WO2009062966A1 - Verfahren zur herstellung von kohlenstoffschaumstoffen durch karbonisierung von offenzelligen melamin-formaldehyd-schaumstoffen - Google Patents

Verfahren zur herstellung von kohlenstoffschaumstoffen durch karbonisierung von offenzelligen melamin-formaldehyd-schaumstoffen Download PDF

Info

Publication number
WO2009062966A1
WO2009062966A1 PCT/EP2008/065403 EP2008065403W WO2009062966A1 WO 2009062966 A1 WO2009062966 A1 WO 2009062966A1 EP 2008065403 W EP2008065403 W EP 2008065403W WO 2009062966 A1 WO2009062966 A1 WO 2009062966A1
Authority
WO
WIPO (PCT)
Prior art keywords
foams
open
range
carbonization
formaldehyde
Prior art date
Application number
PCT/EP2008/065403
Other languages
English (en)
French (fr)
Inventor
Tatiana Ulanova
Armin Alteheld
Horst Baumgartl
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Publication of WO2009062966A1 publication Critical patent/WO2009062966A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Definitions

  • the invention relates to a process for the production of carbon foams by carbonization of open-cell melamine-formaldehyde foams, carbon foams obtainable by the process and their use.
  • US-3121050 and GB-1016449 describe processes for carbonizing organic foams from crosslinkable resins, for example phenol-formaldehyde resins, by slow heating in a non-oxidizing atmosphere.
  • the carbon foams obtained by carbonization have densities of over 40 g per liter.
  • WO 2004/026792 describes a foam consisting of at least 70% by weight of carbon with an average cell size of more than 20 ⁇ m, an open cell content of more than 90% and an inner surface of more than 50 m 2 / g.
  • the pyrolysis of the plastic foams is carried out by slow heating from room temperature to over 500 ° C, wherein the heating is preferably carried out in a nitrogen or inert gas atmosphere.
  • To increase the internal surface of the foam can be treated with water vapor, carbon dioxide or oxygen.
  • the organic foams used for carbonization are usually good thermal insulators. In order to avoid inhomogeneities in the degree of carbonization between the foam surface and foam core, therefore, slow heating rates are often chosen. The carbonization of organic foams is therefore very time-consuming, especially in the case of thick foam moldings.
  • the object of the present invention was to remedy the disadvantages mentioned, and to provide a rapid process for the production of carbon foams with low density, which leads to a homogeneous Karbonmaschinesgrad especially for larger foam moldings.
  • the melamine-formaldehyde foams used are preferably open-celled melamine-formaldehyde foams having a specific density in the range from 5 to 40 g / l, in particular in the range from 8 to 20 g / l.
  • the cell count is usually in the range of 50 to 300 cells / 25 mm.
  • the tensile strength is preferably in the range of 100 to 150 kPa and the elongation at break in the range of 8 to 20%.
  • a highly concentrated propellant-containing solution or dispersion of a melamine-formaldehyde precondensate can be foamed and cured with hot air, water vapor or by microwave irradiation.
  • foams are commercially available under the name Basotect® from BASF Aktiengesellschaft.
  • the molar ratio of melamine / formaldehyde is generally in the range of 1: 1 and 1: 5.
  • the molar ratio in the range of 1: 1, 3 to 1: 1, 8 is selected and a sulfite group-free precondensate used, such as. B described in WO 01/94436.
  • an inert gas or a gas mixture containing at least 70% of an inert gas is preferable to use.
  • Suitable inert gases are, for example, nitrogen or noble gases, such as argon or krypton. Particular preference is given to nitrogen or a mixture of at least 70% by volume of nitrogen and at most 30% by volume of hydrogen, oxygen and / or carbon dioxide. Air is particularly preferably used.
  • the gas or the gas mixture is preheated before passing through the open-celled melamine-formaldehyde foam to a temperature in the range of 200 to 600 0 C, in particular in the range of 400 to 550 ° Celsius.
  • the carbonization takes place in a heated to the temperature of the gas or the gas mixture tube furnace.
  • the melamine-formaldehyde foam can be partially or completely carbonated.
  • the gas or the gas mixture is subjected to a period of time in the range of 10 to 500 seconds, more preferably in the range of 100 to 300 seconds.
  • the gas or the gas mixture is passed through at a speed in the range of 0.1 to 10 m / s.
  • the resulting carbon foam has therefore, the density of the melamine-formaldehyde foam used.
  • the specific gravity of the carbon foam is preferably in the range of 5 to 40 g / l, in particular in the range of 8 to 20 g / l.
  • the carbon foam obtainable by the process can be used as an inorganic, high-temperature resistant material for thermal or acoustic insulation (house building, automotive, aircraft, rail, ship) and for the production of filter materials, catalysts, in particular catalyst supports, galvanic elements or electrochemical fuel cells. It is characterized by a high elasticity even at low temperatures.
  • the foams can be additionally impregnated with additives prior to the carbonation stage.
  • the inventive method is characterized in particular by a short carbonization time.
  • the carbon foam obtainable by the process of this invention show a very low residual formaldehyde elimination and increased to 500 0 C temperature resistance.
  • a sample of an open-cell melamine-formaldehyde foam having a density of about 10 kg / m3 (Basotect from BASF Aktiengesellschaft) were passed through long in a per furnace with air that has been preheated to 500 0 C for 2 minutes.
  • the open-cell foam structure of the fully carbonated sample remained largely intact and showed elastic behavior.
  • the weight loss of the foam was 56%.
  • the volume decrease during carbonization was approximately equal to the weight loss, so that the resulting carbon foam had a density of 8.5 g per liter.
  • the formaldehyde emissions according to VDA 275 (test method automotive / samples 3 h at 60 degrees C in a saturated steam atmosphere) was 4 ppm.
  • the sample before carbonization showed a formaldehyde emission of 500 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Ein Verfahren zur Herstellung von Kohlenstoffschaumstoffen durch Karbonisierung von offenzelligen Melamin-Formaldehyd-Schaumstoffen, wobei man ein Gas oder eine Gasmischung mit einer Temperatur im Bereich von 200 bis 600°C durch den offenzelligen Melamin-Formaldehyd-Schaumstoff durchleitet, nach dem Verfahren erhältliche Kohlenstoffschaumstoffe sowie deren Verwendung.

Description

Verfahren zur Herstellung von Kohlenstoffschaumstoffen durch Karbonisierung von offenzelligen Melamin-Formaldehyd-Schaumstoffen
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von Kohlenstoffschaumstoffen durch Karbonisierung von offenzelligen Melamin-Formaldehyd-Schaumstoffen, nach dem Verfahren erhältliche Kohlenstoffschaumstoffe sowie deren Verwendung.
In US-3121050 und GB-1016449 werden Verfahren zur Karbonisierung von organischen Schaumstoffen aus vernetzbaren Harzen, beispielsweise Phenol-Formaldehyd- Harzen, durch langsames Erhitzen in nicht-oxidierender Atmosphäre beschrieben. Die durch Karbonisierung erhaltenen Kohlenstoffschaumstoffe haben Dichten von über 40 g pro Liter.
Kodama et al, beschreiben in Carbon 45 (2007) 1105-1 107 mit Stickstoff angereicherte Kohlenstoffschaumstoffe als Elektromaterialien in elektrochemischen Brennstoffzellen. Diese werden durch Karbonisierung von Melaminharz-Schaumstoffen bei 600 bis 12000C für 60 Minuten in einer Inertgasatmosphäre hergestellt.
Die WO 2004/026792 beschreibt einen mindestens zu 70 Gew.-% aus Kohlenstoff bestehenden Schaumstoff mit einer mittleren Zellgröße über 20 μm, einer Offenzelligkeit über 90% und einer inneren Oberfläche über 50 m2 /g. Die Pyrolyse der Kunststoff- Schaumstoffe erfolgt durch langsames Erhitzen von Raumtemperatur auf über 500° Celsius, wobei das Erhitzen vorzugsweise in Stickstoff- oder Edelgas-Atmosphäre durchgeführt wird. Zur Vergrößerung der inneren Oberfläche kann der Schaumstoff mit Wasserdampf, Kohlendioxid oder Sauerstoff behandelt werden.
Die zur Karbonisierung verwendeten organischen Schaumstoffe sind in der Regel gute Wärmeisolatoren. Um Inhomogenitäten im Karbonisierungsgrad zwischen Schaumstoffoberfläche und Schaumstoffkern zu vermeiden, werden daher häufig langsame Aufheizraten gewählt. Die Karbonisierung von organischen Schaumstoffen ist daher insbesondere bei dicken Schaumstoff-Formteilen sehr zeitaufwändig.
Aufgabe der vorliegenden Erfindung war es, den genannten Nachteilen abzuhelfen, und ein schnelles Verfahren zur Herstellung von Kohlenstoffschaumstoffen mit niedriger Dichte bereitzustellen, welches insbesondere bei größeren Schaumstoffformteilen zu einem homogenen Karbonisierungsgrad führt.
Demgemäß wurde ein Verfahren zur Herstellung von Kohlenstoffschaumstoffen durch Karbonisierung von Melamin-Formaldehyd-Schaumstoffen gefunden, wobei man ein Gas oder eine Gasmischung mit einer Temperatur im Bereich von 200 bis 600 0C durch den offenzelligen Melamin-Formaldehyd-Schaumstoff durchleitet.
Als Melamin-Formaldehyd-Schaumstoffe werden bevorzugt offenzellige Melamin- Formaldehyd-Schaumstoffe mit einer spezifischen Dichte im Bereich von 5 bis 40 g/l, insbesondere im Bereich von 8 bis 20 g/l, verwendet. Die Zellzahl liegt üblicherweise im Bereich von 50 bis 300 Zellen/25 mm. Die Zugfestigkeit liegt bevorzugt im Bereich von 100 bis 150 kPa und die Bruchdehnung im Bereich von 8 bis 20%.
Zur Herstellung kann nach EP-A 071 672 oder EP-A 037 470 eine hochkonzentrierte, treibmittelhaltige Lösung oder Dispersion eines Melamin-Formaldehyd-Vorkondensates mit Heißluft, Wasserdampf oder durch Mikrowellenbestrahlung verschäumt und ausgehärtet werden. Derartige Schaumstoffe sind im Handel unter der Bezeichnung Baso- tect® der Firma BASF Aktiengesellschaft erhältlich.
Das Molverhältnis Melamin/Formaldehyd liegt im allgemeinen im Bereich von 1 : 1 und 1 :5. Zur Herstellung besonders formaldehydarmer Schaumstoffe wird das Molverhältnis im Bereich von 1 : 1 ,3 bis 1 : 1 ,8 gewählt und ein sulfitgruppenfreies Vorkondensat eingesetzt, wie z. B in WO 01/94436 beschrieben.
Zur Karbonisierung verwendet man bevorzugt ein Inertgas oder eine Gasmischung, die mindestens 70% eines Inertgases enthält. Als Inertgase eignen sich beispielsweise Stickstoff oder Edelgase, wie Argon oder Krypton. Besonders bevorzugt wird Stickstoff oder eine Mischung von mindestens 70 Vol.-% Stickstoff und höchstens 30 Vol.% Wasserstoff, Sauerstoff und/oder Kohlendioxid. Besonders bevorzugt wird Luft verwendet.
Erfindungsgemäß wird das Gas oder die Gasmischung bereits vor dem Durchleiten durch den offenzelligen Melamin-Formaldehyd-Schaumstoff auf eine Temperatur im Bereich von 200 bis 600 0C, insbesondere im Bereich von 400 bis 550° Celsius vorgeheizt. Bevorzugt erfolgt die Karbonisierung in einem auf die Temperatur des Gases oder der Gasmischung beheizten Rohrofen.
Durch Wahl von Temperatur- und/oder Zeitdauer kann der Melamin-Formaldehyd- Schaumstoff teilweise oder vollständig karbonisiert werden. Bevorzugt leidet man das Gas oder die Gasmischung für eine Zeitdauer im Bereich von 10 bis 500 Sekunden, besonders bevorzugt im Bereich von 100 bis 300 Sekunden durch. In der Regel leitet man das Gas oder die Gasmischung mit einer Geschwindigkeit im Bereich von 0,1 bis 10 m/s durch.
In der Regel sind Gewichtsverlust und Volumenabnahme während der Karbonisierung in etwa gleich groß und liegen bei ca. 50%. Der erhaltene Kohlenstoffschaumstoff weist daher dem eingesetzten Melamin-Formaldehyd-Schaumstoff entsprechende Dichte auf. Die spezifische Dichte des Kohlenstoffschaumstoffs liegt bevorzugt im Bereich von 5 bis 40 g/l, insbesondere im Bereich von 8 bis 20 g/l.
Der nach dem Verfahren erhältliche Kohlenstoffschaumstoff kann als anorganischer, hochtemperaturbeständiger Werkstoff zur Wärme- oder Schalldämmung (Hausbau, Automobil, Flugzeug, Bahn, Schiff) und zur Herstellung von Filtermaterialien, Katalysatoren, insbesondere Katalysatorträgern, galvanischen Elementen oder elektrochemischen Brennstoffzellen verwendet werden. Er zeichnet sich durch eine hohe Elastizität auch bei tiefen Temperaturen aus.
Um die anwendungstechnischen Eigenschaften zu verbessern, können die Schaumstoffe vor der Karbonisierungsstufe noch zusätzlich mit Additiven imprägniert werden.
Das erfindungsgemäße Verfahren zeichnet sich insbesondere durch eine kurze Karbo- nisierungszeit aus. Die nach dem erfindungsgemäßen Verfahren erhältlichen Kohlenstoffschaumstoffe zeigen eine sehr geringe Restformaldehyd-Abspaltung sowie einer auf 500 0C gesteigerten Temperaturbeständigkeit.
Beispiel
Eine Probe eines offenzelligen Melamin-Formaldehyd-Schaumstoffes mit einer Dichte von etwa 10 kg/m3 (Basotect® der BASF Aktiengesellschaft) wurde in einem pro Ofen mit Luft, die auf 5000C vorgeheizt wurde für 2 Minuten lang durchströmt. Die offenzelli- ge Schaumstruktur der vollständig karbonisierten Probe blieb weit gehend erhalten und zeigte elastisches Verhalten. Der Gewichtsverlust des Schaumstoffes betrug 56%. Die Volumen Abnahme während der Karbonisierung entsprach in etwa dem Gewichtsverlust, so dass der erhaltene Kohlenstoffschaumstoff eine Dichte von 8,5 g pro Liter auf- wies. Die Formaldehydemissionen nach VDA 275 (Testmethode Automobil / Proben 3 h bei 60 Grad C in einer gesättigten Wasserdampfatmosphäre) betrug 4 ppm. Die Probe vor der Karbonisierung zeigte eine Formaldehydemissionen von 500 ppm.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Kohlenstoffschaumstoffen durch Karbonisierung von Melamin-Formaldehyd-Schaumstoffen, dadurch gekennzeichnet, dass man ein Gas oder eine Gasmischung mit einer Temperatur im Bereich von 200 bis
6000C durch den offenzelligen Melamin-Formaldehyd-Schaumstoff durchleitet.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man einen offenzelligen Melamin-Formaldehyd-Schaumstoff mit einer Dichte im Bereich von 5 bis 40 g pro Liter einsetzt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man ein Inertgas oder eine Gasmischung, die mindestens 70% eines Inertgases enthält, verwendet.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man das Gas oder die Gasmischung für eine Zeitdauer im Bereich von 10 bis 500 Sekunden durchleitet.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet dass man das Gas oder die Gasmischung mit einer Geschwindigkeit im Bereich von 0,1 bis 10 m/s durchleitet.
6. Kohlenstoffschaumstoff, erhältlich nach einem Verfahren gemäß einem der An- Sprüche 1 bis 5.
7. Verwendung des Kohlenstoffschaumstoffes nach Anspruch 6 zur Wärme- oder Schalldämmung.
8. Verwendung des Kohlenstoffschaumstoff das nach Anspruch 6 zur Herstellung von Filtermaterialien, Katalysatoren oder galvanischen Elementen.
PCT/EP2008/065403 2007-11-13 2008-11-12 Verfahren zur herstellung von kohlenstoffschaumstoffen durch karbonisierung von offenzelligen melamin-formaldehyd-schaumstoffen WO2009062966A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07120544.7 2007-11-13
EP07120544 2007-11-13

Publications (1)

Publication Number Publication Date
WO2009062966A1 true WO2009062966A1 (de) 2009-05-22

Family

ID=40350772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/065403 WO2009062966A1 (de) 2007-11-13 2008-11-12 Verfahren zur herstellung von kohlenstoffschaumstoffen durch karbonisierung von offenzelligen melamin-formaldehyd-schaumstoffen

Country Status (1)

Country Link
WO (1) WO2009062966A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816740A (zh) * 2021-09-28 2021-12-21 安徽弘昌新材料有限公司 一种软质保温碳毡的制备方法、制得的软质保温碳毡及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365327A2 (de) * 1988-10-21 1990-04-25 Unilever Plc Verfahren zur Herstellung von porösem Kohlenstoffmaterial und das so hergestellte Material
WO2004026792A1 (de) * 2002-09-17 2004-04-01 Basf Aktiengesellschaft Vorwiegend aus kohlenstoff zusammengesetzte schaumstoffe hoher innerer oberfläche und verfahren zu deren herstellung
DE202004006867U1 (de) * 2003-07-31 2004-08-05 Blue Membranes Gmbh Kohlenstoffbasierte Formkörper geeignet zur Verwendung als Zellkulturträger- und Aufzuchtsysteme
JP2007269505A (ja) * 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology 電極用材料及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0365327A2 (de) * 1988-10-21 1990-04-25 Unilever Plc Verfahren zur Herstellung von porösem Kohlenstoffmaterial und das so hergestellte Material
WO2004026792A1 (de) * 2002-09-17 2004-04-01 Basf Aktiengesellschaft Vorwiegend aus kohlenstoff zusammengesetzte schaumstoffe hoher innerer oberfläche und verfahren zu deren herstellung
DE202004006867U1 (de) * 2003-07-31 2004-08-05 Blue Membranes Gmbh Kohlenstoffbasierte Formkörper geeignet zur Verwendung als Zellkulturträger- und Aufzuchtsysteme
JP2007269505A (ja) * 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology 電極用材料及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816740A (zh) * 2021-09-28 2021-12-21 安徽弘昌新材料有限公司 一种软质保温碳毡的制备方法、制得的软质保温碳毡及其应用

Similar Documents

Publication Publication Date Title
DE2839167C2 (de) Kohlenstoff-Kohlenstoff-Verbundmaterial und Verfahren zu seiner Herstellung
EP1542941B1 (de) Vorwiegend aus kohlenstoff zusammengesetzte schaumstoffe hoher innerer oberfläche und verfahren zu deren herstellung
DE2826114C2 (de) Kohlenstoff-Kohlenstoff-Verbundmaterialien und Verfahren zu dessen Herstellung
DE2204549C3 (de)
DE3247799C2 (de) Brennstoffzellenelektrodensubstrat und Verfahren zu seiner Herstellung
DE69106815T2 (de) Verfahren zur Herstellung von veränderten Kohlenstoffmolekularsieben zur Gastrennung.
EP2501749B1 (de) Mikrohohlkugeln enthaltende harzschaumstoffe
US20070155849A1 (en) Reinforced resin-derived carbon foam
CN101956252A (zh) 一种硼改性聚丙烯腈原丝制备碳纤维的方法
EP1375707B1 (de) Aktivierte Kohlenstofffasern und ihre Verwendung
EP2635627A1 (de) Melaminharzschaumstoff mit anorganischem füllmaterial
DE2706033A1 (de) Verfahren zur erhoehung der festigkeit von kohlenstoff- und graphitkoerpern
DE102014218931A1 (de) Sandwichstruktur mit einem Aerogel enthaltenden Kernwerkstoff
DE2631415B2 (de) Verfahren zur Herstellung gefüllter Schaumstoffe aus regenerierter Cellulose
WO2009062966A1 (de) Verfahren zur herstellung von kohlenstoffschaumstoffen durch karbonisierung von offenzelligen melamin-formaldehyd-schaumstoffen
DE2231454B2 (de) Verfahren zur Herstellung eines Kohlenstoff Schaumes
Wang et al. Study of preparation and properties of fire-retardant melamine formaldehyde resin foam
DE68908994T2 (de) Verfahren zur Herstellung von porösem Kohlenstoffmaterial und das so hergestellte Material.
Yip et al. Effect of surface oxygen on adhesion of carbon fiber reinforced composites
DE10011013A1 (de) Verfahren zur Herstellung eines Kohlenstoffschaums und Verwendung dieses
DE2814892A1 (de) Nichtbrennbarer daemmstoff
DE2814814A1 (de) Nichtbrennbarer daemmstoff
DE2249103A1 (de) Verfahren zur herstellung feuerfester und flammfester schaumstoffe
CN112521736B (zh) 一种碳纤/聚乳酸阻燃复合材料及其制备方法
DE19961331B4 (de) Federartiger Kupferfaserkörper und Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08850524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08850524

Country of ref document: EP

Kind code of ref document: A1