JP6691328B2 - 炉体保護用ステーブ - Google Patents

炉体保護用ステーブ Download PDF

Info

Publication number
JP6691328B2
JP6691328B2 JP2018535611A JP2018535611A JP6691328B2 JP 6691328 B2 JP6691328 B2 JP 6691328B2 JP 2018535611 A JP2018535611 A JP 2018535611A JP 2018535611 A JP2018535611 A JP 2018535611A JP 6691328 B2 JP6691328 B2 JP 6691328B2
Authority
JP
Japan
Prior art keywords
stave
pipe
furnace
groove
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018535611A
Other languages
English (en)
Other versions
JPWO2018037957A1 (ja
Inventor
久夫 楠本
久夫 楠本
清志 緒方
清志 緒方
傑 井田
傑 井田
勝紀 菊地
勝紀 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2018037957A1 publication Critical patent/JPWO2018037957A1/ja
Application granted granted Critical
Publication of JP6691328B2 publication Critical patent/JP6691328B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/24Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/12Casings; Linings; Walls; Roofs incorporating cooling arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Blast Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、高温に曝される高炉などの炉壁を保護するために用いられる炉体保護用ステーブに関する。
従来、高炉炉体を炉内熱負荷から保護するために炉体冷却装置(以下、ステーブと記載する)が使用されている。炉体保護用のステーブは、鋳鉄や圧延銅、鋳物銅などで製作され、ステーブ本体に冷却用の水路を有している。近年、高炉炉体の高熱負荷に対応すべく、より冷却能力の高いステーブが要求され、結果として熱伝導率の高い銅製のステーブの採用が増えてきている。
このような炉体保護用ステーブにおいて、ステーブ本体に形成された冷却用の水路は、設計思想やどの材料を使用するかによって異なる。すなわち、材質に応じて、鋳鉄では鋼製配管を鋳鉄で鋳ぐるみ、圧延銅では機械加工によって水路を形成(ドリル孔)、鋳物銅では鋳造で水路を形成することが一般的である。
以下、機械加工での製作のため水路の寸法精度が良く、材質的にも鋳込み時に発生する「巣」などの欠陥の心配も殆どないことから、採用数が比較的多い、圧延銅から構成される炉体保護用ステーブについて説明する。
図7(a)、(b)は、それぞれ、従来の圧延銅からなる炉体保護用ステーブの一例の構成を示す正面図およびそのA−A線に沿った断面図である。図7(a)、(b)に示す例において、圧延銅からなるステーブ本体51には複数の水路52(ここでは3本)が設けられている。それぞれの水路52は、ステーブ本体51に機械加工(ドリル加工)により形成される。水路52は、ステーブ本体51の長手方向に貫通する水路本体52aと、給排水用配管53−1、53−2と連通させるための水路本体52aとは直交する給排水用通路52b−1、52b−2とから構成されている。水路本体52aの両端は、封止部材54−1、54−2を溶接することにより封止されている。給排水用通路52b−1、52b−2には、それぞれ、鋼管または銅管からなる給排水用配管53−1、53−2を溶接することで固定している。ステーブ本体51には複数(ここでは4本)のボルト55が設けられている。
図8にその一例を示すように、上述した構成の炉体保護用ステーブは、高炉炉体の鉄皮61にボルト55とナット56とを使用してねじ止めにより固定されている。ステーブ本体51の給排水用配管53−1、53−2は、高炉炉体の鉄皮61に開けられた穴を貫通し、炉体外側より給水、排水される。
高炉内での繰り返し熱負荷により銅製ステーブが破損した場合の、原因のほとんどは冷却系統からの水漏れである。近年、微粉炭吹込みの増加で炉体への熱負荷は格段に上がり、設計段階で想定し期待していた寿命よりも早期にステーブ破損が発生している。このようなステーブ破損に起因する炉内浸水は高炉の安定操業を大きく阻害する。そのため、操業中に水漏れが確認された場合は、ステーブの水路に循環させる冷却水の停止措置を実施する。この冷却水停止により、銅製ステーブは炉内の高温と原料による摩耗の環境に曝されるため、短期間でステーブ本体そのものが消失してしまう。銅製ステーブの消失(冷却機能の消失)によって、今度は高炉本体鉄皮が直接高温に曝されるようになり、鉄皮亀裂や熱変形を引き起こし、高炉操業そのものの継続が困難になってしまう。
銅製ステーブの水漏れは、冷却水中に高炉炉内のガスが混入することにより発見されるが、水漏れを起こしている個所は調査結果より以下と推定される。
(1)高熱負荷による変形で、ステーブ本体の給排水用水路と給排水用配管の溶接接合部に亀裂が発生することによる水漏れ、
(2)高熱負荷による変形で、ステーブ本体の機械加工にて水路を形成したときの不要開口を塞ぐために用いる封止部材の溶接部に亀裂が発生することによる水漏れ、
(3)機械的強度および硬度が低いために、炉内原料による摩耗で冷却水路に穴があくことによる水漏れ。
そのため、高炉の長期安定操業のためには、銅製ステーブの水漏れを解決し、寿命延長を図っていく必要がある。
圧延銅製ステーブではステーブ本体そのものに冷却水路を形成しているため、鋳鉄製ステーブなどで採用されている鋳込み配管に通水冷却するよりも冷却能力が高い。しかし、圧延銅製ステーブでは、ステーブ本体の損傷から冷却水路の破損が起こりステーブ本体の早期消失となることが多い。そのため、圧延銅製ステーブは結果的に短寿命となっている。一方、鋳鉄製ステーブは冷却通路が鋳込み配管で構成されており、ステーブ本体とは独立している。そのため、ステーブ本体の損傷による冷却通路への影響が少ないが、鋳込み配管では配管とステーブ本体との間にできる境界層により熱伝達率が低下するため冷却能力は高くない。
上記の問題を解決し、銅製ステーブの長寿命化を図るものとして、銅製ステーブの炉外側に機械加工等で溝を掘り、その溝に鋼製の配管を組み込み、鋼製の板をボルトで固定する構造が知られている(特許文献1)。
特開2002−146418号公報
しかしながら、特許文献1に開示された構造の銅製ステーブには以下のような欠点があった。すなわち、配管を溝中に固定するための銅製ステーブと鋼板との結合はボルトによるもののため、鋼製の配管の端部までは結合できない。そのため、銅製ステーブと鋼板との熱膨張率の違い(銅:約1.6×10−5/℃、鉄:約1.0×10−5/℃)により、熱負荷により鋼板が変形し、鋼板の口が開く。そして、ここに原料が侵入し、熱負荷が上昇し、最終的にはボルト破断などが起こる。これにより、銅製ステーブから鋼板が外れ、配管の保持機能と同時にステーブの機能も失う。炉外側に鋼板を使用することでコストは抑えられるが、同時に高炉炉体鉄皮と耐火物の冷却能力も低下してしまう。
本発明の目的は、高炉などの炉体内壁に設置するステーブとして、冷却水の水漏れの確率を低くでき、ステーブの破損を防止して長寿命化を達成することができる炉体保護用ステーブを提供することにある。
従来技術が抱えている前述の課題を解決し、前記の目的を実現するために鋭意研究した結果、発明者らは、以下に述べる新規な炉体保護用ステーブを開発するに到った。即ち、本発明は、銅製のステーブ本体の炉外側表面または炉内側表面に設けた溝に、鋼製の配管を組み込み、ステーブ本体の溝と配管とを硬ろう材で接合して、ステーブ本体にステーブ本体冷却用の水路を形成した構造を有することを特徴とする炉体保護用ステーブである。
なお、前記のように構成される本発明に係る炉体保護用ステーブにおいては、
(1)前記溝に、溶接により前記硬ろう材を覆うように蓋を形成したこと、
(2)前記配管の一端および他端に、前記配管を前記溝に組み込んだ際に、前記ステーブ本体の炉外側表面から突出する配管入口部および配管出口部を、前記配管と一体に形成したこと、
(3)前記配管入口部および配管出口部のそれぞれの外周に保護管を設けたこと、
(4)前記溝の表面と前記硬ろう材との間に、第1の中間部材を設けたこと、
(5)前記硬ろう材と前記配管の外表面との間に、第2の中間部材を設けたこと、
がより好ましい解決手段となるものと考えられる。
本発明の炉体保護用ステーブによれば、例えば圧延銅などの銅製ステーブ本体冷却用の水路を鋼製配管で構成し、銅製ステーブ本体と配管を硬ろう材で接合し埋め込むことで、高熱負荷にも耐え、長寿命化されたステーブを得ることができる。また、ステーブ本体が変形しても、溶接部が直接水路に接していないため、従来水路の各部で使用された溶接部からの水漏れの心配が無い。さらに、ステーブ本体と冷却用配管のスキマを硬ろう材で埋めることで、ステーブ本体に対する冷却能力を上げることができる。
(a)〜(d)は、それぞれ、本発明の炉体保護用ステーブの一例の構成を示す正面図、背面図、A−A線に沿った断面図およびB−B線に沿った断面図である。 (a)〜(d)は、それぞれ、本発明の炉体保護用ステーブの他の例の構成を示す正面図、背面図、A−A線に沿った断面図およびB−B線に沿った断面図である。 (a)〜(c)は、それぞれ、本発明の炉体保護用ステーブの一例の製造方法における各工程を説明するための、図1(a)、(b)のA−A線に沿った図である。 (a)〜(c)は、それぞれ、本発明の炉体保護用ステーブの他の例の製造方法における各工程を説明するための、図2(a)、(b)のA−A線に沿った図である。 (a)、(b)は、それぞれ、本発明の炉体保護用ステーブのさらに他の例の構成を図1(a)、(b)のB−B線に沿った断面図および図2(a)、(b)のB−B線に沿った断面図として示す図である。 (a)、(b)は、それぞれ、本発明の炉体保護用ステーブのさらに他の例の構成を図1(a)、(b)のB−B線に沿った断面図として示す図である。 (a)、(b)は、それぞれ、従来の圧延銅からなる炉体保護用ステーブの一例の構成を示す正面図およびそのA−A線に沿った断面図である。 本発明の炉体保護用ステーブを高炉の炉体に装着する一例を説明するための図である。
図1(a)〜(d)は、それぞれ、本発明の炉体保護用ステーブの一例の構成を示す正面図、背面図、A−A線に沿った断面図およびB−B線に沿った断面図である。図1(a)〜(d)に示す本発明の炉体保護用ステーブの一例において、図1(a)、(b)に示すように、銅製のステーブ本体1の炉外側表面1aに形成した溝2(ここでは3本)に、図1(c)、(d)に示すように、鋼製の配管3を組み込み、ステーブ本体1の溝2と配管3とを硬ろう材4で接合して、ステーブ本体1に配管3からなるステーブ本体冷却用の水路を形成した構造を有する。
また、図2(a)〜(d)に示す本発明の炉体保護用ステーブの他の例においては、図2(a)、(b)に示すように、銅製のステーブ本体1の炉内側表面1bに溝2(ここでは3本)を設け、さらに、炉外側表面1aに配管の出口孔7−1、7−2を設け、そこに図2(c)、(d)に示すように鋼製の配管3を組み込み、ステーブ本体1の溝2と配管3とを硬ろう材4で接合して、ステーブ本体1に配管3からなるステーブ本体冷却用の水路を形成した構造を有することも可能である。
図3(a)〜(c)は、それぞれ、本発明の炉体保護用ステーブの一例の製造方法における各工程を説明するための、図1(a)、(b)のA−A線に沿った図である。図3(a)〜(c)に従って本発明の炉体保護用ステーブの一例の製造方法を説明すると、まず、図3(a)に示すように、炉外側表面1aに溝2を形成した銅製のステーブ本体1と鋼製の配管3とを準備する。溝2は、銅製のステーブ本体1の炉外側表面1aにエンドミルなどを用いて機械加工を施し形成することができる。溝2の断面形状は、U字形状とすることができるが、配管3を組み込むことができる形状であればどのような形状でもよい。鋼製の配管3は、配管3の一端および他端に、配管3を溝2に組み込んだ際に、ステーブ本体1の炉外側表面1aから突出する配管入口部3−1と配管出口部3−2とを、配管3と一体に形成している。配管入口部3−1と配管出口部3−2とは、一本の構成の配管3の両端にベンダーなどを用いて曲げ加工を施し形成することができる。なお、配管入口部3−1および配管出口部3−2には、それらの周囲に保護管(図示せず)を設けることもできる。
次に、図3(b)に示すように、溝2に配管3を、配管入口部3−1と配管出口部3−2とが炉外側表面1aから突出するよう組み込む。そして、図3(c)に示すように、ステーブ本体1の溝2と配管3との間に、所定の温度に加熱して溶融状態となった硬ろう材4を流し込み、その後冷却して硬ろう材4を硬化する。これにより、本発明の炉体保護用ステーブとして、ステーブ本体1の溝2と配管3とを硬ろう材4で接合して、ステーブ本体1にステーブ本体冷却用の配管3からなる水路を形成した構造を得ることができる。
また、他の例として、図4(a)〜(c)は、それぞれ、本発明の炉体保護用ステーブの他の例の製造方法における各工程を説明するための、図2(a)、(b)のA−A線に沿った図である。図4(a)〜(c)に従って本発明の炉体保護用ステーブの他の例の製造方法を説明すると、まず、図4(a)に示すように、炉内側表面1bに溝2を形成するとともに、炉外側表面1aに配管入口部3−1および配管出口部3−2を炉外側表面1aから突出させるための出口孔7−1および7−2を形成した銅製のステーブ本体1と鋼製の配管3とを準備する。溝2は、銅製のステーブ本体1の炉内側表面1bにエンドミルなどを用いて機械加工を施し形成することができる。また、出口孔7−1および7−2はドリルなどを用いて溝2の底部または炉外側表面1aから機械加工を施し形成することができる。
次に、図4(b)に示すように、溝2に配管3を、配管入口部3−1と配管出口部3−2とが出口孔7−1と7−2を介して炉外側表面1aから突出するよう組み込む。そして、図4(c)に示すように、ステーブ本体1の溝2と配管3との間に、所定の温度に加熱して溶融状態となった硬ろう材4を流し込み、その後、冷却して硬ろう材4を硬化する。これにより、本発明の炉体保護用ステーブとして、ステーブ本体1の溝2と配管3とを硬ろう材4で接合して、ステーブ本体1にステーブ本体冷却用の配管3からなる水路を形成した構造を得ることができる。
上述した構成の本発明の炉体保護用ステーブでは、圧延銅などの銅製のステーブ本体1の炉外側表面1aまたは炉内側表面1bに、機械加工等でU字形状に溝2を掘り、そのU字形状の溝2に鋼製の配管3を組み込んでいく。鋳鉄よりも高熱伝導率を持つ銅をステーブ本体1とし、鋼製の配管3で冷却水路を独立させることにより、前述したような冷却水路などの破損に起因するステーブ本体1の損傷やステーブ本体1の早期消失を防止することができる。銅製のステーブ本体1の炉外側表面1aまたは炉内側表面1bに加工されたU字形状の溝2は、ステーブ本体1の冷却水路となる。鋼製の配管3は事前に所定の形状(U字形状の溝2のレイアウトに対応した形状)に成型し、銅製ステーブ本体1の断面U字形状の溝2に組み込まれる。配管3を組み込んだ状態で、ステーブ本体1と配管3とを硬ろう材4にて接合させる。
銅製のステーブ本体1が実機で曝される温度については、本発明者らは、冷却水路に通水状態で実機(高炉操業中)での温度測定を長期間(10秒ピッチデータを2年間)実施し、ステーブ本体は最大でも400℃程度までしか上昇しないことを見出した。このことから、ステーブ本体1と配管3とを溶融温度が450℃以上と定義されている硬ろう材(JIS Z 3261で規定されるBAgなど)にて接合すれば、銅製のステーブ本体1と配管3とが外れてしまうことはないことに想到し、本発明を完成した。仮にステーブ本体1の温度が400℃以上となる場合は、冷却水が停止している状態しか考えられず、この状態であると銅製のステーブ本体1から配管3が外れるという事態以前に、銅製のステーブ本体1そのものが炉内の熱負荷と原料による摩耗で消失してしまうと考えられる。なお、硬ろう材の溶融温度が高すぎると接合時にステーブ本体が変形する可能性があるため、硬ろう材の溶融温度は450℃以上、1083℃以下であることが好ましい。
上述した本発明の炉体保護用ステーブでは、配管を鋼板のボルト締結により保持する方法を開示している特許文献1で問題となる、銅製のステーブ本体と鋼板の外れによる配管の保持不能が発生しないため、ステーブ本体1の更なる長寿命化が期待できる。また、U字形状の溝2と配管3との間にはスキマが生じるが、このスキマには「硬ろう付け」用の合金を流し込むなどしてステーブ本体1と配管3とを密着接合させるため、ステーブ本体1と配管3との間の熱伝達率を上げることができ、配管3から構成される水路によるステーブ本体1の冷却能力が高くなる。また、一般に、配管3に溶接を行うと局所的に熱影響部が作られてしまい、使用中の熱負荷により配管3に亀裂が発生して水漏れを起こしてしまうが、硬ろう付けの特徴として母材を溶融することなく接合できるため、局所的な熱影響部による亀裂発生が無い。硬ろう付けの際に鋼製の配管3の変態点(約750℃)近辺まで温度を上げることはあっても、溶融させるわけではなく局所的でもないため、熱影響部による亀裂発生が無い。また、ステーブ本体の銅と、配管の鋼の間の熱膨張量の違いを硬ろう材が吸収し、応力集中を軽減する効果も有する。
さらに、上記のような構造とすることで、従来水漏れの原因で圧延銅ステーブの弱点であった給排水出入り口と配管の溶接接合部を無くすことができる。また、冷却配管は銅よりも高温硬度が高い鋼製とし、圧延銅などの銅製のステーブ本体と独立させることで、銅製のステーブ本体の熱変形や摩耗による冷却経路の穴あき、水漏れ発生の確率を低くできる。結果的に、本発明の銅製のステーブの冷却能力は従来の鋳鉄ステーブよりも高く、冷却水路の破損は従来の銅製のステーブよりも少なくなる。よって、長寿命化を達成した炉体保護用ステーブを構成することができる。
図5(a)、(b)は、それぞれ、本発明の炉体保護用ステーブのさらに他の好適例の構成を図1(a)のB−B線に沿った断面図および図2(a)、(b)のB−B線に沿った断面図として示す図である。ステーブ本体1の炉外側表面1aに溝2を設けた、図5(a)に示す好適例では、硬ろう材4により銅製のステーブ本体1と配管3を接合させた後、更なる外れ防止のためにU字形状の溝2に蓋5を溶接し、蓋5の端部とステーブ本体1の溝2の端部とを溶接部6にて接合して取り付けている。また、図5(b)に示す好適例のように、ステーブ本体1の炉内側表面1bに溝2を設ける場合にも、同様に蓋5を溶接部6にて接合することができる。蓋5の材質は、ステーブ本体と同じ銅製とすることが好ましいが、他の材料の蓋も用いることができる。
図6(a)、(b)は、それぞれ、本発明の炉体保護用ステーブのさらに他の好適例の構成を図1(a)のB−B線に沿った断面図として示す図である。図6(a)に示す例では、溝2の表面と硬ろう材4との間に、第1の中間部材6−1を設けている。また、図6(b)に示す例では、硬ろう材4と配管3の外表面との間に、第2の中間部材6−2を設けている。第1の中間部材6−1および第2の中間部材6−2としては、ステーブの冷却能力の設計レベルに応じて適正な熱伝導率を有する材料を使用すればよく、配管3とともに第1の中間部材6−1または第2の中間部材6−2を組み込んだ後、硬ろう材で接合することができる。中間部材の熱伝導率や厚みを調整することで、ステーブの冷却能力を目的にあうように調整することが可能になる。ステーブ全体の熱伝導率を調整し、冷却能力を調整する効果を発揮するには、中間部材として、少なくとも、ステーブ本体1、配管3、硬ろう材4のいずれかと異なる熱伝導率を有する部材を用いればよい。また、中間部材の熱伝導率以外の物性を調整することで、熱伝導率以外のステーブの機能を変化させることも可能である。なお、図6(a)、(b)の好適例では、溝2を炉外側表面1aに形成した例について説明したが、溝2を炉内側表面1bに形成した例でも、第1の中間部材6−1または第2の中間部材6−2の効果が得られることはいうまでもない。
本発明に係る炉体保護用ステーブは、銅製ステーブ本体冷却用の水路を鋼製配管で構成し、銅製ステーブ本体と配管を硬ろう材で接合し埋め込むことで、高熱負荷にも耐え、長寿命化された炉体保護用ステーブを得ることができるため、高炉のほか他の加熱炉においても、高温に曝される炉壁内部の保護する用途として有効な方法である。
1 ステーブ本体
1a 炉外側表面
1b 炉内側表面
2 溝
3 配管
3−1 配管入口部
3−2 配管出口部
4 硬ろう材
5 蓋
6−1 第1の中間部材
6−2 第2の中間部材
7−1、7−2 出口孔

Claims (6)

  1. 銅製のステーブ本体の炉外側表面または炉内側表面に設けた溝に、鋼製の配管を組み込み、ステーブ本体の溝と配管との間を前記配管の全周を覆うように硬ろう材を充填して接合して、ステーブ本体にステーブ本体冷却用の水路を形成した構造を有することを特徴とする炉体保護用ステーブ。
  2. 銅製のステーブ本体の炉外側表面または炉内側表面に設けた溝に、鋼製の配管を組み込み、ステーブ本体の溝と配管との間を前記配管の全周を覆うように硬ろう材を充填して接合するとともに、前記溝に蓋を溶接し、蓋の端部とステーブ本体の溝の端部とを溶接部にて接合した蓋を形成して、ステーブ本体にステーブ本体冷却用の水路を形成した構造を有することを特徴とする炉体保護用ステーブ。
  3. 銅製のステーブ本体の炉外側表面または炉内側表面に設けた溝に、鋼製の配管を組み込むとともに、前記溝の表面を覆うように第1の中間部材を設け、第1の中間部材を形成したステーブ本体の溝と配管との間を前記配管の全周を覆うように硬ろう材を充填して接合して、ステーブ本体にステーブ本体冷却用の水路を形成した構造を有することを特徴とする炉体保護用ステーブ。
  4. 銅製のステーブ本体の炉外側表面または炉内側表面に設けた溝に、鋼製の配管を組み込むとともに、配管の外表面に同心円状に第2の中間部材を設け、ステーブ本体の溝と第2の中間部材を形成した配管との間を前記配管の全周を覆うように硬ろう材を充填して接合して、ステーブ本体にステーブ本体冷却用の水路を形成した構造を有することを特徴とする炉体保護用ステーブ。
  5. 前記配管の一端および他端に、前記配管を前記溝に組み込んだ際に、前記ステーブ本体の炉外側表面から突出する配管入口部および配管出口部を、前記配管と一体に形成したことを特徴とする請求項1〜4のいずれかに記載の炉体保護用ステーブ。
  6. 前記配管入口部および配管出口部のそれぞれの外周に保護管を設けたことを特徴とする請求項5に記載の炉体保護用ステーブ。
JP2018535611A 2016-08-23 2017-08-14 炉体保護用ステーブ Active JP6691328B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016162649 2016-08-23
JP2016162649 2016-08-23
PCT/JP2017/029275 WO2018037957A1 (ja) 2016-08-23 2017-08-14 炉体保護用ステーブ

Publications (2)

Publication Number Publication Date
JPWO2018037957A1 JPWO2018037957A1 (ja) 2019-06-20
JP6691328B2 true JP6691328B2 (ja) 2020-04-28

Family

ID=61244850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018535611A Active JP6691328B2 (ja) 2016-08-23 2017-08-14 炉体保護用ステーブ

Country Status (5)

Country Link
JP (1) JP6691328B2 (ja)
KR (1) KR102185950B1 (ja)
CN (1) CN109563556A (ja)
TW (1) TWI642788B (ja)
WO (1) WO2018037957A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110094985A (zh) * 2019-05-22 2019-08-06 汕头华兴冶金设备股份有限公司 一种新型铜冷却板及其制造方法
CN110732606B (zh) * 2019-10-24 2020-12-08 上海宝钢铸造有限公司 冷却壁的改进型冷却管型制造方法
CN112779375A (zh) * 2020-12-25 2021-05-11 河北万丰冶金备件有限公司 高炉冷却壁
CN113465388B (zh) * 2021-07-05 2023-05-16 安徽兴永机电设备有限公司 一种使用安全的炉体钢结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431442B2 (ja) * 1973-11-05 1979-10-06
JP3034179B2 (ja) * 1995-02-21 2000-04-17 川崎製鉄株式会社 高炉用ステーブクーラ
JP2002146418A (ja) 2000-11-08 2002-05-22 Nippon Steel Corp ステーブクーラー
BRPI0211266B8 (pt) * 2001-07-24 2016-09-13 Nippon Steel Corp resfriador de aduela para uso em forno de cuba.
KR100635407B1 (ko) * 2005-07-11 2006-10-19 한국과학기술연구원 수랭식 화격자
EP1847622A1 (en) * 2006-04-18 2007-10-24 Paul Wurth S.A. Method of manufacturing a stave cooler for a metallurgical furnace and a resulting stave cooler
JP4751238B2 (ja) * 2006-05-17 2011-08-17 新日本製鐵株式会社 高炉用ステーブクーラ
CN104707974A (zh) * 2013-12-11 2015-06-17 江苏联兴成套设备制造有限公司 一种铜基体内置钢管的双金属强化冷却壁生产方法
LU92471B1 (en) * 2014-06-06 2015-12-07 Wurth Paul Sa Charging installation of a metallurgical reactor

Also Published As

Publication number Publication date
KR20190025985A (ko) 2019-03-12
JPWO2018037957A1 (ja) 2019-06-20
CN109563556A (zh) 2019-04-02
TWI642788B (zh) 2018-12-01
KR102185950B1 (ko) 2020-12-02
TW201807198A (zh) 2018-03-01
WO2018037957A1 (ja) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6691328B2 (ja) 炉体保護用ステーブ
JP4751238B2 (ja) 高炉用ステーブクーラ
US6404799B1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
CA2209682A1 (en) Plate cooler for metallurgical furnaces
KR20120105532A (ko) 야금로를 위한 냉각 스테이브
US20050218569A1 (en) Cooling plate for metallurgic furnaces
US8834784B2 (en) Thin stave cooler and support frame system
ZA200509452B (en) Process container with cooling elements
EP2673386B1 (en) Stave cooler for a metallurgical furnace
JPH11217609A (ja) 竪形炉用冷却要素
KR20120017439A (ko) 건식야금 반응기를 위한 냉각 요소를 제조하는 방법 및 그 냉각 요소
US20180347002A1 (en) Wear-resistant, single penetration stave coolers
EP2281165B1 (en) Method for manufacturing a cooling plate for a metallurgical furnace
EP3710768B1 (en) Wear resistant single penetration stave coolers
JP2008101233A (ja) 高炉炉体冷却設備
CN101855369B (zh) 高炉用板式冷却器
KR101229273B1 (ko) 열전도성과 내마모성이 우수한 고로 냉각반 및 그 제조방법
JP3633519B2 (ja) 冶金炉用ステーブクーラおよびその取付け方法
JP2018115369A (ja) ステーブクーラー及びステーブクーラーの補修方法
JP5369716B2 (ja) 高炉炉体冷却構造
JP2002080908A (ja) クーリングステーブ
US20240219120A1 (en) Single mounting cast iron or copper stave cooler
JP2002003914A (ja) クーリングステーブ
JPH0293009A (ja) 高炉炉底側壁カーボンれんがの熱間補修方法
JP2002003913A (ja) 高炉鉄皮の構造

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200324

R150 Certificate of patent or registration of utility model

Ref document number: 6691328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250