WO2009070986A1 - Procédé permettant de régler la polarisation cc d'un système de décharge rf et procédé associé - Google Patents

Procédé permettant de régler la polarisation cc d'un système de décharge rf et procédé associé Download PDF

Info

Publication number
WO2009070986A1
WO2009070986A1 PCT/CN2008/070261 CN2008070261W WO2009070986A1 WO 2009070986 A1 WO2009070986 A1 WO 2009070986A1 CN 2008070261 W CN2008070261 W CN 2008070261W WO 2009070986 A1 WO2009070986 A1 WO 2009070986A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bias
value
module
parameter
Prior art date
Application number
PCT/CN2008/070261
Other languages
English (en)
French (fr)
Inventor
Yi Zhao
Original Assignee
Beijing Nmc Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Nmc Co., Ltd. filed Critical Beijing Nmc Co., Ltd.
Priority to US12/746,480 priority Critical patent/US8217579B2/en
Publication of WO2009070986A1 publication Critical patent/WO2009070986A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0277Selecting one or more amplifiers from a plurality of amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers

Definitions

  • the present invention relates to the field of plasma etching technology, and more particularly to an apparatus and method for controlling a DC bias voltage of a radio frequency discharge system. Background technique
  • Plasma etching technology is one of the key processes in the manufacture of integrated circuits, the purpose of which is to copy the mask pattern onto the surface of the wafer.
  • the principle of plasma etching technology is roughly as follows: At low pressure, the reactive gas is ionized and forms a plasma under the excitation of RF power.
  • the plasma can form a DC bias voltage with the surface of the wafer placed on the lower electrode, which in turn attracts positively charged ions and reactive reactive groups in the plasma to accelerate the bombardment of the wafer surface, thereby accelerating the chemistry of the wafer surface. Reaction, increasing the etching rate.
  • the DC bias described herein is also commonly referred to as DC self-bias.
  • the magnitude of the DC bias described above can affect the energy of the positive and active reactive groups bombarding the surface of the wafer, which can affect certain process parameters such as etch rate, deposition rate, and the like. In practical applications, in order to better achieve the process effect, it is necessary to control the DC bias voltage in the plasma etching process. Two methods can be used to control the DC bias voltage. One is the power control method and the other is the voltage control method.
  • Figure 1 shows a schematic diagram of a device for controlling DC bias using a power control method.
  • the apparatus can include: a radio frequency power source 101 and a matching network 102.
  • the RF power source 101 is used to provide power;
  • the matching network 102 is used for impedance matching of the load to eliminate power reflection, and the power provided by the RF power source 101 is output to the electrodes of the discharge system.
  • the electrodes of the discharge system described herein may be the upper electrode of the discharge system or the lower electrode of the discharge system.
  • the RF power source 101 can supply power to the electrodes of the discharge system through the matching network 102, as long as the power output of the RF power source 101 is controlled, the DC can be indirectly controlled.
  • the bias voltage is used to implement the process flow in accordance with predetermined process parameters.
  • Figure 2 shows a schematic diagram of a device for controlling DC bias using voltage control.
  • the device includes a radio frequency power supply module 201, a DC bias detection module 202, and a DC bias control module 203.
  • the RF power supply module 201 is configured to provide power to the lower electrode of the discharge system according to the power value transmitted by the DC bias control module 203, and may include the RF power supply 2011 and the matching network 2012, and the function thereof is the RF power supply 101 in FIG. Similar to the role of the matching network 102, and will not be described again here.
  • the DC bias detection module 202 is configured to detect a DC bias of the lower electrode of the discharge system, and output the detected DC bias value to the DC bias control module 203.
  • the DC bias detection module 202 can include a voltage sensor 2021 and an analog/digital conversion module 2022, wherein the voltage sensor 2021 is configured to detect a DC bias of the lower electrode of the discharge system, and transmit the detected DC bias value as an analog signal.
  • the analog/digital conversion module 2022 is configured to convert the DC bias value in the form of an analog signal into a DC bias value in the form of a digital signal and output it to the DC bias control module 203.
  • the DC bias control module 203 uses the detected DC bias value and the input preset DC bias value, and calculates a power value according to the DC bias control algorithm, and outputs a signal carrying the calculated power value.
  • the RF power supply module 201 is provided to control the RF power supply module 201 to provide power according to the power value.
  • the RF power supply module 201, the discharge system lower electrode, the DC bias detection module 202, and the DC bias control module 203 in FIG. 2 may constitute a feedback loop, and the DC bias control algorithm is used to discharge the lower electrode of the system.
  • the DC bias is maintained to a preset value to achieve the purpose of controlling the DC bias.
  • a digital/analog conversion module needs to be added between the DC bias control module 203 and the RF power supply 2011; if the DC bias control algorithm cannot directly According to the DC bias value sent by the DC bias detection module 202, a conversion evaluation module needs to be added between the DC bias detection module 202 and the DC bias control module 203 for detecting the DC. Bias change Switch to a value that can be used for the DC bias control algorithm to calculate.
  • the digital-to-analog conversion module and the transform evaluation module described herein belong to the prior art, and the details thereof will not be described again.
  • the power control method and the voltage control method in the prior art can control the DC bias of the discharge system, they are usually applied separately, and cannot be flexibly selected according to actual conditions. For example, when implementing a process flow using the voltage control method, if the process result is found to be significantly different from the preset result, the power control method needs to be used for verification. At this time, since the entire process flow is based on the device for controlling the DC bias shown in Fig. 2, it is difficult to re-convert to the device for controlling the DC bias shown in Fig. 1. It can be seen that the prior art cannot meet the practical requirements of flexible switching and flexible selection between the power control method and the voltage control method. Summary of the invention
  • the first object of the present invention is to provide a device for controlling the DC bias voltage of a radio frequency discharge system, which is compatible with the power control method and the voltage control method, thereby being flexibly selected between the power control method and the voltage control method.
  • a second object of the present invention is to provide a method of controlling a DC bias voltage of a radio frequency discharge system, which is compatible with a power control method and a voltage control method, thereby being flexibly selected between a power control method and a voltage control method.
  • a device for controlling a DC bias voltage of a radio frequency discharge system comprising a mode selection module, a DC bias detection module, a DC bias control module, and an RF power supply module;
  • the mode selection module is configured to receive input information including a parameter and a parameter type; determine a type of the parameter, if the parameter type is a type related to power, output the parameter as a power-related characterization parameter to the RF power supply module;
  • the parameter type is a voltage-dependent type, and the parameter is output as a voltage-related characterization parameter to the DC bias control module;
  • the DC bias detection module is configured to detect a DC bias voltage of the discharge system electrode, and output the detected DC bias value to the DC bias control module;
  • the DC bias control module is configured to receive a voltage-related characterization parameter from the mode selection module, receive a DC bias value from the DC bias detection module, and use the DC bias value and the voltage correlation to characterize the parameter and according to the DC offset
  • the pressure control algorithm calculates the power value, and outputs the calculated power value to the radio frequency power supply module;
  • the RF power supply module is configured to provide power to the electrodes of the discharge system according to the power-related characterization parameters when receiving the power-related characterization parameters from the mode selection module; when receiving the power value calculated by the DC bias control module And supplying power to the electrodes of the discharge system according to the calculated power value.
  • the device further includes:
  • a calibration module located between the mode selection module and the radio frequency power supply module, for storing a pre-obtained power calibration value; and when receiving the power-related characterization parameter from the mode selection module, according to the power calibration value pair The power-related characterization parameters are updated, and the updated power-related characterization parameters are output to the RF power supply module.
  • the device further includes:
  • the fault detection module is located between the DC bias control module and the RF power supply module, and is configured to save a range of normal power values obtained in advance; when the power value calculated by the DC bias control module is received, the calculated calculation is performed. Whether the power value exceeds the normal power value range, if it is exceeded, the fault alarm signal is output; otherwise, the calculated power value is output to the radio frequency power supply module.
  • the radio frequency power providing module includes:
  • the RF power supply is configured to provide power according to the power-related characterization parameter when receiving the power-related characterization parameter; and provide power according to the calculated power value when receiving the power value calculated by the DC bias control module;
  • the matching network is used to match the load impedance and output the power provided by the RF power to the electrodes of the discharge system.
  • the radio frequency power source is an RF power source that receives an analog signal, and outputs the radio frequency power to the radio frequency power.
  • the power-related characterization parameters of the source are carried in the digital signal, and the calculated power value output to the RF power source is carried in the digital signal, and the device further includes:
  • a digital-to-analog conversion module is configured to perform digital-to-analog conversion on a digital signal carrying a power-related characteristic parameter, obtain an analog signal carrying a power-related characteristic parameter, and output an analog signal carrying a power-related characteristic parameter To the RF power supply; when receiving the digital signal carrying the calculated power value, performing digital-to-analog conversion, obtaining an analog signal carrying the calculated power value, and outputting the analog signal carrying the calculated power value to RF power supply.
  • the DC bias detection module includes:
  • a voltage sensor configured to detect a DC bias voltage of the electrode of the discharge system, and output the detected DC bias value to the analog/digital conversion module in the form of an analog signal
  • an analog/digital conversion module configured to convert a DC bias value in the form of an analog signal into a DC bias value in the form of a digital signal, and output the same to the DC bias control module.
  • the device further includes:
  • a transform evaluation module configured to receive a DC bias value in the form of a digital signal from the analog/digital conversion module, convert the received DC bias value into a value that can be calculated by the DC bias control algorithm, and convert the converted value
  • the DC bias value is output to the DC bias control module.
  • a method of controlling a DC bias voltage of a radio frequency discharge system comprising:
  • A. Receive input information including parameters and parameter types, and determine the type of the parameter. If the parameter type is a voltage-dependent type, the parameter is used as a voltage-related characterization parameter, and step B is performed; if the parameter type is indicative of power-related Type, then take the parameters as power-related characterization parameters, and perform step C;
  • step A it is determined that the parameter type is between the type related to the power and the step C, and the method further includes: in the above solution, calculating the power value and calculating the power value according to the step B
  • the electrodes of the discharge system provide power between the methods, the method further comprising:
  • the step of providing power according to the calculated power value to the electrode of the discharge system includes: the RF power supply provides power according to the calculated power value, and the matching network for load impedance matching provides the RF power supply. Power output to the electrodes of the discharge system;
  • Step C Providing power to the electrode of the discharge system according to the power-related characterization parameter specifically includes: the RF power supply provides power according to the power-related characterization parameter, and the matching network for load impedance matching outputs the power provided by the RF power source to the discharge system electrode.
  • the radio frequency power source is a radio frequency power source that receives an analog signal, and the calculated power value is carried in a digital signal, where the power-related characterization parameter is carried in the digital signal, and the calculated power is determined in step B.
  • the value does not exceed the pre-stored power value range and the power is supplied according to the calculated power value to the electrodes of the discharge system, the method further comprising:
  • the method further includes:
  • the digital signal carrying the power-related characterization parameter is digital-to-analog converted to obtain an analog signal carrying the power-related characterization parameter, and the analog signal carrying the power-related characterization parameter is output to the RF power source.
  • the detecting the DC bias value from the discharge system electrode specifically includes: the voltage sensor detecting the DC bias of the discharge system electrode, and performing analog-to-digital conversion on the DC bias value in the form of the detected analog signal. A DC bias value in the form of a digital signal is obtained.
  • the step B before the step B calculates the power value according to the voltage-related characterization parameter, the DC bias value detected from the discharge system electrode, and the DC bias control algorithm, the step B further includes:
  • the DC bias value in the form of a digital signal is converted to a value that can be calculated by the DC bias control algorithm.
  • the present invention provides a device and method for controlling a DC bias voltage of a radio frequency discharge system, wherein the mode selection module can receive parameters and parameter types input by the outside world, and use the result of determining the parameter type to determine that the power control method is utilized.
  • the mode selection module can receive parameters and parameter types input by the outside world, and use the result of determining the parameter type to determine that the power control method is utilized.
  • the DC bias or to use the voltage control method to control the DC bias, it is flexible to choose between two different DC bias control methods for compatibility purposes, which is more conducive to the operation of the process operator.
  • FIG. 1 is a schematic diagram of a device for controlling a DC bias voltage by using a power control method in the prior art
  • FIG. 2 is a schematic diagram of a device for controlling a DC bias voltage by a voltage control method in the prior art
  • FIG. 3 is a DC bias of the present invention
  • FIG. 4 is a schematic structural view of an embodiment of a device for controlling a DC bias voltage according to the present invention
  • FIG. 5 is a flow chart of a method for controlling a DC bias voltage according to the present invention
  • FIG. 6 is a flow chart of an embodiment of a method of controlling a DC bias voltage in accordance with the present invention. detailed description
  • the device may include: a mode selection module 301, a DC bias detection module 302, a DC bias control module 303, and a RF power supply module 304. among them,
  • a mode selection module 301 configured to receive input information including a parameter and a parameter type; determine a type of the parameter, if the parameter type is a type related to power, output the parameter as a power-related characterization parameter to the RF power supply module 304;
  • the parameter type is a voltage-dependent type, and the parameter is output as a voltage-dependent characterization parameter to the DC bias control module 303.
  • the DC bias detection module 302 is configured to detect a DC bias voltage of the discharge system electrode, and output the detected DC bias value to the DC bias control module 303.
  • the DC bias control module 303 is configured to receive the voltage-related characterization parameter from the mode selection module 301, receive the DC bias value from the DC bias detection module 302, and use the DC bias value and the voltage correlation to characterize the parameter and according to the DC
  • the bias control algorithm calculates a power value, and outputs the calculated power value to the radio frequency power supply module 304.
  • the RF power supply module 304 is configured to provide power to the electrodes of the discharge system according to the power-related characterization parameters when receiving the power-related characterization parameters; and when calculating the power value calculated by the DC bias control module 303, according to the calculated The power value provides power to the electrodes of the discharge system.
  • the apparatus shown in Fig. 3 can be compatible with the apparatus of the power control method of Fig. 1 and the apparatus of the voltage control method shown in Fig. 2.
  • the mode selection module 301 receives the input information including the parameter and the parameter type
  • the type of the parameter may be determined. If the parameter type is a type related to the power, the parameter is output as the power-related characteristic parameter to the RF power.
  • a module 304 is provided; if the parameter type is a voltage-dependent type, the parameter is output as a voltage-related characterization parameter to the DC bias control module 303.
  • the power-related characterization parameter described herein may be a preset power value, and the voltage-related characterization parameter may be a preset voltage value or other value as long as the DC bias control module 303 can calculate the corresponding value.
  • the power value can be.
  • the radio frequency power supply module 304 can be based on the power correlation table.
  • the scalar quantity provides power to the electrodes of the discharge system.
  • the apparatus for controlling the DC bias shown in FIG. 3 of the present invention corresponds to the apparatus shown in FIG. 1, and the power control method can be used to supply power to the electrodes of the discharge system.
  • the DC bias control module 303 can detect the voltage-related characterization parameter and the DC bias voltage.
  • the DC bias value detected by the module 302 is calculated according to the DC bias control algorithm, and the calculated power value is output to the RF power supply module 304.
  • the RF power supply module 304 provides power to the electrodes of the discharge system based on the calculated power values.
  • the RF power supply module 304 of FIG. 3, the electrodes of the discharge system, the DC bias detection module 302, and the DC bias control module 303 will constitute a feedback loop, which is equivalent to the device shown in FIG. 2, and can utilize the voltage control method. Power is supplied to the discharge system electrodes.
  • the electrodes of the discharge system described herein may be the lower electrode of the discharge system or the upper electrode of the discharge system.
  • the DC bias detection module 302 is in operation.
  • the presence of the DC bias detection module 302 may cause a change in the capacitance of the discharge system electrodes, resulting in a small range of shift in process results.
  • the power-related characterization parameters output by the mode selection module 301 to the RF power supply module 304 can be calibrated, and the calibrated power-related characterization parameters can be output to the RF power supply.
  • Module 304 the process results achieved by the apparatus of Figure 3 when power is supplied by the power control method is the same as that achieved by the apparatus of Figure 1.
  • the specific calibration of the power-related characterization parameters will be described in detail in the following specific embodiments, and will not be described again here.
  • the DC bias control module 303 calculates the power value, it is determined whether the calculated power value exceeds the normal power value range, and if it is exceeded, the fault alarm signal is output; otherwise, The calculated power value is output to the power supply module 304.
  • the normal power value range described herein can be obtained through prior experiments. For details on how to obtain the normal power value range, refer to the specific embodiments below, and details are not described herein.
  • the device embodiment 1 is a schematic structural view of a first embodiment of the apparatus.
  • the device of the embodiment includes not only the mode selection module 301, the DC bias detection module 302, the DC bias control module 303, and the RF power supply module 304, but also the calibration module 305, the fault detection module 306, and the number.
  • the mode selection module 301, the DC bias detection module 302, the DC bias control module 303, and the RF power supply module 304 have the same functions as the corresponding modules in FIG.
  • the DC bias detection module 302 can include:
  • the voltage sensor 3021 is configured to detect a DC bias voltage of the discharge system electrode, and transmit the detected DC bias value to the analog/digital conversion module 3022 in the form of an analog signal.
  • the analog/digital conversion module 3022 is configured to convert the DC bias value in the form of an analog signal into a DC bias value in the form of a digital signal, and output it to the transform evaluation module 308.
  • the RF power providing module 304 can include:
  • the RF power supply 3041 is configured to provide power according to the power-related characterization parameter when receiving the power-related characterization parameter; and when receiving the power value calculated by the DC bias control module 303, provide power according to the calculated power value.
  • Matching network 3042 is used to match the load impedance and output the power provided by the RF power source 3041 to the electrodes of the discharge system.
  • the calibration module 305 is configured to save the power calibration value obtained in advance; Upon receiving the power-related characterization parameters from the mode selection module 301, the power-related characterization parameters are updated based on the power calibration values, and the updated power-related characterization parameters are output to the digital-to-analog conversion module 307.
  • the DC bias detecting module 302 when the power control method is used, since the DC bias detecting module 302 is still in operation, there may be a deviation between the process result and the process result of using the device shown in Fig. 1 alone. To calibrate this deviation, the difference between the power-related characterization parameters and the actual power values at the same process result can be checked first, using this difference as the power calibration value.
  • the power calibration value can be determined experimentally.
  • the following is a method for determining the power calibration value by taking the process parameter as the etching rate as an example: first, using a device shown in FIG. 1 to implement a certain process flow, and recording the etching rate; and then using the power control method of the device shown in FIG. Perform the same process flow and record the corresponding etch rate.
  • the power calibration value of the experiment can be initialized to 0. If there is a deviation between the two etch rates, gradually adjust the actual power value until the etch rate reaches the aging rate.
  • Figure 1 shows the corresponding etch rate for the device. Thereafter, the difference between the actual power value and the power related characterization parameter is saved to the calibration module 305 as a power calibration value.
  • the calibration module 305 calibrates the received power-related characterization parameters, the actual power value in the experiment can be obtained, thereby obtaining the desired etch rate.
  • the power-related characterization parameter is 500 watts.
  • 10 watts can be saved in the calibration module 305 in advance.
  • the calibration module 305 receives a 500 watt power-related characterization parameter, it can add 10 watts, update the power-related characterization parameters to 510 watts, and output it.
  • different power calibration values may exist in different process flows, and all process flows may be obtained in accordance with the above methods and stored in the calibration module 305. Thereafter, the calibration module 305 obtains corresponding power calibration values according to different process flows implemented, and updates the power-related characterization parameters of the process flow according to the acquired power calibration values.
  • the fault detection module 306 is configured to save a range of normal power values obtained in advance, and when receiving the power value calculated by the DC bias control module 303, determine whether the calculated power value exceeds a range of normal power values, and if exceeded, output Fault alarm signal; otherwise, the calculated work will be The rate value is passed to the digital to analog conversion module 307.
  • the range of normal power values described here can also be obtained experimentally, for example: When implementing the process flow using the voltage control method in Figure 3, record the power value supplied to the discharge system electrode in the normal process flow. After a plurality of experiments in the above manner, the recorded maximum power value and minimum power value are taken as the normal power value range and stored in the fault detecting module 306.
  • the digital-to-analog conversion module 307 is configured to perform digital-to-analog conversion on the received digital signal carrying the power-related characterization parameter, obtain an analog signal carrying the power-related characterization parameter, and output an analog signal carrying the power-related characterization parameter.
  • Providing a radio frequency power supply module 304; performing digital-to-analog conversion on the received digital signal carrying the calculated power value, obtaining an analog signal carrying the calculated power value, and carrying the analog signal with the calculated power value The output is to the RF power supply module 304.
  • the conversion evaluation module 308 is configured to convert the DC bias value in the form of a digital signal from the analog/digital conversion module 3022 into a value that can be calculated by the DC bias control algorithm, and transmit the converted DC bias value to the DC Bias control module 303.
  • the transform evaluation module 308 described herein can convert the value input from the analog/digital conversion module 3022 into a value that is calculated by the DC bias control algorithm.
  • the voltage sensor 3021 detects that the DC bias on the lower electrode is 600 volts, and outputs an analog signal representing 600 volts to the analog/digital conversion module, and after analog/digital conversion, obtains a digital signal representing 600 volts, and Output to the transform evaluation module 308.
  • the DC bias control algorithm in the DC bias control module 303 requires that the input parameter be an integer between 0 and 65535
  • the transform evaluation module 308 is required to first quantize the digital signal representing 600 volts to an integer between 0 and 60035. And input to the DC bias control module 303 to participate in the calculation.
  • the voltage-related characterization parameter input by the mode selection module 301 to the DC bias control module 303 should also be an integer between 0 and 60035.
  • the mode selection module 301 receives the input information including the parameter and the parameter type, the type of the parameter is determined. If the parameter type is a type related to the power, the parameter is output as a power-related characterization parameter to the calibration module 305; If the parameter type is a class that represents voltage For the type, the parameter is output as a voltage-dependent characterization parameter to the DC bias control module 303.
  • the power-related characterization parameter may be a preset power value
  • the voltage-related characterization parameter may be a preset voltage value or other values that can calculate a corresponding power.
  • the electrode of the discharge system may be the lower electrode of the discharge system or the upper electrode of the discharge system.
  • the calibration module 305 updates the power-related characterization parameters with the previously saved power calibration values, and updates the updated power-related characterization parameters.
  • the digital-to-analog conversion module 307 converts the power-related characterization parameters in the form of digital signals into power-related characterization parameters in the form of analog signals, and outputs them to the RF power supply module 304.
  • the RF power supply module 304 The RF power supply 3041 provides power according to the power-related characterization parameters, and the matching network 3042 outputs the power provided by the RF power supply 3041 to the electrodes of the discharge system, thereby implementing control of the DC bias by the power control method.
  • the DC bias control module 303 can characterize the parameter and the DC bias value according to the voltage correlation, and the DC bias voltage.
  • the control algorithm calculates the power value.
  • the DC bias value is the DC bias value detected by the voltage sensor 3021 from the discharge system electrode, and the DC bias value is input to the analog/digital conversion module 3022 in the form of an analog signal for analog/digital conversion to obtain a digital value.
  • the DC bias value in the form of a signal is then converted by the transform evaluation module 308 into a DC bias value in the form of a digital signal that can be used in the DC bias control algorithm for calculation and output to the DC bias control module 303 for calculation.
  • the fault detection module 306 determines whether the calculated power value exceeds the normal power value range, and if so, outputs a fault alarm signal; otherwise, outputs the calculated power value to the digital/analog conversion module 307; the digital/analog conversion module 307, when receiving the calculated power value in the form of a digital signal, converting the power value in the form of a digital signal into a power value in the form of an analog signal, and outputting it to the RF power supply module 304; the RF power supply 3041 in the RF power supply module 304 The power is supplied according to the calculated power value, and the matching network 3042 outputs the power provided by the RF power source 3041 to the electrodes of the discharge system, thereby implementing the control of the DC bias voltage by the voltage control method.
  • the RF power supply 3041 is a radio frequency power supply for receiving an analog signal. Therefore, when the fault detection module 306 outputs the power value calculated by the DC bias control module 303 to the RF power supply 3041, digital/analog conversion is also required. Module 307 performs the conversion between the digital signal and the analog signal. In practical applications, if the RF power supply 3041 is a radio frequency power source that can receive digital signals, it is not necessary to convert the digital signal to the analog signal, that is, the digital/analog conversion module 307 can be omitted.
  • the DC bias detection module 302 when the DC bias detection module 302 outputs the DC bias value to the DC bias control module 303 for calculation, it is also necessary to convert the detected DC bias value into a value that can be used for the DC bias control algorithm. .
  • the DC bias control algorithm can directly calculate the DC bias value detected by the DC bias detection module 302, the transformation evaluation module 308 can also be omitted.
  • DC bias control algorithms described here such as: neural network algorithm, fuzzy control algorithm, proportional-integral-derivative (PID) algorithm.
  • the mode selection module 301, the DC bias detection module 302, the DC bias control module 303, and the RF power supply module 304 in this embodiment are necessary, and the calibration module 305, the fault detection module 306, the D/A conversion module 307, The transformation evaluation module 308 and the like can all be selected according to specific actual situations.
  • the RF power supply module 304 can receive digital signals, and the process does not need to accurately control the DC bias. Then, the digital/analog conversion module 307 and the calibration module 305 can be omitted.
  • the RF power supply module 304 needs to receive an analog signal, and the process flow needs to accurately control the DC bias, but the system operation is relatively stable, and no fault detection is required, then the fault detection module 306 can be omitted.
  • the optional modules in this embodiment can be selected according to the actual situation, and are not listed here.
  • the device in this embodiment may also need to communicate with the outside world.
  • the mode selection module 301 receives input information including parameters and parameter types, and the fault detection module 306 determines that the power value exceeds the normal power value range and outputs a fault. Alarm.
  • mode selection The selection module 301, the DC bias control module 303, the calibration module 305, the fault detection module 306, and the transformation evaluation module 308 can all be implemented by using a software program, and can also be collectively referred to as a node microcontroller in practical applications.
  • the node microcontroller can interact with the outside world by using a certain communication interface, that is, the mode selection module 301 receives the input information through the communication interface, and the fault detection module 306 outputs the fault alarm signal through the communication interface.
  • the outside world described here may be a host computer connected to the node microcontroller, such as a personal computer, for interacting with the node microcontroller.
  • the mode selection module 301, the DC bias control module 303, the calibration module 305, the fault detection module 306, and the transformation evaluation module 308 can also be implemented by using hardware, such as an analog circuit or a field programmable gate array (FPGA, Field Programmable Gate). Array) and so on.
  • FPGA Field Programmable Gate array
  • the present invention also provides a method of controlling a DC bias voltage of an RF discharge system for the above apparatus for controlling a DC bias voltage of a radio frequency discharge system.
  • Figure 5 is a flow chart showing the method of controlling the DC bias voltage of the RF discharge system of the present invention. As shown in FIG. 5, the method may include:
  • Step 501 Receive input information including parameters and parameter types.
  • Step 502 Determine the type of the parameter. If the parameter type is a type related to voltage, the parameter is used as a voltage-related characterization parameter, and step 503 is performed. If the parameter type is a type related to power, the parameter is used as a power-related characterization parameter. And step 504 is performed.
  • the method may further obtain the value by means of experimental means.
  • the method refer to the foregoing description of the function and principle of the calibration module 305, and details are not described herein again.
  • Step 503 Calculate a power value according to the voltage-related characterization parameter, a DC bias value detected from a discharge system electrode, and a DC bias control algorithm, and provide power according to the calculated power value as an electrode of the discharge system.
  • step 503 includes: determining whether the calculated power value exceeds the pre-stored normal power value range, if it is exceeded, outputting the fault alarm signal, and exiting the flow; otherwise, continuing to perform power supply according to the calculated power value of the discharge system electrode A step of.
  • the normal power value range described herein can be obtained in advance according to experimental means.
  • the method for providing power according to the calculated power value according to the calculated power value of the discharge system may be specifically: the RF power supply provides power according to the calculated power value, and the matching network for load impedance matching provides the RF power supply. The power is output to the electrodes of the discharge system.
  • Step 504 Provide power to the electrodes of the discharge system according to the power-related characterization parameters.
  • the method for providing power to the electrodes of the discharge system according to the power-related characterization parameters in the present step may be specifically: the radio frequency power supply provides power according to the power-related characterization parameters, and the matching network for load impedance matching outputs the power provided by the radio frequency power source to The electrode of the discharge system.
  • the DC bias detection module 302 includes a voltage sensor 3021 and an analog/digital conversion module 3022.
  • the RF power supply module 304 includes a RF power source 3041 and a matching network 3042.
  • Figure 6 is a flow chart of the method of the present embodiment.
  • the embodiment may include: Step 601: The mode selection module 301 receives input information including a parameter and a parameter type.
  • Step 603 The DC bias control module 303 characterization parameters according to voltage correlation, from the discharge system
  • the DC bias value detected by the electrode, and the DC bias control algorithm calculate the power value, and output the calculated power value to the fault detection module 306.
  • the DC bias value detected from the discharge system electrode may be:
  • the voltage sensor 3021 detects the DC bias of the discharge system electrode, and outputs the detected DC bias value in the form of an analog signal to the analog/digital
  • the conversion module 3022 performs analog-to-digital conversion to obtain a DC bias value in the form of a digital signal, and outputs the DC bias value to the transform evaluation module 308.
  • the transform evaluation module 308 converts the DC bias value in the form of a digital signal into It can be used for the value calculated by the DC bias control algorithm and output to the DC bias control module 303.
  • the DC bias control algorithm allows the DC bias value in the form of a digital signal to directly participate in the calculation, there is no need to use the transform evaluation module 308 to convert the DC bias value in the form of a digital signal to a value that can be used in the calculation of the DC bias control algorithm. .
  • Step 604 The fault detection module 306 determines whether the calculated power value exceeds the saved normal power value range. If yes, step 605 is performed; otherwise, step 606 is performed.
  • steps 604 to 606 may be omitted.
  • Step 605 Output a fault alarm signal and exit this process.
  • Step 606 The fault detection module 306 outputs the digital signal carrying the calculated power value to the digital/analog conversion module 307.
  • Step 607 The digital/analog conversion module 307 performs digital-to-analog conversion on the digital signal carrying the calculated power value to obtain an analog signal carrying the calculated power value, and outputs the analog signal to the RF power source 3041.
  • step 607 can be omitted.
  • Step 608 The RF power supply 3041 receives an analog signal carrying the calculated power value, and provides power according to the calculated power value.
  • the matching network 3042 for load impedance matching outputs the power provided by the RF power supply 3041 to the electrode of the discharge system. Go back to step 603.
  • steps 603 to 608 are branches for controlling the DC bias voltage by using a voltage control method, wherein the DC bias detection module 302, the conversion evaluation module 308, and the DC bias control are used.
  • the module 303, the fault detection module 306, the digital/analog conversion module 307, the RF power supply module 304, and the electrodes of the discharge system may constitute a feedback loop, and the control calculation is continuously performed according to the detected DC bias value and the voltage related characteristic parameter.
  • the discharge system electrode is maintained to a DC bias voltage represented by a voltage-dependent characterization parameter to achieve the purpose of controlling the DC bias voltage using a voltage control method.
  • the parameters are collected and the digital signal carrying the power-related characterization parameters is output to the digital-to-analog conversion module 307.
  • the calibration module 305 can be used to calibrate the power-related characterization parameters. Step 609 can be omitted.
  • Step 610 The digital/analog conversion module 307 performs digital-to-analog conversion on the digital signal carrying the power-related characterization parameter, obtains an analog signal carrying the power-related characterization parameter, and outputs an analog signal carrying the power-related characterization parameter to the RF power source. 3041.
  • step 610 can be omitted.
  • Step 611 The RF power source 3041 receives the digital signal carrying the power-related characterization parameter, and provides power according to the power-related characterization parameter.
  • the matching network 3042 outputs the power provided by the RF power source 3041 to the electrode of the discharge system.
  • the mode selection module 301 can receive the parameters and parameter types input by the outside world, and determine whether the power control method is used to control the DC bias or the voltage control method is used to control the DC bias by using the result of determining the parameter type. Therefore, it is possible to flexibly select among two different DC bias control methods to achieve the purpose of compatibility, which is more advantageous for the operation of the process operator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

一种控制射频放电系统直流偏压的装置和方法 技术领域
本发明涉及等离子体刻蚀技术领域, 特别是涉及一种控制射频放电系统 直流偏压的装置和方法。 背景技术
等离子体刻蚀技术是集成电路制造中的关键工艺之一, 其目的是将掩膜 图形复制到晶片表面上。 等离子体刻蚀技术的原理大致是: 在低压下, 反应 气体在射频功率的激发下产生电离并形成等离子体。 等离子体可以与放置在 下电极上的晶片表面之间形成直流偏压, 而这个直流偏压又将吸引等离子体 中带正电荷的离子和活性反应基团加速轰击晶片表面, 从而加快晶片表面的 化学反应, 提高刻蚀速率。 这里所述的直流偏压也通常称为直流自偏压。
上述直流偏压的大小可以影响正离子和活性反应基团轰击晶片表面的 能量, 进而可以影响某些工艺参数, 比如: 刻蚀速率、 沉积速率等。 实际应 用中, 为了更好地达到工艺效果, 就需要对等离子体刻蚀工艺中的直流偏压 进行控制。 对直流偏压进行控制可以釆用两种方法, 一种是功率控制法, 另 一种是电压控制法。
图 1显示了利用功率控制法对直流偏压进行控制的装置示意图。 如图 1 所示, 该装置可以包括: 射频电源 101和匹配网络 102。 其中, 射频电源 101 用于提供功率; 匹配网络 102用于负载的阻抗匹配以消除功率反射, 并将射 频电源 101提供的功率输出给放电系统的电极。 这里所述的放电系统的电极 可以为放电系统的上电极, 也可以为放电系统的下电极。
也就是说, 由于射频电源 101可以通过匹配网络 102向放电系统的电极 提供功率, 那么只要控制射频电源 101的功率输出, 也就可以间接控制直流 偏压, 从而按照预定的工艺参数实施工艺流程。
图 2显示了利用电压控制法对直流偏压进行控制的装置示意图。 如图 2 所示, 该装置包括射频功率提供模块 201、 直流偏压检测模块 202 以及直流 偏压控制模块 203。
其中, 射频功率提供模块 201用于根据直流偏压控制模块 203传来的功 率值向放电系统的下电极提供功率, 可以包括射频电源 2011 以及匹配网络 2012, 其作用与图 1中的射频电源 101和匹配网络 102的作用相似, 此处不 再赘述。
直流偏压检测模块 202 , 用于检测放电系统下电极的直流偏压, 并将检 测出的直流偏压值输出给直流偏压控制模块 203。 直流偏压检测模块 202可 以包括电压传感器 2021和模 /数转换模块 2022,其中, 电压传感器 2021用于 检测放电系统下电极的直流偏压, 将检测出的直流偏压值以模拟信号的形式 传送给模 /数转换模块 2022;模 /数转换模块 2022用于将模拟信号形式的直流 偏压值转换为数字信号形式的直流偏压值,并输出给直流偏压控制模块 203。
直流偏压控制模块 203 , 利用检测出的直流偏压值和输入的预先设定的 直流偏压值, 并根据直流偏压控制算法计算出功率值, 将携带有计算出的功 率值的信号输出给射频功率提供模块 201 , 以控制射频功率提供模块 201按 照该功率值提供功率。
也就是说, 图 2中的射频功率提供模块 201、 放电系统下电极、 直流偏 压检测模块 202以及直流偏压控制模块 203可以构成一个反馈环, 利用直流 偏压控制算法将放电系统下电极的直流偏压维持到预先设置的值, 从而达到 控制直流偏压的目的。 当然, 实际应用中, 如果射频电源 2011为接收模拟信 号的射频电源,则还需要在直流偏压控制模块 203和射频电源 2011之间增加 一个数 /模转换模块;如果直流偏压控制算法无法直接根据直流偏压检测模块 202传来的直流偏压值进行计算, 则还需要在直流偏压检测模块 202和直流 偏压控制模块 203之间增加一个变换求值模块, 用于将检测出的直流偏压变 换到可用于直流偏压控制算法进行计算的值。这里所述的数 /模转换模块以及 变换求值模块都属于现有技术, 其具体情况不再赘述。
虽然现有技术中的功率控制法和电压控制法都可以对放电系统的直流 偏压进行控制, 但通常都是单独应用的, 无法根据实际情况进行灵活选择。 比如: 在釆用电压控制法实施某个工艺流程时, 如果发现其工艺结果与预先 设定的结果有较大差异, 需要利用功率控制法进行验证。 此时, 由于整个工 艺流程都是基于图 2所示的控制直流偏压的装置, 艮难重新转换到图 1所示 的控制直流偏压的装置上进行。 由此可见, 现有技术还无法满足在功率控制 法和电压控制法之间灵活转换、 灵活选择的实际要求。 发明内容
有鉴于此, 本发明第一个发明目的在于提供一种控制射频放电系统直流 偏压的装置, 可以兼容功率控制法和电压控制法, 从而在功率控制法和电压 控制法之间灵活选择。
本发明第二个发明目的在于提供一种控制射频放电系统直流偏压的方 法, 可以兼容功率控制法和电压控制法, 从而在功率控制法和电压控制法之 间灵活选择。
为了达到上述第一个发明目的, 本发明提出的技术方案为:
一种控制射频放电系统直流偏压的装置, 该装置包括模式选择模块、 直 流偏压检测模块、 直流偏压控制模块和射频功率提供模块;
所述模式选择模块, 用于接收包括参量和参量类型的输入信息; 判断参 量的类型, 如果参量类型为表示与功率相关的类型, 则将参量作为功率相关 表征参量输出给射频功率提供模块;如果参量类型为表示与电压相关的类型, 则将参量作为电压相关表征参量输出给直流偏压控制模块;
所述直流偏压检测模块, 用于检测放电系统电极的直流偏压, 将检测到 的直流偏压值输出给直流偏压控制模块; 所述直流偏压控制模块, 用于接收来自模式选择模块的电压相关表征参 量, 接收来自直流偏压检测模块的直流偏压值; 利用所述直流偏压值和电压 相关表征参量并根据直流偏压控制算法计算出功率值, 将计算出的功率值输 出给射频功率提供模块;
所述射频功率提供模块, 用于在接收到来自模式选择模块的功率相关表 征参量时, 根据功率相关表征参量向放电系统的电极提供功率; 在接收到直 流偏压控制模块计算出来的功率值时 , 根据计算出的功率值向放电系统的电 极提供功率。
上述方案中, 该装置进一步包括:
校准模块, 位于所述模式选择模块和射频功率提供模块之间, 用于保存 预先获得的功率校准值; 在接收到来自所述模式选择模块的功率相关表征参 量时, 根据所述功率校准值对功率相关表征参量进行更新, 并将更新后的功 率相关表征参量输出给所述射频功率提供模块。
上述方案中, 该装置进一步包括:
故障检测模块, 位于所述直流偏压控制模块和射频功率提供模块之间, 用于保存事先获得的正常功率值范围; 在接收到直流偏压控制模块计算出来 的功率值时, 判断计算出来的功率值是否超出正常功率值范围, 如果超出, 则输出故障报警信号; 否则, 将计算出来的功率值输出给所述射频功率提供 模块。
上述方案中, 所述射频功率提供模块包括:
射频电源, 用于在接收到功率相关表征参量时, 根据功率相关表征参量 提供功率; 在接收到直流偏压控制模块计算出来的功率值时, 根据计算出的 功率值提供功率;
匹配网络, 用于负载阻抗的匹配, 并将射频电源提供的功率输出给放电 系统的电极。
上述方案中, 所述射频电源为接收模拟信号的射频电源, 输出给射频电 源的功率相关表征参量携带于数字信号中, 输出给射频电源的计算出的功率 值携带于数字信号中, 并且该装置进一步包括:
数 /模转换模块, 用于在接收到携带有功率相关表征参量的数字信号时, 进行数模转换, 获得携带有功率相关表征参量的模拟信号, 并将携带有功率 相关表征参量的模拟信号输出给射频电源; 在接收到携带有计算出的功率值 的数字信号时, 进行数模转换, 获得携带有计算出的功率值的模拟信号, 并 将携带有计算出的功率值的模拟信号输出给射频电源。
上述方案中, 所述直流偏压检测模块包括:
电压传感器, 用于检测所述放电系统电极的直流偏压, 将检测出的直流 偏压值以模拟信号的形式输出给模 /数转换模块;
模 /数转换模块,用于将模拟信号形式的直流偏压值转换为数字信号形式 的直流偏压值, 并输出给所述直流偏压控制模块。
上述方案中, 该装置进一步包括:
变换求值模块,用于接收来自模 /数转换模块的数字信号形式的直流偏压 值, 将接收到的直流偏压值转换为可参与直流偏压控制算法计算的值, 并将 转换后的直流偏压值输出给直流偏压控制模块。
为达到上述第二个发明目的, 本发明提出的技术方案为:
一种控制射频放电系统直流偏压的方法, 该方法包括:
A、 接收包括参量和参量类型的输入信息, 判断参量的类型, 如果参量 类型为表示与电压相关的类型, 则将参量作为电压相关表征参量, 并执行步 骤 B; 如果参量类型为表示与功率相关的类型, 则将参量作为功率相关表征 参量, 并执行步骤 C;
B、根据所述电压相关表征参量、从放电系统电极检测出的直流偏压值 , 以及直流偏压控制算法计算出功率值, 并根据计算出的功率值为放电系统的 电极提供功率;
C、 根据所述功率相关表征参量为放电系统的电极提供功率。 上述方案中,在步骤 A判断出参量类型为表示与功率相关的类型和步骤 C之间, 该方法进一步包括: 上述方案中,在步骤 B所述计算出功率值和根据计算出的功率值为放电 系统的电极提供功率之间, 该方法进一步包括:
判断计算出来的功率值是否超出预先保存的正常功率值范围, 如果超 出, 则输出故障报警信号, 并退出本流程; 否则, 继续执行根据计算出的功 率值为放电系统的电极提供功率的步骤。
上述方案中,步骤 B所述根据计算出的功率值为放电系统的电极提供功 率具体包括: 射频电源根据所述计算出的功率值提供功率, 用于负载阻抗匹 配的匹配网络将射频电源提供的功率输出给放电系统的电极;
步骤 C 所述根据功率相关表征参量为放电系统的电极提供功率具体包 括: 射频电源根据所述功率相关表征参量提供功率, 用于负载阻抗匹配的匹 配网络将射频电源提供的功率输出给放电系统的电极。
上述方案中, 所述射频电源为接收模拟信号的射频电源, 所述计算出的 功率值携带于数字信号中, 所述功率相关表征参量携带于数字信号中, 在步 骤 B判断出计算出来的功率值没有超出预先保存的功率值范围和根据计算出 的功率值为放电系统的电极提供功率之间, 该方法进一步包括:
对携带有计算出的功率值的数字信号进行数模转换, 获得携带有计算出 的功率值的模拟信号, 并将携带有计算出的功率值的模拟信号输出给射频电 源;
在步骤 C所述根据功率相关表征参量为放电系统的电极提供功率之前, 该方法进一步包括:
对携带有功率相关表征参量的数字信号进行数模转换, 获得携带有功率 相关表征参量的模拟信号, 并将携带有功率相关表征参量的模拟信号输出给 射频电源。 上述方案中, 所述从放电系统电极检测出直流偏压值具体包括: 电压感应器检测所述放电系统电极的直流偏压, 将检测出的模拟信号形 式的直流偏压值进行模数转换, 获得数字信号形式的直流偏压值。
上述方案中, 在步骤 B根据电压相关表征参量、从放电系统电极检测出 的直流偏压值, 以及直流偏压控制算法计算出功率值之前, 步骤 B进一步包 括:
将数字信号形式的直流偏压值转换为可参与直流偏压控制算法计算的 值。
综上所述, 本发明提出的一种控制射频放电系统直流偏压的装置和方 法, 由于模式选择模块可以接收外界输入的参量和参量类型, 并利用判断参 量类型的结果确定是利用功率控制法来控制直流偏压, 还是利用电压控制法 来控制直流偏压, 从而可以灵活地在两种不同的直流偏压控制方法中进行选 择, 达到兼容的目的, 更加有利于工艺操作人员的操作。 附图说明
图 1是现有技术中利用功率控制法对直流偏压进行控制的装置示意图; 图 2是现有技术中利用电压控制法对直流偏压进行控制的装置示意图; 图 3是本发明对直流偏压进行控制的装置示意图;
图 4是本发明一个对直流偏压进行控制的装置实施例的结构示意图; 图 5是本发明对直流偏压进行控制方法的流程图;
图 6是本发明一个对直流偏压进行控制的方法实施例的流程图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及具体 实施例对本发明作进一步地详细描述。
图 3是本发明控制射频放电系统直流偏压的装置示意图。 如图 3所示, 该装置可以包括: 模式选择模块 301、 直流偏压检测模块 302、 直流偏压控制 模块 303以及射频功率提供模块 304。 其中,
模式选择模块 301 , 用于接收包括参量和参量类型的输入信息; 判断参 量的类型, 如果参量类型为表示与功率相关的类型, 则将参量作为功率相关 表征参量输出给射频功率提供模块 304; 如果参量类型为表示与电压相关的 类型, 则将参量作为电压相关表征参量输出给直流偏压控制模块 303。
直流偏压检测模块 302 , 用于检测放电系统电极的直流偏压, 将检测出 的直流偏压值输出给直流偏压控制模块 303。
直流偏压控制模块 303, 用于接收来自模式选择模块 301的电压相关表 征参量, 接收来自直流偏压检测模块 302的直流偏压值; 利用所述直流偏压 值和电压相关表征参量并根据直流偏压控制算法计算出功率值 , 将计算出的 功率值输出给射频功率提供模块 304。
射频功率提供模块 304, 用于在接收到功率相关表征参量时, 根据功率 相关表征参量向放电系统的电极提供功率; 在接收到直流偏压控制模块 303 计算出来的功率值时, 根据计算出的功率值向放电系统的电极提供功率。
也就是说, 图 3所示的装置可以将图 1中釆用功率控制法的装置和图 2 所示的釆用电压控制法的装置兼容起来。 具体地说, 当模式选择模块 301接 收到包括参量和参量类型的输入信息时, 可以判断参量的类型, 如果参量类 型为表示与功率相关的类型, 则将参量作为功率相关表征参量输出给射频功 率提供模块 304; 如果参量类型为表示与电压相关的类型, 则将参量作为电 压相关表征参量输出给直流偏压控制模块 303。 这里所述的功率相关表征参 量可以为预先设定的一个功率值, 所述的电压相关表征参量可以为预先设定 的一个电压值或其它值, 只要使直流偏压控制模块 303可以计算出相应的功 率值即可。
一方面, 如果模式选择模块 301将判断出的功率相关表征参量输出给射 频功率提供模块 304, 那么, 射频功率提供模块 304就可以根据功率相关表 征参量向放电系统的电极提供功率。 此时, 本发明图 3所示的控制直流偏压 的装置相当于图 1所示的装置, 可以利用功率控制法向放电系统的电极提供 功率。
另一方面, 如果模式选择模块 301将判断出的电压相关表征参量输出给 直流偏压控制模块 303 , 那么, 直流偏压控制模块 303就可以才艮据所述电压 相关表征参量和直流偏压检测模块 302检测出的直流偏压值, 并根据直流偏 压控制算法计算出功率值, 再将计算出的功率值输出给射频功率提供模块 304。射频功率提供模块 304则根据计算出的功率值向放电系统的电极提供功 率。 此时, 图 3的射频功率提供模块 304、 放电系统的电极、 直流偏压检测 模块 302和直流偏压控制模块 303将构成一个反馈环, 相当于图 2所示的装 置, 可以利用电压控制法向放电系统电极提供功率。 这里所述的放电系统的 电极可以为放电系统的下电极, 也可以为放电系统的上电极。
需要注意的是,不管图 3是利用功率控制法向放电系统的电极提供功率, 还是利用电压控制法向放电系统的电极提供功率, 直流偏压检测模块 302都 处于工作状态。 这样, 如果是利用功率控制法向放电系统的电极提供功率, 由于直流偏压检测模块 302的存在,可能引起放电系统电极的电容发生改变, 导致工艺结果发生小范围的偏移。
在这种情况下,如果要求精确的工艺结果,就可以先对模式选择模块 301 输出给射频功率提供模块 304的功率相关表征参量进行校准, 再将校准后的 功率相关表征参量输出给射频功率提供模块 304, 使图 3所示的装置在利用 功率控制法提供功率时达到的工艺结果与图 1 所示装置达到的工艺结果相 同。 至于具体如何对功率相关表征参量进行校准, 将在下述的具体实施例中 进行详细介绍, 此处不再赘述。
另外, 在釆用电压控制法为放电系统的电极提供功率的情况下, 如果实 际工艺环境发生异常情况, 将很可能导致直流偏压的异常变化。 比如: 反应 腔中压力发生大范围波动, 引起直流偏压的异常变化。 此时, 如果不及时发 现直流偏压的异常变化, 工艺操作人员就不能及时釆取相应的措施, 导致整 个工艺流程失败。
为了及时发现直流偏压的异常变化, 还可以在直流偏压控制模块 303计 算出功率值后, 判断计算出的功率值是否超出正常功率值范围, 如果超出, 则输出故障报警信号; 否则, 将计算出来的功率值输出给所述功率提供模块 304。这里所述的正常功率值范围可以通过事先的实验获得,具体如何获得正 常功率值范围也可以参见下述的具体实施例, 此处不再赘述。
为了更好地描述本发明方案, 下面用装置实施例一进行详细描述。 图 4是装置实施例一的结构示意图。 如图 4所示, 本实施例的装置不但 包括模式选择模块 301、 直流偏压检测模块 302、 直流偏压控制模块 303、 射 频功率提供模块 304 ,还包括校准模块 305、故障检测模块 306、数 /模转换模 块 307、 变换求值模块 308。
模式选择模块 301、 直流偏压检测模块 302、 直流偏压控制模块 303 以 及射频功率提供模块 304与图 3中的相应模块的功能相同。 其中, 直流偏压 检测模块 302可以包括:
电压传感器 3021 ,用于检测所述放电系统电极的直流偏压,将检测出的 直流偏压值以模拟信号的形式传送给模 /数转换模块 3022。
模 /数转换模块 3022 , 用于将模拟信号形式的直流偏压值转换为数字信 号形式的直流偏压值, 并输出给变换求值模块 308。
射频功率提供模块 304可以包括:
射频电源 3041 ,用于在接收到功率相关表征参量时,根据功率相关表征 参量提供功率; 在接收到直流偏压控制模块 303计算出来的功率值时, 根据 计算出的功率值提供功率。
匹配网络 3042 , 用于负载阻抗的匹配, 并将射频电源 3041提供的功率 输出给放电系统的电极。
另外, 本实施例中, 校准模块 305用于保存预先获得的功率校准值; 在 接收到来自模式选择模块 301的功率相关表征参量时, 根据功率校准值对功 率相关表征参量进行更新,并将更新后的功率相关表征参量输出给数 /模转换 模块 307。
本实施例在釆用功率控制法时, 由于直流偏压检测模块 302仍然处于工 作状态, 可能导致工艺结果与单独利用图 1所示装置的工艺结果之间存在偏 差。 为了校准这种偏差, 可以先检验功率相关表征参量和可达到相同工艺结 果时的实际功率值之间的差值, 将这种差值作为功率校准值。
实际应用中, 功率校准值可以通过实验确定。 下面以工艺参数为刻蚀速 率为例说明确定功率校准值的方法: 先利用图 1所示的装置实施某个工艺流 程, 并记录下刻蚀速率; 再利用图 3所示装置的功率控制法实施同样的工艺 流程, 记录下对应的刻蚀速率, 这里实验时的功率校准值可初始化为 0; 如 果两个刻蚀速率存在偏差, 那么逐渐调整实际的功率值, 直到刻蚀速率达到 釆用图 1装置时对应的刻蚀速率为止。 此后, 将实际功率值与功率相关表征 参量之间的差值作为功率校准值保存到校准模块 305中。这样,校准模块 305 对接收到的功率相关表征参量进行校准之后, 就可以得到实验中的实际功率 值, 进而获得预期的刻蚀速率。 比如: 功率相关表征参量为 500瓦特, 经过 实验确定需要的实际功率值应该为 510瓦特,那么,就可以将 10瓦特预先保 存到校准模块 305中。 这样, 在校准模块 305接收到 500瓦特的功率相关表 征参量时, 就可以加上 10瓦特, 将功率相关表征参量更新为 510瓦特, 再输 出出去。 当然, 实际应用中, 不同的工艺流程可能存在不同的功率校准值, 可以将所有工艺流程按照上述方法获得各自的功率校准值, 并保存在校准模 块 305中。 此后, 校准模块 305根据实施的不同工艺流程获取对应的功率校 准值,并按照获取的功率校准值对该工艺流程的功率相关表征参量进行更新。
故障检测模块 306, 用于保存事先获得的正常功率值范围, 在接收到直 流偏压控制模块 303计算出来的功率值时, 判断计算出来的功率值是否超出 正常功率值范围, 如果超出, 则输出故障报警信号; 否则, 将计算出来的功 率值传送给数 /模转换模块 307。
这里所述的正常功率值范围也可以釆用实验手段获得, 比如: 在釆用图 3 中电压控制法实施工艺流程时, 记录下正常工艺流程中提供给放电系统电 极的功率值。 按照上述方式多次实验后, 将记录的最大功率值和最小功率值 作为正常功率值范围, 并保存在故障检测模块 306中。
数 /模转换模块 307 , 用于对接收到的携带有功率相关表征参量的数字信 号进行数模转换, 获得携带有功率相关表征参量的模拟信号, 并将携带有功 率相关表征参量的模拟信号输出给射频功率提供模块 304; 对接收到的携带 有计算出的功率值的数字信号进行数模转换, 获得携带有计算出的功率值的 模拟信号, 并将携带有计算出的功率值的模拟信号输出给射频功率提供模块 304。
变换求值模块 308 , 用于将来自模 /数转换模块 3022的数字信号形式的 直流偏压值转换为可参与直流偏压控制算法计算的值, 并将转换后的直流偏 压值传送给直流偏压控制模块 303。
这里所述的变换求值模块 308可以将从模 /数转换模块 3022输入的值变 换为参与直流偏压控制算法计算的值。 比如: 电压传感器 3021检测到下电极 上的直流偏压为 600伏特,将表示 600伏特的一个模拟信号输出给模 /数转换 模块, 经过模 /数转换后得到表示 600伏特的一个数字信号, 并输出给变换求 值模块 308。 如果直流偏压控制模块 303中直流偏压控制算法要求输入的参 数为 0 ~ 65535之间的整数,就需要变换求值模块 308先将表示 600伏特的数 字信号量化为 0 ~ 60035之间的整数,再输入给直流偏压控制模块 303参与计 算。 当然, 这种情况下, 模式选择模块 301向直流偏压控制模块 303输入的 电压相关表征参量也应该为 0 ~ 60035之间的整数。
也就是说,模式选择模块 301接收到包括参量和参量类型的输入信息时, 判断参量的类型, 如果参量类型为表示与功率相关的类型, 则将参量作为功 率相关表征参量输出给校准模块 305; 如果参量类型为表示与电压相关的类 型, 则将参量作为电压相关表征参量输出给直流偏压控制模块 303。 本实施 例中, 所述功率相关表征参量可以为预先设定的功率值, 所述电压相关表征 参量可以为预先设定的电压值或为其它可以计算出相应功率的值。 本实施例 中,放电系统的电极可以为放电系统的下电极,也可以为放电系统的上电极。
下面分别按照参量为功率相关表征参量和电压相关表征参量详细说明 本实施例装置的处理过程。
一方面, 如果模式选择模块 301将判断出的功率相关表征参量输出给校 准模块 305 , 那么, 校准模块 305利用事先保存的功率校准值对功率相关表 征参量进行更新, 将更新后的功率相关表征参量输出给数 /模转换模块 307; 数 /模转换模块 307 将数字信号形式的功率相关表征参量转换为模拟信号形 式的功率相关表征参量, 并输出给射频功率提供模块 304; 射频功率提供模 块 304中的射频电源 3041才艮据功率相关表征参量提供功率, 匹配网络 3042 将射频电源 3041提供的功率输出给放电系统的电极,从而实现利用功率控制 法对直流偏压的控制。
另一方面, 如果模式选择模块 301将判断出的电压相关表征参量输出给 直流偏压控制模块 303 , 那么, 直流偏压控制模块 303可以根据电压相关表 征参量和直流偏压值, 以及直流偏压控制算法计算出功率值。 这里所述直流 偏压值是由电压传感器 3021从放电系统电极检测到的直流偏压值,将直流偏 压值以模拟信号的形式输入给模 /数转换模块 3022进行模 /数转换, 获得数字 信号形式的直流偏压值, 然后由变换求值模块 308将数字信号形式的直流偏 压值转换为可用于直流偏压控制算法计算的值, 再输出给直流偏压控制模块 303进行计算。 此后, 故障检测模块 306判断计算出来的功率值是否超出正 常功率值范围, 如果超出, 则输出故障报警信号; 否则, 将计算出来的功率 值输出给数 /模转换模块 307;数 /模转换模块 307接收到数字信号形式的计算 出的功率值时, 将数字信号形式的功率值转换为模拟信号形式的功率值, 并 输出给射频功率提供模块 304; 射频功率提供模块 304中的射频电源 3041根 据计算出的功率值提供功率, 匹配网络 3042将射频电源 3041提供的功率输 出给放电系统的电极, 从而实现电压控制法对直流偏压的控制。
本实施例中, 射频电源 3041 是一个接收模拟信号的射频电源, 所以, 在故障检测模块 306将直流偏压控制模块 303计算出来的功率值输出给射频 电源 3041时, 还需要利用数 /模转换模块 307进行数字信号到模拟信号之间 的转换。 实际应用中,如果射频电源 3041是一个可以接收数字信号的射频电 源, 就不必要进行数字信号到模拟信号之间的转换, 即可以省略数 /模转换模 块 307。
本实施例中, 当直流偏压检测模块 302将直流偏压值输出给直流偏压控 制模块 303进行计算时, 还需要将检测到的直流偏压值变换为可用于直流偏 压控制算法的值。 而实际应用中, 如果直流偏压控制算法可以直接利用直流 偏压检测模块 302检测到的直流偏压值进行计算, 也可以省略变换求值模块 308。 这里所述的直流偏压控制算法比较多, 比如: 神经网络算法、模糊控制 算法、 比例 -积分 -微分(PID )算法等。
本实施例中的模式选择模块 301、 直流偏压检测模块 302、 直流偏压控 制模块 303、射频功率提供模块 304是必要的, 而校准模块 305、故障检测模 块 306、 数 /模转换模块 307、 变换求值模块 308等都可以根据具体的实际情 况选择。 比如: 射频功率提供模块 304可以接收数字信号, 工艺流程不需要 对直流偏压进行精确控制, 那么, 就可以不选择数 /模转换模块 307和校准模 块 305。 再比如: 射频功率提供模块 304需要接收模拟信号, 工艺流程需要 对直流偏压进行精确控制,但系统运行比较稳定, 无需进行故障检测, 那么, 就可以不选择故障检测模块 306。 总之, 本实施方案中的可选择的模块可以 根据实际情况进行选择, 此处不再——列举。
另外, 实际应用中, 本实施例中的装置还可能需要与外界进行通信, 比 如模式选择模块 301接收包括参量和参量类型的输入信息,故障检测模块 306 判断出功率值超出正常功率值范围输出故障报警信号。 本实施例中, 模式选 择模块 301、 直流偏压控制模块 303、 校准模块 305、 故障检测模块 306、 变 换求值模块 308都可以利用软件程序来实现, 在实际应用中也可以总称为节 点微控制器。 在这种情况下, 节点微控制器可以利用某个通信接口与外界进 行交互, 即: 模式选择模块 301通过通信接口接收输入信息, 故障检测模块 306 通过通信接口输出故障报警信号。 这里所述的外界可以是一个与节点微 控制器相连的上位机, 比如一台个人电脑, 用于向节点微控制器交互信息。
当然, 模式选择模块 301、 直流偏压控制模块 303、 校准模块 305、 故障 检测模块 306、 变换求值模块 308也可以利用硬件来实现, 比如模拟电路或 现场可编程门阵列 ( FPGA, Field Programmable Gate Array )等。
针对上述控制射频放电系统直流偏压的装置, 本发明还提供一种控制射 频放电系统直流偏压的方法。 图 5显示了本发明控制射频放电系统直流偏压 的方法流程图。 如图 5所示, 该方法可以包括:
步骤 501 : 接收包括参量和参量类型的输入信息。
步骤 502: 判断参量的类型, 如果参量类型为表示与电压相关的类型, 将参量作为电压相关表征参量, 并执行步骤 503; 如果参量类型为表示与功 率相关的类型, 将参量作为功率相关表征参量, 并执行步骤 504。
实际应用中, 如果需要对功率相关表征参量进行校准, 那么, 在判断出 参量类型为表示与功率相关的类型和步骤 504之间, 该方法还可以进一步包 值可以釆用实验手段的方式得到, 其方法可以参见上述对校准模块 305功能 和原理的描述, 此处不再赘述。
步骤 503: 根据所述电压相关表征参量、 从放电系统电极检测出的直流 偏压值, 以及直流偏压控制算法计算出功率值, 并根据计算出的功率值为放 电系统的电极提供功率。
实际应用,如果需要及时发现直流偏压出现异常情况,还可以在步骤 503 所述计算出功率值和根据计算出的功率值为放电系统的电极提供功率之间进 一步包括: 判断计算出来的功率值是否超出预先保存的正常功率值范围, 如 果超出, 则输出故障报警信号, 并退出本流程; 否则, 继续执行根据计算出 的功率值为放电系统的电极提供功率的步骤。
这里所述的正常功率值范围可以事先根据实验手段获得, 其方法可以参 见上述故障检测模块 306功能和原理的描述, 此处不再赘述。
另外, 本步骤所述根据计算出的功率值为放电系统的电极提供功率的方 法可以具体为: 射频电源才艮据计算出的功率值提供功率, 用于负载阻抗匹配 的匹配网络将射频电源提供的功率输出给放电系统的电极。
步骤 504: 根据所述功率相关表征参量为放电系统的电极提供功率。 本步骤所述根据功率相关表征参量为放电系统的电极提供功率的方法 可以具体为: 射频电源根据所述功率相关表征参量提供功率, 用于负载阻抗 匹配的匹配网络将射频电源提供的功率输出给放电系统的电极。
为了更好地说明本发明控制射频放电系统直流偏压的方法, 下面用一个 方法实施例进行详细说明。
图 4是本方法实施例对应的装置示意图, 包括模式选择模块 301、 直流 偏压检测模块 302、 直流偏压控制模块 303、 射频功率提供模块 304, 校准模 块 305、 故障检测模块 306、 数 /模转换模块 307、 变换求值模块 308。 其中, 直流偏压检测模块 302包括电压传感器 3021和模 /数转换模块 3022, 射频功 率提供模块 304包括射频电源 3041和匹配网络 3042。
图 6是本实施例方法的流程图。 如图 6所示, 本实施例可以包括: 步骤 601 : 模式选择模块 301接收包括参量和参量类型的输入信息。 步骤 602: 模式选择模块 301判断参量的类型, 如果参量类型为表示与 电压相关的类型, 将参量作为电压相关表征参量, 并执行步骤 603; 如果参 量类型为表示与功率相关的类型, 将参量作为功率相关表征参量, 并执行步 骤 609。
步骤 603: 直流偏压控制模块 303根据电压相关表征参量、 从放电系统 电极检测出的直流偏压值, 以及直流偏压控制算法计算出功率值, 并将计算 出的功率值输出给故障检测模块 306。
实际应用中, 从放电系统电极检测出的直流偏压值的方法可以为: 电压 感应器 3021检测放电系统电极的直流偏压,将检测到的模拟信号形式的直流 偏压值输出给模 /数转换模块 3022; 模 /数转换模块 3022进行模数转换, 获得 数字信号形式的直流偏压值,并输出给变换求值模块 308; 变换求值模块 308 将数字信号形式的直流偏压值转换为可用于直流偏压控制算法计算的值, 并 输出给直流偏压控制模块 303。 当然, 如果直流偏压控制算法允许数字信号 形式的直流偏压值直接参与计算, 则无需利用变换求值模块 308将数字信号 形式的直流偏压值转换为可用于直流偏压控制算法计算的值。
步骤 604: 故障检测模块 306判断计算出来的功率值是否超出保存的正 常功率值范围, 如果超出, 则执行步骤 605; 否则, 执行步骤 606。
实际应用中, 如果系统工作比较稳定, 不需要对直流偏压是否异常进行 检测, 则可以省略步骤 604 ~步骤 606。
步骤 605: 输出故障报警信号, 并退出本流程。
步骤 606: 故障检测模块 306将携带有计算出的功率值的数字信号输出 给数 /模转换模块 307。
步骤 607: 数 /模转换模块 307将携带有计算出的功率值的数字信号进行 数模转换,获得携带有计算出的功率值的模拟信号,并输出给射频电源 3041。
实际应用中, 如果射频电源 3041 可以直接接收数字信号, 则无需利用 数 /模转换模块 307进行数模转换, 即可以省略步骤 607。
步骤 608: 射频电源 3041接收携带有计算出的功率值的模拟信号,根据 计算出的功率值提供功率, 用于负载阻抗匹配的匹配网络 3042将射频电源 3041提供的功率输出给放电系统的电极; 返回步骤 603。
本实施例中, 步骤 603 ~步骤 608为利用电压控制法来直流偏压进行控 制的分支, 其中的直流偏压检测模块 302、 变换求值模块 308、 直流偏压控制 模块 303、 故障检测模块 306、 数 /模转换模块 307、 射频功率提供模块 304 以及放电系统的电极可以构成一个反馈环, 不断地根据检测到的直流偏压值 和电压相关表征参量进行控制计算, 将放电系统电极维持到电压相关表征参 量表示的直流偏压, 以达到利用电压控制法控制直流偏压的目的。 征参量,并将携带有功率相关表征参量的数字信号输出给数 /模转换模块 307。
实际应用中, 如果釆用功率控制, 由于电压传感器 3021 的引入使工艺 结果产生小范围的偏移, 如果对工艺结果要求不是非常精确, 也可以不用校 准模块 305对功率相关表征参量进行校准, 即可以省略步骤 609。
步骤 610: 数 /模转换模块 307将携带有功率相关表征参量的数字信号进 行数模转换, 获得携带有功率相关表征参量的模拟信号, 并将携带有功率相 关表征参量的模拟信号输出给射频电源 3041。
实际应用中, 如果射频电源 3041 可以直接接收数字信号, 则无需利用 数 /模转换模块 307进行数模转换, 即可以省略步骤 610。
步骤 611 : 射频电源 3041接收携带有功率相关表征参量的数字信号,根 据该功率相关表征参量提供功率, 匹配网络 3042将射频电源 3041提供的功 率输出给放电系统的电极。
应用本发明方案, 由于模式选择模块 301可以接收外界输入的参量和参 量类型,并利用判断参量类型的结果确定是利用功率控制法来控制直流偏压, 还是利用电压控制法来控制直流偏压, 从而可以灵活地在两种不同的直流偏 压控制方法中进行选择,达到兼容的目的,更加有利于工艺操作人员的操作。
综上所述, 以上仅为本发明的较佳实施例而已, 并非用于限定本发明的 保护范围。 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改 进等, 均应包含在本发明的保护范围之内。

Claims

利 要 求 书
1、 一种控制射频放电系统直流偏压的装置, 其特征在于, 该装置包括 模式选择模块、直流偏压检测模块、直流偏压控制模块和射频功率提供模块; 所述模式选择模块, 用于接收包括参量和参量类型的输入信息; 判断参 量的类型, 如果参量类型为表示与功率相关的类型, 则将参量作为功率相关 表征参量输出给射频功率提供模块;如果参量类型为表示与电压相关的类型, 则将参量作为电压相关表征参量输出给直流偏压控制模块;
所述直流偏压检测模块, 用于检测放电系统电极的直流偏压, 将检测到 的直流偏压值输出给直流偏压控制模块;
所述直流偏压控制模块, 用于接收来自模式选择模块的电压相关表征参 量, 接收来自直流偏压检测模块的直流偏压值; 利用所述直流偏压值和电压 相关表征参量并根据直流偏压控制算法计算出功率值, 将计算出的功率值输 出给射频功率提供模块;
所述射频功率提供模块, 用于在接收到来自模式选择模块的功率相关表 征参量时, 根据功率相关表征参量向放电系统的电极提供功率; 在接收到直 流偏压控制模块计算出来的功率值时 , 根据计算出的功率值向放电系统的电 极提供功率。
2、 根据权利要求 1所述的装置, 其特征在于, 该装置进一步包括: 校准模块, 位于所述模式选择模块和射频功率提供模块之间, 用于保存 预先获得的功率校准值; 在接收到来自所述模式选择模块的功率相关表征参 量时, 根据所述功率校准值对功率相关表征参量进行更新, 并将更新后的功 率相关表征参量输出给所述射频功率提供模块。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 该装置进一步包括: 故障检测模块, 位于所述直流偏压控制模块和射频功率提供模块之间, 用于保存事先获得的正常功率值范围; 在接收到直流偏压控制模块计算出来 的功率值时, 判断计算出来的功率值是否超出正常功率值范围, 如果超出, 则输出故障报警信号; 否则, 将计算出来的功率值输出给所述射频功率提供 模块。
4、 根据权利要求 3 所述的装置, 其特征在于, 所述射频功率提供模块 包括:
射频电源, 用于在接收到功率相关表征参量时, 根据功率相关表征参量 提供功率; 在接收到直流偏压控制模块计算出来的功率值时, 根据计算出的 功率值提供功率;
匹配网络, 用于负载阻抗的匹配, 并将射频电源提供的功率输出给放电 系统的电极。
5、 根据权利要求 4所述的装置, 其特征在于, 所述射频电源为接收模 拟信号的射频电源,输出给射频电源的功率相关表征参量携带于数字信号中, 输出给射频电源的计算出的功率值携带于数字信号中, 并且该装置进一步包 括:
数 /模转换模块, 用于在接收到携带有功率相关表征参量的数字信号时, 进行数模转换, 获得携带有功率相关表征参量的模拟信号, 并将携带有功率 相关表征参量的模拟信号输出给射频电源; 在接收到携带有计算出的功率值 的数字信号时, 进行数模转换, 获得携带有计算出的功率值的模拟信号, 并 将携带有计算出的功率值的模拟信号输出给射频电源。
6、 根据权利要求 4所述的装置, 其特征在于, 所述直流偏压检测模块 包括: 电压传感器, 用于检测所述放电系统电极的直流偏压, 将检测出的直流 偏压值以模拟信号的形式输出给模 /数转换模块;
模 /数转换模块,用于将模拟信号形式的直流偏压值转换为数字信号形式 的直流偏压值, 并输出给所述直流偏压控制模块。
7、 根据权利要求 6所述的装置, 其特征在于, 该装置进一步包括: 变换求值模块,用于接收来自模 /数转换模块的数字信号形式的直流偏压 值, 将接收到的直流偏压值转换为可参与直流偏压控制算法计算的值, 并将 转换后的直流偏压值输出给直流偏压控制模块。
8、 一种控制射频放电系统直流偏压的方法, 其特征在于, 该方法包括:
A、 接收包括参量和参量类型的输入信息, 判断参量的类型, 如果参量 类型为表示与电压相关的类型, 则将参量作为电压相关表征参量, 并执行步 骤 B; 如果参量类型为表示与功率相关的类型, 则将参量作为功率相关表征 参量, 并执行步骤 C;
B、根据所述电压相关表征参量、从放电系统电极检测出的直流偏压值 , 以及直流偏压控制算法计算出功率值, 并根据计算出的功率值为放电系统的 电极提供功率;
C、 根据所述功率相关表征参量为放电系统的电极提供功率。
9、 根据权利要求 8所述的方法, 其特征在于, 在步骤 A判断出参量类 型为表示与功率相关的类型和步骤 C之间, 该方法进一步包括:
10、 根据权利要求 8或 9所述的方法, 其特征在于, 在步骤 B所述计算 出功率值和根据计算出的功率值为放电系统的电极提供功率之间, 该方法进 一步包括:
判断计算出来的功率值是否超出预先保存的正常功率值范围, 如果超 出, 则输出故障报警信号, 并退出本流程; 否则, 继续执行根据计算出的功 率值为放电系统的电极提供功率的步骤。
11、 根据权利要求 10所述的方法, 其特征在于, 步骤 B所述根据计算 出的功率值为放电系统的电极提供功率具体包括: 射频电源根据所述计算出 的功率值提供功率, 用于负载阻抗匹配的匹配网络将射频电源提供的功率输 出给放电系统的电极;
步骤 C 所述根据功率相关表征参量为放电系统的电极提供功率具体包 括: 射频电源根据所述功率相关表征参量提供功率, 用于负载阻抗匹配的匹 配网络将射频电源提供的功率输出给放电系统的电极。
12、 根据权利要求 11 所述的方法, 其特征在于, 所述射频电源为接收 模拟信号的射频电源, 所述计算出的功率值携带于数字信号中, 所述功率相 关表征参量携带于数字信号中, 在步骤 B判断出计算出来的功率值没有超出 预先保存的功率值范围和根据计算出的功率值为放电系统的电极提供功率之 间, 该方法进一步包括:
对携带有计算出的功率值的数字信号进行数模转换, 获得携带有计算出 的功率值的模拟信号, 并将携带有计算出的功率值的模拟信号输出给射频电 源;
在步骤 C所述根据功率相关表征参量为放电系统的电极提供功率之前, 该方法进一步包括:
对携带有功率相关表征参量的数字信号进行数模转换, 获得携带有功率 相关表征参量的模拟信号, 并将携带有功率相关表征参量的模拟信号输出给 射频电源。
13、 根据权利要求 11 所述的方法, 其特征在于, 所述从放电系统电极 检测出直流偏压值具体包括:
电压感应器检测所述放电系统电极的直流偏压, 将检测出的模拟信号形 式的直流偏压值进行模数转换, 获得数字信号形式的直流偏压值。
14、 根据权利要求 13所述的方法, 其特征在于, 在步骤 B根据电压相 关表征参量、 从放电系统电极检测出的直流偏压值, 以及直流偏压控制算法 计算出功率值之前, 步骤 B进一步包括:
将数字信号形式的直流偏压值转换为可参与直流偏压控制算法计算的 值。
PCT/CN2008/070261 2007-12-06 2008-02-03 Procédé permettant de régler la polarisation cc d'un système de décharge rf et procédé associé WO2009070986A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/746,480 US8217579B2 (en) 2007-12-06 2008-02-03 Device and method for controlling DC bias of RF discharge system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101788572A CN101453823B (zh) 2007-12-06 2007-12-06 一种控制射频放电系统直流偏压的装置和方法
CN200710178857.2 2007-12-06

Publications (1)

Publication Number Publication Date
WO2009070986A1 true WO2009070986A1 (fr) 2009-06-11

Family

ID=40717292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070261 WO2009070986A1 (fr) 2007-12-06 2008-02-03 Procédé permettant de régler la polarisation cc d'un système de décharge rf et procédé associé

Country Status (3)

Country Link
US (1) US8217579B2 (zh)
CN (1) CN101453823B (zh)
WO (1) WO2009070986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217579B2 (en) 2007-12-06 2012-07-10 Beijing NMC Co. Ltd. Device and method for controlling DC bias of RF discharge system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110416144B (zh) * 2018-04-27 2020-11-10 北京北方华创微电子装备有限公司 静电卡盘、工艺腔室和半导体处理设备
CN111698821A (zh) * 2019-03-13 2020-09-22 北京北方华创微电子装备有限公司 基座、基座偏压的调整方法和等离子体发生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221737A (ja) * 2003-01-10 2004-08-05 Matsushita Electric Ind Co Ltd 送信電力制御装置
CN1551486A (zh) * 2003-05-19 2004-12-01 三星电子株式会社 可集成的电压控制射频功率放大器
US7224230B2 (en) * 2005-02-22 2007-05-29 Triquint Semiconductor, Inc. Bias circuit with mode control and compensation for voltage and temperature
US7274258B2 (en) * 2005-09-08 2007-09-25 Industrial Technology Research Institute Dynamic bias circuit for a radio-frequency amplifier
EP1863172A2 (en) * 2006-05-29 2007-12-05 Alps Electric Co., Ltd. High-frequency circuit of reduced circuit scale

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3208044B2 (ja) * 1995-06-07 2001-09-10 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP3630982B2 (ja) * 1997-05-22 2005-03-23 キヤノン株式会社 プラズマ処理方法及びプラズマ処理装置
TW399229B (en) * 1998-02-03 2000-07-21 United Microelectronics Corp The test method of radio frequency circuit and its device
US6361645B1 (en) * 1998-10-08 2002-03-26 Lam Research Corporation Method and device for compensating wafer bias in a plasma processing chamber
CN1960219A (zh) * 2005-10-31 2007-05-09 中兴通讯股份有限公司 一种射频功率检测装置
CN101453823B (zh) 2007-12-06 2011-09-14 北京北方微电子基地设备工艺研究中心有限责任公司 一种控制射频放电系统直流偏压的装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004221737A (ja) * 2003-01-10 2004-08-05 Matsushita Electric Ind Co Ltd 送信電力制御装置
CN1551486A (zh) * 2003-05-19 2004-12-01 三星电子株式会社 可集成的电压控制射频功率放大器
US7224230B2 (en) * 2005-02-22 2007-05-29 Triquint Semiconductor, Inc. Bias circuit with mode control and compensation for voltage and temperature
US7274258B2 (en) * 2005-09-08 2007-09-25 Industrial Technology Research Institute Dynamic bias circuit for a radio-frequency amplifier
EP1863172A2 (en) * 2006-05-29 2007-12-05 Alps Electric Co., Ltd. High-frequency circuit of reduced circuit scale

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8217579B2 (en) 2007-12-06 2012-07-10 Beijing NMC Co. Ltd. Device and method for controlling DC bias of RF discharge system

Also Published As

Publication number Publication date
CN101453823B (zh) 2011-09-14
CN101453823A (zh) 2009-06-10
US20100283446A1 (en) 2010-11-11
US8217579B2 (en) 2012-07-10

Similar Documents

Publication Publication Date Title
US9805916B2 (en) Plasma processing apparatus
US10109461B2 (en) Plasma processing method
US9831064B2 (en) Plasma processing apparatus
US10250217B2 (en) Method for impedance matching of plasma processing apparatus
US9663858B2 (en) Plasma processing apparatus
US20160079037A1 (en) Plasma processing apparatus
JP5922053B2 (ja) Rf生成器の電力および周波数をバイモーダルで自動チューニングするためのシステムおよび方法
TWI496514B (zh) A plasma processing apparatus and a plasma processing method, and a computer-readable memory medium
US11398369B2 (en) Method and apparatus for actively tuning a plasma power source
JP2013179047A (ja) インピーダンスに基づいた電力および周波数の調整
WO2013124756A1 (en) Methods and apparatus for synchronising rf pulses in a plasma processing system
KR101124770B1 (ko) 플라즈마 처리장치 및 플라즈마 처리방법 및 컴퓨터 판독이 가능한 기억 매체
US20120000542A1 (en) Mass flow controller, mass flow controller system, substrate processing device, and gas flow rate adjusting method
WO2009070986A1 (fr) Procédé permettant de régler la polarisation cc d'un système de décharge rf et procédé associé
CN107017178B (zh) 用于低功率电压模式操作的周期平均的频率调谐
CN114008749A (zh) 用于补偿射频功率损耗的系统和方法
CN114518704A (zh) 射频阻抗匹配装置和方法
JP2007012555A (ja) プラズマ処理装置
JP3984868B2 (ja) プラズマエッチング装置のシミュレーション装置、及び該シミュレーション装置を備えるプラズマエッチング装置
CN115565911A (zh) 半导体处理系统及其控制方法
KR20210110197A (ko) 기판 처리 시스템, 전환 타이밍 작성 지원 장치, 전환 타이밍 작성 지원 방법, 및 기판 처리 장치
WO2021124427A1 (ja) プラズマ処理装置及びプラズマ処理装置の運転方法
JP2005011858A (ja) プラズマを用いた半導体製造におけるμ波パワー設定方法並びに当該設定方法を適用した半導体装置の製造装置及び上記設定方法を用いた半導体装置の製造方法
Alexander Run to run controller resulting in stable critical dimensions during plasma etch: APC: Advanced process control
KR20200075612A (ko) 플라즈마 처리 장치에서의 기판 지지부의 온도 제어 방법 및 온도 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08706635

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12746480

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08706635

Country of ref document: EP

Kind code of ref document: A1