WO2009071478A1 - Procédé d'hydrodimérisation réductrice de composés organiques insaturés au moyen d'une électrode de diamant - Google Patents

Procédé d'hydrodimérisation réductrice de composés organiques insaturés au moyen d'une électrode de diamant Download PDF

Info

Publication number
WO2009071478A1
WO2009071478A1 PCT/EP2008/066249 EP2008066249W WO2009071478A1 WO 2009071478 A1 WO2009071478 A1 WO 2009071478A1 EP 2008066249 W EP2008066249 W EP 2008066249W WO 2009071478 A1 WO2009071478 A1 WO 2009071478A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compounds
formula
diamond
dimerization
Prior art date
Application number
PCT/EP2008/066249
Other languages
German (de)
English (en)
Inventor
Ulrich Griesbach
David William Sopher
Andreas Fischer
Jens Heimann
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2009071478A1 publication Critical patent/WO2009071478A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions
    • C25B3/295Coupling reactions hydrodimerisation

Definitions

  • the invention relates to a process for the reductive hydrodimerization of organic compounds by means of a diamond electrode.
  • MM Baizer describes the cathodic coupling of substituted and unsubstituted acrylic esters to the corresponding adipic acid esters in his article: "Electrolytic reductive coupling" in: MM Baizer (ed.), Organic Electrochemistry, Marcel Dekker 1973, pp. 679-704 Hydrodimerization with heavy metal electrodes and graphite
  • BDD electrode boron-doped diamond electrode
  • WO 2006005531 describes the cathodic reduction of oxime derivatives to give the corresponding amines, a diamond electrode being used for the reduction. An indication of the cathodic reduction of the unsaturated organic compounds of the formula I of the present invention is not found in WO 2006005531.
  • the use these electrodes for the dimerization of unsaturated organic compounds of the formula I is not described in DE-A 10326047.
  • the previously known electrohydrodimerizations are characterized in that they have to be carried out on electrodes with high hydrogen overvoltage in order to suppress the discharge of protons as a side reaction, which is at the expense of the current efficiency.
  • this is made possible by the use of heavy metals such as mercury, cadmium, lead or corresponding alloys.
  • the use of such heavy metal electrodes for Hydrodimermaschine leads to contamination of the electrolyte with heavy metal ions that are harmful and difficult to not biodegradable and therefore are not desirable from an ecological and toxicological point of view.
  • the object of the present invention is therefore to provide a process for the dimerization of unsaturated organic compounds of the formula I, in which both the electrolyte and the environment remain free of heavy metals.
  • R 1 and R 2 may be the same or different and are selected from the group consisting of H, CN, COOR 3, CHO, C (OO) R 3 , halogen, CF 3 , CONHR 3 , CONR 3 R 4, substituted or unsubstituted C 1 to C 1 alkyl, Phenyl and heteroaryl groups and R3 and R4 may be the same or different and are selected from the group of H, substituted or unsubstituted C 1 to C 8 alkyl, phenyl or heteroaryl groups and
  • X is selected from the group of O, NH and C (R 5) -EWG, with EWG selected from the group of CN, CHO, C (OO) R 6, halogen, CF 3 ,
  • R5 is selected from the same group as R1 comprising the following steps a) providing an electrolytic cell with cathode and anode, b) filling the electrolytic cell with the compounds of formula I present in solution c) applying current to the cell until a conversion of more than 10% of dimerization product has arisen, wherein a diamond electrode is used as the cathode.
  • the process according to the invention is advantageous if the compounds of the formula I are selected from the group of acrylonitrile, acrolein, furfural and methyl or ethyl acrylate.
  • the process according to the invention is advantageous if the compounds used for the hydrodimerization are two different compounds of the formula I.
  • the process according to the invention is advantageous if the electrochemical dimerization is carried out in a protic solvent selected from the group of water, methanol, ethanol, formic acid or acetic acid.
  • the process according to the invention is advantageous if the process is carried out at a pH in the range from 2 to 12.
  • the process according to the invention is advantageous if the current density used for the electrohydrodimerization in step c) is in the range from 0.1 to 40 A / dm 2 .
  • the process according to the invention is advantageous if the diamond electrode has been coated with the diamond layer either by the CVD or the HTHP process.
  • the method according to the invention is advantageous if stainless steel is used as the anode.
  • the process according to the invention is advantageous if the electrolysis cell used is an undivided flow cell.
  • R 2 is H or substituted or unsubstituted C 1 to C 8 alkyl, phenyl or heteroaryl groups, carbonyl compounds (aldehydes or ketones) of the general formula III are obtained / O
  • the general reaction scheme of an electrochemical dimerization of olefins provides for the conversion of two electron withdrawing groups (EWGs) -substituted olefins of molecular weight M to hydrodimers of molecular weight 2M + 2.
  • EWGs electron withdrawing groups
  • Two carbonyl compounds of the general formula III with the molar mass M react to form hydrodimers with the molar mass 2M + 2 either in a linkage of the two carbonyl carbon atoms ("head-to-head linkage") to 1, 2-diols or in a linkage of the carbonyl carbon with any Carbon atom of the coupling partner (“head-tail linkage”) to a diol containing a primary and a secondary OH function.
  • EWG-substituted olefins can be cathodically dimerized by taking advantage of the high hydrogen overvoltage of diamond electrodes.
  • the hydrodimers are of economic importance, so acrylonitrile can be converted to adiponitrile, a precursor for polyamide plastics.
  • EEC CN, COOR, ...
  • Carbonyl compounds can also be hydrodimerized on boron-doped diamond electrodes (BDD electrodes), e.g. furfural:
  • C 1 to C 8 alkyl groups which can be used in R 1, R 2, R 3, R 4, R 5, R 6 and R 7, all are branched and unbranched alkyl groups having 1 to 8 C atoms to understand.
  • Particularly preferred C 1 -C 8 -alkyl groups are methyl, ethyl, propyl, isopropyl, n-butyl and isobutyl.
  • halogens which can be used in R1, R2, R5 and EWG, these are selected from the group of fluorine, chlorine and bromine, preference is given to fluorine and chlorine.
  • Particularly preferred EWG groups are the radicals CN, COOCH3 and CHO.
  • Particularly preferred compounds of the formula I which can be hydrodimerized are selected from the group of acrylonitrile, methacrylonitrile, crotononitrile, 2-methylenebutronitrile, 2-pentenenitrile, 2-methylenevaleric acid nitrile or 2-methylenehexanenitrile, acrylic esters, methyl or ethylacrylic esters, acrylamide, methacrylamide , N, N-dimethyl or N, N-diethylacrylamide. Very particular preference is given to acrylonitrile.
  • diamond electrodes behave similar to heavy metal electrodes in electrohydrodimerizations. However, it is advantageous in the method according to the invention that no metal ions get into the electrolyte, since no heavy metal ions can form during the corrosion of the diamond layer of the BDD electrode.
  • Diamond electrodes can be used which have been produced by the chemical vapor deposition (CVD) method. Such electrodes are commercially available, for example from the manufacturer: Condias, Itzehoe (Germany) or Adamant Technologies, La-Chaux-de-Fonds (Switzerland). However, lower cost diamond electrodes made by the HTHP (high temperature high pressure: industrial diamond powder) method are shown to have a current efficiency of less than 50% due to the lower over-voltage compared to the CVD electrodes. However, electrohydrodimerization of olefins on the HTHP-BDD cathodes occurs in some cases with higher selectivity by suppressing unwanted hydrogenation of the double bond.
  • CVD chemical vapor deposition
  • HTHP-BDD electrodes are commercially available from pro aqua, N iklasdorf (Austria), their properties are described by A Cieciwa, R. Wüthrich and Ch. Comninellis in Electrochem. Commun. 8 (2006) 375-382
  • the Elektrohydrodimermaschine is usually carried out in the presence of a protic solvent, which is oxidized.
  • Protic solvents which can be used for the process according to the invention include water and alcohols such as methanol and ethanol or carboxylic acids such as formic acid or acetic acid.
  • the process according to the invention is preferably carried out in water, the oxidation product in this case being oxygen.
  • the reacted organic substance is usually emulsified in an aqueous base electrolyte.
  • Conductive salts are added for better conductivity of the base electrolyte.
  • the conductive salts used are quaternary, preferably quaternary, ammonium salts.
  • the conducting salts are particularly preferably selected from the group of bis-N, N '- (tri to C8-alkyl) -substituted tri-, tetra-, penta, hexa, etc., -methylenediammonium salts, such as hexamethylenebis (dibutylethyl) ammonium) phosphate or hydroxide.
  • hexamethylenebis (dibutylethyl) ammonium) phosphate or hydroxide Very particular preference is given to using hexamethylene glycol bis (dibutylethylammonium) phosphate or hydroxide as the conductive salt.
  • certain additives such as EDTA or triethanolamine, are also added to the electrolyte in order to prevent the cathodic deposition of iron, which would have an adverse effect on the desired high hydrogen overvoltage of the cathodes.
  • Borates such as disodium diborate or orthoboric acid may be added as anode corrosion inhibitors.
  • an inert cosolvent can be used. This cosolvent should be used.
  • a) have such a large miscibility gap with water that the electrolyte is present in two phases in order to facilitate the work-up by separation of the organic phase and b) ensure a sufficient concentration of the substance to be hydrodimerized in the aqueous phase.
  • co-solvent and the target product can be used.
  • other electrochemically stable cosolvents with a miscibility gap in water selected from the group of adiponitrile, Kormklaredinitril, Adipinklaredimethyles- ter, Adipinklarediethylester, propylene carbonate, ethylene carbonate or 1, 2-dimethoxy ethane suitable.
  • inert co-solvents in which the electrolyte is present in a single phase.
  • This group includes acetonitrile, N, l ⁇ T-dimethylformamide, N-methylpyrrolidone or tetrahydrofuran.
  • the dimerization product is recovered by extraction or distillation.
  • mean residence times of the electrolyte in the reactor in the range of 100 to 0.001 s.
  • Particularly preferred are average residence times in the range of 50 to 0.005 s.
  • electrolysis it is possible to use any electrolysis cells known to the person skilled in the art, such as divided or undivided flow cell, capillary gap cell or plate stack cell. Particularly preferred is the undivided flow cell. To achieve optimal space-time yields, a bipolar arrangement of several electrodes is advantageous.
  • the cathode is a diamond electrode.
  • These diamond electrodes contain a diamond layer applied to a carrier material, wherein the carrier material is selected from the group of niobium, silicon, tungsten, titanium, silicon carbide, tantalum, graphite or ceramic carriers such as titanium suboxide. Particular preference is given to niobium or silicon as support material.
  • the diamond layer on the carrier may be doped with other elements. Boron- or nitrogen-doped diamond electrodes are preferred. Particularly preferred are boron-doped diamond electrodes.
  • any conventional low oxygen overvoltage anode material selected from the group consisting of RuO x TiO x mixed oxide (DSA) electrode, platinized titanium, platinum, nickel, molybdenum or stainless steel may be used.
  • DSA RuO x TiO x mixed oxide
  • platinized titanium platinum, nickel, molybdenum or stainless steel
  • boron-doped diamond cathode with stainless steel as the anode.
  • an electrolyte is selected which is selected from the group of water, methanol and ethanol. Particularly preferred is water.
  • the pH is in the range from 2 to 13, preferably from 3 to 12, particularly preferably in the range from 6 to 10.
  • the temperature for the process according to the invention is between 20 and 90 ° C., preferably in the region of 25 up to 80 ° C.
  • the current density is preferably in the range from 1 to 40 A / dm 2 , particularly preferably in the range from 5 to 30 A / dm 2 .
  • Cathode CVD or HTHP BDD electrode
  • Base electrolyte 302 g water, 25 g NaHbPO 4 , 8 g aqueous hexamethylene bis
  • Example 1 Electrohydrodimerization of acrylonitrile to adiponitrile on the CVD diamond cathode (BDDE / Nb, commercially available, manufacturer: Condias)
  • a mixture of 62 g (1.2 mol) of acrylonitrile and 146 g (1.35 mol) of adiponitrile (ADN) was added to the base electrolyte and electrolyzed for 6.3 hours, corresponding to an amount of charge of 1 F per mole of acrylonitrile (100% of Theory).
  • Example 2 Electrohydrodimerization of acrylonitrile to adiponitrile on the HTHP diamond cathode (BDDE / steel, commercially available, manufacturer: pro aqua) A mixture of 62 g (1.2 mol) of acrylonitrile and 146 g (1.35 mol) of adiponitrile (ADN ) was added with the base electrolyte and electrolyzed for 12.6 hours, corresponding to an amount of charge of 2 F per mole of acrylonitrile (200% of theory).
  • ADN adiponitrile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

L'invention concerne un procédé d'hydrodimérisation réductrice de composés organiques insaturés au moyen d'une électrode de diamant.
PCT/EP2008/066249 2007-12-03 2008-11-26 Procédé d'hydrodimérisation réductrice de composés organiques insaturés au moyen d'une électrode de diamant WO2009071478A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07122119 2007-12-03
EP07122119.6 2007-12-03

Publications (1)

Publication Number Publication Date
WO2009071478A1 true WO2009071478A1 (fr) 2009-06-11

Family

ID=40263147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/066249 WO2009071478A1 (fr) 2007-12-03 2008-11-26 Procédé d'hydrodimérisation réductrice de composés organiques insaturés au moyen d'une électrode de diamant

Country Status (1)

Country Link
WO (1) WO2009071478A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614739A (zh) * 2013-11-29 2014-03-05 淮南师范学院 采用Ti/Ce nano-TiO2修饰电极电催化还原哌啶酮合成哌啶醇的方法
EP2985364A1 (fr) * 2014-08-14 2016-02-17 Basf Se Procédé de préparation d'alcools par couplage réductive électrochimique
CN105543888A (zh) * 2015-12-29 2016-05-04 重庆紫光国际化工有限责任公司 丙烯腈电解制备己二腈的电解液及方法
CN110042422A (zh) * 2019-04-30 2019-07-23 青岛中石恒润化工技术有限公司 一种用于丙烯腈电解二聚法生产己二腈的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635587A1 (fr) * 1993-06-16 1995-01-25 BASF Aktiengesellschaft Electrode comprenant un noyau contenant du fer et un revêtement contenant du plomb
EP1621541A2 (fr) * 2004-07-29 2006-02-01 Basf Aktiengesellschaft Procédé de préparation d'alkyles d'esters d' acides boroniques

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0635587A1 (fr) * 1993-06-16 1995-01-25 BASF Aktiengesellschaft Electrode comprenant un noyau contenant du fer et un revêtement contenant du plomb
EP1621541A2 (fr) * 2004-07-29 2006-02-01 Basf Aktiengesellschaft Procédé de préparation d'alkyles d'esters d' acides boroniques

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614739A (zh) * 2013-11-29 2014-03-05 淮南师范学院 采用Ti/Ce nano-TiO2修饰电极电催化还原哌啶酮合成哌啶醇的方法
EP2985364A1 (fr) * 2014-08-14 2016-02-17 Basf Se Procédé de préparation d'alcools par couplage réductive électrochimique
WO2016023951A1 (fr) * 2014-08-14 2016-02-18 Basf Se Procédé pour la préparation d'alcools par couplage réducteur électrochimique
CN106574380A (zh) * 2014-08-14 2017-04-19 巴斯夫欧洲公司 通过电化学还原偶联制备醇的方法
US10370767B2 (en) 2014-08-14 2019-08-06 Basf Se Process for preparing alcohols by electrochemical reductive coupling
CN105543888A (zh) * 2015-12-29 2016-05-04 重庆紫光国际化工有限责任公司 丙烯腈电解制备己二腈的电解液及方法
CN110042422A (zh) * 2019-04-30 2019-07-23 青岛中石恒润化工技术有限公司 一种用于丙烯腈电解二聚法生产己二腈的方法

Similar Documents

Publication Publication Date Title
EP2438215A1 (fr) Procédé de préparation de biaryle-alcools dissymétriques
EP2748353B1 (fr) Procédé de préparation électrochimique d'esters d'acide gamma-hydroxycarboxylique et de gamma-lactones
EP2294251A1 (fr) Procédé d amination électrochimique directe d hydrocarbures
WO2009071478A1 (fr) Procédé d'hydrodimérisation réductrice de composés organiques insaturés au moyen d'une électrode de diamant
DE10058304A1 (de) Verfahren zur Herstellung von alkoxylierten Carbonylverbindungen durch ein anodisches Oxidationsverfahren unter Nutzung der kathodischen Koppelreaktion zur organischen Synthese
EP1619273B1 (fr) Procédé de production de 2-alcyne-1-acetals
DE2356657A1 (de) Verfahren zur elektrolytischen monocarboxylierung von aktivierten olefinen
EP2411564B1 (fr) Procédé électrochimique de production de 3-tert-butylbenzaldehyde-dimetylacetals
WO2008145627A1 (fr) Oxydation électrochimique sur des groupes allyle
JP4587329B2 (ja) 脂肪族または脂環式c−原子と結合した第1級アミノ基およびシクロプロピル単位を有する、第1級アミンの製造方法
US3413202A (en) Electrolysis of di-olefinic compounds
DE1468378A1 (de) Verfahren zur Herstellung von reduktiv gekuppelten Cyanbutadienen
DE3323047A1 (de) Verfahren zur herstellung von phenaethylaminen
US20080228009A1 (en) Process for Preparing 1,1,4,4-Tetraalkoxybut-2-Ene Derivatives
US3274084A (en) Electrolytic reductive coupling process
DE69709055T2 (de) Verfahren zur herstellung von tetraalkyl 1,2,3,4-butantetracarboxylaten
DE2842760A1 (de) Verfahren zur herstellung von n-(alpha- methoxy-alkyl)-urethanen und n-(alpha- methoxy-alkyl)-urethane
EP1853549A1 (fr) Division selective de bisbenzylamides et de bisbenzylamines substituees
DE2428878C2 (de) Verfahren zur Herstellung von p-Hydroxymethyl-benzoesäureestern
DE10313169A1 (de) Verfahren zur anodischen Alkoxylierung von organischen Substraten
DE1468230B2 (de) Verfahren zur herstellung von nitrilen, alkyl- oder arylestern gesaettigter aliphatischer di- oder tetracarbonsaeuren
DE10146566A1 (de) Verfahren zur Herstellung von Orthocarbonsäuretrialkylestern
DE2331711A1 (de) Verfahren zur selektiven elektrolytischen entbromierung
DE10207238A1 (de) Verfahren zur elektroorganischen Synthese an Kohlenstoffelektroden
DE1024950B (de) Verfahren zur Herstellung von aliphatischen ª‡, ªÏ-Dinitrilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08856264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08856264

Country of ref document: EP

Kind code of ref document: A1