium carbonate, calcium phosphate, calcium sulfate, barium sulfate, lead oxide, lead sulfate, lead carbonate and combinations thereof, and in which when the metal is Pt, it is present in a weight percentage between 0.001% and 0.95% with respect to the support.
  • a metal selected from Ni, Pt, Ru, Pd, Rh, Ir, Fe, Cu, Ag and combinations thereof, encapsulated in, or supported on titanium oxide, iron oxide, cerium oxide, alumina, carbon, activated carbon, magnesium oxide, zirconium oxide
  • coals can be used as supports.
  • the support is selected from iron and titanium oxides and combinations thereof, or activated carbon.
  • aromatic nitro compound and “amino compounds”, in the context of the present invention, refer to those systems that obey Hückel's 4n + 2 electron rule, for example aromatic hydrocarbons, such as benzenes, polycyclic hydrocarbons (including those partially hydrogenatable, such as tetralin; biphenyls; cyclopentadienyl anion; heteroaromatic compounds, such as pyridines, pyrroles, azoles, diazines, triazines, triazoles, furans, thiophenes and oxazoles; condensed aromatic compounds, such as condensed aromatic compounds Idoles, quinolines, isoquinolines, carbazoles, purines, phthalacines, benzotriazoles, benzofurans, cinnolines, quinazoles, acridines and benzothiophenes.
  • aromatic hydrocarbons such as benzenes, polycyclic hydrocarbons (including those partially hydrogenatable, such as t
  • the aromatic nitro compound has a general formula Ar-N02, where Ar is an aromatic ring selected from unsubstituted aryl rings and aryl rings with one or more substitutions.
  • substitutions refer to substitutions of groups selected from C1 to C8 alkyl groups, C1 to C4 aromatic or aliphatic vinyl groups, C1 to C4 aromatic or aliphatic vinyl groups, C1 to C8 alkoxy groups, C 6 H 5 to Ci 0 H 8 aryloxy groups , fluorine groups, chlorine groups, bromine groups, iodine groups, hydroxy groups, groups with unsaturated bonds carbon-carbon, O- (CO) -alkyl, O- (CO) -aryl groups COOH, OH, SH groups groups, CN groups SO3- groups SO 2 - alkyl, NH 2 groups, NH groups -alkyl, NH 2 SO 2 groups, NSO 2 groups - (alkyl) 2 , SO 2 -NH-alkyl groups, aromatic or aliphatic aldehyde groups C1 to C4, aliphatic or aromatic ketone groups, group C1 to C6, ether groups C1 to C6, thioester, sulfides and
  • carbon-carbon unsaturated bond includes bonds of alkenes, alkynes and alenes.
  • the percentage by weight between the metal and the inorganic support on which it is supported is between 0.001 and 20% metal, more preferably between 0.05 and 10% metal, depending on the content of the nature of the metal.
  • the metal is selected from Ni, Ru, Pd, Rh, Ir, Fe, Cu, Ag and combinations thereof, and is present in a weight percentage between 0.001 and 20% with respect to the support.
  • the amounts of metal on the support being less than 1% by weight in the case of platinum, less than 10% in the case of nickel, less than 5 % in the case of ruthenium, and less than 1% in the case of palladium. Contrary to what happens in previous patents [U. Siegrist, P. Baumeister, WO9532941 patent to Ciba Geigy, 1995; U. Siegrist, P.
  • the present invention requires amounts less than 1% by weight, not the introduction of a second metal or a modifying agent being completely necessary, as is the case in the prior art [U. Siegrist, P. Baumeister, WO9532941 patent to Ciba Geigy, 1995; U. Siegrist, P. Baumeister, WO9636588 patent to Ciba Geigy, 1996; U. Siegrist, P. Baumeister, M. Studer, patent WO9813331 to Ciba Geigy, 1998], provided that, as claimed in this patent, the amounts of metal and / or the appropriate support and / or activation are used .
  • the metal can be applied in metallic or ionic form in the support.
  • conventional procedures are known, known in the art.
  • the metal / nitro molar ratio is between 0.001 and 10%, preferably between 0.01 and 8%.
  • nitro does not refer to the nitroaromatic compound as such but to the total number of "nitro group (s) present in the reaction medium, with more than one of these groups being able to exist per molecule of nitroaromatic compound.
  • the metal is platinum and the platinum / nitro molar ratio is between 0.001 and 10%, preferably between 0.01 and 8%, and more preferably the platinum / nitro molar ratio is between 0.05 and 3%.
  • an additional metal is introduced as a modifier in the catalyst, - modifier metal - preferably selected from Au, Pb, Hg, Bi, Ge, Cd, As, Sb, Mn, Co, Ti and combinations of the same.
  • the weight ratio of metal to metal modifier is between
  • the weight ratio of metal to metal modifier is 1: 0.5.
  • the metal is platinum and a non-platinum metal is introduced as a modifier in the catalyst.
  • the weight ratio of platinum to metal modifier is 1: 0.001.
  • the metal modifier is selected from Au, Pb, Hg, Bi, Ge,
  • the weight ratio of platinum to metal modifier is 1: 0.5.
  • the process of the invention can also comprise a step of activating the catalyst under hydrogen flow at temperatures between 100 0 C and 600 0 C, preferably between
  • hydrogenation is carried out with a hydrogen source that is a hydrogen donor molecule.
  • Said hydrogen source is preferably selected from ammonium formate, formic acid, decaborane, cyclohexene, cyclohexadiene, phosphoric acid and combinations thereof. It can also be molecular hydrogen.
  • the process of the invention is carried out at atmospheric pressure and at a temperature between
  • the process is carried out at a pressure between 1 and 100 bar and at a temperature between 2O 0 C and
  • 25O 0 C preferably between 5O 0 C and 200 0 C, and preferably, with molecular hydrogen as a source of hydrogen.
  • the process is carried out at a pressure between 1 and 50 bar and a temperature between 100 0 C and
  • the hydrogenation reaction can be carried out in the presence or absence of solvent. If the procedure is carried out with solvent, this can be water, alcohols, ethers, esters, ketones, carboxylic acids, aprotic dipole solvents, apolar solvents, chlorinated aromatic hydrocarbons, methylene chloride, C3-C7 alkanes, cyclohexane and combinations thereof.
  • solvent this can be water, alcohols, ethers, esters, ketones, carboxylic acids, aprotic dipole solvents, apolar solvents, chlorinated aromatic hydrocarbons, methylene chloride, C3-C7 alkanes, cyclohexane and combinations thereof.
  • the solvent can also be an alcohol selected from methanol, ethanol, n-propanol, isopropanol, n-butanol, isomeric butane, cyclohexanol and combinations thereof.
  • the solvent may also be an ether such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, dimethoxyethane and combinations thereof.
  • an ether such as diethyl ether, methyl tert-butyl ether, tetrahydrofuran, dioxane, dimethoxyethane and combinations thereof.
  • esters such as ethyl acetate, butyl acetate and combinations thereof.
  • the solvent may also be a ketone, such as butyrolactone, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and combinations thereof.
  • a ketone such as butyrolactone, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and combinations thereof.
  • the solvent may also be a carboxylic acid such as acetic acid, propionic acid and combinations thereof.
  • the solvent may also be an aprotic dipolar solvent, such as dimethylformamide, N-methylpyrrolidine, dimethylacetamide, sulfolane, dimethyl sulfoxide, acetonitrile and combinations thereof.
  • an aprotic dipolar solvent such as dimethylformamide, N-methylpyrrolidine, dimethylacetamide, sulfolane, dimethyl sulfoxide, acetonitrile and combinations thereof.
  • the solvent may also be a non-polar solvent such as toluene, xylene and combinations thereof.
  • said solvent is selected from toluene, xylene, tetrahydrofuran, dioxane, methyl ethyl ketone, methanol, ethanol and combinations thereof.
  • the solvent may also be chlorinated aromatic hydrocarbons, methylene chloride, C3-C7 alkanes, cyclohexane and combinations thereof.
  • Said solvent serves as a means of dissolution or to facilitate separation processes.
  • the process can be performed according to particular embodiments in the presence of a solvent and one or more co-solvents.
  • Said co-solvent may be ethanol, acetone, acetonitrile and combinations thereof.
  • the reaction is carried out in the absence of solvent.
  • the reagents that are hydrogenated during the process are preferably in the liquid, gas or coexistence phase of both.
  • the hydrogenation reaction can be carried out in the gas-solid phase (catalyst), or in a gas-liquid-solid system (catalyst).
  • said process can be carried out in a reactor in discontinuous or continuous mode, and the recovery of the catalyst can be carried out by recirculation or regeneration.
  • the catalyst formed by the metal and the support is calcined at a temperature higher than 150 0 C, and preferably between 300 and 500 0 C.
  • the calcination can be carried out in an atmosphere of air, oxygen or hydrogen, in a or several successive stages.
  • the calcination is carried out under H 2 flow.
  • the activation temperature thereof, as well as the percentage of encapsulated or disposed metal on the support have a special influence.
  • the type of support also has an influence as indicated above.
  • Example-1 Preparation of catalyst 0.2% Pt / Ti ⁇ 2 reduced to 450 0 C
  • the platinum catalyst supported on titanium oxide was prepared by the pore volume impregnation technique. Deposition Platinum was carried out by adding an aqueous solution of H 2 PtCIe containing the required amount of platinum on the support, so that it is impregnated with pore volume. To prepare 10 g of catalyst, 20 ml of an aqueous solution containing 53.1 mg of H 2 PtCI 6 must be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 ° C for 6 hours. Finally, the sample was reduced under flowing H 2 (50 mL / min) at 450 0 C for 3 hours.
  • Example-2 Preparation of 3-aminostyrene with H 2 using the catalyst 0.2% PtTTiO 2 reduced to 450 0 C
  • Example-3 Preparation of 4-aminobenzonitrile with H 2 using the catalyst 0.2% PtTTiO 2 reduced to 450 0 C
  • Example-4 Preparation of 4-aminophenylacetylene with H 2 using 0.2% PtTTiO 2 catalyst reduced to 450 0 C In an autoclave, 100 mg of catalyst, prepared according to
  • Example 1 are added to a solution of 64 mg of 4-nitrophenylacetylene in 0.99 ml_ of toluene, and 11 mg of o-xylene as the internal standard of the reaction.
  • the contents of the autoclave are heated to 40 ° C and pressurized with 3 bars of hydrogen, setting a stirring level of 1000 rpm
  • the pressure inside the reactor was kept constant at 3 bars throughout the experiment, following the evolution of the reaction by analysis of the liquid phase by gas chromatography and mass spectrometry. After 2 hours of reaction, 4-aminophenylacetylene was produced in 90% yield.
  • Example-5 Preparation of 4-aminoidobenceno with H 2 using the catalyst 0.2% PtTTiO 2 reduced to 450 0 C
  • Example-6 Preparation of catalyst 0.2% PtTTiO 2 reduced to 200 0 C
  • the platinum catalyst supported on titanium oxide was prepared by the technique of pore volume impregnation. Platinum deposition was carried out by adding an aqueous solution of H 2 PtCIe containing the required amount of platinum on the support, so that it is impregnated with pore volume. To prepare 10 g of catalyst, 20 ⁇ L of an aqueous solution containing 53.1 mg of H 2 PtCIe should be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 ° C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 200 0 C for 3 hours.
  • Example-7 Preparation of 3-aminostyrene with H 2 using the catalyst 0.2% PtTTiO 2 reduced to 200 0 C
  • Example-8 Preparation of the 2% PtTTiO 2 catalyst reduced to 450 0 C
  • the platinum catalyst supported on titanium oxide was prepared by the pore volume impregnation technique. Deposition Platinum was carried out by adding an aqueous solution of H 2 PtCIe containing the required amount of platinum on the support, so that it is impregnated with pore volume. To prepare 10 g of catalyst, 17 mL of an aqueous solution containing 531 mg of H 2 PtCIe should be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 0 C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 450 0 C for 3 hours.
  • Example-9 Preparation of 3-amino styrene with H 2 using the 2% catalyst PtTTiO 2 reduced to 450 0 C
  • Example-10 Preparation of catalyst 2% PtTTiO 2 reduced to 200 0 C
  • the platinum catalyst supported on titanium oxide was prepared by the technique of pore volume impregnation. Platinum deposition was carried out by adding an aqueous solution of H 2 PtCIe containing the required amount of platinum on the support, so that it is impregnated with pore volume.
  • To prepare 10 g of catalyst 17 mL of an aqueous solution containing 531 mg of H 2 PtCI 6 should be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 0 C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 200 0 C for 3 hours.
  • Example-11 Preparation of 3-aminostyrene with H 2 using catalyst 2% PtTTiO 2 reduced to 200 0 C
  • Example-12 Preparation of catalyst 0.2% Pt / C reduced to 450 0 C
  • the platinum catalyst supported on activated carbon was prepared by the pore volume impregnation technique. Platinum deposition was carried out by adding an aqueous solution of H 2 PtCIe containing the required amount of platinum on the support, so that it is impregnated with pore volume. To prepare 10 g of catalyst, 22 mL of an aqueous solution containing 53.1 mg of H 2 PtCIe should be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 ° C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 450 0 C for 3 hours.
  • Example-13 Preparation of 3-amino styrene with H 2 using 0.2% Pt / C catalyst reduced to 450 0 C
  • Example-14 Preparation of catalyst 0.2% Pt / Fe 2 O 3 reduced to 450 0 C
  • the platinum catalyst supported on iron oxide (goetite) was prepared by the pore volume impregnation technique. Platinum deposition was carried out by adding an aqueous solution of H 2 PtCIe containing the required amount of platinum on the support, so that it is impregnated with pore volume. To prepare 10 g of catalyst, 5 mL of an aqueous solution containing 53.1 mg of H 2 PtCIe should be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 0 C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 450 0 C for 3 hours.
  • Example-15 Preparation of 3-amino styrene with H 2 using 0.2% Pt / Fe 2 O 3 catalyst reduced to 450 0 C
  • 250 mg of catalyst, prepared according to Example 14 are added to a solution of 125 mg of 3-nitrostyrene in 0.93 ml_ of toluene, and 10 mg of o-xylene as the internal standard of the reaction.
  • the air inside the autoclave is removed by cold purging the reactor with H 2 at 10 bar.
  • Example-16 Preparation of catalyst 0.2% Pt / SiO 2 reduced to 450 0 C
  • the platinum catalyst supported on silica (Silica-Gel) was prepared by the pore volume impregnation technique. Platinum deposition was carried out by adding an aqueous solution of H 2 PtCIe containing the required amount of platinum on the support, so that it is impregnated with pore volume.
  • To prepare 10 g of catalyst 20 mL of an aqueous solution containing 53.1 mg of
  • H 2 PtCI 6 should be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 ° C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 450 0 C for 3 hours.
  • Example-17 Preparation of catalyst 0.2% Pt / AI 2 O 3 reduced to 450 0 C
  • the platinum catalyst supported on alumina was prepared by the pore volume impregnation technique. Platinum deposition was carried out by adding an aqueous solution of H 2 PtCI 6 containing the required amount of platinum on the support, of so that it is impregnated with pore volume. To prepare 10 g of catalyst, 10 ml of an aqueous solution containing 53.1 mg of H 2 PtCIe should be used. After homogenizing the resulting gel, the catalyst was dried in a conventional oven at 100 ° C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 450 0 C for 3 hours.
  • Example-18 Preparation of 3-amino styrene with H 2 using 0.2% Pt / AI 2 O 3 catalyst reduced to 450 0 C In an autoclave, 250 mg of catalyst, prepared according to
  • Example 17 are added to a solution of 125 mg of 3-nitrostyrene in 0.93 ml_ of toluene, and 10 mg of o-xylene as the internal standard of the reaction.
  • the air inside the autoclave is removed by cold purging the reactor with H 2 at 10 bar.
  • the contents of the autoclave are heated to 40 ° C and pressurized with 3 bars of hydrogen, setting a stirring level of 1000 rpm
  • the pressure inside the reactor was kept constant at 3 bars throughout the experiment, following the evolution of the reaction by analysis of the liquid phase by gas chromatography and mass spectrometry. After 6 hours of reaction, the yield to 3-amino styrene was 60
  • Example-19 Preparation of catalyst 5% N ⁇ / T ⁇ O2 reduced to 450 0 C
  • the nickel catalyst supported on titanium oxide was prepared by the pore volume impregnation technique.
  • the deposition of the nickel was carried out by adding an aqueous solution of Ni (NOs) 2 containing the required amount of nickel on the support, so that it is impregnated with pore volume.
  • To prepare 10 g of catalyst 17 mL of an aqueous solution containing 2.47 g of Ni (NO 3 ) 2 should be used.
  • the catalyst was dried in a conventional oven at 100 ° C for 6 hours. TO The material was then calcined in a flask at 55O 0 C in an air atmosphere for 3h. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 450 0 C for 3 hours.
  • Example-20 Preparation of 3-amino styrene with H 2 using the catalyst 5% Ni / TiO 2 reduced to 450 0 C
  • Example-21 Preparation of 4-aminobenzonitrile with H 2 using the catalyst 5% Ni / TiO 2 reduced to 450 0 C
  • Example-22 Preparation of 4-aminoidobenzene with H 2 using the 5% Ni / TiO 2 catalyst reduced to 450 0 C
  • Example-23 Preparation of catalyst 1% Ru / TiO 2 reduced to 450 0 C
  • the ruthenium catalyst supported on titanium oxide was prepared by the pore volume impregnation technique.
  • the deposition of ruthenium was carried out by adding an aqueous solution of RuCI 3 containing the required amount of nickel on the support, so that it is impregnated with pore volume.
  • To prepare 10 g of catalyst 17 mL of an aqueous solution containing 1.03 g of RuCI 3 should be used.
  • the catalyst was dried in a conventional oven at 100 ° C for 6 hours. Finally, the sample was reduced under pure H2 stream (50 mL / min) at 450 0 C for 3 hours.
  • Example-24 Preparation of 3-amino styrene with H 2 using the catalyst 1% Ru / TiO 2 reduced to 450 0 C
  • 100 mg of catalyst, prepared according to Example 23 are added to a solution of 125 mg of 3-nitrostyrene in 0.93 ml_ of toluene, and 10 mg of o-xylene as the internal standard of the reaction.
  • the air inside the autoclave is removed by cold purging the reactor with H 2 at 10 bar.
  • the atmospheric pressure reactor of H 2 the contents of the autoclave are heated to 120 ° C and pressurized with 8 bars of hydrogen, setting a stirring level of 1000 rpm.
  • the pressure inside the reactor was kept constant at 8 bars throughout the experiment, following the evolution of the reaction by analysis of the liquid phase by gas chromatography and mass spectrometry. After 1.5 hours of reaction, 3-amino styrene was produced in 94% yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

La presente invención se refiere a un procedimiento para de hidrogenación selectiva de compuestos nitroaromáticos sustituidos que comprende una hidrogenación del correspondiente compuesto nitro utilizando un catalizador metálico encapsulado o soportado, dicho metal seleccionado entre Ni, Pt, Ru, Pd, Rh, Ir, Fe, Cu, Ag y combinaciones de ellos, y en el que dicho catalizador puede además incluir un metal modificador.

Description

PROCEDIMIENTO DE HIDROGENACION SELECTIVA DE COMPUESTOS NITROAROMÁTICOS SUSTITUIDOS
Campo de Ia técnica
La presente invención se refiere a un procedimiento para Ia hidrogenación selectiva de compuestos nitroaromáticos en presencia de otros grupos funcionales reducibles, utilizando catalizadores de metales soportados cuya fase activa sea Pt, Ni, Ru, Rh, Pd, Re, Ir, Cu, Ag, Fe, obteniéndose compuestos amino.
Antecedentes
En los últimos años, Ia utilización de catalizadores basados en metales nobles para Ia obtención de aminas a partir de los correspondientes nitro compuestos ha sido ampliamente investigada. La minimización de subproductos de reacción no deseados es uno de los principales retos de los nuevos sistemas catalíticos, considerando los altos costes que generalmente se derivan de procesos de separación. Hasta Ia fecha, diversas soluciones para llevar a cabo hidrogenaciones selectivas de grupos nitro han sido propuestas. Las alternativas planteadas para mejorar Ia selectividad frente a otros grupos funcionales conllevan generalmente el empleo de catalizadores cuya capacidad de hidrogenación ha sido controlada, bien dopando de forma adecuada metales típicamente no selectivos (platino) [U. Siegrist, P. Baumeister, patente WO9532941 a Ciba Geigy, 1995] o utilizando directamente un metal con un menor poder hidrogenante, como el oro [P.
Serna, A. Corma, patente P200601011 , CSIC-UPV, 2006]
En US-3,832,401 y WO-2005.070.869 se propone el uso de catalizadores de hierro para llevar a cabo Ia hidrogenación selectiva de grupos nitro en compuestos aromáticos, en presencia de distintos grupos funcionales reducibles. A pesar del bajo coste de los catalizadores de hierro para este proceso, Ia compleja recuperación del catalizador de Ia corriente de reacción puede representar un importante problema desde un punto de vista industrial y para el medio ambiente.
En Ia patentes US-4,002,673 y US-4,051 ,177 se reclama el uso de diversos sulfuras metálicos, incluyendo sulfuras de radio, hierro, rutenio, paladio, iridio, renio, osmio y platino, para Ia preparación de compuestos amino insaturados a partir de los correspondientes compuesto nitro insaturados. Con motivo de las grandes cantidades de residuos azufrados producidos durante el proceso, Ia utilidad industrial de dicho procedimiento queda notablemente limitada. Otras patentes, como Ia DE-19619359, proponen el uso de distintos catalizadores homogéneos de metales tales como el rutenio, radio, níquel o paladio para hidrogenar selectivamente compuestos nitro, principalmente en presencia de halógenos. Además de las dificultades evidentes en Ia recuperación de estos catalizadores una vez llevada a cabo Ia reacción química, Ia aplicación de los mismos no está extendida a compuestos nitro conteniendo grupos tales como dobles enlaces o carbonilos.
En Ia patente US-2002151751 se reclama el uso de catalizadores heterogéneos tipo Raney con metales tales como níquel, cobalto, cobre, hierro, platino, paladio o rutenio para Ia preparación de aminas sustituidas. Sin embargo, otras transformaciones, como Ia reducción de grupos carbonilo a alcoholes se produce de forma paralela, limitando el número de procesos a los que se pueden aplicar manteniendo una alta selectividad para Ia hidrogenación exclusiva del grupo nitro. Por otra parte, tales catalizadores sufren los inconvenientes en su manipulación típicos de las aleaciones Raney.
En Ia patente US-5,856,578 se propone el envenenamiento controlado de catalizadores heterogéneos basados en platino para hidrogenar selectivamente grupos nitro en presencia de enlaces carbono- carbono insaturados. A pesar de que estos catalizadores pueden reducir selectivamente grupos nitro, en presencia de dobles enlaces y otros grupos funcionales, Ia adición de un segundo metal para mejorar Ia selectividad del proceso resulta imprescindible. Además, el proceso de envenenamiento controlado del platino es crítico y difícil de reproducir. Por otra parte, el control de Ia actividad del platino como catalizador de hidrogenación, vía el envenenamiento con un segundo metal, produce una disminución en Ia velocidad de las etapas intermedias de reducción, de forma que sales solubles de metales, tales como vanadio o hierro, tienen que ser añadidas para evitar una progresiva acumulación de productos intermedios de reacción. Pese a que esta patente está basada en el uso de platino como fase activa para Ia reducción selectiva de grupos nitro, Ia presencia de un segundo metal resulta completamente necesaria. Además, los catalizadores reivindicados presentan una composición que comprende entre un 1 % y un 10 % en peso de platino.
La patente FR-2,792,630 divulga Ia preparación de catalizadores del grupo VIII para hidrogenar distintos grupos funcionales en Ia estructura de compuestos orgánicos, entre los que se encuentra el grupo nitro. No obstante, en Ia composición del catalizador siempre se reivindica Ia presencia simultánea de dos metales diferentes del grupo VIII. Además, Ia quimioselectividad de Ia hidrogenación de grupos nitro en presencia de otros grupos funcionales no es considerada. En Ia patente P200601011 se propone el uso de catalizadores basados en oro para hidrogenar selectivamente grupos nitro en presencia, o no, de otros grupos funcionales reducibles. El empleo de dichos catalizadores representa una solución versátil frente a un gran número de grupos funcionales, pero sería deseable una mayor velocidad de reacción. Además, estos catalizadores son prácticamente inactivos para reacciones en las que el grupo nitro se encuentra fuertemente desactivado, como es el caso en el que Ia molécula a reducir contiene, por ejemplo, iodo.
En Ia presente invención, se ha encontrado que determinados catalizadores basados en metales soportados o encapsulados, en ausencia de otros aditivos o metales modificadores, son capaces de producir selectivamente Ia hidrogenación de grupos nitro en presencia de otros grupos funcionales reducibles, empleando H2 u otra molécula donante de hidrógeno como agente reductor, cuando se soportan sobre un soporte adecuado y se activan de manera adecuada.
La encapsulación se puede llevar a cabo por ejemplo según Io descrito en G.Budroni, A. Corma, Angewandte Chemie, Int. Ed., 45 (20)3328-3331 , 2006.
Objeto de Ia invención
La presente invención se refiere a un procedimiento para hidrogenación selectiva de compuestos nitroaromáticos sustituidos utilizando un catalizador basado en un metal soportado, o encapsulado. Se obtienen mediante el procedimiento de Ia invención compuestos amino.
Este procedimiento para Ia hidrogenación selectiva de compuestos nitroaromáticos se puede llevar a cabo cuando el, o los grupos nitro están en presencia de otros grupos funcionales reducibles, tales como por ejemplo aldehidos, cetonas, olefinas, nitrilos, esteres, amidas, halógenos, triples enlaces, etc. Los catalizadores reivindicados son activos y selectivos en forma monometálica cuando se soportan y activan adecuadamente.
Además, en el procedimiento de Ia presente invención, el metal está soportado o encapsulado en un soporte inorgánico. El metal, o metal modificado como se explica más adelante en esta memoria, se soporta con el fin de aumentar su dispersión y disminuir el tamaño de partícula sobre soportes de naturaleza inorgánica o carbonácea, tal y como es conocido en el campo de los catalizadores metálicos.
De modo más específico Ia presente invención se refiere a un procedimiento para Ia hidrogenación de compuestos nitroaromáticos sustituidos utilizando un catalizador que comprende un metal seleccionado entre Ni, Pt, Ru, Pd, Rh, Ir, Fe, Cu, Ag y combinaciones de ellos, encapsulado en, o soportado sobre óxido de titanio, óxido de hierro, óxido de cerio, alúmina, carbón, carbón activo, óxido de magnesio, óxido de zirconio, sílice, ácido silícico, óxido de lantano, óxido de zinc, carbonato calcico, fosfato calcico, sulfato calcico, sulfato de bario, óxido de plomo, sulfato de plomo, carbonato de plomo y combinaciones de los mismos, y en el que cuando el metal es Pt, está presente en un porcentaje en peso entre un 0.001 % y 0.95% respecto al soporte.
Algunos de estos óxidos de metal pueden jugar un papel mecanístico en el proceso catalítico de reducción de grupos nitro, de manera que es posible evitar Ia acumulación de hidroxilamina y otros productos intermedios de reacción. De manera similar, se pueden utilizar como soportes carbones. Según una realización preferente, el soporte está seleccionado entre óxidos de hierro y titanio y combinaciones de los mismos, o carbón activo.
De manera general, los términos "compuesto nitro aromático" y "amino compuestos", en el contexto de Ia presente invención, hacen referencia a aquellos sistemas tales que obedecen Ia regla del electrón 4n+2 de Hückel, por ejemplo hidrocarburos aromáticos, tales como benzenos, hidrocarburos policíclicos (incluyendo aquellos parcialmente hidrogenables, como por ejemplo el tetralína; bifenilos; anión ciclopentadienilo; compuestos heteroaromáticos, tales como piridinas, pirróles, azoles, diazinas, triazinas, triazoles, furanos, tiofenos y oxazoles; compuestos aromáticos condensados, tales como Índoles, quinolinas, isoquinolinas, carbazoles, purinas, ftalacinas, benzotriazoles, benzofuranos, cinnolinas, quinazoles, acridinas y benzotiofenos.
En el procedimiento de Ia presente invención, el compuesto nitro aromático tiene una fórmula general Ar-N02, donde Ar es un anillo aromático seleccionado entre anillos arilo sin sustituir y anillos arilo con una o más sustituciones.
Dichas sustituciones se refieren a sustituciones de grupos seleccionados entre grupos alquilo C1 a C8, grupos vinilos aromáticos o alifáticos C1 a C4, grupos viniloxi aromáticos o alifáticos C1 a C4, grupos alcoxi C1 a C8, ariloxi C6H5 a Ci0H8, grupos flúor, grupos cloro, grupos bromo, grupos yodo, grupos hidroxi, grupos con enlaces insaturados carbono-carbono, grupos O-(CO)-alquilo, grupos O-(CO)-arilo, grupos COOH, grupos OH, grupos SH, grupos CN, grupos SO3-, grupos SO2- alquilo, grupos NH2, grupos NH-alquilo, grupos NH2SO2, grupos NSO2- (alquilo)2, grupos SO2-NH-alquilo, grupos aldehido aromático o alifático C1 a C4, grupos cetona alifáticos o aromáticos, grupo ¡mino C1 a C6, grupos éter C1 a C6, tioéster, sulfuros y combinaciones de los mismos.
El término enlace carbono-carbono insaturado, de acuerdo con Ia presente invención, incluye enlaces de alquenos, alquinos y alenos.
El porcentaje en peso entre el metal y el soporte inorgánico en el que está soportado se encuentra entre un 0.001 y un 20 % de metal, más preferentemente entre un 0.05 y un 10 % de metal, dependiendo el contenido de Ia naturaleza del metal.
Según realizaciones particulares del procedimiento, el metal está seleccionado entre Ni, Ru, Pd, Rh, Ir, Fe, Cu, Ag y combinaciones de ellos, y está presente en un porcentaje en peso entre un 0.001 y un 20 % respecto al soporte. Según realizaciones particulares adicionales como metales se prefieren Ni, Pt, Ru y Pd, siendo las cantidades comprendidas de metal sobre el soporte inferiores al 1% en peso en el caso del platino, inferiores al 10 % en el caso del níquel, inferiores al 5 % en el caso del rutenio, e inferiores al 1 % en el caso del paladio. Contrariamente a Io que ocurre en patentes anteriores [U. Siegrist, P. Baumeister, patente WO9532941 a Ciba Geigy, 1995; U. Siegrist, P. Baumeister, patente WO9636588 a Ciba Geigy, 1996; U. Siegrist, P. Baumeister, M. Studer, patente WO9813331 a Ciba Geigy, 1998], en nuestro caso hemos encontrado que, sorprendentemente, no se requiere Ia introducción de un segundo metal siempre y cuando se utilice el soporte y Ia activación del catalizador adecuados.
A modo de comparación, y en Io que se refiere al platino, en US-
5,856,578 se reclama el uso de Pt soportado, modificado con un segundo metal, en catalizadores con contenidos de Pt superiores al 1 % en peso. En
Ia presente invención se requieren cantidades menores de 1 % en peso, no siendo completamente necesaria Ia introducción de un segundo metal o un agente modificador, tal y como ocurre en el arte previo [U. Siegrist, P. Baumeister, patente WO9532941 a Ciba Geigy, 1995; U. Siegrist, P. Baumeister, patente WO9636588 a Ciba Geigy, 1996; U. Siegrist, P. Baumeister, M. Studer, patente WO9813331 a Ciba Geigy, 1998], siempre y cuando, como se reivindica en Ia presente patente, se utilicen las cantidades de metal y/o el soporte y/o Ia activación adecuadas.
En el catalizador descrito, para llevar a cabo el procedimiento de Ia invención, el metal se puede aplicar en forma metálica o iónica en el soporte. En cualquiera de las dos formas se utilizan procedimientos convencionales, conocidos en Ia técnica.
La relación molar metal/nitro se encuentra entre 0.001 y 10 %, preferentemente entre 0.01 y 8%. Aquí el término "nitro" no se refiere al compuesto nitroaromático como tal sino al número total de "grupo(s) nitro" presentes en el medio de reacción, pudiendo existir más de uno de estos grupos por molécula de compuesto nitroaromático.
Según realizaciones particulares adicionales del procedimiento, el metal es platino y Ia relación molar platino/nitro se encuentra entre 0.001 y 10 %, preferentemente entre 0.01 y 8%, y más preferentemente Ia relación molar platino/nitro se encuentra entre 0.05 y 3 %.
Según realizaciones particulares adicionales del procedimiento, se introduce un metal adicional como modificador en el catalizador, - metal modificador -preferentemente seleccionado entre Au, Pb, Hg, Bi, Ge, Cd, As, Sb, Mn, Co, Ti y combinaciones de los mismos. La relación en peso de metal a metal modificador se encuentra entre
1 :0.001 y 1 :1 , preferentemente, Ia relación en peso de metal a metal modificador es de 1 :0.5.
Según realizaciones particulares adicionales del procedimiento, el metal es platino y se introduce un metal distinto de platino como modificador en el catalizador. La relación en peso de platino a metal modificador es de 1 :0.001. El metal modificador está seleccionado entre Au, Pb, Hg, Bi, Ge,
Cd, As, Sb, Mn, Co, Ti y combinaciones de los mismos.
De modo preferente, Ia relación en peso de platino a metal modificador es de 1 :0.5. El procedimiento de Ia invención, según realizaciones particulares, puede comprender además una etapa de activación del catalizador bajo flujo de hidrógeno a temperaturas entre 1000C y 6000C, preferentemente entre
35O0C y 55O0C.
En el procedimiento de Ia invención Ia hidrogenación se realiza con una fuente de hidrógeno que es una molécula donante de hidrógeno. Dicha fuente de hidrógeno está preferentemente seleccionada entre formiato amónico, ácido fórmico, decaborano, ciclohexeno, ciclohexadieno, ácido fosfórico y combinaciones de los mismos. También puede ser hidrógeno molecular. Según realizaciones particulares adicionales el procedimiento de Ia invención se lleva a cabo a presión atmosférica y a una temperatura entre
250C y 12O0C. Y preferentemente con hidrógeno molecular como fuente de hidrógeno.
Según realizaciones particulares adicionales el procedimiento se lleva a cabo a una presión entre 1 y 100 bares y a una temperatura entre 2O0C y
25O0C, preferentemente entre 5O0C y 2000C, y preferentemente, con hidrógeno molecular como fuente de hidrógeno.
Según realizaciones particulares adicionales el procedimiento se lleva a cabo a una presión entre 1 y 50 bares y a una temperatura entre 1000C y
15O0C, más preferentemente aún entre 5 y 50 bares y a una temperatura entre 2O0C y 15O0C, y, preferentemente con hidrógeno molecular como fuente de hidrógeno.
En este procedimiento, Ia reacción de hidrogenación se puede llevar a cabo en presencia o en ausencia de disolvente. En caso de que el procedimiento se realice con disolvente, éste puede ser agua, alcoholes, éteres, esteres, cetonas, ácidos carboxílicos, disolventes dipolares apróticos, disolventes apolares, hidrocarburos aromáticos clorados, cloruro de metileno, alcanos C3-C7, ciclohexano y combinaciones de los mismos.
El disolvente también puede ser un alcohol seleccionado entre metanol, etanol, n-propanol, isopropanol, n-butanol, butanoles isoméricos, ciclohexanol y combinaciones de los mismos.
El disolvente puede también ser un éter tal como dietil éter, metil tert- butil éter, tetrahidrofurano, dioxano, dimetoxietano y combinaciones de los mismos.
Otros disolventes posibles son esteres tales como acetato de etilo, acetato de butilo y combinaciones de los mismos.
El disolvente puede también ser una cetona, tal como butirolactona, acetona, metil etil cetona, metil isobutil cetona, ciclohexanona y combinaciones de las mismas.
El disolvente puede también ser un ácido carboxílico como ácido acético, ácido propiónico y combinaciones de los mismos.
El disolvente puede ser también un disolvente dipolar aprótico, tal como dimetilformamida, N-metilpirrolidina, dimetilacetamida, sulfolano, dimetil sulfóxido, acetonitrilo y combinaciones de los mismos.
El disolvente puede también ser un disolvente apolar tal como tolueno, xileno y combinaciones de los mismos.
De manera preferente, dicho disolvente está seleccionado entre tolueno, xileno, tetrahidrofurano, dioxano, metil etil cetona, metanol, etanol y combinaciones de los mismos.
El disolvente puede también ser hidrocarburos aromáticos clorados, cloruro de metileno, alcanos C3-C7, ciclohexano y combinaciones de los mismos. Dicho disolvente sirve como medio de disolución o para facilitar los procesos de separación. El procedimiento se puede realizar según realizaciones particulares en presencia de un disolvente y uno o más co-disolventes. Dicho co- disolvente puede ser etanol, acetona, acetonitrilo y combinaciones de los mismos. Según otras realizaciones del procedimiento, Ia reacción se lleva a cabo en ausencia de disolvente. Según esta realización, los reactivos que se hidrogenan durante el procedimiento se encuentran preferentemente en fase líquida, gaseosa o en coexistencia de ambas.
En el procedimiento de Ia presente invención, Ia reacción de hidrogenación se puede llevar a cabo en fase gas-sólido (catalizador), o en un sistema gas-líquido-sólido (catalizador).
Además dicho procedimiento se puede llevar a cabo en un reactor en modo discontinuo o continuo, y Ia recuperación del catalizador puede realizarse mediante recirculación o regeneración. En Ia presente invención el catalizador formado por el metal y el soporte se calcina a temperatura superior a 150 0C, y preferentemente entre 300 y 5000C. La calcinación se puede llevar a cabo en atmósfera de aire, oxígeno o hidrógeno, en una o varias etapas sucesivas. Preferentemente, Ia calcinación es llevada a cabo bajo flujo de H2. En el rendimiento del catalizador que se obtiene en las distintas reacciones de hidrogenación, tienen especial influencia Ia temperatura de activación del mismo, así como el porcentaje de metal encapsulado o dispuesto sobre el soporte. También tiene influencia el tipo de soporte como ya se ha indicado anteriormente.
A continuación se ilustran estos hechos mediante ejemplos específicos y no limitantes.
Ejemplo-1 : Preparación del catalizador 0,2% Pt/Tiθ2 reducido a 450 0C El catalizador de platino soportado sobre óxido de titanio fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCIe conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 20 ml_ de una disolución acuosa conteniendo 53.1 mg de H2PtCI6 deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 ° C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 (50 mL/min) a 450 0C durante 3 horas.
Ejemplo-2: Preparación de 3-aminoestireno con H2 utilizando el catalizador 0,2% PtTTiO2 reducido a 450 0C
En un autoclave, 250 mg de catalizador, preparado de acuerdo al Ejemplo 1 , son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, utilizando 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 7 horas de reacción, 3-aminoestireno fue producido con un rendimiento del 92 %.
Ejemplo-3: Preparación de 4-aminobenzonitrilo con H2 utilizando el catalizador 0,2% PtTTiO2 reducido a 450 0C
En un autoclave, 200 mg de catalizador, preparado de acuerdo al Ejemplo 1 , son añadidos a una disolución de 76 mg de 4-nitrobenzonitrilo en 0.98 ml_ de tetrahidrofurano, y 13 mg de o-xileno es usado como patrón interno de Ia reacción. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 50 ° C y se presuriza con 6 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 6 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 2 horas de reacción, 4-aminobenzonitrilo fue producido con un rendimiento del 98 %.
Ejemplo-4: Preparación de 4-aminofenilacetileno con H2 utilizando el catalizador 0,2% PtTTiO2 reducido a 450 0C En un autoclave, 100 mg de catalizador, preparado de acuerdo al
Ejemplo 1 , son añadidos a una disolución de 64 mg de 4-nitrofenilacetileno en 0.99 ml_ de tolueno, y 11 mg de o-xileno como patrón interno de Ia reacción. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 2 horas de reacción, 4-aminofenilacetileno fue producido con un rendimiento del 90 %.
Ejemplo-5: Preparación de 4-aminoidobenceno con H2 utilizando el catalizador 0,2% PtTTiO2 reducido a 450 0C
En un autoclave, 250 mg de catalizador, preparado de acuerdo al Ejemplo 1 , son añadidos a una disolución de 52 mg de 4-nitroiodobenceno en 0.99 mL de tolueno, y 11 mg de o-xileno como patrón interno de Ia reacción. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 60 ° C y se presuriza con 5 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 5 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 35 minutos de reacción, A- aminoiodobenceno fue producido con un rendimiento del 99 %.
Ejemplo-6: Preparación del catalizador 0.2% PtTTiO2 reducido a 200 0C El catalizador de platino soportado sobre óxido de titanio fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCIe conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 20 m L de una disolución acuosa conteniendo 53.1 mg de H2PtCIe deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 ° C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 200 0C durante 3 horas.
Ejemplo-7: Preparación de 3-aminoestireno con H2 utilizando el catalizador 0,2% PtTTiO2 reducido a 200 0C
En un autoclave, 250 mg de catalizador, preparado de acuerdo al Ejemplo 6, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, y 10 mg de o-xileno es usado como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 6 horas de reacción, 3-aminoestireno fue producido con un rendimiento del 34 %.
Ejemplo-8: Preparación del catalizador 2% PtTTiO2 reducido a 450 0C El catalizador de platino soportado sobre óxido de titanio fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCIe conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 17 mL de una disolución acuosa conteniendo 531 mg de H2PtCIe deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 0 C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 450 0C durante 3 horas.
Ejemplo-9: Preparación de 3-aminoestireno con H2 utilizando el catalizador 2% PtTTiO2 reducido a 450 0C
En un autoclave, 25 mg de catalizador, preparado de acuerdo al Ejemplo 8, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 mL de tolueno, y 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 7 horas de reacción, 3-aminoestireno fue producido con un rendimiento del 55 %.
Ejemplo-10: Preparación del catalizador 2% PtTTiO2 reducido a 200 0C El catalizador de platino soportado sobre óxido de titanio fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCIe conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 17 mL de una disolución acuosa conteniendo 531 mg de H2PtCI6 deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 0 C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 200 0C durante 3 horas.
Ejemplo-11 : Preparación de 3-aminoestireno con H2 utilizando el catalizador 2% PtTTiO2 reducido a 200 0C
En un autoclave, 25 mg de catalizador, preparado de acuerdo al Ejemplo 10, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, y 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 3 horas de reacción, 3-aminoestireno fue producido con un rendimiento del 3 %.
Ejemplo-12: Preparación del catalizador 0,2 % Pt/C reducido a 450 0C El catalizador de platino soportado sobre carbón activo fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCIe conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 22 mL de una disolución acuosa conteniendo 53.1 mg de H2PtCIe deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 ° C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 450 0C durante 3 horas. Ejemplo-13: Preparación de 3-aminoestireno con H2 utilizando el catalizador 0,2 % Pt/C reducido a 450 0C
En un autoclave, 250 mg de catalizador, preparado de acuerdo al Ejemplo 12, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, y 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 10 horas de reacción, 3-aminoestireno fue producido con un rendimiento del 93%.
Ejemplo-14: Preparación del catalizador 0,2 % Pt/Fe2O3 reducido a 450 0C
El catalizador de platino soportado sobre óxido de hierro (goetita) fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCIe conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 5 mL de una disolución acuosa conteniendo 53.1 mg de H2PtCIe deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 0 C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 450 0C durante 3 horas.
Ejemplo-15: Preparación de 3-aminoestireno con H2 utilizando el catalizador 0,2 % Pt/Fe2O3 reducido a 450 0C En un autoclave, 250 mg de catalizador, preparado de acuerdo al Ejemplo 14, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, y 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 10 horas y media de reacción, 3-aminoestireno fue producido con un rendimiento del 70 %.
Ejemplo-16: Preparación del catalizador 0,2 % Pt/SiO2 reducido a 450 0C El catalizador de platino soportado sobre sílice (Sílica-Gel) fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCIe conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 20 mL de una disolución acuosa conteniendo 53.1 mg de
H2PtCI6 deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 ° C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 450 0C durante 3 horas.
Ejemplo-17: Preparación del catalizador 0,2 % Pt/AI2O3 reducido a 450 0C
El catalizador de platino soportado sobre alúmina (gamma-alúmina) fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del platino fue llevada a cabo adicionando una disolución acuosa de H2PtCI6 conteniendo Ia cantidad requerida de platino sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 10 ml_ de una disolución acuosa conteniendo 53.1 mg de H2PtCIe deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 ° C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 450 0C durante 3 horas.
Ejemplo-18: Preparación de 3-aminoestireno con H2 utilizando el catalizador 0,2 % Pt/AI2O3 reducido a 450 0C En un autoclave, 250 mg de catalizador, preparado de acuerdo al
Ejemplo 17, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, y 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 40 ° C y se presuriza con 3 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 3 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 6 horas de reacción, el rendimiento a 3-aminoestireno fue del 60
%.
Ejemplo-19: Preparación del catalizador 5 % NÍ/TÍO2 reducido a 450 0C
El catalizador de níquel soportado sobre óxido de titanio fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del níquel fue llevada a cabo adicionando una disolución acuosa de Ni(NOs)2 conteniendo Ia cantidad requerida de níquel sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 17 mL de una disolución acuosa conteniendo 2.47 g de Ni(NO3)2 deben ser utilizados. Tras homogeneizar el gel resultante, el catalizador fue secado en una estufa convencional a 100 ° C durante 6 horas. A continuación se calcinó el material en una mufla a 55O0C en atmósfera de aire durante 3h. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 450 0C durante 3 horas.
Ejemplo-20: Preparación de 3-aminoestireno con H2 utilizando el catalizador 5 % Ni/TiO2 reducido a 450 0C
En un autoclave, 20 mg de catalizador, preparado de acuerdo al Ejemplo 19, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, y 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 120 ° C y se presuriza con 15 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 15 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 3 horas de reacción, 3-aminoestireno fue producido con un rendimiento del 90%.
Ejemplo-21 : Preparación de 4-aminobenzonitrilo con H2 utilizando el catalizador 5 % Ni/TiO2 reducido a 450 0C
En un autoclave, 40 mg de catalizador, preparado de acuerdo al Ejemplo 19, son añadidos a una disolución de 76 mg de 4-nitrobenzonitrilo en 0.98 ml_ de tetrahidrofurano, y 13 mg de o-xileno es usado como patrón interno de Ia reacción. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 140 ° C y se presuriza con 15 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 15 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 2 horas de reacción, 4- aminobenzonitrilo fue producido con un rendimiento del 88 %.
Ejemplo-22: Preparación de 4-aminoidobenceno con H2 utilizando el catalizador 5 % Ni/TiO2 reducido a 450 0C
En un autoclave, 50 mg de catalizador, preparado de acuerdo al Ejemplo 19, son añadidos a una disolución de 52 mg de 4-nitroiodobenceno en 0.99 mide tolueno, y 11 mg de o-xileno como patrón interno de Ia reacción. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 140 ° C y se presuriza con 15 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 15 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 1 hora y media de reacción, 4-aminoiodobenceno fue producido con un rendimiento del 93 %.
Ejemplo-23: Preparación del catalizador 1 % Ru/TiO2 reducido a 450 0C
El catalizador de rutenio soportado sobre óxido de titanio fue preparado por Ia técnica de impregnación a volumen de poro. La deposición del rutenio fue llevada a cabo adicionando una disolución acuosa de RuCI3 conteniendo Ia cantidad requerida de níquel sobre el soporte, de forma que éste quede impregnado a volumen de poro. Para preparar 10 g de catalizador, 17 mL de una disolución acuosa conteniendo 1.03 g de RuCI3 deben ser utilizados. Tras homogeneizar Ia mezcla resultante, el catalizador fue secado en una estufa convencional a 100 ° C durante 6 horas. Finalmente, Ia muestra fue reducida bajo flujo de H2 puro (50 mL/min) a 450 0C durante 3 horas.
Ejemplo-24: Preparación de 3-aminoestireno con H2 utilizando el catalizador 1 % Ru/TiO2 reducido a 450 0C En un autoclave, 100 mg de catalizador, preparado de acuerdo al Ejemplo 23, son añadidos a una disolución de 125 mg de 3-nitroestireno en 0.93 ml_ de tolueno, y 10 mg de o-xileno como patrón interno de Ia reacción. El aire del interior del autoclave se elimina purgando el reactor en frío con H2 a 10 bares. Con el reactor a presión atmosférica de H2, se calienta el contenido del autoclave hasta 120 ° C y se presuriza con 8 bares de hidrógeno, fijándose un nivel de agitación de 1000 r.p.m. La presión en el interior del reactor fue mantenida constante a 8 bares durante todo el experimento, siguiéndose Ia evolución de Ia reacción mediante análisis de Ia fase líquida por cromatografía de gases y espectrometría de masas. Después de 1.5 horas de reacción, 3-aminoestireno fue producido con un rendimiento del 94 %.

Claims

REIVINDICACIONES
1.- Un procedimiento para Ia hidrogenación selectiva de compuestos nitroaromáticos sustituidos, caracterizado porque comprende llevar a cabo una hidrogenación catalítica de dichos compuestos utilizando un catalizador que comprende un metal seleccionado entre Ni, Pt, Ru, Pd, Rh, Ir, Fe, Cu, Ag y combinaciones de ellos, encapsulado en, o soportado sobre óxido de titanio, óxido de hierro, óxido de cerio, alúmina, carbón, carbón activo, óxido de magnesio, óxido de zirconio, sílice, ácido silícico, óxido de lantano, óxido de zinc, carbonato calcico, fosfato calcico, sulfato calcico, sulfato de bario, óxido de plomo, sulfato de plomo, carbonato de plomo y combinaciones de los mismos, y en el que cuando el metal es Pt, está presente en un porcentaje en peso entre un 0.001% y 0.95% respecto al soporte.
2.- Un procedimiento según Ia reivindicación 1 , caracterizado porque el compuesto nitroaromático tiene una fórmula general Ar-N02, donde Ar es un anillo aromático seleccionado entre anillos arilo sin sustituir y anillos arilo con uno o más sustituyentes.
3.- Un procedimiento según Ia reivindicación 2, caracterizado porque dichos sustituyentes son grupos seleccionados entre grupos alquilo C1 a C8, grupos vinilo aromáticos o alifáticos C1 a C4, grupos viniloxi aromáticos o alifáticos C1 a C4, grupos alcoxi C1 a C8, ariloxi CeH5 a CioH8, grupos flúor, grupos cloro, grupos bromo, grupos yodo, grupos hidroxi, grupos con enlaces insaturados carbono-carbono, grupos O-(CO)-alquilo, grupos O-
(CO)-arilo, grupos COOH, grupos OH, grupos SH, grupos CN, grupos SO3-, grupos Sθ2-alquilo, grupos NH2, grupos NH-alquilo, grupos NH2SO2, grupos NSO2-(alquilo)2, grupos SO2-NH-alquilo, grupos aldehido aromáticos o alifático C1 a C4, grupos cetona alifáticos o aromáticos, grupo ¡mino C1 a C6, grupos éter C1 a C6, tioéster, sulfuras y combinaciones de los mismos. A - Un procedimiento según Ia reivindicación 1 , caracterizado porque el metal está seleccionado entre Ni, Ru, Pd, Rh, Ir, Fe, Cu, Ag y combinaciones de ellos,, y está presente en un porcentaje en peso entre un 0.001 y un 20 % respecto al soporte.
5.- Un procedimiento según Ia reivindicación 1 , caracterizado porque el metal se aplica en forma metálica o iónica en el soporte.
6.- Un procedimiento según Ia reivindicación 1 , caracterizado porque Ia relación molar metal/nitro se encuentra entre 0.001 y 10 %.
7.- Un procedimiento según Ia reivindicación 6, caracterizado porque el metal es platino.
8.- Un procedimiento según Ia reivindicación 7, caracterizado porque Ia relación molar platino/nitro se encuentra entre 0.05 y 3 %.
9. Un procedimiento según Ia reivindicación 7, caracterizado porque el metal está seleccionado entre Ni, Ru, Pd, Rh, Ir, Fe, Cu, Ag y porque se introduce un metal adicional como modificador seleccionado entre Au, Pb, Hg, Bi, Ge, Cd, As, Sb, Mn, Co, Ti y combinaciones de los mismos.
10. Un procedimiento según Ia reivindicación 9, caracterizado porque Ia relación en peso de metal a metal modificador se encuentra en una relación entre 1 :0.001 y 1 :1.
11.- Un procedimiento según Ia reivindicación 1 , caracterizado porque el metal es platino y se introduce un metal seleccionado entre Au, Pb, Hg, Bi, Ge, Cd, As, Sb, Mn, Co, Ti y combinaciones de los mismos.
12.- Un procedimiento según Ia reivindicación 11 , caracterizado porque Ia relación en peso de platino a metal modificador se encuentra en una relación entre 1 :0.001 y 1 :1.
13.- Un procedimiento según Ia reivindicación 11 , caracterizado porque Ia relación en peso de platino a metal modificador es de 1 :0.5.
14.- Un procedimiento según Ia reivindicación 1 , caracterizado porque Ia hidrogenación se realiza con una fuente de hidrógeno que es una molécula donante de hidrógeno.
15.- Un procedimiento según Ia reivindicación 14, caracterizado porque Ia fuente de hidrógeno está seleccionada entre formiato amónico, ácido fórmico, decaborano, ciclohexeno, ciclohexadieno, ácido fosfórico y combinaciones de los mismos.
16.- Un procedimiento según una de las reivindicaciones anteriores, caracterizado porque se lleva a cabo a presión atmosférica y a una temperatura entre 250C y 12O0C.
17.- Un procedimiento según Ia reivindicación 14 ó 16, caracterizado porque Ia fuente de hidrógeno es hidrógeno molecular.
18.- Un procedimiento según Ia reivindicación 1 , caracterizado porque se lleva a cabo a una presión entre 1 y 100 bares y a una temperatura entre
2O0C y 25O0C.
19.- Un procedimiento según Ia reivindicación 1 , caracterizado porque se lleva a cabo a una presión entre 5 y 50 bares y a una temperatura entre 1000C y 15O0C.
20.- Un procedimiento según Ia reivindicación 1 , caracterizado porque se lleva a cabo en presencia de un disolvente seleccionado entre agua, alcoholes, éteres, esteres, cetonas, ácidos carboxílicos, disolventes dipolares apróticos, disolventes apolares, hidrocarburos aromáticos clorados, cloruro de metileno, alcanos C3-C7, ciclohexano y combinaciones de los mismos.
21.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente es un alcohol seleccionado entre metanol, etanol, n-propanol, isopropanol, n-butanol, butanoles isoméricos, ciclohexanol y combinaciones de los mismos.
22.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente es un éter seleccionado entre dietil éter, metil tert-butil éter, tetrahidrofurano, dioxano, dimetoxietano y combinaciones de los mismos.
23.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente es un éster seleccionado entre etil acetato, butil acetato y combinaciones de los mismos.
24.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente es una cetona seleccionada entre, butirolactona, acetona, metil etil cetona, metil isobutil cetona, ciclohexanona y combinaciones de las mismas.
25.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente es un ácido carboxílico seleccionado entre ácido acético, ácido propiónico y combinaciones de los mismos.
26.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente es un disolvente dipolar aprótico seleccionado entre dimetilformamida, N-metilpirrolidina, dimetilacetamida, sulfolano, dimetil sulfóxido, acetonitrilo y combinaciones de los mismos.
27.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente es un disolvente apolar seleccionado entre tolueno, xileno y combinaciones de los mismos.
28.- Un procedimiento según Ia reivindicación 20, caracterizado porque el disolvente está seleccionado entre tolueno, xileno, tetrahidrofurano, dioxano, metil etil cetona, metanol, etanol y combinaciones de los mismos.
29.- Un procedimiento según Ia reivindicación 1 , caracterizado porque se lleva a cabo en presencia de un disolvente y uno o más co-disolventes.
30.- Un procedimiento según Ia reivindicación 29, caracterizado porque el co- disolvente está seleccionado entre etanol, acetona, acetonitrilo y combinaciones de los mismos.
31.- Un procedimiento según Ia reivindicación 1 , caracterizado porque Ia reacción se lleva a cabo en ausencia de disolvente.
32.- Un procedimiento según una de las reivindicaciones anteriores, caracterizado porque Ia reacción de hidrogenación se lleva a cabo en fase gas-sólido.
33.- Un procedimiento según una de las reivindicaciones anteriores, caracterizado porque Ia reacción de hidrogenación se lleva a cabo en un sistema gas-líquido-sólido.
34.- Un procedimiento según una de las reivindicaciones anteriores, caracterizado porque se lleva a cabo en un reactor en modo discontinuo.
35.- Un procedimiento según una de las reivindicaciones anteriores 1 a 33, caracterizado porque se lleva a cabo en un reactor en modo continuo.
36.- Un procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende además una etapa de activación del catalizador bajo flujo de hidrógeno a temperaturas entre 1000C y 6000C.
PCT/ES2008/070218 2007-12-05 2008-11-27 Procedimiento de hidrogenación selectiva de compuestos nitroaromaticos sustituidos WO2009071727A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200703319A ES2322221A1 (es) 2007-12-05 2007-12-05 Procedimiento de hidrogenacion selectiva de compuestos nitroaromaticos sustituidos.
ESP200703319 2007-12-05

Publications (1)

Publication Number Publication Date
WO2009071727A1 true WO2009071727A1 (es) 2009-06-11

Family

ID=40717336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/070218 WO2009071727A1 (es) 2007-12-05 2008-11-27 Procedimiento de hidrogenación selectiva de compuestos nitroaromaticos sustituidos

Country Status (2)

Country Link
ES (1) ES2322221A1 (es)
WO (1) WO2009071727A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011003590A1 (de) 2011-02-03 2011-09-08 Evonik Degussa Gmbh Verwendung eines Eisen-Platin-Katalysators für die selektive Hydrierung von substituierten Nitroaromaten zu den entsprechenden substituierten Anilinen
ITMI20101361A1 (it) * 2010-07-23 2012-01-24 Alfa Parf Group Spa Procedimento per la preparazione di 2,5-diaminotoluolo
CN103819295A (zh) * 2012-11-19 2014-05-28 中国科学院大连化学物理研究所 一种催化剂在芳香硝基化合物选择性加氢反应中的应用
CN105753738A (zh) * 2016-04-05 2016-07-13 长春工业大学 一种硝基苯甲腈催化加氢合成氨基苯甲腈的方法
CN107930635A (zh) * 2016-10-13 2018-04-20 中国石油化工股份有限公司 联产甲基异丁基酮和二异丁基酮的催化剂
CN109126869A (zh) * 2018-09-03 2019-01-04 湖南大学 壳聚糖修饰活性焦原位负载纳米金催化剂及其制备方法
CN111686732A (zh) * 2020-06-29 2020-09-22 福州大学 一种碳包覆铁基催化剂及其制备方法和催化苯羟基化制苯酚的应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108380208B (zh) * 2018-01-25 2021-05-28 西安凯立新材料股份有限公司 2,3,6-三氯吡啶催化加氢制2,3-二氯吡啶用Pd-Mg/C催化剂及制备方法
CN110935470B (zh) * 2019-11-25 2021-08-10 北京化工大学 一种废气净化催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2043480A (en) * 1979-02-22 1980-10-08 Johnson Matthey Co Ltd Catalysts for the hydrogenation of halo-aromatic nitro compounds
EP0421878A1 (fr) * 1989-10-04 1991-04-10 Rhone-Poulenc Chimie Procédé d'hydrogénation de dérivés halogéno-nitroaromatiques en présence de catalyseurs à base de métaux nobles
ES2142481T3 (es) * 1994-05-27 2000-04-16 Novartis Ag Procedimiento para la preparacion de aminocompuestos insaturados.
WO2003010119A1 (de) * 2001-07-20 2003-02-06 Basf Aktiengesellschaft Verfahren zur hydrierung von aromatischen verbindungen mit restgas enthaltendem wasserstoff
WO2007116111A1 (es) * 2006-04-10 2007-10-18 Consejo Superior De Investigaciones Científicas Procedimiento para preparar compuestos amino utilizando catalizadores de oro

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2043480A (en) * 1979-02-22 1980-10-08 Johnson Matthey Co Ltd Catalysts for the hydrogenation of halo-aromatic nitro compounds
EP0421878A1 (fr) * 1989-10-04 1991-04-10 Rhone-Poulenc Chimie Procédé d'hydrogénation de dérivés halogéno-nitroaromatiques en présence de catalyseurs à base de métaux nobles
ES2142481T3 (es) * 1994-05-27 2000-04-16 Novartis Ag Procedimiento para la preparacion de aminocompuestos insaturados.
WO2003010119A1 (de) * 2001-07-20 2003-02-06 Basf Aktiengesellschaft Verfahren zur hydrierung von aromatischen verbindungen mit restgas enthaltendem wasserstoff
WO2007116111A1 (es) * 2006-04-10 2007-10-18 Consejo Superior De Investigaciones Científicas Procedimiento para preparar compuestos amino utilizando catalizadores de oro

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CORMA, A.: "Transforming Nonselective into Chemoselective Metal Catalysts for the Hidrogenation of Substitued Nitroaromatics.", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, no. 27, 2008, pages 8748 - 8753 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20101361A1 (it) * 2010-07-23 2012-01-24 Alfa Parf Group Spa Procedimento per la preparazione di 2,5-diaminotoluolo
WO2012010608A1 (de) * 2010-07-23 2012-01-26 Alfa Parf Group S.P.A. Verfahren zur herstellung von 2,5-diaminotoluol
DE102011003590A1 (de) 2011-02-03 2011-09-08 Evonik Degussa Gmbh Verwendung eines Eisen-Platin-Katalysators für die selektive Hydrierung von substituierten Nitroaromaten zu den entsprechenden substituierten Anilinen
CN103819295A (zh) * 2012-11-19 2014-05-28 中国科学院大连化学物理研究所 一种催化剂在芳香硝基化合物选择性加氢反应中的应用
CN103819295B (zh) * 2012-11-19 2016-04-27 中国科学院大连化学物理研究所 一种催化剂在芳香硝基化合物选择性加氢反应中的应用
CN105753738A (zh) * 2016-04-05 2016-07-13 长春工业大学 一种硝基苯甲腈催化加氢合成氨基苯甲腈的方法
CN105753738B (zh) * 2016-04-05 2018-10-12 长春工业大学 一种硝基苯甲腈催化加氢合成氨基苯甲腈的方法
CN107930635A (zh) * 2016-10-13 2018-04-20 中国石油化工股份有限公司 联产甲基异丁基酮和二异丁基酮的催化剂
CN107930635B (zh) * 2016-10-13 2020-02-18 中国石油化工股份有限公司 联产甲基异丁基酮和二异丁基酮的催化剂
CN109126869A (zh) * 2018-09-03 2019-01-04 湖南大学 壳聚糖修饰活性焦原位负载纳米金催化剂及其制备方法
CN111686732A (zh) * 2020-06-29 2020-09-22 福州大学 一种碳包覆铁基催化剂及其制备方法和催化苯羟基化制苯酚的应用

Also Published As

Publication number Publication date
ES2322221A1 (es) 2009-06-17

Similar Documents

Publication Publication Date Title
WO2009071727A1 (es) Procedimiento de hidrogenación selectiva de compuestos nitroaromaticos sustituidos
EP3092072B1 (en) A process for vapor-phase methanol carbonylation to methyl formate
ES2285934B1 (es) Procedimiento para preparar compuestos amino utilizando catalizadores de oro.
JP2000061306A (ja) 有機化合物の変換反応において使用可能な担持触媒
JPH0623269A (ja) 担体上に担持された第viii族の金属と第iiia族の金属とを含む触媒
JP2002540942A (ja) 酢酸又は酢酸及び酢酸エチル製造用触媒、その製造方法並びにそれを用いた酢酸又は酢酸及び酢酸エチルの製造方法
JP5543150B2 (ja) 芳香族ニトロ化合物の選択的水素化触媒、その製造方法および再生方法並びにこれを用いた芳香族ニトロ化化合物の選択的水素化方法
CN114682283A (zh) 碳氮包覆负载型金属单原子催化剂、制备方法及其应用
JPS6357417B2 (es)
ES2337004B1 (es) Procedimiento de hidrogenacion selectiva de nitrocicloalcanos para obtener oximas ciclicas.
JP3897830B2 (ja) シクロオレフインの製造方法
JPS615036A (ja) アルコ−ルの製造法
WO2007116112A1 (es) Procedimiento para la preparación de oximas utilizando catalizadores de oro
CN114682282B (zh) 一种CN@Ma-Mb负载型单原子催化剂的制备方法及其应用
JPH07285892A (ja) シクロオレフィンの製造方法
CN114682245B (zh) 一种Ma-Mb金属负载型催化剂的处理、活化和再生方法
JPH09118638A (ja) シクロオレフィンの製造方法
JP3422062B2 (ja) ジアセトキシブテンの製造方法
JP3472885B2 (ja) 環内および環外不飽和を有する化合物の選択的水素化方法
JPH08188542A (ja) シクロオレフィンの製造方法
JP2006321673A (ja) 過酸化水素の製造方法
JPS611630A (ja) 低級アルコ−ル類の製造方法
JPH09208499A (ja) シクロオレフィンの製造方法
JPH08225470A (ja) シクロオレフィンの製造方法
JPH06157396A (ja) 脂肪酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08858093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08858093

Country of ref document: EP

Kind code of ref document: A1