WO2009063573A1 - 高炉用ステーブクーラ - Google Patents

高炉用ステーブクーラ Download PDF

Info

Publication number
WO2009063573A1
WO2009063573A1 PCT/JP2007/072599 JP2007072599W WO2009063573A1 WO 2009063573 A1 WO2009063573 A1 WO 2009063573A1 JP 2007072599 W JP2007072599 W JP 2007072599W WO 2009063573 A1 WO2009063573 A1 WO 2009063573A1
Authority
WO
WIPO (PCT)
Prior art keywords
staple
welded
blast furnace
water supply
pipe
Prior art date
Application number
PCT/JP2007/072599
Other languages
English (en)
French (fr)
Inventor
Akihiro Tsuda
Toshisuke Kuze
Kazushi Akagi
Daigo Kato
Original Assignee
Nippon Steel Corporation
Nittetsu Plant Designing Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation, Nittetsu Plant Designing Corporation filed Critical Nippon Steel Corporation
Priority to CN200780101521.4A priority Critical patent/CN101855369B/zh
Priority to KR1020107010592A priority patent/KR101205572B1/ko
Priority to PCT/JP2007/072599 priority patent/WO2009063573A1/ja
Publication of WO2009063573A1 publication Critical patent/WO2009063573A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements

Definitions

  • the present invention absorbs it and force generated by thermal expansion between the staple body and the iron skin, and particularly acts on the welded portion between the water supply / drainage pipe and the staple body.
  • the present invention relates to a blast furnace staple cooler configured to be dimensioned.
  • stave cooler In the current blast furnace operation, a stave cooler (hereinafter, simply referred to as “staple”) is widely used as a means for cooling the furnace wall.
  • the cooling pipe is placed in the stub body mold in advance and then forged and cooled to form a structure in which the 3 ⁇ 4 and the staple body are integrated. It can be structured without a joint between the main body water supply / drain and the water supply / drainage pipe.
  • a steer cooler made of copper or copper alloy after forming a cooling pipe in the main body of the staple, it is necessary to weld and connect the water supply / drain port of the main body of the staple and the water supply / drain pipe. It becomes the structure which has.
  • the welds near the stub body are the inside of the furnace body of the staple body exposed to high temperatures and the iron core of the stub body that is cooled and dissipated in blast furnace operation.
  • thermal stress is generated due to displacement due to thermal expansion difference and thermal contraction difference, it becomes a stress concentration part, and fatigue cracks occur at this site, leading to a shortened life of the staple cooler. become.
  • the stave body 1 In normal staple mounting, as shown in Fig. 6, the stave body 1 is fixed to the iron skin 6 with mounting bolts 8 and iron nuts 9, and the load of the stave body 1 is applied to the water supply / drainage pipe 2 Disperses the load so that it does not act directly.
  • the supply / drainage pipe 2 of the copper or copper alloy staple cooler is welded to the supply / drainage port of the main body 1.
  • the opening of the iron skin 6 through which the water supply / drainage extraction pipe 2 passes is welded to the water supply / drainage extraction pipe 2 and the iron skin 6 through the seal plate ⁇ 5 so that the gas in the blast furnace is moved to the outside of the iron skin. Sealed to prevent leakage.
  • the mounting bolt 8 can share the load of the steve body and cannot absorb the stress fluctuation due to the difference in thermal expansion.
  • a copper or copper alloy steer cooler is particularly stress concentrated due to stress fluctuations caused by thermal expansion differences in blast furnace operation.
  • the welded part with the water supply and drainage pipe near the staple body was the place where fatigue cracks occurred.
  • the seal plate 5 connecting the water supply / drainage extraction pipe 2 and the iron skin 6 is easily deformed when displacement occurs due to a difference in thermal expansion between the staple body and the iron skin, and is welded to the water supply / drainage extraction pipe near the staple body.
  • the seal plate 5 itself may be damaged due to deformation caused by repeated stress, causing the gas in the furnace to leak out.
  • the gas in the blast furnace is sealed so as not to leak to the outside of the iron shell by a seal plate 5 welded to the end of the expansion tube 7 and the outer periphery of the water supply / drainage extraction tube 2.
  • the expansion tube 7 is deformed in the direction of thermal expansion or thermal contraction, so that the stress can be absorbed.
  • it is possible to obtain an effect of suppressing fatigue failure in the welded portion of the water supply / drainage pipe near the staple body due to the stress caused by the difference in thermal expansion and in the seal plate 5.
  • the expansion tube 7 is a structure that can be easily expanded and contracted, such as a bellows structure. There is a problem in terms of durability.
  • the expansion tube 7 is regularly replaced so that a crack is generated in the expansion tube 7 so that the gas in the furnace does not leak outside, or the expansion tube 7 is generated.
  • the productivity was lowered due to the shutdown of the blast furnace.
  • the protection pipe 3 is arranged so as to surround the water supply / drainage extraction pipe 2 in the pig iron tape main body, and further, the connecting box 4 so as to surround the protection pipe 3 around the opening of the iron skin.
  • a method of fixing between the water supply / drainage extraction pipe 2 and the protective pipe 3 and between the combing box 4 and the protective pipe 3 with a filler 10 or a fixing block 1 1 for example, And Japanese Patent Laid-Open No. 8-2 2 5 8 1 3).
  • the water supply / drainage extraction pipe 2 and the protection pipe 3 are fixed with the filler 10 or the like, thereby improving the rigidity of the water supply / drainage extraction pipe 2, and the protection pipe 3 and the combing box 4.
  • This method can also be applied to copper or copper alloy staples.
  • this method since the water supply / drainage extraction pipe 2, the protective pipe 3, and the combing box 4 are integrated, it is possible to absorb the stress that is displaced due to the difference in thermal expansion between the staple body 1 and the iron shell 6. Can't, steve body 1 On the other hand, the stress concentration occurs at the welded part between the pipe and the drainage pipe 2 and the possibility of fatigue failure increases.
  • the present invention absorbs the stress caused by the difference in thermal expansion between the staple body and the iron skin that occurs with an increase in the thermal load of the blast furnace furnace body in blast furnace blast furnace operation.
  • blast furnaces that have a highly reliable structure that can withstand long-term use by suppressing the occurrence of fatigue failure in the welded area between the staple body and the water supply / drainage extraction pipe and the welded area between the iron skin and the water supply / drainage extraction pipe It aims to provide a staple cooler.
  • the present invention solves the above technical problem, and the gist of the invention is that a water supply / drainage pipe is welded to a copper or copper alloy staple body, and the staple body and the blast furnace core are combined.
  • a blast furnace staple cooler fixed by a steel mounting port of steel, a protective pipe is welded so as to surround the water supply / drainage extraction pipe to the steel body, and the iron on the outer periphery of the opening formed in the iron skin
  • a coating box is provided on the skin surface so as to surround the protective tube, one end of the side plate of the coating box is welded to the iron shell, and the other end of the side plate is interposed through a seal plate.
  • a blast furnace steer cooler welded to the outer peripheral surface of the protective tube.
  • the blast furnace staple cooler of the present invention when adopting a copper or copper alloy staple cooler with excellent cooling capacity for the furnace body or bottom of the blast furnace, the heat load of the blast furnace furnace body in the high output blast furnace operation is reduced. It absorbs the stress caused by the difference in thermal expansion between the staple body and the iron skin that accompanies the increase, and causes fatigue failure in the welded portion between the staple body and the water supply / drainage extraction pipe and the weld between the iron skin and the water supply / drainage extraction pipe. It is possible to provide a blast furnace furnace cooling stap having a highly reliable structure that can suppress generation and withstand long-term use.
  • FIG. 1 is a view showing an embodiment in which a staple according to the present invention is arranged on a blast furnace wall.
  • FIG. 2 is a view showing a joining state of the steel body and the steel body through the protective pipe and the combing box of the steel supply / drainage pipe according to the present invention.
  • Fig. 3 is a diagram showing the state of joining between the staple body and the iron skin without using a conventional staple expansion tube.
  • Fig. 4 is a diagram showing the state of joining of the main body of the staple and the iron skin via the conventional staple expansion tube.
  • Fig. 5 is a diagram showing the state of joining of the main body and the iron skin through the protective tube, combing box, and packing material of the conventional steve supply / drainage tube.
  • Fig. 6 is a view showing a state in which the staples via the conventional mounting bolts are arranged on the blast furnace wall.
  • Fig. 7 is a diagram showing a state in which the staple is arranged on the blast furnace wall without using conventional mounting bolts.
  • Fig. 1 shows the state of joining of the blast furnace furnace cooling staple of the present invention and the iron skin
  • Fig. 2 shows the staple body of the present invention, a water supply / drainage pipe, a protective pipe, a connecting box, and an iron skin. Each bonding state is schematically shown.
  • a blast furnace staple cooler has a water supply / drainage pipe 2 welded to a copper or copper alloy staple body 1, and the staple body 1 and the blast furnace core 6 are made of a plurality of steels. Fixed by port 9 made of metal.
  • the staple body made of copper or copper alloy, heat conductivity is increased compared to the conventional pig iron staple body, and the cooling water circulating in the cooling water piping in the staple body is used to make the staple body furnace. Heat from the inside can be efficiently removed.
  • the load of the main body 1 is supported by a plurality of steel mounting ports 9.
  • the steel mounting port 9 can share the load of the staple body 1, but cannot absorb the stress fluctuation due to the difference in thermal expansion between the staple body 1 and the iron skin 6.
  • the protective pipe 3 is welded to the staple body 1 so as to surround the water supply / drainage pipe 2 and formed on the iron skin.
  • a combing box 4 is provided on the outer surface of the outer skin of the opening so as to surround the protective tube 3, one end of the side plate of the combing box 4 is welded to the outer skin 6, and the other end of the end of the side plate is welded. Is welded to the outer periphery of the water supply / drainage pipe 2 through a seal plate 5.
  • the protective tube 3 is welded to the staple body 1 so as to surround the water supply / drainage extraction pipe 2, the welded portion between the water supply / drainage port of the staple body 1 and the water supply / drainage extraction pipe 2 which is a stress concentration site.
  • the cross-sectional area in the vicinity increases, and the load on this part is shared by the protective tube.
  • the wall thickness of the protective tube is less than 5 mm, sufficient strength cannot be obtained, and if it exceeds 7 mm, the gap between the supply and drainage pipes becomes narrow and welding becomes difficult, so that it has sufficient strength and easily 5-7 mm is preferable because it can be welded.
  • the material of the protective tube is preferably carbon steel for high-temperature piping because it maintains strength even when exposed to high temperatures and can be easily welded.
  • a combing box 4 is disposed so as to surround the protective pipe 3, and the water supply / drainage extraction pipe 2 and the protective pipe 3 are not directly welded to the iron skin, Displacement due to thermal expansion is possible, and when the discharge box 2 and protective pipe 3 are welded to the iron shell through the combing box 4 and the displacement due to the difference in thermal expansion occurs, the combing box 4 moves in the direction of displacement. By deforming, the stress at the welded part of the water supply / drainage extraction pipe 2 can be reduced.
  • one end of the side plate of the coating box 4 is welded to the outer peripheral surface of the opening, and the other end of the side plate of the coating box 4 and the outer peripheral surface of the protective tube 3 are sealed plate 5 As a result, the blast furnace gas is shielded by the side plate of the combing box 4 and the seal plate ⁇ 5 and is prevented from leaking out of the iron skin.
  • the opening of the iron skin 6 can be freely displaced without contact with the iron skin, even if the water supply / drainage extraction pipe 2 and the protective pipe 3 are slightly deformed when a displacement due to thermal expansion difference occurs during blast furnace operation. In order to make this possible, it is preferable to have an opening diameter sufficiently larger than the outer diameter of the protective tube 3.
  • the side plate and seal plate 5 that make up the combing box 4 change when a displacement occurs due to a difference in thermal expansion during blast furnace operation.
  • a metal plate such as a thin steel plate is preferred so that it can shrink in the lateral direction.
  • the side plate length is 40 ⁇ : 1 2
  • the thickness of the side plate is less than 8 mm, it is too thin and welding becomes difficult, and if it exceeds 10 mm, it will not be easily deformed and will not be able to absorb the difference in thermal expansion.
  • the thickness of the side plate is preferably 8 to 10 mm because it can be easily welded.
  • the plate thickness of the seal plate 5 is less than 5 mm, it is too thin and welding becomes difficult, and if it exceeds 7 mm, it does not easily deform and cannot absorb the difference in thermal expansion, so that sufficient strength is maintained.
  • the plate thickness of the seal plate 5 is 5 to 7 mm because of the reason that it can be easily welded.
  • the side plate and seal plate are preferably made of plain carbon steel because they have sufficient strength and can be easily welded.
  • the space inside the combing box and the seal plate ⁇ is filled with a filling material such as a refractory so that the combing box and the seal plate can be easily deformed to absorb the difference in thermal expansion.
  • a filling material such as a refractory
  • it is not.
  • the method for producing the copper or copper alloy staple of the present invention is not particularly limited, but can be generally produced as follows. First, one wooden mold with the same shape as the staple is produced inside and outside the furnace. Secondly, the wooden molds are placed in each metal frame corresponding to the inside and outside of the staple tape, and then sand is put in. Third, sand After solidifying, pull out the wooden mold and make the sand mold. For the waterway, a sand mold with hardened sand is separately manufactured and installed at a fixed position of the sand mold.
  • the sand molds on the inside and outside of the furnace are aligned up and down, and molten copper or copper alloy is injected from the inlet.
  • the sand mold is removed after solidification, and the sand hole is fitted with a plug made of the same material as the copper stub body and welded. Weld the water supply / drainage pipe to the water supply / drainage port and weld the protective pipe to surround the water supply / drainage extraction pipe.
  • a water channel is drilled in a rolled copper plate or a rolled copper alloy plate having the same shape as the staple, and unnecessary holes are welded by inserting a plug of the same material as the main body of the steel tube, welding a water supply / drainage pipe to the water supply / drainage port, There is also a manufacturing method in which a protective tube is welded so as to surround the tube.
  • a copper staple cooler in which a protective pipe 3 and a combing box 4 are arranged around a water supply / drainage pipe 2 welded to a copper staple body 1 according to the present invention, the staple body These four locations were fixed to the iron skin of the blast furnace furnace body with steel mounting ports and nuts.
  • the conventional copper staple cooler in which the water supply / drainage discharge pipe 2 welded to the conventional copper staple main body 1 is welded to the iron skin through the seal plate ⁇ 5 is the same. It is attached to the iron shell of the blast furnace furnace body, and when the blast furnace operation is performed using the copper staple cooler according to the present invention and the conventional copper steer cooler, the weld of the staple body and the feed / drainage pipe 2 and the seal plate 5 The damage state was simulated.
  • the combing box is 9 mm thick ordinary carbon steel, and the seal plate is thick. A 6 mm plain carbon steel was used.
  • the blast furnace furnace in the blast furnace blast furnace operation absorbs the stress caused by the difference in thermal expansion between the staple body and the iron skin caused by the increase in the thermal load of the body, and welds between the staple body and the water supply / drainage extraction pipe, and welds between the iron skin and the water supply / drainage extraction pipe It is possible to provide a blast furnace furnace cooling tape that has a highly reliable structure that can withstand long-term use by suppressing the occurrence of fatigue failure in the steel. Therefore, the present invention has great applicability in the steel industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

銅または銅合金製ステーブ本体に給排水取出管が溶接され、該ステーブ本体と高炉鉄皮とが複数の鋼製取付けボルトにより固定された高炉用ステーブクーラにおいて、前記ステーブ本体に給排水取出管を包囲するように保護管が溶接され、前記鉄皮に形成された開口部の外周の鉄皮面に前記保護管を包囲するようにコーミングボックスが設けられ、該コーミングボックスの側板端部の一方が鉄皮に溶接され、該側板端部の他方がシールプレートを介して前記保護管の外周面に溶接された高炉用ステーブクーラ。

Description

高炉用ステ一ブクーラ
技術分野
本発明は、 ステープ本体と鉄皮との熱膨張に Ό生じる it、力を吸 収し、 特に、 給排水取出管とステープ本体との溶接部などに作用す 明
る応力を極力小さ く し、 長期間の使用に耐え ί 1旦
寸るように構成した高 炉用ステープクーラに関する。
背景技術
現在の高炉操業では、 炉壁を冷却するための手段として、 ステー ブクーラ (以下 、 単にステープという こと ある ) が広く用いられ ている。
近年、 高炉操業においては、 出銑量の増加および出銑効率の向上 を指向することに伴って、 従来より も、 高炉炉体の熱負荷が高まつ てきており、 より効率的に炉体を冷却することができるステープク ーラが求められるようになった。 このような中で、 最近、 従来の铸 鉄ステープより も熱伝導性が優れた銅または銅合金製のステーブク ーラが開発され、 適用されるようになった。
しかし、 銅または銅合金製のステ一ブクーラを高炉に適用する場 合には、 従来の铸鉄ステープでは存在しなかった新たな課題が顕在 化するようになった。 つまり、 従来の铸鉄ステープでは、 予め冷却 管をステ一ブ本体型枠内に配置した後、 铸造して冷却 ¾とステーフ 本体とを一体化した構造とするため、 鉄皮の外側まで 、 ステープ本 体の給排水口と給排水管との接合部がない構造とすることができる 一方、 銅または銅合金製のステ一ブクーラは、 ステープ本体内に 冷却管を形成した後、 ステープ本体の給排水口と給排水管とを溶接 して接合する必要があるため 、 ステープ本体近傍に溶接部を有する 構造となる。
この銅または銅合金製のステ一ブクーラにおけるステ —ブ本体近 傍の溶接部は、 高炉操業において 、 高温にさ らされるステープ本体 の炉内側と、 冷却放熱されるステ一ブ本体の鉄皮側との間での熱膨 張差 · 熱収縮差による変位に起因して応力が発生する際に、 応力集 中部となり、 この部位で疲労亀裂が発生し、 ステープクーラの寿命 の短縮を招く ことになる。
通常のステープの取付けにおいては、 図 6 に示すよ Όに、 ステー ブ本体 1 を取付けボルト 8 と鉄皮ナッ ト 9 により鉄皮 6 に固定し、 給排水取出管 2 にステ一ブ本体 1 の荷重が直接作用しないように荷 重を分散している。
銅または銅合金製のステープクーラの給排水取出管 2 は、 図 3 に 示すように、 ステ一ブ本体 1 の給排水口に溶接されている。 この給 排水取出管 2 を通すための鉄皮 6の開口部は、 シールプレー 卜 5 を 介して給排水取出管 2 と鉄皮 6 を溶接することで、 高炉の炉内ガス が鉄皮の外側に漏れないように封止されている。
図 3および図 6 に示す従来ステープでは、 高炉操業において、 ス テ一ブ本体の炉内側と鉄皮側との熱膨張差、 さらには、 ステープ本 体の鉄皮側と鉄皮との熱膨張差による変位により、 応力亦
义動が生じ るが 、 この際に 、 取付けボル卜 8は、 ステ一ブ本体の荷重を分担す ることはできてち 、 熱膨張差による応力変動を吸収するしとはでき ない
ごのため、 銅または銅合金製のステ一ブクーラでは、 高炉操業に おける熱膨張差に起因する応力変動により、 特に応力集中部となる ステープ本体近傍の給排水取出管との溶接部が、 疲労亀裂の発生部 位となっていた。
また、 給排水取出管 2 と鉄皮 6 を接続するシールプレー ト 5 は、 ステープ本体と鉄皮とに熱膨張差による変位が生じた場合に変形し やすく、 ステープ本体近傍の給排水取出管との溶接部の応力を軽減 する効果を有するが、 シールプレー ト 5 自体が繰り返し応力による 変形で破損し、 炉内ガスが外に漏れ出すトラブルを引き起こす恐れ がある。
上記技術的課題に対して、 従来から、 給排水取出管と鉄皮とを可 縮性のある伸縮管を介して接合する方法がある (例えば、 特開昭 5 2 — 8 5 5 3号公報、 参照) 。 この方法は、 図 4に示すように、 給 排水取出管 2 を包囲するように伸縮管 7 を配置し、 この伸縮管 7 を 介して前記給排水取出管 2 を鉄皮 6 に溶接するものである。
この場合、 伸縮管 7端部と給排水取出管 2外周とに溶接されたシ ールプレー ト 5 により、 高炉炉内ガスが鉄皮の外側に漏れないよう にシールされている。
この方法によれば、 ステ一ブ本体と鉄皮との熱膨張差による変位 が生じた場合に、 熱膨張または熱収縮する方向に伸縮管 7が変形す ることにより、 応力を吸収することができるので、 熱膨張差に起因 する応力によるステープ本体近傍の給排水取出管との溶接部や、 シ —ルプレー 卜 5 における疲労破壊を抑制する効果が得られる。
しかし、 伸縮管 7 は、 図 4に示すように、 蛇腹構造などの伸縮が 容易な構造である反面、 長年の使用によるダス トの付着による腐食 の進行が早く、 疲労破壊し易い構造であり、 耐久性の面で問題があ る。
このため、 伸縮管 7 に破孔ゃ亀裂が生じて炉内ガスが外に漏れな いように定期的に伸縮管 7 を取替るか、 または、 伸縮管 7 に生じた 破孔ゃ亀裂の部位を簡易補修する必要があり、 そのため、 多大の労 力を必要とするという問題、 また、 高炉の休止などにより生産性が 低下するという問題があつた。
また、 ステープ取付けボルトの変形等により、 ステープ本体と給 排水取出管との溶接部にステープ荷重が作用した場合、 ステープ本 体と給排水取出管との溶接部が疲労破壊を起こ し、 その箇所から冷 却水が漏れだし、 炉内に浸水するといぅ大 トラブルを引き起こす危 険性がある。
また、 従来の铸鉄ステープを鉄皮に取付ける方法として、 ステー ブ本体 1 の取付けボルト 8 とナツ ト 9 を省略し、 迅速なステープ取 替えを行う ことを目的とし、 図 5および図 7 に示すように、 铸鉄ス テープ本体に給排水取出管 2 を包囲するように保護管 3 を配置し、 さらに、 鉄皮開口部の廻り に、 保護管 3 を包囲するようにコ一ミ ン グボックス 4を配置し、 給排水取出管 2 と保護管 3、 および、 コー ミ ングボックス 4 と保護管 3の間を、 それぞれ、 充填物 1 0や固定 ブロック 1 1 により固着する方法が知られている (例えば、 特開平 8 - 2 2 5 8 1 3号公報、 参照) 。
この方法によれば、 給排水取出管 2 と保護管 3 とを、 充填物 1 0 などにより固着することで、 給排水取出管 2の剛性を向上させ、 さ らに、 保護管 3 とコーミ ングボックス 4 とを、 充填物 1 0などによ り固着することで、 ステ一ブ本体の荷重を支持することにより、 図 7 に示すように、 ステープ本体 1 の取付けボルト 8 とナツ 卜 9 を省 略することができる。
本法は、 銅または銅合金製のステープでも適用可能である。 しか し、 この方法では、 給排水取出管 2 と保護管 3 とコーミ ングボック ス 4 とが一体化した構造であるため、 ステープ本体 1 と鉄皮 6の熱 膨張差より変位する応力を吸収することができず、 ステ一ブ本体 1 と給排水取出管 2 との溶接部に応力集中が生じ、 疲労破壊が発生す る可能性が、 逆に高くなる。
上述した通り、 近年、 高出銑高炉操業における高炉炉体の熱負荷 の増大に伴って、 ステープ本体の炉内側と鉄皮側、 さ らに、 ステー ブ本体の鉄皮側と鉄皮との熱膨張差が拡大し、 これに起因して、 ス テープ本体と給排水取出管の溶接部、 さ らに、 給排水取出管と鉄皮 との溶接部での疲労破壊が発生する可能性が高まっているが、 従来 のステープでは、 ステープの寿命を向上するための十分な効果は得 られていないのが現状である。 発明の開示
上記従来技術の現状に鑑みて、 本発明は、 高出銑高炉操業におけ る高炉炉体の熱負荷の増大に伴って生じるステープ本体と鉄皮との 熱膨張差に起因する応力を吸収し、 ステープ本体と給排水取出管と の溶接部や、 鉄皮と給排水取出管との溶接部における疲労破壊の発 生を抑制し、 長期間の使用に耐え得る信頼性の高い構造を有する高 炉用ステープクーラを提供することを目的とする。
本発明は、 上記技術的課題を解決するものであり、 その発明の要 旨とするところは、 銅または銅合金製ステープ本体に給排水取出管 が溶接され、 該ステープ本体と高炉鉄皮とが複獰の鋼製取付けポル トにより固定された高炉用ステープクーラにおいて、 前記ステ一ブ 本体に給排水取出管を包囲するように保護管が溶接され、 前記鉄皮 に形成された開口部の外周の鉄皮面に前記保護管を包囲するように コーミ ングボックスが設けられ、 該コ一ミ ングボックスの側板端部 の一方が鉄皮に溶接され、 該側板端部の他方がシールプレー トを介 して前記保護管の外周面に溶接されたことを特徴とする高炉用ステ ーブクーラである。 本発明の高炉用ステープクーラによれば、 高炉の炉体または炉底 に冷却能力の優れた、 銅または銅合金製ステープクーラを採用する にあたり、 高出銑高炉操業における高炉炉体の熱負荷の増大に伴つ て生じるステープ本体と鉄皮との熱膨張差に起因する応力を吸収し 、 ステープ本体と給排水取出管との溶接部や、 鉄皮と給排水取出管 との溶接部における疲労破壊の発生を抑制し、 長期間の使用に耐え 得る信頼性の高い構造を有する高炉炉体冷却用ステープを提供する ことができる。 図面の簡単な説明
図 1 は、 本発明によるステープを高炉炉壁に配置した態様を示す 図である。
図 2 は、 本発明によるステ一ブ給排水取出管の保護管、 コーミ ン グボックスを介するステ一ブ本体と鉄皮との接合状況を示す図であ る。
図 3 は、 従来のステープ伸縮管を介さないステープ本体と鉄皮と の接合状況を示す図である。
図 4は、 従来のステープ伸縮管を介するステープ本体と鉄皮との 接合状況を示す図である。
図 5 は、 従来のステ一ブ給排水取出管の保護管、 コーミングボッ クス、 および、 充填物を介するステープ本体と鉄皮との接合状況を 示す図である。
図 6 は、 従来の取付けボルトを介するステープを高炉炉壁に配置 した態様を示す図である。
図 7 は、 従来の取付けボルトを介さずステープを高炉炉壁に配置 した態様を示す図である。 発明を実施するための最良の形態
図 1 に、 本発明の高炉炉体冷却用ステープと鉄皮との接合状態、 図 2 に、 本発明のステープ本体、 給排水取出管、 保護管、 コ一ミ ン グボックス、 および、 鉄皮とのそれぞれの接合状態を、 模式的に示 す。
本発明における高炉用ステープクーラは、 図 1および図 2 に示す ように、 銅または銅合金製ステープ本体 1 に給排水取出管 2が溶接 され、 該ステープ本体 1 と高炉鉄皮 6 とが複数の鋼製取付けポルト 9 により固定されている。 ステープ本体を銅または銅合金製とする ことで、 従来の铸鉄製ステープ本体に比べて、 熱伝導性を高め、 ス テープ本体内の冷却水配管中を循環する冷却水により、 ステープ本 体の炉内側からの熱を効率的に抜熱することができる。
また、 ステ一ブ本体 1 の荷重は、 複数の鋼製取付けポルト 9で支 持されている。 鋼製取付けポルト 9 は、 ステープ本体 1 の荷重を分 担することはできるが、 ステープ本体 1 と鉄皮 6 との熱膨張差によ る応力変動を吸収することはできない。
そこで、 本発明では、 図 1および図 2 に示すように、 高炉用ステ ーブクーラにおいて、 ステープ本体 1 に、 給排水取出管 2 を包囲す るように保護管 3 を溶接し、 鉄皮に形成された開口部の外周の鉄皮 面に、 保護管 3 を包囲するようにコーミ ングボックス 4を設け、 該 コーミ ングボックス 4の側板端部の一方を鉄皮 6 に溶接し、 該側板 端部の他方をシールプレー ト 5 を介して前記給排水管 2外周に溶接 した構造とする。
上記ステープ構造においては、 ステープ本体 1 に、 給排水取出管 2 を包囲するように保護管 3が溶接されているため、 応力集中部位 であるステープ本体 1 の給排水口と給排水取出管 2 との溶接部近傍 の断面積が拡大し、 この部位の荷重を保護管により分担することに より、 熱膨張差による変位が生じた場合に、 給排水取出管 2の溶接 部の応力を軽減することができる。
保護管の肉厚は、 5 m m未満になると十分な強度が得られず、 7 m mを超えると給排水管との間隔が狭くなり溶接が困難となるので 、 十分な強度をもち、 かつ、 容易に溶接できるという理由から、 5 〜 7 m mが好ましい。 また、 保護管の材質は、 高温にさ らされても 強度を保ち、 かつ、 容易に溶接できるという理由から、 高温配管用 炭素鋼が好ましい。
また、 前記鉄皮に形成された開口部において、 保護管 3 を包囲す るようにコーミ ングボックス 4を配置し、 給排水取出管 2および保 護管 3 は、 鉄皮と直接溶接せずに、 熱膨張による変位が可能な状態 にし、 コーミ ングボックス 4を介して給排水取出管 2および保護管 3 を鉄皮と溶接し、 熱膨張差による変位が生じた場合に、 コーミン グボックス 4が変位方向に変形することにより、 給排水取出管 2の 溶接部の応力を軽減することができる。
また、 コ一ミ ングボックス 4の側板端部の一方と開口部外周の鉄 皮面とが溶接され、 コーミ ングボックス 4の側板端部の他方と保護 管 3外周面とは、 シールプレー ト 5 を介して溶接されているため、 高炉炉内ガスは、 コーミ ングボックス 4の側板およびシールプレー 卜 5 によってシールドされ、 鉄皮の外に漏洩することが防止されて いる。
なお、 上記鉄皮 6の開口部は、 高炉操業における熱膨張差による 変位が生じた場合に、 給排水取出管 2および保護管 3が多少変形し ても、 鉄皮と接触せずに自由に変位が可能な状態とするために、 保 護管 3 の外径に比べて十分大きな開口径を有することが好ましい。
また、 コーミ ングボックス 4 を構成する側板およびシールプレー ト 5は、 高炉操業における熱膨張差による変位が生じた場合に、 変 位方向に収縮が可能なよつに、 板厚が薄い鋼板などの金属板が好ま しい。
前記側板の長さは、 4 0 m m未満になると短すぎて熱膨張差によ る変位を吸収するのに不十分であり、 1 2 0 m mを超えると長すぎ て周りの設備と干渉するという理由から、 側板の長さは 4 0〜 : 1 2
0 m mが望ましレ
前記側板の板厚は、 8 m m未満になると薄すぎて溶接が困難とな り、 1 0 m mを超えると容易に変形せず熱膨張差を吸収できなくな るので、 十分な強度を維持し、 かつ、 容易に溶接できるという理由 から、 側板の板厚は 8〜 1 0 m mが好ましい。
また、 前記シールプレ一卜 5の板厚は、 5 m m未満になると薄す ぎて溶接が困難となり、 7 m mを超えると容易に変形せず熱膨張差 を吸収できなくなるので 、 十分な強度を維持し、 かつ、 容易に溶接 できるという理由力、ら、 シールプレー ト 5の板厚は 5〜 7 m mと" g るのが好ましい。
また、 これら側板およびシールプレー トの材質は、 十分な強度を もち、 かつ、 容易に溶接できるという理由から、 普通炭素鋼が好ま しい。
そして、 コーミ ングボックスおよびシールプレー 卜の内側の空間 は、 コ一ミ ングボックスおよびシールプレー トが容易に変形して熱 膨張差を吸収できるように、 充填铸物ゃ耐火物等で充填されていな いことが好ましい。
また、 本発明の銅または銅合金製ステープの製造方法は、 特に限 定する必要はないが、 一般に、 以下のように製造することが可能で ある。 第一に、 ステープと同じ形状の木型を炉内側と炉外側で、 1 個ずつ製作する。 第二に、 ステープの炉内側と炉外側に相当する各 々の金枠に、 該木型を設置し、 その後、 砂を入れる。 第三に、 砂を 固めた後、 木型を抜いて砂型を製作する。 水路は、 砂を固めた砂型 を別途製作し、 該砂型の定位置に設置する。
第四に、 炉内側と炉外側の砂型を上下に合わせて、 注入口から銅 または銅合金の溶湯を注入する。 第五に、 凝固後に砂型を取り除き 、 砂抜き穴は銅ステ一ブ本体と同一材質のプラグをはめ込み溶接す る。 給排水口に給排水取出管を溶接し、 給排水取出管を取り囲むよ うに保護管を溶接する
また、 ステープと同じ形状の圧延銅板または圧延銅合金板に水路 を穿孔し 、 不要な穴はステ一ブ本体と同一材質のプラグをはめ込み 溶接し、 給排水口に給排水取出管を溶接し、 給排水取出管を取り囲 むように保護管を溶接する製造法もある 実施例
以下、 本発明の実施例を図面に基づき説明する。 図 1 および図 2 に示すように、 本発明による銅製ステープ本体 1 に溶接された給排 水取出管 2の周囲に、 保護管 3およびコーミ ングボックス 4 を配置 した銅製ステープクーラを用い、 ステープ本体の 4箇所を、 鋼製取 付けポルトとナッ トにより、 高炉炉体の鉄皮に固定した。
また、 本発明による銅製ステープの効果を確認するため、 従来の 銅製ステープ本体 1 に溶接された給排水取出管 2 をシールプレー 卜 5 を介して鉄皮に溶接した従来の銅製ステープクーラを、 同じよう に高炉炉体の鉄皮に取付けて、 本発明による銅製ステープクーラと 従来の銅製ステ一ブクーラを用いて高炉操業を行った際におけるス テープ本体と給排水取出管 2の溶接部およびシールプレート 5の損 傷状態をシミュレーショ ンした。
なお、 本発明による銅製ステープクーラにおいて、 コーミ ングポ ックスは厚みが 9 m mの普通炭素鋼を用い、 シールプレー トは厚み が 6 m mの普通炭素鋼を用いた。
シミュレーショ ン結果によると、 本発明による銅製ステープクー ラでは、 ステープ本体 1 と給排水取出管 2の溶接部およびシールプ レー ト 5 における損傷は見られなかった。
一方、 従来の銅製ステープクーラでは、 ステープ本体 1 と給排水 取出管 2の溶接部およびシールプレー ト 5の鉄皮との溶接部に許容 応力の約 2倍の熱応力が働らき、 給排水取出管とシールプレー トが 破損する可能性があることが明らかになった。 産業上の利用可能性
前述したように、 本発明の高炉用ステープクーラによれば、 高炉 の炉体または炉底に冷却能力の優れた、 銅または銅合金製ステープ クーラを採用するにあたり、 高出銑高炉操業における高炉炉体の熱 負荷の増大に伴って生じるステープ本体と鉄皮との熱膨張差に起因 する応力を吸収し、 ステープ本体と給排水取出管との溶接部や、 鉄 皮と給排水取出管との溶接部における疲労破壊の発生を抑制し、 長 期間の使用に耐え得る信頼性の高い構造を有する高炉炉体冷却.用ス テープを提供することができる。 よって、 本発明は、 鉄鋼産業上の 利用可能性が大きいものである。

Claims

請 求 の 範 囲
1 . 銅または銅合金製ステープ本体に給排水取出管が溶接され、 該ステープ本体と高炉鉄皮とが複数の鋼製取付けボルトにより固 定された高炉用ステープクーラにおいて、
前記ステープ本体に給排水取出管を包囲するように保護管が溶接 され、
前記鉄皮に形成された開口部の外周の鉄皮面に前記保護管を包囲 するようにコーミ ングボックスが設けられ、
該コーミ ングボックスの側板端部の一方が鉄皮に溶接され、 該側板端部の他方がシールプレー トを介して前記保護管の外周面 に溶接された
ことを特徴とする高炉用ステ一ブクーラ。
PCT/JP2007/072599 2007-11-15 2007-11-15 高炉用ステーブクーラ WO2009063573A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780101521.4A CN101855369B (zh) 2007-11-15 2007-11-15 高炉用板式冷却器
KR1020107010592A KR101205572B1 (ko) 2007-11-15 2007-11-15 고로용 스테이브 쿨러
PCT/JP2007/072599 WO2009063573A1 (ja) 2007-11-15 2007-11-15 高炉用ステーブクーラ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/072599 WO2009063573A1 (ja) 2007-11-15 2007-11-15 高炉用ステーブクーラ

Publications (1)

Publication Number Publication Date
WO2009063573A1 true WO2009063573A1 (ja) 2009-05-22

Family

ID=40638429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072599 WO2009063573A1 (ja) 2007-11-15 2007-11-15 高炉用ステーブクーラ

Country Status (3)

Country Link
KR (1) KR101205572B1 (ja)
CN (1) CN101855369B (ja)
WO (1) WO2009063573A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572385B1 (ko) * 2014-09-25 2015-11-26 현대제철 주식회사 고로용 냉각장치
CN112662829A (zh) * 2021-01-21 2021-04-16 南京玛格耐特智能科技有限公司 一种高炉风口小套及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100112A (ja) * 1986-10-14 1988-05-02 Kawasaki Steel Corp 高炉炉壁レンガ修復用ステ−ブの取付け方法
JPH0762410A (ja) * 1993-08-25 1995-03-07 Nippon Steel Corp 高炉用ステーブのコーミング構造
JP2005256176A (ja) * 1998-02-13 2005-09-22 Jfe Steel Kk 冶金炉用ステーブ
JP2007308747A (ja) * 2006-05-17 2007-11-29 Nippon Steel Corp 高炉用ステーブクーラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100112A (ja) * 1986-10-14 1988-05-02 Kawasaki Steel Corp 高炉炉壁レンガ修復用ステ−ブの取付け方法
JPH0762410A (ja) * 1993-08-25 1995-03-07 Nippon Steel Corp 高炉用ステーブのコーミング構造
JP2005256176A (ja) * 1998-02-13 2005-09-22 Jfe Steel Kk 冶金炉用ステーブ
JP2007308747A (ja) * 2006-05-17 2007-11-29 Nippon Steel Corp 高炉用ステーブクーラ

Also Published As

Publication number Publication date
CN101855369A (zh) 2010-10-06
CN101855369B (zh) 2013-03-27
KR20100070370A (ko) 2010-06-25
KR101205572B1 (ko) 2012-11-27

Similar Documents

Publication Publication Date Title
JP4751238B2 (ja) 高炉用ステーブクーラ
JP6691328B2 (ja) 炉体保護用ステーブ
EP2007912B1 (en) Method of manufacturing a stave cooler for a metallurgical furnace and a resulting stave cooler
KR20130065648A (ko) 기밀식 이차 스테이브 지지부 장치 및 방법
US8834784B2 (en) Thin stave cooler and support frame system
WO2009063573A1 (ja) 高炉用ステーブクーラ
CN105586457B (zh) 一种适用于高炉炉役后期局部炉皮冷却壁破损修复的方法
CN204922353U (zh) 一种钢套钢蒸汽直埋管道内外固定节
JP2019536971A (ja) 製鋼炉に使用するための延長されたレッグ折り返しエルボおよびその方法
JP4029764B2 (ja) ステーブクーラ
JP4692332B2 (ja) ステーブクーラ及びその設置方法
JP2016108607A (ja) ステーブクーラー、ステーブクーラーの製造方法、および、ステーブクーラーを備えた高炉
JP4495330B2 (ja) 高炉炉壁用冷却パネル
JP2008101233A (ja) 高炉炉体冷却設備
CN113390266A (zh) 一种用于熔融还原炉过渡区的冷却装置
JP3633519B2 (ja) 冶金炉用ステーブクーラおよびその取付け方法
JP7401762B2 (ja) ステーブの交換方法及びステーブ
JP2018115369A (ja) ステーブクーラー及びステーブクーラーの補修方法
CN216550503U (zh) 水管加强型铜冷却壁
JP5569315B2 (ja) 冶金炉の水冷フランジ
JP2000319710A (ja) 高炉鉄皮の補修方法
JP2002080908A (ja) クーリングステーブ
JP2022541368A (ja) 高炉及びその他工業炉向け多重チャネル冷却パネル
CN116557684A (zh) 一种铝电解槽压缩空气管道伸缩节保护套及安装方法
JP2002003914A (ja) クーリングステーブ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780101521.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2559/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107010592

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832329

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0711117

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20081030