CN114008749A - 用于补偿射频功率损耗的系统和方法 - Google Patents

用于补偿射频功率损耗的系统和方法 Download PDF

Info

Publication number
CN114008749A
CN114008749A CN202080045167.3A CN202080045167A CN114008749A CN 114008749 A CN114008749 A CN 114008749A CN 202080045167 A CN202080045167 A CN 202080045167A CN 114008749 A CN114008749 A CN 114008749A
Authority
CN
China
Prior art keywords
amount
power loss
generator
set point
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080045167.3A
Other languages
English (en)
Inventor
马修·丹尼斯·埃文斯
克里斯托弗·艾迪生·弗劳尔斯
约翰·德鲁厄里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lam Research Corp
Original Assignee
Lam Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lam Research Corp filed Critical Lam Research Corp
Publication of CN114008749A publication Critical patent/CN114008749A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32926Software, data control or modelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

描述了用于补偿射频(RF)功率损耗的系统和方法。方法中的一种包括进行无等离子体测试以确定与阻抗匹配电路的输出相关联的电阻。在进行无等离子体测试之后,在等离子体室中处理衬底。在衬底处理期间,确定与阻抗匹配电路的输出相关的功率损耗。功率损耗用于确定要由RF发生器输送的功率量。调整输送的功率量,直到功率损耗稳定。功率损耗的稳定有利于等离子体室中衬底和附加衬底的均匀处理。

Description

用于补偿射频功率损耗的系统和方法
技术领域
所提供的实施方案涉及用于补偿射频(RF)功率损耗的系统和方法。
背景技术
这里提供的背景描述是为了总体呈现本公开的背景的目的。当前指定的发明人的工作在其在此背景技术部分以及在提交申请时不能确定为现有技术的说明书的各方面中描述的范围内既不明确也不暗示地承认是针对本公开的现有技术。
使用等离子体工具蚀刻晶片。等离子体工具包括射频(RF)发生器、匹配网络或匹配器以及等离子体室。RF发生器通过同轴电缆连接到匹配器,同轴电缆通过传输线连接到等离子体室。晶片被放置在等离子体室内。
一旦放置了晶片,RF发生器就被打开以通过匹配器和传输线向等离子体室提供RF功率。此外,处理气体被供应到等离子体室。当处理气体被RF功率点燃时,等离子体在等离子体室中被激励。等离子体用于蚀刻晶片。
本公开内容中所述实施方案就是在该背景中提出的。
发明内容
本公开内容的实施方案提供用于补偿射频(RF)功率损耗的系统、装置、方法和计算机程序。应理解,本文实施方案可以多种方式实施,例如过程、设备、系统、硬件的部分、或计算机可读介质上的方法。在下文描述若干实施方案。
一些半导体处理工具(例如导体蚀刻(CE)工具),在电压控制模式下操作子系统偏置,而一些在功率控制模式下操作。电压控制模式不利用功率补偿动作。在功率控制模式中,寄生功率损耗的室与室之间的差异对于等离子体负载产生耦合的功率可变性。为了提供最佳的室匹配性能,耦合的功率可变性被最小化。
在此描述的系统和方法提供了一种补偿方法,其用于实现校正动作以收紧室与室之间的耦合的功率可变性。所述系统和方法涉及用于CE工具的偏置子系统的室匹配功率补偿方案。补偿方案适用于在功率控制模式下操作的偏置子系统。补偿方案利用放置在偏置匹配网络输出端的电流探针。从电流探针接收的电流测量值使得能实时计算从偏置匹配网络一直到等离子体的寄生功率损耗或用于补偿该寄生功率损耗。这些寄生功率损耗将使用不断更新RF发生器的功率设置点的改进控制回路来计算。校正动作在功率设定点中实时提供等于沿RF馈送路径的寄生功率损耗的偏移量。
在一些实施方案中,为了解决偏置匹配网络和RF馈电组件的寄生功率损耗,实施了两步程序。该程序使用探针,例如电流探针或电压和电流探针或阻抗测量探针或阻抗扫描探针。探针放置在偏置匹配网络的输出端。首先,在无等离子体测试(NPT)期间,由探针测量均方根(RMS)电流。偏置匹配网络和整个组件的等效串联电阻(ESR)值通过对测得的RMS电流的平方和RF发生器提供的功率执行线性回归来计算。ESR值由主机存储并用作系统常数。
其次,实施控制算法以使用上面测得的ESR值向RF发生器的配方功率设定点(例如P_sp_rec)提供实时校正动作。当配方步骤正在操作时,可以使用以下等式在每个时间增量或时间步长i计算功率损耗,例如P_loss:
P_loss(i)=ERS*(I_RMS(i))2...(1)
这里,I_RMS(i)是探针在时间增量i时读取的RMS电流。当前时间步长的功率损耗被结转并添加到RF发生器的配方功率设定点P_sp_rec以确定更新的发生器功率设定点,例如P_sp_gen,其中“sp”表示设定点,“gen”表示RF发生器。以下等式显示了在时间增量i处的更新的发生器功率设定点:
P_sp_gen(i)=P_sp_rec+P_loss(i-1)...(2)
重复该过程,直到校正偏移P_loss(i)等于测得的损耗P_loss(i-1)。此时,寄生功率损耗将被考虑在内。
在此描述的补偿RF功率损耗(例如寄生功率损耗)的系统和方法的一些优点包括在处理一个或多个衬底时实现室可重复性。RF发生器向等离子体室中的电极提供RF功率。RF功率通过RF路径从RF发生器传输到电极。由于RF路径的部件的特性,RF路径上会存在一部分RF功率损耗。部件的示例包括RF电缆、阻抗匹配电路和RF传输线。RF电缆将RF发生器耦合到阻抗匹配电路,例如偏置匹配网络。此外,RF传输线将阻抗匹配电路耦合到等离子体室。为了解决RF路径中的RF功率损耗,调整由RF发生器输送的功率。调整由RF发生器输送的功率,直到射频功率损耗稳定。在RF功率损耗稳定后,控制RF发生器以输送相同或基本相同量的输送功率。当RF发生器输送相同或基本相同的功率量时,以统一方式处理衬底或多个衬底。例如,在处理多个衬底时实现均匀的蚀刻速率或均匀的沉积速率。作为另一示例,以期望的方式处理衬底以实现蚀刻速率或沉积速率。
其他方面将从以下的详细说明并结合附图而变得显而易见。
附图说明
实施方案通过参照以下说明并结合附图来理解。
图1是用于说明在处理衬底之前执行的无等离子体测试的系统的实施方案的示意图。
图2是说明确定与阻抗匹配电路的输出相关联的电阻(例如等效串联电阻(ESR))的实施方案。
图3是系统的实施方案的示意图,其用于说明使用电阻来确定待由射频(RF)发生器产生和输送的功率量,以解决与阻抗匹配电路和传输线相关的功率损耗。
图4是说明一种方法的表的实施方案,在该方法中,在处理衬底期间,处理器基于与阻抗匹配电路的输出相关联的功率损耗量继续修改由RF发生器传送的功率量。
图5是一个图的实施方案,其用于说明由RF发生器输送的功率改变以解决在阻抗匹配电路的输出端输送的功率损耗。
图6是一种系统的实施方案的示意图,其用于说明用于补偿输送功率损耗的方法的应用。
图7是一种系统的实施方案的图,其用于说明通过应用关于图4说明的方法确定的所输送的功率量被保持以用于处理另一衬底。
具体实施方式
以下实施方案描述了用于补偿射频(RF)功率损耗的系统和方法。显而易见,本文的实施方案可以在不具有这些具体细节中的一些或全部的情况下实施。在其他情形中,公知的处理操作并未详加描述,以免不必要地使本文实施方案难以理解。
图1是系统100的一个实施方案的示意图,其用于说明在处理衬底之前执行的无等离子体测试。系统100包括多个部件,例如RF发生器102、阻抗匹配电路104、电流传感器106、等离子体室108和主机计算设备110。
RF发生器102的示例包括千赫(kHz)RF发生器或兆赫(MHz)RF发生器。kHzRF发生器的一个示例是工作频率为400kHz的RF发生器。MHzRF发生器的示例包括工作频率为1MHz的RF发生器或2MHz的RF发生器或13.56MHz的RF发生器或27MHz的RF发生器或60MHz的RF发生器。RF发生器102包括处理器,例如数字信号处理器(DSP)、驱动器和放大器电路以及RF电源。处理器耦合到驱动器和放大器电路,该驱动器和放大器电路耦合到RF电源。RF电源的示例包括RF振荡器。
阻抗匹配电路104的示例包括具有以串联或并联方式彼此耦合的电路部件的网络的电路。电路部件的示例包括电阻器、电感器和电容器。举例而言,电路部件是并联电容器或串联电容器。
等离子体室108是平行板等离子体室,例如电容耦合等离子体(CCP)室。等离子体室108包括卡盘112和面向卡盘112的上电极114。卡盘112的示例包括静电卡盘(ESC),其包括下电极和位于下电极顶部的陶瓷板。卡盘112和上电极114中的每一个都由金属制成,例如由铝或铝的合金制成。上电极114耦合到地电位。
电流传感器106的示例包括电压和电流(VI)探针或电流探针或阻抗传感器或阻抗扫描仪或阻抗探针。主机计算设备110的示例包括计算机和服务器。计算机可以是台式计算机或膝上型计算机或智能手机或平板电脑。主机计算设备110包括处理器120和存储器设备122。这里使用的处理器的示例包括中央处理单元(CPU)、专用集成电路(ASIC)、可编程逻辑设备(PLD)、控制器、微处理器和微控制器。存储器设备的示例包括随机存取存储器(RAM)和只读存储器(ROM)。举例来说,存储器设备是闪存或独立磁盘冗余阵列(RAID)。存储器设备122经由连接(例如串行传输连接、并行传输连接、总线或通用串行总线(USB)连接)耦合到处理器120。
RF发生器102通过RF电缆116耦合到阻抗匹配电路。例如,RF发生器102的RF电源的输出端O1通过RF电缆116耦合到阻抗匹配电路104的输入端I2。此外,阻抗匹配电路104通过RF传输线118耦合到卡盘112的下电极。例如,阻抗匹配电路104的输出端O2通过RF传输线118耦合到卡盘112的下电极。RF传输线118是等离子体系统100的部件的另一示例并且包括RF杆、绝缘体和套管。绝缘体包裹在RF杆周围,而套管形成围绕绝缘体的保护盖。
处理器120经由连接电缆125(例如串行传输电缆、或并行传输电缆、以太网电缆或USB电缆)耦合到RF发生器102的输入端I1。例如,处理器120通过连接电缆125耦合到RF发生器102的处理器。电流传感器106通过RF电缆耦合到阻抗匹配电路104的输出端O2并通过连接电缆121耦合到处理器120。上面提供了连接电缆的示例。
在无等离子体测试期间,等离子体不会在等离子体室108内产生。例如,一种或多种处理气体(例如含氟气体或含氧气体)不会被供应到等离子体室108来在等离子体室108内激励等离子体。此外,在该示例中,没有放置在卡盘112的顶表面上用于处理的衬底。
处理器120经由连接电缆125和输入端I1向RF发生器102提供具有一个或多个变量(例如频率和输送的功率)的量的指令信号。输送的功率是提供的功率和在RF电缆116中发生的功率损耗的总和。提供的功率是RF发生器102在没有接收到具有输送的功率的量的指令信号的情况下产生的功率。例如,当不考虑RF电缆116中的功率损耗时,提供的功率是由RF发生器102在输出端O1处提供的功率。变量的量存储在存储器设备122中以供处理器120访问。
RF发生器102接收具有变量的量的指令信号并产生RF信号124。例如,RF发生器102的处理器从处理器120接收具有变量的量的指令信号并产生具有这些量的信号。RF发生器102的处理器将信号提供给RF发生器102的驱动器和放大器电路。驱动器和放大器电路的驱动器(例如一个或多个晶体管)在接收到来自RF发生器102的处理器的信号时产生电流信号。驱动器和放大器电路的放大器将电流信号放大,以输出放大后的电流信号,并将放大后的电流信号发送到RF发生器102的RF电源,RF电源振荡以产生具有变量的量的RF信号124。RF信号124由RF发生器102经由输出端O1、RF电缆116和输入端I2提供给阻抗匹配电路104。
阻抗匹配电路104将耦合到阻抗匹配电路104的输出端O2的负载的阻抗与耦合到阻抗匹配电路104的输入端I2的源的阻抗匹配,以在输出端O2输出经修改的RF信号126。负载的示例包括RF传输线118和等离子体室108。源的示例包括RF电缆116和RF发生器102。
经修改的RF信号126经由RF传输线118传输到卡盘112的下电极。在无等离子体测试期间在输出端O2处供应或提供经修改的RF信号120时,电流传感器106测量在输出端O2处输送的电流量,例如均方根电流(Irms)。电流是参数的一个示例。由电流传感器106测量的每个电流量是在输出端O2处提供的多个电流量的均方根(rms)。电流传感器106通过连接电缆121向处理器120提供在输出端O2处的电流量的测量值,例如Irms。
处理器120接收电流量的测量值并生成数据库,例如表格或列表,包括电流量与测量电流量Irms所针对的输送的功率量之间的对应关系。例如,当处理器120控制RF发生器102产生具有输送的功率量Pdel1的RF信号124时,电流传感器106测量在输出端O2处输送的电流量Irms1。输送的功率是该参数的另一个示例。处理器120将量Pdel1和Irms1之间的对应关系(例如一一对应的关系或联系或关联或映射)储存在数据库中,该数据库储存在存储器设备122中。以类似的方式,当处理器120控制RF发生器102以产生具有另一输送的功率量Pdel2的RF信号124时,电流传感器106测量在输出端O2处输送的另一电流量Irms2并经由连接电缆121将电流量Irms2提供给处理器120。处理器120将量Pdel2和Irms2之间的对应关系存储在数据库中。以此方式,在时间段t内,由RF发生器102通过RF信号124输送的功率量与在输出端O2处测得的电流量之间的多个对应关系由处理器120创建或确定并存储在数据库中。
应当注意,处理器120校准RF发生器102以确定将由RF发生器102在输出端O1处输送的功率量P_del,例如P_del1、P_del2等。例如,RF发生器102经由RF电缆116耦合到虚拟负载,例如50欧姆负载,其是具有50欧姆电阻的负载。虚拟负载有时在本文中被称为已知负载。测量设备(例如电压和电流传感器或功率传感器)耦合至虚拟负载的输入端并耦合至处理器120。处理器120产生指令信号以控制RF发生器120在输出端O1提供RF信号。在接收到指令信号后,RF发生器102产生RF信号并且通过输出端O1和RF电缆116将RF信号提供给虚拟负载。测量设备测量虚拟负载输入端的功率量。在输入端测得的功率量用于计算RF电缆116中的功率损耗量。处理器120接收测得的功率量并确定RF发生器102提供的功率量与在虚拟负载的输入处测得的功率量之间的对应关系以确定将由RF发生器102输送的功率量。例如,处理器120确定在输出端O1处由RF发生器102提供的功率量与在虚拟负载输入端测得的功率量之间的差值。该差值等于RF电缆116中的功率损耗量。处理器120将该差值加到由RF发生器120提供的功率量上,以计算出要由RF发生器120输送的功率量,例如Pdel1。处理器120在数据库中存储由RF发生器120提供的功率量(例如Psup1)和由RF发生器122输送的功率量(例如Pdel1)之间的对应关系(例如一一对应的关系或联系或关联或映射),以计算RF电缆116中的功率损耗量。以这种方式,具有在输出端O1处的多个输送的功率量(例如Pdel1、Pdel2等)并且具有在输出端O1处的多个提供的功率量(例如Psup1、Psup2等)的数据库由处理器120创建。数据库包括RF发生器102在输出端O1处提供的功率量和由RF发生器102在输出端O1处输送的功率量之间的对应关系。
应该注意,在RF发生器102的输出端O1处输送的功率P_del在本文中有时被称为在阻抗匹配电路104的输入端I2处输送的功率,因为在输出端O1处输送的功率P_del是校准的以应对RF电缆116中的功率损耗。
在一个实施方案中,阻抗匹配电路有时在本文中被称为匹配器或匹配网络或阻抗匹配网络或匹配外壳,并且这些术语在本文中可互换使用。
在一实施方案中,代替将上电极114耦合到地电位,将下电极耦合到地电位并且上电极114被耦合到RF传输线,RF传输线118被耦合到阻抗匹配电路118的输出端O2以用于接收修改后的RF信号126。
在一实施方案中,代替处理器120,使用多个处理器。例如,此处描述的由处理器120执行的功能由多个处理器以分布式方式执行。此外,代替存储器设备122,使用多个存储器设备。例如,存储在存储器设备122中的信息被分布和存储在多个存储器设备之间。
在一个实施方案中,在此描述为由处理器120和RF发生器102的处理器执行的功能替代地由处理器120或RF发生器102的处理器或由两个以上的处理器执行。
在一实施方案中,除了RF发生器102之外,一个或多个附加的RF发生器耦合到阻抗匹配电路104上。例如,RF发生器102是kHz RF发生器并且附加的RF发生器包括两个MHz RF发生器。作为另一示例,RF发生器102是MHz RF发生器并且附加的RF发生器包括两个MHz RF发生器。一个或多个附加的RF发生器经由对应的一个或多个附加的RF电缆耦合到阻抗匹配电路104的对应的一个或多个附加的输入端。一个或多个附加的RF发生器生成对应的一个或多个附加的RF信号并且经由对应的一个或多个附加的RF电缆向阻抗匹配电路104提供一个或多个附加的RF信号。阻抗匹配电路104将负载的阻抗与耦合到阻抗匹配电路104的输入端I2以及对应的一个或多个附加的输入端的源的阻抗匹配,以在输出端O2输出经修改的RF信号。耦合到阻抗匹配电路104的输入端I2以及对应的一个或多个附加的输入端的源的示例包括一个或多个附加的RF电缆、RF电缆116、RF发生器102和一个或多个附加的RF发生器。
在一实施方案中,代替耦合到输出端O2,电流传感器106耦合在RF传输线108上的任何点处或耦合在卡盘112的输入端I3处,以用于测量在所述点或输入端I3被输送的电流量。在该实施方案中,确定并补偿从RF发生器120的输出端O1直到RF传输线108上的点或输入端I3发生的功率损耗量。
图2是用于说明确定与阻抗匹配电路104(图1)的输出端O2相关联的电阻(例如等效串联电阻(ESR))的示图200的实施方案。与输出端O2相关联的电阻是RF电缆116的电阻和阻抗匹配电路104的电路部件的电阻的组合(例如总和)与常数。阻抗匹配电路104的电路部件耦合在阻抗匹配电路104的输入端I2和输出端O2之间。
示图200在示图202中描绘了在y轴上的RF发生器102的输出端O1处输送的功率以及在x轴上的在输出端O2处测得的与输送的功率(图1)对应的电流量的平方。输出端O1处的输送的功率以瓦特(W)为单位。在无等离子体测试期间或之后,处理器120从存储器设备122访问(例如读取或获得)在输出端O1处输送的功率量,例如Pdel1、Pdel2等。例如,在处理衬底之前,处理器120从存储器设备122访问在输出端O1处的输送的功率量。电流量的平方在x轴上绘制为Irms2,并且Irms由电流传感器106以安培为单位测量。此外,在无等离子体测试期间或之后,处理器120进一步从存储器设备120访问电流量,例如Irms1、Irms2等。被访问的电流量对应于由处理器120从存储器设备122访问的输送的功率量。在无等离子体测试期间或之后,处理器120根据存储在数据库中的测得的电流量计算在输出端O2处输送的电流量的平方,以绘制示图200。
此外,在无等离子体测试期间或之后,处理器120在示图200中描绘在输出端O1处输送的功率量Pdel1与在输出端O2处输送的电流量Irmsl的平方Irms12的关系并描绘在输出端O2处输送的功率量Pdel2与在输出端O2处输送的电流量Irms2的平方Irms22的关系。举例而言,示图200中的点204A代表量Pdel1和Irms12,而示图200中的另一点204B代表量Pdel2和Irms22。类似地,示图200包括其他点204C、204D、204E和204F,并且点204C、204D、204E和204F中的每一个对应于在RF发生器102的输出端O1处输送的功率量并且对应于在阻抗匹配电路104的输出端O2处输送的电流量的平方。
在无等离子体测试期间或之后,处理器120根据点204A、204B、204C、204D、204E和204F生成线202。例如,处理器120执行线性回归分析以拟合穿过点204A、204B、204C、204D、204E和204F的线。每个点204A到204F描绘了在输出端O1处输送的功率量与在输出端O2处输送的电流量的平方的关系。
此外,在无等离子体测试期间或之后,处理器120计算线202的斜率。例如,处理器120识别位于线202上的多个点204G和204H,将点204G朝向y轴水平投影以确定在RF发生器102的输出端O1处的输送的功率量P_delB,将点204H朝向y轴水平投影以确定在RF发生器102的输出端O1处的输送的功率量P_delA,将点204G朝向x轴竖直投影以确定在RF发生器102的输出端O1处的电流量IrmsA的平方IrmsA2,并且将点204H朝向x轴竖直投影以确定在RF发生器102的输出端O1处的电流量IrmsB的平方IrmsB2。处理器120计算量P_delB和P_delA之间的第一差值以及量IrsmB2和IrmsA2之间的第二差值,并计算第一差值和第二差值的比率以确定线202的斜率。处理器120将斜率存储为与阻抗匹配电路104的输出端O2相关联的电阻ESR。
图3是系统300的实施方案的示意图,其用于说明使用与阻抗匹配电路104的输出端O2相关联的电阻ESR来确定要由RF发生器102产生和输送的功率量P_sp_gen(i+1)以计算与RF电缆116和阻抗匹配电路104相关联的功率损耗。系统300在结构上与图1的系统100相同。例如,系统300包括与系统100相同的部件。举例而言,系统300包括RF发生器102、RF电缆116、阻抗匹配电路104、RF传输线118、等离子体室108、电流传感器106和主机计算设备110。
等离子体室108包括用于被处理的衬底S1,例如半导体晶片。处理衬底的示例包括在衬底上沉积一种或多种材料,蚀刻衬底,溅射衬底以及清洁衬底。衬底S1放置在卡盘112的顶面上以进行处理。
在由整数i表示的第一时间段期间,处理器120生成指令信号,该指令信号具有由RF发生器102在输出端O1处生成和输出或提供的功率量P_sp_rec。术语时间段、时间增量和时间步长在本文中可互换使用。量P_sp_rec有时在本文中被称为RF发生器102的操作的配方设定点,其中“sp”指的是设定点,而“rec”指的是配方。处理器120从存储器设备122访问(例如读取)量P_sp_rec。用户通过主机计算设备110的输入设备(例如鼠标或键盘或小键盘)向处理器120提供操作的配方设定点。输入设备通过连接电缆耦合到处理器120。
此外,在第一时间段内,处理器120通过连接电缆125和输入端I1向RF发生器102发送具有量P_sp_rec的指令信号。RF发生器102在接收到指令信号后,产生具有功率量P_sp_rec的RF信号302并经由输出端O1和RF电缆116以及输入端I2将RF信号302提供给阻抗匹配电路104。在第一时间段期间,RF信号302以与产生RF信号124(图1)相同的方式产生。例如,RF发生器102的处理器接收具有量P_sp_rec的指令信号并产生具有该量的信号。RF发生器102的处理器向RF发生器102的驱动器和放大器电路提供具有该量的信号。驱动器和放大器电路的驱动器在接收到来自RF发生器102的处理器的信号时产生电流信号。驱动器和放大器电路的放大器将电流信号放大以输出放大的电流信号,并且将放大的电流信号发送给RF发生器102的RF电源。RF电源振荡以产生并提供具有功率量P_sp_rec的RF信号302。
在第一时间段内,阻抗匹配电路104在输入端I2处接收RF信号302并将耦合到输出端O2的负载的阻抗与耦合到输入端I2的源的阻抗匹配以在输出端O2处输出修改后的RF信号304。阻抗匹配电路104经由输出端O2和RF传输线118向卡盘112的下电极提供修改后的RF信号304。此外,将一种或多种处理气体供应到等离子体室108。当一种或多种处理气体被供应到等离子体室108并且修改后的RF信号304被等离子体室108的下电极接收时,等离子体被激励且保持在等离子体室108内,并且等离子体处理衬底S1。
当在第一时间段期间在输出端O2处提供修改后的RF信号304时,电流传感器106测量在输出端O2处输送的电流量I_RMS(i),其中i是等于或大于零的整数。量I_RMS(i)是输出端O2处输送的多个电流量的均方根。电流传感器106通过连接电缆121向处理器120提供电流量I_RMS(i)。在处理衬底S1时,处理器120将量I_RMS(i)存储在存储器设备122中,从存储器设备122访问(例如读取或获得)量I_RMS(i),并且计算第一时间段期间电流量I_RMS(i)的平方I_RMS(i)2。处理器120还将平方I_RMS(i)2存储在存储器设备122中。此外,在等离子体室108中处理衬底S1的第一时间段期间,处理器120从存储器设备122访问(例如读取或获得)与输出端O2相关联的电阻ESR量和的值I_RMS(i)2,并且将电阻ESR与电流量的平方I_RMS(i)2相乘以计算或确定在阻抗匹配电路104的输出端O2处的RF功率损耗量P_loss(i)。量P_loss(i)是RF电缆116中的或由RF电缆116引起的功率损耗和在阻抗匹配电路104的介于阻抗匹配电路104的输入端I2与输出端O2之间的电路部件中的或由这些电路部件引起的功率损耗的组合量。在第一时间段内,处理器120确定或计算与输出端O2相关的功率量P_sp_rec与功率量P_loss(i)的总和P_sp_gen(i+1)以输出输送的功率量P_sp_gen(i+1),其中“gen”指的是RF发生器102。
在衬底S1被处理的第二时间段内,处理器120不是继续产生具有功率量P_sp_rec的指令信号,而是产生具有输送的功率量P_sp_gen(i+1)的指令信号,并通过连接电缆125和输入端I1向RF发生器102发送指令信号以调整(例如改变或修改)RF发生器102的操作的配方设定点P_sp_rec。例如,第二时间段紧邻第一个时间段,例如与第一个时间段连续。举例而言,第一时间段和第二时间段之间没有时间段。作为另一示例,在第一时间段之后有一段时间,然后才是第二时间段。
此外,在第二时间段期间,在接收到具有量P_sp_gen(i+1)的指令信号后,RF发生器102在输出端O1产生具有输送的功率量P_sp_gen(i+1)的RF信号302。RF发生器102处理具有量P_sp_gen(i+1)的指令信号以便以与上述输出具有功率量P_sp_rec的RF信号302相同的方式输出具有量P_sp_gen(i+1)的RF信号302。例如,在第二时间段期间,处理器120调整(例如修改或改变)配方设定点P_sp_rec以获得量P_sp_gen(i+1),并经由连接电缆125向RF发生器102提供具有量P_sp_gen(i+1)的指令信号。在接收到指令信号后,RF发生器102的处理器产生并发送具有量P_sp_gen(i+1)的信号到RF发生器102的驱动器和放大器电路。在接收到具有量P_sp_gen(i+1)的信号后,驱动器和放大器电路基于量P_sp_gen(i+1)产生电流信号并将电流信号提供给RF发生器102的电源。RF发生器102的电源根据电流信号振荡以输出具有量P_sp_gen(i+1)的RF信号302。
具有输送的功率量P_sp_gen(i+1)的RF信号302由RF发生器102经由输出端O1、RF电缆116和输入端I2提供给阻抗匹配电路104。阻抗匹配电路104将耦合到输出端O2的负载的阻抗与耦合到输入端I2的源的阻抗匹配以修改具有输送的功率量P_sp_gen(i+1)的RF信号302,从而输出修改后的RF信号304。下电极接收基于输送的功率量P_sp_gen(i+1)而输出的修改后的RF信号304以处理衬底S1。下电极经由输出端O2和RF传输线118接收修改的RF信号304。
再次在第二时间段期间,电流传感器106测量在输出端O2处输送的电流量I_RMS(i+1)并且经由连接电缆121将该量提供给处理器120。处理器将量I_RMS(i+1)存储在存储器设备122中。在第二时间段期间,处理器120从存储器设备122访问(例如获得或读取)量I_RMS(i+1),并且通过将I_RMS(i+1)量的平方乘以与输出端O2相关联的电阻ESR来确定或计算在输出端O2处的传输的功率损耗量P_loss(i+1)。此外,在第二时间段期间,处理器120计算功率量P_sp_rec与功率损耗量P_loss(i+1)的总和以输出输送的功率量P_sp_gen(i+2)。
在处理衬底Sl的第三时间段期间,处理器120控制RF发生器102以生成具有输送的功率量P_sp_gen(i+2)的RF信号302,从而调整输出端O1提供的功率的配方设定点P_sp_rec。例如,在第三时间段期间,处理器120调整(例如修改或改变)配方设定点P_sp_rec以获得量P_sp_gen(i+2),并经由连接电缆125将具有量P_sp_gen(i+2)的指令信号提供至RF发生器102。在接收到来自处理器120的指令信号后,RF发生器102的处理器向RF发生器102的驱动器和放大器电路发送具有量P_sp_gen(i+2)的信号。在接收到具有量P_sp_gen(i+2)的信号后,驱动器和放大器电路基于量P_sp_gen(i+2)产生电流信号并将电流信号提供给电源。电源根据电流信号振荡以输出具有量P_sp_gen(i+2)的RF信号302。第三时间段与第二时间段是连续的。以类似的方式,在处理衬底S1的额外时间段期间,处理器120继续控制RF发生器102以改变RF信号302的输送的功率量,以解决或补偿与阻抗匹配电路104的输出端O2相关联(例如,在输出端O2处等)的功率损耗。
图4是表400的实施方案,其用于说明一种方法,其中在处理衬底Sl或另一衬底期间,处理器120基于与阻抗匹配电路104(图3)的输出端O2相关的功率损耗量继续修改在RF发生器102的输出端O1处输送的功率量。表400包括时间步长的列表、应用于配方设定点P_sp_rec的校正偏移的列表、发生器设定点、与输出端O2相关联的功率损耗P_loss、与等离子体室108(图1)内的等离子体耦合的功率量以及下一个时间步长校正偏移。功率损耗P_loss的示例包括P_loss(i)和P_loss(i+1)。当将一定量的功率损耗添加到配方设定点P_sp_rec时,功率损耗P_loss用于调整配方设定点P_sp_rec。校正偏移、发生器设定点、功率损耗、耦合到等离子体的功率量和下一校正偏移以瓦特(W)为单位进行测量。
时间步长的示例包括第一时间段、第二时间段和第三时间段。例如,第一时间段为时间步长0的示例,第二时间段为时间步长1的示例,第三时间段为时间步长2的示例。又例如,第一时间段为时间步长4的示例,第二时间段为时间步长5的示例,第三时间段为时间步长6的示例。又例如,第一时间段为时间步长3的示例,第二时间段为时间步长4的示例,第三时间段为时间步长5的示例。
发生器设定点的示例包括作为初始发生器配方设定点的量P_sp_rec、量P_sp_gen(i+1)和量P_sp_gen(i+2)。此外,与输出端O2相关联的功率损耗的示例包括量P_loss(i)和量P_loss(i+1)。在每个时间步长期间,与输出端O2相关的功率损耗与下一个时间步长校正偏移量相同。例如,时间步长2期间的校正偏移为5W,与时间步长1期间的功率损耗5W相同。
在时间步长0期间,处理器120控制RF发生器102以产生具有500W的量的RF信号302(图3)。500W的量是功率的配方设定点P_sp_rec的示例。此外,在时间步长0期间,处理器120从存储器设备122访问与输出端O2相关联的5W的输送的功率损耗量。输出端O2处的5W的输送的功率损耗量由处理器120通过将由电流传感器106(图3)测得的电流量(例如I_RMS(i))的平方与电阻ESR相乘来计算。电流量I_RMS(i)在时间步长0期间由电流传感器106测量。同样在时间步长0期间,495W的输送的功率量与用于处理衬底S1的等离子体耦合。495W的量是RF信号302的500W的功率量与输出端O2处的5W的功率损耗量之间的差值。在时间步长0期间,处理器120确定5W的下一时间步长校正偏移的量等于与输出端O2相关联的5W的功率损耗量。
在时间步长1期间,处理器120计算在时间步长0期间确定的500W的配方设定点和5W的下一时间步长校正偏移的总和,并控制RF发生器102生成具有505W(其是总和)的量的RF信号302。505W的量是RF发生器102在RF发生器102的输出端O1处输送的功率量P_sp_gen(i+1)的示例。此外,在时间步长1期间,处理器120从存储器设备122访问输出端O2处的8W的输送的功率损耗量。8W的输送的功率损耗量由处理器120通过将由电流传感器106(图3)测得的电流量(例如I_RMS(i+1))的平方乘以电阻ESR来计算。电流量I_RMS(i+1)在时间步长1期间由电流传感器106测量。同样在时间步长1期间,497W的输送的功率量与用于处理衬底S1的等离子体耦合。497W的量是RF信号302的505W的输送的功率量和与输出端O2相关联的8W的功率损耗量之间的差值。在时间步长1期间,处理器120确定8W的下一时间步长校正偏移量,其等于与输出端O2相关联的8W的功率损耗量。
在时间步长2期间,处理器120计算500W的配方设定点与在时间步长1期间确定的8W的下一个时间步长校正偏移的总和,并控制RF发生器102生成具有508W(其是总和)的量的RF信号302。时间步长2与时间步长1是连续的。508W的量是RF发生器102输送的功率量P_sp_gen(i+2)的示例。此外,在时间步长2期间,处理器120从存储器设备122访问输出端O2处的9W的输送的功率损耗量。输出端O2处的9W的输送的功率损耗量由处理器120通过将由电流传感器106(图3)测得的电流量(例如I_RMS(i+2))的平方乘以电阻ESR来计算。量I_RMS(i+2)由处理器120存储在存储器设备122中。电流量I_RMS(i+2)在时间步长2期间由电流传感器106测量。同样在时间步长2期间,499W的输送的功率量与用于处理衬底S1的等离子体耦合。499W的量是RF信号302的508W的输送的功率量和与输出端O2相关联的9W的功率损耗量之间的差值。在时间步长2期间,处理器120确定9W的下一时间步长校正偏移量,其等于与输出端O2相关联的9W的功率损耗量。
在时间步长3期间,处理器120计算500W的配方设定点与在时间步长2期间确定的9W的下一个时间步长校正偏移的总和,并控制RF发生器102生成具有509W(其是总和)的量的RF信号302。时间步长3与时间步长2是连续的或者在时间步长2之后。509W的量是RF发生器102输送的功率量P_sp_gen(i+3)的示例。此外,在时间步长3期间,处理器120从存储器设备122访问输出端O2处的10W的输送的功率损耗量。输出端O2处的10W的输送的功率损耗量由处理器120通过将由电流传感器106(图3)测得的电流量(例如I_RMS(i+3))的平方乘以电阻ESR来计算。10W的量由电流传感器106测量并提供给处理器120。电流量I_RMS(i+3)在时间步长3期间由电流传感器106测量。同样在时间步长3期间,499W的输送的功率量与用于处理衬底S1的等离子体耦合。499W的量是RF信号302的509W的输送的功率量和与输出端O2相关联的10W的功率损耗量之间的差值。在时间步长3期间,处理器120确定10W的下一时间步长校正偏移量,其等于与输出端O2相关联的10W的功率损耗量。
在时间步长4期间,处理器120计算500W的配方设定点与在时间步长3期间确定的10W的下一个时间步长校正偏移的总和,并控制RF发生器102生成具有510W(其是总和)的量的RF信号302。时间步长4与时间步长3是连续的或者在时间步长3之后。510W的量是RF发生器102输送的功率量P_sp_gen(i+4)的示例。此外,在时间步长4期间,处理器120从存储器设备122访问输出端O2处的10.5W的输送的功率损耗量。输出端O2处的10.5W的输送的功率损耗量由处理器120通过将由电流传感器106(图3)测得的电流量(例如I_RMS(i+4))的平方乘以电阻ESR来计算。电流量I_RMS(i+4)在时间步长4期间由电流传感器106测量。同样在时间步长4期间,499.5W的输送的功率量与用于处理衬底S1的等离子体耦合。499.5W的量是RF信号302的510W的输送的功率量和与输出端O2相关联的10.5W的功率损耗量之间的差值。在时间步长4期间,处理器120确定10.5W的下一时间步长校正偏移量,其等于与输出端O2相关联的10.5W的功率损耗量。
在时间步长5期间,处理器120计算500W的配方设定点与在时间步长4期间确定的10.5W的下一个时间步长校正偏移的总和,并控制RF发生器102生成具有510.5W(其是总和)的量的RF信号302。时间步长5与时间步长4是连续的或者在时间步长4之后。510.5W的量是RF发生器102输送的功率量P_sp_gen(i+5)的示例。此外,在时间步长5期间,处理器120从存储器设备122访问与输出端O2相关的10.6W的输送的功率损耗量。输出端O2处的10.6W的输送的功率损耗量由处理器120通过将由电流传感器106(图3)测得的电流量I_RMS(i+5)的平方乘以电阻ESR来计算。电流量(例如I_RMS(i+5))在时间步长5期间由电流传感器106测量。同样在时间步长5期间,499.9W的输送的功率量与用于处理衬底S1的等离子体耦合。499.9W的量是RF信号302的510.5W的输送的功率量和与输出端O2相关联的10.6W的功率损耗量之间的差值。在时间步长5期间,处理器120确定10.6W的下一时间步长校正偏移量,其等于与输出端O2相关联的10.6W的功率损耗量。
在时间步长6期间,处理器120计算500W的配方设定点与在时间步长5期间确定的10.6W的下一个时间步长校正偏移的总和,并控制RF发生器102生成具有510.6W(其是总和)的量的RF信号302。时间步长6与时间步长5是连续的或者在时间步长5之后。510.6W的量是RF发生器102输送的功率量P_sp_gen(i+6)的示例。此外,在时间步长6期间,处理器120从存储器设备122访问在输出端O2处的10.6W的输送的功率损耗量。输出端O2处的10.6W的输送的功率损耗量由处理器120通过将由电流传感器106(图3)测得的电流量(例如I_RMS(i+6))的平方乘以电阻ESR来计算。电流量I_RMS(i+6)在时间步长6期间由电流传感器106测量。电流量I_RMS(i+6)由处理器120存储在存储器设备122中并且由处理器120从存储器设备122访问,例如读取或获得。同样在时间步长6期间,500W的输送的功率量与用于处理衬底S1的等离子体耦合。500W的量是RF信号302的510.6W的输送的功率量和与输出端O2相关联的10.6W的功率损耗量之间的差值。在时间步长6期间,处理器120确定10.6W的下一时间步长校正偏移量,其等于与输出端O2相关联的10.6W的功率损耗量。
以此方式,处理器120基于在阻抗匹配电路104的输出端O2处测得的功率损耗量继续控制RF发生器102在RF发生器102的输出端O1处输送的功率量直到功率损耗量得到补偿。当功率损耗量稳定时,补偿功率损耗量。例如,在时间步长5和6期间,处理器120基于由电流传感器106测得的在输出端O2处输送的电流量和与输出端O2相关的电阻ESR确定发生了相同的10.6W的功率损耗量。在确定功率损耗量是稳定的时,处理器120不控制RF发生器102改变RF发生器102在RF发生器102的输出端O1处输送的功率量。例如,在时间步长6之后,处理器120继续控制RF发生器102以在RF发生器102的输出端O1处输送510.6W的功率量并且不改变510.6W的量。进一步举例而言,在时间步长6之后,电流传感器106与阻抗匹配电路104的输出端O2解耦(decouple)。不需要继续测量输出端O2处的电流来确定输出端O2处输送的功率损耗量。
在一实施方案中,代替确定两个连续时间步长的相同功率损耗量,处理器120确定两个连续时间步长期间的功率损耗量彼此相差在预定范围内以确定两个时间步长中的后者的功率损耗量是稳定的。例如,假设时间步长5期间的功率损耗量为10.61W而不是10.6W,并且假定时间步长6期间的功率损耗量为10.6W,则处理器120确定量10.6W和10.61W彼此相差在0.1W或0.2W的预定范围内,从而确定在时间步长6期间10.6W的功率损耗量是稳定的。再例如,假设在时间步长5期间的功率损耗量是10.62W而不是10.6W并且假设时间步长6期间的功率损耗量为10.6W,则处理器120确定10.6W和10.62W的量彼此相差在0.2W或0.3W的预定范围内,从而确定时间步长6期间10.6W的功率损耗量是稳定的。
在一实施方案中,在从50赫兹(Hz)到1kHz的速率范围内重复进行以下方法:测量阻抗匹配电路104的输出端O2处的电流,根据电流的测量值和电阻ESR确定阻抗匹配电路104的输出端O2处的功率损耗量,根据功率损耗量和RF发生器102的配方设定点来确定要由RF发生器102输送的功率量。例如,将以下操作每秒迭代重复50次、或每秒迭代重复1000次、或每秒迭代重复介于50次和每秒1000次之间的次数:测量输出端O2处的电流量,例如I_RMS(i),根据测量值I_RMS(i)和电阻ESR确定量P_loss(i),以及根据配方设定点P_sp_rec和量P_loss(i)确定量P_sp_gen(i+1)。作为另一示例,50或1000个时间步长(其示例在上文参照表400提供)在一秒内发生。在每个时间步长期间,在输出端O2处测量电流量,例如I_RMS(i),根据测量值I_RMS(i)和电阻ESR确定量P_loss(i),以及根据配方设定点P_sp_rec和量P_loss(i)确定量P_sp_gen(i+1)。
在一实施方案中,量510W是由RF发生器102输送的功率量P_sp_gen(i)的示例,量510.5W是由RF发生器102输送的功率量P_sp_gen(i+1)的示例,并且量510.6W是由RF发生器102输送的功率量P_sp_gen(i+2)的示例。
图5是用于说明由RF发生器102(图3)在输出端O1处输送的功率P_sp_gen改变以计算在阻抗匹配电路104(图3)的输出端O2处输送的功率损耗P_loss的曲线图500的实施方案。应当注意,术语“P_sp_gen”中的“sp”代表设定点,而术语“P_sp_gen”中的“gen”代表RF发生器102。曲线图500描绘了由RF发生器102输送的功率P_sp_gen与时间t的关系。曲线图500包括曲线502、另一曲线504和另一曲线506。曲线502描绘了在RF发生器102的输出端O1处的输送的功率P_sp_gen。此外,曲线504描绘了在阻抗匹配电路104的输出端O2处输送的功率损耗P_loss,而曲线506描绘了配方设定点P_sp_rec,其是常量。
如曲线图500中所示,在输送的功率损耗量P_loss(例如P_loss(i)、P_loss(i+1)、P_loss(i+2)等)随着时间t的推移而增加的情况下,输送的功率量P_sp_gen(例如P_sp_gen(i)、P_sp_gen(i+1)、P_sp_gen(i+2)、P_sp_gen(i+3)、P_sp_gen(i+4),P_sp_gen(i+5)、P_sp_gen(i+6)等)也随时间t的推移而增加。通过考虑输送的功率损耗P_loss,在处理衬底S1(图4)或另一衬底时在时间t内实现了均匀性。应当注意,输送的功率P_sp_gen和配方设定点P_sp_rec之间的差值在本文中被称为设定点偏移。
图6是系统600的一实施方案的示意图,其用于说明用于补偿输送的功率损耗的方法的应用。系统600包括比较器602、控制器604、加法器606、RF发生器102、阻抗匹配电路104、等离子体室108、电流传感器106、延迟电路608、滤波器610、控制器611、和比较器612。
控制器604的示例包括处理器120(图3)、ASIC、PLD、CPU、微处理器和微控制器。控制器604的另一示例包括处理器120和RF发生器102的处理器的组合。比较器602或比较器612的示例包括控制器、处理器、PLD、CPU、微处理器和微控制器。加法器606、延迟电路608和滤波器610中的每一个可以使用控制器、处理器、PLD、CPU、微处理器和微控制器来实现。滤波器610的示例包括滤除电流I_RMS的高频的低通滤波器。
比较器602耦合到控制器604,控制器604耦合到加法器606。加法器606通过连接电缆耦合到RF发生器102。此外,延迟电路608通过连接电缆耦合到电流传感器106。延迟电路608耦合到滤波器610,滤波器610耦合到控制器611。控制器611耦合到比较器612,比较器612耦合到比较器602。
电流传感器106在衬底处理期间测量电流量I_RMS并将测得的该电流量I_RMS或在无等离子体测试期间测得的电流量Irms提供给延迟电路608,所述电流量I_RMS例如量I_RMS(i),I_RMS(i+1)、I_RMS(i+2)、I_RMS(i+3)、I_RMS(i+4)、I_RMS(i+5)或I_RMS(i+6)等。延迟电路608计算(例如减少或去除)与衬底处理期间测得的电流I_RMS相关或与无等离子体测试期间测得的电流Irms相关的时间延迟。例如,延迟电路608减少或去除在处理器120从电流传感器106接收电流量I_RMS的过程中的时间延迟、在处理器120处理电流I_RMS的测量值以及电阻ESR以确定阻抗匹配电路102的输出端O2处的功率损耗P_loss的过程中的时间延迟、以及在由处理器120根据功率损耗P_loss和配方设定点P_sp_rec确定输送的功率量P_sp_gen的过程中的时间延迟。作为另一示例,延迟电路608减少或去除在处理器120从电流传感器106接收一定的电流量Irms的过程中的时间延迟。延迟电路608减少或去除与电流I_RMS相关联的时间延迟并且与电流Irms相关联的时间延迟,并将电流测量值I_RMS或电流测量值(例如,电流量等)Irms提供给滤波器610。
滤波器610将电流传感器106所测得的电流量I_RMS或电流量Irms的高频分量去除,例如滤除。控制器611根据图200(图2)中示出的由电流传感器106测得的电流量Irms与输送的功率量P_del之间的关系来确定电阻值ESR。控制器611还根据电阻ESR和电流I_RMS的平方来确定功率损耗量P_loss,并将输送的功率损耗量P_loss提供给比较器612。
比较器612将输送到阻抗匹配电路104的输入端I2的功率量与输送的功率损耗量P_loss进行比较以确定与等离子体室108内的与等离子体耦合的输送的功率量P_coupled。输送到输入端I2的功率表示为P_del。比较器612向比较器602提供与等离子体耦合的输送功率量P_coupled。
此外,比较器602将耦合到等离子体室108内的等离子体的功率量P_coupled与配方设定点P_sp_rec进行比较,以确定在阻抗匹配电路104的输出端O2处的输送的功率损耗量P_loss。控制器604从比较器602接收阻抗匹配电路104的输出端O2处的输送的功率损耗量P_loss,并将该损耗量提供给加法器606。加法器606将在阻抗匹配电路104的输出端O2处的输送的功率损耗量P_loss与配方设定点P_sp_rec相加以产生总和设定点或总设定点,其经由连接电缆作为输入提供给RF发生器102。操作RF发生器102以生成并提供在RF发生器102的输出端O1处的输送的功率的总和设定点。
在一实施方案中,延迟电路608、滤波器610、控制器611、比较器612、比较器602、控制器604和加法器606在处理器120内实现。例如,延迟电路608、滤波器610、控制器611、比较器612、比较器602、控制器604和加法器606是处理器120的一部分。
在一实施方案中,滤波器610是可选的并且可以不用于系统600中。例如,延迟电路608耦合到控制器611而不耦合到滤波器610。
在一实施方案中,这里描述为由延迟电路608、滤波器610、控制器611、比较器612、比较器602、控制器604和加法器606执行的功能由一个或多个处理器执行。例如,这里描述为由延迟电路608、滤波器610和控制器611执行的功能由一个处理器执行,并且这里描述为由比较器612、比较器602、控制器604和加法器606执行的功能由另一个处理器(例如处理器120)执行。
图7是系统700的实施方案的示意图,其用于说明在处理衬底S1之后通过应用关于图3或图4所说明的方法确定的输送的功率量P_sp_gen被保持以用于处理另一衬底S2。系统700包括与系统300相同的部件,不同之处在于系统700不包括电流传感器106。电流传感器106不耦合到阻抗匹配电路104的输出端O2。例如,电流传感器106从阻抗匹配电路104的输出端O2解耦。此外,将放置在卡盘112顶表面上的衬底S1从等离子体室108中取出,取出衬底S1后,将衬底S2放置在顶表面上以进行处理。
一旦处理器120确定了在多个时间步长(例如多个时间段)内,功率损耗量P_loss处于预定范围内所针对的待由RF发生器102提供的输送的功率量,例如P_sp_gen(i+1)、或P_sp_gen(i+10)、或510.6W(图4),处理器120不改变待由RF发生器102提供的输送的功率量。例如,处理器120在跟随在图4的时间步长6之后的每个时间步长期间向RF发生器102提供具有510.6W的量的指令信号,以用于产生具有510.6W的输送功率的RF信号302。当接收到510.6W的量的指令信号时,RF发生器102产生510.6W的量的RF信号302,并通过输出端O1和输入端I2将RF信号302提供给阻抗匹配电路104。
在接收到RF信号302后,阻抗匹配电路104使耦合到输出端O2的负载的阻抗与耦合到输入端I2的源的阻抗匹配以输出修改后的RF信号304。当一种或者多种气体被供应到等离子体室108并且修改后的RF信号304被供应到卡盘112的下电极时,等离子体被激励或维持在等离子体室108内。等离子体室108内的等离子体处理放置在等离子室108内的衬底S2。
在一实施方案中,代替控制RF发生器102以提供在RF发生器102的输出端O1处的相同的输送的功率量以处理衬底S2,在处理衬底S1之后,针对一个或多个时间步长,对衬底S2重复参照图3和图4所说明的以下方法:测量在阻抗匹配电路的输出端O2处的电流I_RMS,根据电流I_RMS和电阻ESR确定输出端O2处的功率损耗P_loss,基于功率损耗P_loss和配方设定点P_sp_rec确定待施加到RF发生器104的输送功率P_sp_gen。为衬底S2确定的输送功率P_sp_gen然后被施加到衬底S2以用于额外的时间步长。
在一实施方案中,本文描述的用于补偿RF功率损耗的方法适用于其他类型的半导体处理工具,例如电感耦合等离子体(IC)工具或电子回旋共振(ECR)工具或等离子体增强型化学气相沉积(PECVD)工具。例如,代替CCP等离子体室108,使用ICP等离子体室、ECR等离子体室或PECVD等离子体室。举例而言,RF传输线118耦合到ICP等离子体室的下电极。在该说明中,ICP等离子体室的变压器耦合等离子体(TCP)线圈耦合到地电位或通过阻抗匹配电路耦合到一个或多个RF发生器。作为另一说明,RF传输线118耦合到PECVD等离子体室的基座。作为又一示例,RF传输线118耦合到ICP等离子体室的TCP线圈。在该说明中,ICP等离子体室的下电极耦合到地电位或经由阻抗匹配电路耦合到一个或多个RF发生器。应当注意,等离子体室108是一种半导体处理工具。
可通过包含下列各项的各种计算机系统配置以实行本文所述的实施方案:手持硬件单元、微处理器系统、基于微处理器的或可编程的消费性电子产品、迷你计算机、主计算机等。还可在分布式计算环境中实行本文所述的实施方案,在这些分布式计算环境中工作经由通过计算机网络链接的远程处理硬件单元执行。
在一些实施方案中,控制器为系统的一部分,该系统可为上述示例的一部分。该系统包含半导体处理设备,该半导体处理设备包含一个或多个处理工具、一个或多个室、一个或多个处理用平台和/或特定的处理组件(晶片基座、气体流动系统等)。该系统与电子设备整合,以在半导体晶片或衬底之处理之前、期间、以及之后,控制其操作。电子设备被称为控制器,其可控制一个或者多个系统的各种组件或子部件。取决于处理需求和/或系统类型,将控制器编程设计成控制本文所公开的任何处理,包含处理气体的传送、温度设定(例如,加热和/或冷却)、压力设定、真空设定、功率设定、RF发生器设定、RF匹配电路设定、频率设定、流速设定、流体传送设定、位置和操作设定、进出与系统连接或接合的工具及其他转移工具和/或负载锁的晶片转移。
广义而言,在许多实施方案中,将控制器定义为具有接收指令、发布指令、控制操作、启动清洗操作、启动终点测量等的许多集成电路、逻辑、存储器和/或软件的电子设备。集成电路包含:储存程序指令的硬件形式的芯片、数字信号处理器(DSP)、定义为ASIC的芯片、PLD、一或更多微处理器、或执行程序指令(例如,软件)的微控制器。程序指令为以不同的单独设定(或程序档案)的形式而发送至控制器或系统的指令,该单独设定(或程序档案)为(在半导体晶片上,或针对半导体晶片)实行特定处理而定义操作参数。在一些实施方案中,操作参数由工艺工程师所定义的配方的一部分,以在一或多个(种)层、材料、金属、氧化物、硅、二氧化硅、表面、电路和/或晶片的管芯的制造期间实现一个或多个处理步骤。
在一些实施方案中,控制器为计算机的一部分,或耦合至计算机,该计算机与系统整合、耦合至系统、或以网络连接至系统、或以其组合方式连接至系统。例如,控制器在容许远程访问晶片处理的“云端”或晶片厂(fab)主计算机系统的全部或部分中。控制器使系统能够远程访问,以监控制造操作的当前进度、检查过去制造操作的历史、由多个制造操作而检查趋势或效能指标,以改变当前处理的参数、设定当前处理之后的处理步骤、或开始新的处理。
在一些实施方案中,远程计算机(例如,服务器)通过计算机网络提供处理配方至系统,该计算机网络包含局域网络或因特网。远程计算机包含用户接口,其可实现参数和/或设定的输入、或对参数和/或设定进行程序化,接着将该参数和/或该设定由远程计算机传达至系统。在一些示例中,控制器接收用于处理晶片的设置形式的指令。应理解,所述设置特别针对待在晶片上执行的处理的类型以及控制器接合或控制的工具的类型。因此,如上所述,控制器为分布式,例如通过包含以网络的方式连接彼此且朝向共同目的(例如,本文所述的完成处理)而操作的一或更多分离的控制器。用于此目的的分布式控制器的示例包含在室上、与位于远程的一或更多集成电路(例如,在平台级别、或作为远程计算机的一部分)进行通信的一或更多集成电路,两者结合以控制室中的处理。
在多种实施方案中,等离子体系统包括但不限于,等离子体蚀刻室、沉积室、旋转冲洗室、金属镀室、清洁室、边缘蚀刻室、物理气相沉积(PVD)室、化学气相沉积(CVD)室、原子层沉积(ALD)室、原子层蚀刻(ALE)室、离子注入室、轨道室以及和半导体晶片的制造相关和/或用于制造的任何其他半导体处理室。
还应注意,虽然上述操作是参照平行板等离子体室进行说明,但在一些实施方案中,上述操作也应用于其他类型的等离子体室,例如变压器耦合等离子体(TCP)反应器、介电工具、包含电子回旋共振(ECR)反应器的等离子体室等。TCP反应器的示例包含感应耦合等离子体(ICP)反应器。TCP反应器的另一示例包含导体工具。有时,术语“反应器”和“等离子体室”在此可互换使用。
如上所述,取决于将通过工具执行的操作,控制器与半导体制造工厂中的一或更多的以下各项进行通信:其他工具电路或模块、其他工具组件、群集(cluster)工具、其他工具接口、邻近的工具、相邻的工具、遍布工厂的工具、主计算机、另一控制器、或材料运输中所使用的工具,该材料运输中所使用的工具将晶片容器往返于工具位置和/或装载端口输送。
考虑到上述实施方案,应理解,一些实施方案使用涉及储存在计算机系统中的数据的各种计算机实现的操作。这些计算机实现的操作是操控物理量的操作。
实施方案中的一些还涉及硬件单元或执行这些操作的设备。该设备特别地针对专用计算机而构建。当被定义为专用计算机时,该计算机执行其他处理、程序执行或非特殊用途的部分且同时仍能操作用于特殊用途的例程。
在一些实施方案中,此处所述操作由选择性启动的计算机执行,或由存储在计算机存储器中的一个或多个计算机程序所配置,或通过计算机网络而获得。当数据通过计算机网络获取时,可通过计算机网络(例如,计算资源的云)上的其他计算机以处理该数据。
还可将本文所述的一或多个实施方案制造成非瞬时计算机可读介质上的计算机可读码。非瞬时计算机可读介质是储存数据的任何数据储存硬件单元(例如存储器设备等),所述数据之后通过计算机系统读取。非瞬时计算机可读介质的示例包含硬盘、网络附加存储(NAS)、ROM、RAM、只读光盘(CD-ROM)、可录式光盘(CD-R)、可重写光盘(CD-RW)、磁带以及其他光学式及非光学式数据储存硬件单元。在一些实施方案中,非瞬时计算机可读介质包含分布于网络耦合计算机系统范围内的计算机可读有形介质,使得计算机可读码以分散方式储存及执行。
尽管上述的一些方法操作是以特定顺序呈现,但应理解,在许多实施方案中,在多个操作之间执行其他内务操作,或者,将方法操作调整成使得这些方法操作在稍微不同的时间发生,或者这些方法操作分布于容许多个方法操作以多种间隔发生的系统中,或者这些方法操作以不同于上述的顺序执行。
应进一步注意,在一实施方案中,来自上述任何实施方案的一或更多特征与任何其他实施方案的一或更多特征结合,而不偏离本公开所述的各种实施方案所描述的范围。
虽然前述的实施方案已针对清楚理解的目的而相当详细地加以描述,但应明白,一些改变与修改可在所附的权利要求的范围内实施。因此,本发明的实施方案应被视为说明性而非限制性的,且这些实施方案不应受限于本文中所提供的细节,而是可在所附权利要求的范围及等同范围内进行修改。

Claims (20)

1.一种用于补偿射频(RF)功率损耗的方法,其包括:
获得与等离子体系统的部件相关联的多个参数的多个测量值;
根据所述多个参数的所述多个测量值确定与所述等离子体系统的所述部件相关联的电阻;
获得与所述等离子体系统的所述部件相关联的所述多个参数中的一个参数的值;
根据所述电阻和所述多个参数中的所述一个参数的所述值确定与所述等离子体系统的所述部件相关联的所述RF功率损耗量;
基于所述RF功率损耗量调整所述RF发生器的操作设定点;以及
重复多个操作,所述多个操作包括:获得所述多个参数中的所述一个参数的一个或多个附加值,确定一个或多个附加的RF功率损耗量,以及修改所述RF发生器的所述操作设定点直到施加于所述设定点的调整量补偿所述RF功率损耗。
2.根据权利要求1所述的方法,其中当RF功率损耗的多个量彼此相差在预定范围内时,施加于所述设定点的所述调整量补偿所述RF功率损耗。
3.根据权利要求1所述的方法,其中在无等离子体测试期间或之后执行所述获得所述多个测量值和确定所述电阻。
4.根据权利要求1所述的方法,其中在衬底处理期间执行:所述获得所述值,所述确定所述RF功率损耗量,所述调整所述设定点,所述重复。
5.根据权利要求1所述的方法,其中,所述等离子体系统的所述部件是阻抗匹配电路。
6.根据权利要求1所述的方法,其中,所述确定所述RF功率损耗量包括将所述电阻乘以所述多个参数中的所述一个参数的所述值的平方。
7.根据权利要求1所述的方法,其中执行所述调整所述RF发生器的所述操作设定点以控制所述RF发生器在第二设定点操作,其中所述重复包括:
获得与所述等离子体系统的所述部件相关联的所述多个参数中的所述一个参数的第二值;
根据所述电阻和所述多个参数中的所述一个参数的所述第二值确定第二RF功率损耗量;以及
基于所述第二RF功率损耗量调整所述RF发生器的所述操作设定点,其中,执行所述基于所述第二RF功率损耗量调整所述RF发生器的所述操作设定点以控制所述RF发生器在第三设定点操作。
8.根据权利要求1所述的方法,其中,所述调整所述设定点包括将所述RF功率损耗量添加到所述设定点。
9.一种用于补偿射频(RF)功率损耗的控制器,其包括:
处理器,其被配置为:
获得与等离子体系统的部件相关联的多个参数的多个测量值;
根据所述多个参数的所述多个测量值确定与所述等离子体系统的所述部件相关联的电阻;
获得与所述等离子体系统的所述部件相关联的所述多个参数中的一个参数的值;
根据所述电阻和所述多个参数中的所述一个参数的所述值确定与所述等离子体系统的所述部件相关联的所述RF功率损耗量;
基于所述RF功率损耗量调整所述RF发生器的操作设定点;以及
重复:获得所述多个参数中的所述一个参数的一个或多个附加值,确定一个或多个附加的RF功率损耗量,以及调整所述RF发生器的所述操作设定点直到施加于所述设定点的调整量补偿所述RF功率损耗;和
耦合到所述处理器的存储器设备,其用于存储所述多个参数的所述多个测量值。
10.根据权利要求9所述的控制器,其中所述处理器确定当RF功率损耗的多个量彼此相差在预定范围内时,施加于所述设定点的所述调整量补偿所述RF功率损耗。
11.根据权利要求9所述的控制器,其中所述处理器在无等离子体测试期间或之后获得所述多个测量值并且确定所述电阻。
12.根据权利要求9所述的控制器,其中处理器获得所述多个参数中的所述一个参数的所述值,确定所述RF功率损耗量,调整所述设定点,并且重复获得所述一个或多个附加值,确定一个或多个附加的所述RF功率损耗量,以及在处理衬底期间调整所述RF发生器的所述操作设定点。
13.根据权利要求9所述的控制器,其中,所述等离子体系统的所述部件是阻抗匹配电路。
14.根据权利要求9所述的控制器,其中为了确定所述RF功率损耗量,所述处理器被配置为将所述电阻乘以所述参数中的所述一个参数的所述值的平方。
15.根据权利要求9所述的控制器,其中所述处理器被配置为调整所述RF发生器的所述操作设定点以控制所述RF发生器在第二设定点操作,
其中,为了重复获得所述一个或多个附加值、确定所述一个或多个附加的所述RF功率损耗量以及调整所述RF发生器的所述操作设定点,所述处理器被配置为:
获得与所述等离子体系统的所述部件相关联的所述多个参数中的所述一个参数的第二值;
根据所述电阻和所述多个参数中的所述一个参数的所述第二值确定第二RF功率损耗量;
基于所述第二RF功率损耗量调整所述RF发生器的所述操作设定点,其中,所述处理器被配置为基于所述第二RF功率损耗量调整所述RF发生器的所述操作设定点以控制所述RF发生器在第三设定点操作。
16.根据权利要求9所述的控制器,其中为了调整所述设定点,所述处理器被配置为将所述RF功率损耗量与所述设定点相加。
17.一种用于补偿射频(RF)功率损耗的等离子体系统,其包括:
射频(RF)发生器,其被配置为产生RF信号;
阻抗匹配电路,其耦合至所述RF发生器以用于接收所述RF信号;和
耦合到所述RF发生器的计算机,其中所述计算机被配置为:
获得与所述等离子体系统的部件相关联的多个参数的多个测量值;
根据所述多个参数的所述多个测量值确定与所述等离子体系统的所述部件相关联的电阻;
获得与所述等离子体系统的所述部件相关联的所述多个参数中的一个参数的值;
根据所述电阻和所述多个参数中的所述一个参数的所述值确定与所述等离子体系统的所述部件相关联的所述RF功率损耗量;
基于所述RF功率损耗量调整所述RF发生器的操作设定点;以及
重复:获得所述多个参数中的所述一个参数的一个或多个附加值,确定一个或多个附加的RF功率损耗量,以及调整所述RF发生器的所述操作设定点直到施加于所述设定点的调整量补偿所述RF功率损耗。
18.根据权利要求17所述的等离子体系统,其中所述计算机确定当多个RF功率损耗量彼此相差在预定范围内时,施加于所述设定点的所述调整量补偿所述RF功率损耗。
19.根据权利要求17所述的等离子体系统,其中所述计算机调整所述RF发生器的所述操作设定点以控制所述RF发生器在第二设定点操作,
其中,为了重复获得所述一个或多个附加值、确定所述一个或多个附加的所述RF功率损耗量以及调整所述RF发生器的所述操作设定点,所述计算机被配置为:
获得与所述等离子体系统的所述部件相关联的所述多个参数中的所述一个参数的第二值;
根据所述电阻和所述多个参数中的所述一个参数的所述第二值确定第二RF功率损耗量;
基于所述第二RF功率损耗量调整所述RF发生器的所述操作设定点,其中,所述计算机被配置为基于所述第二RF功率损耗量调整所述RF发生器的所述操作设定点以控制所述RF发生器在第三设定点操作。
20.根据权利要求17所述的等离子体系统,其中所述计算机确定当多个RF功率损耗量彼此相差在预定范围内时,施加到所述设定点的所述调整量补偿所述RF功率损耗。
CN202080045167.3A 2019-06-20 2020-05-27 用于补偿射频功率损耗的系统和方法 Pending CN114008749A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962864346P 2019-06-20 2019-06-20
US62/864,346 2019-06-20
PCT/US2020/034698 WO2020256899A1 (en) 2019-06-20 2020-05-27 Systems and methods for compensating for rf power loss

Publications (1)

Publication Number Publication Date
CN114008749A true CN114008749A (zh) 2022-02-01

Family

ID=74037020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080045167.3A Pending CN114008749A (zh) 2019-06-20 2020-05-27 用于补偿射频功率损耗的系统和方法

Country Status (5)

Country Link
US (2) US12002653B2 (zh)
JP (1) JP2022536516A (zh)
KR (1) KR20220024779A (zh)
CN (1) CN114008749A (zh)
WO (1) WO2020256899A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113282B (zh) * 2021-04-01 2023-11-14 北京北方华创微电子装备有限公司 上电极电源功率调节方法、半导体工艺设备
US11990319B2 (en) 2022-01-05 2024-05-21 Applied Materials, Inc. Methods and apparatus for processing a substrate
US20240094273A1 (en) * 2022-09-19 2024-03-21 Applied Materials, Inc. Wideband variable impedance load for high volume manufacturing qualification and on-site diagnostics

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237031A1 (en) * 2007-03-30 2008-10-02 Tokyo Electron Limited Plasma processing apparatus, radio frequency generator and correction method therefor
CN105463408A (zh) * 2014-09-30 2016-04-06 朗姆研究公司 用于等离子体辅助原子层沉积中的rf补偿的方法和装置
US20160118227A1 (en) * 2014-10-23 2016-04-28 Lam Research Corporation System, Method and Apparatus for RF Power Compensation in a Plasma Processing System

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000208495A (ja) * 1999-01-18 2000-07-28 Mitsubishi Electric Corp プラズマ処理方法およびプラズマ処理装置
US10242873B2 (en) * 2014-03-06 2019-03-26 Applied Materials, Inc. RF power compensation to control film stress, density, resistivity, and/or uniformity through target life
JP6645856B2 (ja) * 2016-02-04 2020-02-14 株式会社アルバック プラズマ処理装置
US11837446B2 (en) * 2017-07-31 2023-12-05 Lam Research Corporation High power cable for heated components in RF environment
US10607815B2 (en) * 2018-06-29 2020-03-31 Applied Materials, Inc. Methods and apparatuses for plasma chamber matching and fault identification

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237031A1 (en) * 2007-03-30 2008-10-02 Tokyo Electron Limited Plasma processing apparatus, radio frequency generator and correction method therefor
CN105463408A (zh) * 2014-09-30 2016-04-06 朗姆研究公司 用于等离子体辅助原子层沉积中的rf补偿的方法和装置
US20160118227A1 (en) * 2014-10-23 2016-04-28 Lam Research Corporation System, Method and Apparatus for RF Power Compensation in a Plasma Processing System

Also Published As

Publication number Publication date
US20220238307A1 (en) 2022-07-28
KR20220024779A (ko) 2022-03-03
JP2022536516A (ja) 2022-08-17
US20240290579A1 (en) 2024-08-29
US12002653B2 (en) 2024-06-04
WO2020256899A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US9720022B2 (en) Systems and methods for providing characteristics of an impedance matching model for use with matching networks
US10916409B2 (en) Active control of radial etch uniformity
CN110246744B (zh) 通过奇次谐波混合调整离子能量分布函数的系统和方法
US10325759B2 (en) Multiple control modes
CN107564789B (zh) 用于基于rf功率的衬底支撑件前馈温度控制的系统与方法
US10340915B2 (en) Frequency and match tuning in one state and frequency tuning in the other state
US20240290579A1 (en) Systems and methods for compensating for rf power loss
US10621265B2 (en) Systems and methods for tuning an impedance matching network in a step-wise fashion
US9082594B2 (en) Etch rate modeling and use thereof for in-chamber and chamber-to-chamber matching
US10020168B1 (en) Systems and methods for increasing efficiency of delivered power of a megahertz radio frequency generator in the presence of a kilohertz radio frequency generator
US20220165543A1 (en) Systems and methods for tuning a mhz rf generator within a cycle of operation of a khz rf generator
US11823875B2 (en) Real-time control of temperature in a plasma chamber
KR102223834B1 (ko) 전력 제어 모드를 위한 챔버 정합
KR102438864B1 (ko) 플라즈마 챔버의 전극으로 전력 전달 최적화를 위한 방법들 및 시스템들
CN111247619B (zh) 用于控制等离子体室中的等离子体辉光放电的方法和系统
JP2024138327A (ja) 半導体処理ツールにおけるrf電流測定
US20210313152A1 (en) Rf power compensation to reduce deposition or etch rate changes in response to substrate bulk resistivity variations
WO2022216419A1 (en) Systems and methods for controlling a plasma sheath characteristic
WO2024006675A1 (en) Systems and methods for calibrating rf generators in a simultaneous manner
WO2023158490A1 (en) Systems and methods for central frequency tuning
KR20240140975A (ko) Hf rf 생성기와 연관된 반사 전력을 효율적으로 감소시키기 위한 시스템 및 방법
WO2023069211A1 (en) Systems and methods for determining a phase difference between rf signals provided to electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination