WO2009055999A1 - Plaque chauffante électriquement conductrice et son procédé de fabrication et application - Google Patents

Plaque chauffante électriquement conductrice et son procédé de fabrication et application Download PDF

Info

Publication number
WO2009055999A1
WO2009055999A1 PCT/CN2008/000897 CN2008000897W WO2009055999A1 WO 2009055999 A1 WO2009055999 A1 WO 2009055999A1 CN 2008000897 W CN2008000897 W CN 2008000897W WO 2009055999 A1 WO2009055999 A1 WO 2009055999A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive heating
conductive
layer
heating plate
conductive heat
Prior art date
Application number
PCT/CN2008/000897
Other languages
English (en)
French (fr)
Inventor
Boquan Wang
Original Assignee
Boquan Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boquan Wang filed Critical Boquan Wang
Priority to CN2008800015781A priority Critical patent/CN101690384B/zh
Publication of WO2009055999A1 publication Critical patent/WO2009055999A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • E04C2/521Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
    • E04C2/525Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling for heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D13/00Electric heating systems
    • F24D13/02Electric heating systems solely using resistance heating, e.g. underfloor heating
    • F24D13/022Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements
    • F24D13/024Electric heating systems solely using resistance heating, e.g. underfloor heating resistances incorporated in construction elements in walls, floors, ceilings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F2290/00Specially adapted covering, lining or flooring elements not otherwise provided for
    • E04F2290/02Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets
    • E04F2290/023Specially adapted covering, lining or flooring elements not otherwise provided for for accommodating service installations or utility lines, e.g. heating conduits, electrical lines, lighting devices or service outlets for heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/026Heaters specially adapted for floor heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to a conductive heating plate with electric heating as a heating source.
  • a conductive heating plate with electric heating as a heating source relates to a floor or wall panel that uses electric heating as a heating source and can emit far infrared waves beneficial to the human body under electric heating and a manufacturing method thereof.
  • the electrically conductive heating plate can also be used to process furniture parts to protect the furniture and the items stored therein from moisture, mold or deterioration when the environment continues to be wet.
  • the existing ground heating materials using electric energy as a heat source have constant power heating cables and infrared carbon thermal plastic films, all of which are single functional materials.
  • the structural structure of the constant power heating cable to warm the floor is shown in Fig. 1.
  • a 25 mm thick polystyrene foam board 7 is laid on the slab 8 and a steel mesh 3 is laid.
  • the constant power heating cable 4 is distributed in a serpentine manner and tied to the steel mesh 3, and a 30-40 mm thick fine stone is poured. ⁇ 2, After the concrete is solidified, the wooden floor is laid according to the conventional method.
  • the structural layer is generally thick, especially the constant power heating cable is buried in the fine stone raft, and the maintenance of the product is very difficult or even impossible.
  • FIG. 2 The structural structure of the infrared carbon thermal film used for floor heating is shown in Fig. 2.
  • a 25 mm thick polystyrene foam board 7 is laid on the slab 8 and then an infrared carbon heat film 6 in which the power cord 5 is embedded is laid.
  • the wooden floor 1 is laid on the infrared carbon heat film 6 in a conventional manner, although the overall The thickness is reduced, but the overall structural layer is still thick, and the far infrared rays generated by the infrared carbon hot sheets penetrate the floor.
  • the common shortcomings of the two are complex construction, reduced building clearance, long heat transfer path, slow heat transfer, high heat loss and high energy consumption; many types of materials involved and many types of work. Summary of the invention
  • the present invention provides a conductive heating plate.
  • the conductive heating plate has a simple structure, energy saving, fast heat transfer, and easy surface temperature control.
  • the conductive heating plate comprises a substrate and a conductive heat-generating layer attached to the substrate; wherein the substrate is a medium-density wood fiber board, a high-density wood fiber board, a solid wood composite board or a magnesium oxide board; and the conductive heat-generating layer comprises a conductive heating material. And binder.
  • the conductive heating material is selected from the group consisting of natural graphite, artificial graphite, conductive carbon black, etc.
  • the binder is selected from the group consisting of a resin binder such as an epoxy resin binder, a polyurethane binder, and a trimerization Agents, and the like, gelatin binder, carboxymethyl cellulose binder, polyvinyl alcohol binder, and the like.
  • the electrically conductive layer is formed by first forming a conductive heat-generating coating and then adhering the resulting conductive coating to the substrate substantially uniformly by brushing, spraying or printing.
  • the main body of the conductive heat-generating coating is formulated as a conductive heat-generating material and a binder.
  • the conductive heat-generating material is contained in an amount of 20-85% by weight based on the total weight of the main formulation; and the binder is contained in an amount of from 15 to 80% by weight based on the total weight of the main formulation.
  • a conductive heat-generating coating is prepared by using an epoxy resin, a polyurethane resin, or a trimeral ammonia, anhydrous ethanol or acetone is used as a solvent, and the amount of the solvent is 100-300% of the amount of the above substances.
  • an appropriate amount of a chemical auxiliary such as triethanolamine, hydroquinone, a coupling agent, P, a fuel, and a toughening agent may be added to the conductive heat-generating coating.
  • the conductive heat generating layer has a thickness of 40-200 micrometers. .
  • the conductive heat-generating coating is printed on the substrate by screen printing and uniformly attached to the substrate in a strip shape to form a conductive heating plate.
  • the thickness of the conductive heat-generating layer is 60. -180 microns.
  • the conductive heat-generating coating is printed on the substrate by screen printing and uniformly attached to the substrate in a grid shape to form a conductive heating plate.
  • the thickness of the conductive heat-generating layer is 60-180 microns.
  • the conductive heating plate made according to the present invention can use a normal power source (220V, 110V), and when the power is supplied through the electrode mounted on the conductive heating plate, the temperature of the surface of the conductive heating layer can reach 15-70'C within 5 minutes. , and can be maintained in the temperature range of 15-70 ⁇ for a long time.
  • a normal power source (220V, 110V)
  • the conductive heating plate can be used to make a conductive heating floor.
  • the conductive heating floor includes at least one of a balancing layer, a heat diffusion layer, a decorative layer, and a wear layer in addition to the conductive heating plate.
  • the conductive heating floor further comprises a far-infrared emitting layer. After connecting 220 volts AC or DC, the conductive heating layer generates heat, and the heat is radiated to the heating area through the heat diffusion layer, and within 5 minutes after being electrified.
  • the surface temperature of the floor reaches 15-70 ° C, the heat transfer path is short, the heat transfer is fast, the heat loss is small, and the energy saving is remarkable.
  • the far-infrared emitting layer generates a 4-16 micron far infrared effect on the human body under the action of electroheating.
  • the wave is emitted to the heating zone without any blockage, and the far infrared utilization rate is high.
  • the conductive heating plate can be used to make a conductive heating wall panel.
  • the conductive heat-generating wallboard includes at least one of a balance layer and a decorative layer in addition to the conductive heat-generating board.
  • the conductive heat-generating wall panel further comprises a far-infrared emitting layer. After connecting 220 volts AC or DC power, the conductive heat-generating layer generates heat, and the heat is radiated to the heating area through the decorative layer, and 5 minutes after the power-on.
  • the surface temperature of the inner floor reaches 15-70 ° C, the heat transfer path is short, the heat transfer is fast, the heat loss is small, and the energy saving is remarkable.
  • the far-infrared emitting layer generates a health effect of 4-16 micrometers under the action of electroheating.
  • the infrared wave is emitted to the heating zone without any blockage, and the far infrared utilization rate is low.
  • the electrically conductive heating plate can also be used to process furniture components to protect the furniture and the items stored therein from moisture, mildew or deterioration when the environment continues to be wet.
  • conductive heating wall board or conductive heat-generating sheet used as a furniture component
  • At least one layer of fiber reinforcement is placed between the skin layer of the sheet and its adjacent layers and/or between the bottom layer and its adjacent layers.
  • the fiber reinforced layer adopts breaking strength ⁇ , elongation Small materials such as, but not limited to, fiberglass mesh or carbon fiber mesh.
  • the present invention also specifically discloses the above-described method for manufacturing a conductive heating plate, a conductive heating floor, and a conductive heating wall plate.
  • FIG. 1 is a structural view of a conventional warm-up structure of a constant power heating cable
  • FIG. 2 is a structural view of another existing floor heating structure using an infrared carbon thermal film
  • FIG. 3 is a schematic structural view of a conductive heating plate of the present invention.
  • FIG. 4 is a schematic structural view of still another conductive heating plate of the present invention.
  • FIG. 5 is a schematic structural view of still another conductive heating plate of the present invention.
  • Figure 6 is a structural exploded view of a conductive heating floor of the present invention.
  • Figure 7 is a cross-sectional view of the conductive heating floor of Figure 6 at the electrode position
  • Figure 8 is a structural exploded view of still another conductive heating floor of the present invention.
  • Figure 9 is a cross-sectional view of the conductive heating floor of Figure 8 at the electrode position
  • Figure 10 is a structural exploded view of a conductive heat-generating wall panel of the present invention.
  • Figure 11 is a structural exploded view of a furniture component made of the electrically conductive heat-generating panel of the present invention.
  • Fig. 12 is a structural schematic view of the furniture made of the furniture component of Fig. 11. detailed description
  • the conductive heat generating plate includes a base material layer 10 and a conductive heat generating layer 20 attached to the base material layer 10.
  • the substrate layer 10 is a medium density wood fiber board, a tantalum density wood fiber board, a solid wood composite board or a magnesium oxide board; and the conductive heat generating layer 20 comprises a conductive heat generating material and a binder.
  • the conductive heat-generating layer is formed by first forming a conductive heat-generating paint, and then adhering the prepared conductive heat-generating paint to the substrate substantially uniformly by brushing, spraying or printing.
  • the conductive heat generating layer 20 should ensure that when the 220 volt DC or AC power source is turned on, the conductive heat generating layer can quickly and uniformly heat up without causing excessive temperature (>70 ⁇ ).
  • the conductive heat-generating material used in the present invention is selected from the group consisting of natural graphite, artificial graphite, conductive carbon black and the like. It is of course also possible to use other electrically conductive heating materials well known to those skilled in the art.
  • the binder is selected from the group consisting of a resin binder such as an epoxy resin binder, a polyurethane resin binder, a trimerous binder, and a gelatin binder, a carboxymethyl cellulose binder, and a binder.
  • a vinyl alcohol binder or the like is not limited thereto.
  • the conductive heat-generating material is used in an amount of 20-85% by weight based on the total weight of the conductive heat-generating coating body.
  • the main body of the conductive heat-generating coating is a conductive heating material and a binder.
  • the binder for bonding the conductive heat-generating material is a resin binder such as an epoxy resin, a polyurethane resin or a trimeric urethane, or a binder such as gelatin, carboxymethylcellulose or polyvinyl alcohol.
  • the binder is used in an amount of from 15 to 80% by weight based on the total weight of the conductive heat-generating coating body.
  • a silicon carbide fine powder or a calcined powder may be further added to the main body formulation, and the amount thereof is 0-20% of the total weight of the conductive heat-generating material.
  • a suitable amount of chemical additives such as triethanolamine, hydroquinone, a coupling agent, a flame retardant, and a toughening agent may be added to different conductive heating materials and binders.
  • the coupling agent may be commercially available, for example, but not limited to, a coupling agent of the type KH-550 purchased from Huarong Chemical Company of Qufu City, Shandong province; the flame retardant may be, for example, but not limited to, from Jinan Xiangmeng Antimony trioxide and its analogs purchased by the Fuel Materials Company; toughening agents may employ, for example, but are not limited to, dioctyl phthalate and its analogs purchased from Qilu Plasticizer Company. 5-1. 0%; The appropriate amount of the flame retardant is based on the total weight of the main body of the conductive heat-generating coating material, if necessary, based on the total weight of the conductive heat-generating coating body.
  • suitable toughening agent is added in an amount of about 2-5% based on the total weight of the conductive heat-generating coating body formulation
  • suitable triethanolamine is added in an amount of about 3-7 based on the total weight of the conductive heat-generating coating body formulation %
  • the suitable amount of hydroquinone added is about 2-5% based on the total weight of the conductive heat-generating coating body formulation.
  • a conductive heat-generating coating is first prepared.
  • a resin binder such as epoxy resin, polyurethane resin or trimeric urethane
  • the resin and the anhydrous ethanol or acetone solvent are mixed, and the solvent is used in an amount of 100-300% of the amount of the resin, and then the conductive heating material is added.
  • the conductive heating material is added.
  • the uniformly conductive conductive heat-generating coating is uniformly adhered to the substrate by brushing, spraying, printing or other means known to those skilled in the art.
  • a water-soluble binder such as gelatin, carboxymethylcellulose or polyvinyl alcohol
  • the substance is sufficiently dissolved in water, and the amount of water is 100-300% of the amount of the substance, and then a conductive heating material is added or as needed
  • a conductive heating material is added or as needed
  • triethanolamine, hydroquinone, coupling agent, flame retardant, toughening agent and other chemical additives and silicon carbide powder or calcined coke powder and mix well.
  • the uniformly conductive conductive heat-generating coating is uniformly adhered to the substrate by brushing, spraying, printing or other means well known to those skilled in the art.
  • an electrode hole can be formed on the conductive heat-generating plate and the electrode 30 can be mounted to fully contact the electrode with the conductive heat-generating layer 20, thereby connecting the conductive heat-generating layer 20 to the external power source through the wire and the electrode 30.
  • the electrically conductive heat generating layer 20 can also be connected to an external power source by other means known to those skilled in the art.
  • the external power supply can be DC or AC, and the voltage can be 220V or other voltages.
  • FIG. 4 is a schematic structural view of still another conductive heating plate of the present invention.
  • the conductive heating plate is in addition to the conductive heat generating layer 20
  • the structure and manufacturing method of the electrically conductive heat-generating plate shown in Fig. 3 are the same except for the arrangement.
  • the conductive heat-generating layer 20 in Fig. 4 is different from the conductive heat-generating layer in Fig. 3, and is not in a full-coating manner, but in a partially coated manner, as shown in the figure.
  • the conductive heat generating layer 20 has a thickness of 40 to 200 ⁇ m, preferably 60 to 180 ⁇ m.
  • the conductive heat generating layer 20 is preferably printed onto the substrate 10 by screen printing. Screen printing processes employ techniques known in the art and related art.
  • FIG. 5 is a schematic structural view of still another conductive heating plate of the present invention.
  • the conductive heat generating layer 20 of Fig. 5 further improves the conductive heat generating layer of Fig. 4.
  • the conductive heat-generating layer in the figure is printed on the substrate by a grid-like structure and preferably by screen printing. 10 on.
  • the screen printing process employs techniques known in the art and related art.
  • FIG. 6 is an exploded perspective view showing a conductive heat-generating floor made of the conductive heat-generating board of the present invention.
  • the conductive heating floor comprises at least the above-mentioned conductive heating plate, which is composed of a substrate layer 102 and a conductive heat generating layer 103, an electrode 104 and a balancing layer 101 mounted on the conductive heating plate, and heat diffusion. At least one of the layer 106, the decorative layer 107, and the wear layer 108.
  • the structure of the conductive heat generating layer may adopt the structure in FIG. 3, FIG. 4 and FIG. 5, preferably adopting the structure in FIG. 4, and more preferably adopting the mesh shape obtained by screen printing in FIG. A conductive heat generating layer on the substrate.
  • the conductive heating floor may also have at least one resin layer 105 containing far infrared powder, and the resin layer 105 containing far infrared powder may be applied to the conductive heating plate and/or the heat diffusion layer 106.
  • the resin layer 105 containing the far-infrared powder is first applied to the conductive heat-generating layer and/or the heat diffusion layer 106, and the conductive heat-generating plate and heat are applied.
  • the diffusion layer 106 is composited, and the balance layer 101, the conductive heat-generating plate and the thermal diffusion layer 106 composite, the decorative layer 107 and the wear-resistant layer 108 are sequentially arranged, and the composite molding, slicing, grooving, inspection, packaging, and finished product storage are sequentially performed.
  • the far-infrared powder can be purchased on the market, such as far-infrared powder purchased from the Institute of Ceramics of the Chinese Academy of Sciences, Shandong Weifang Litai Material Technology Co., Ltd., and the like.
  • the resin to be used is selected from the group consisting of a modified phenol resin, an epoxy resin, a polyurethane resin, a trimeridine resin, and the like.
  • the substrate layer 102 and the thermal diffusion layer 106 are preferably medium density or high density wood fiberboard, but other wood materials commonly used in the art may also be used.
  • the balancing layer 101, the decorative layer 107 and the abrasion resistant layer 108 are preferably melamine impregnated paper, but other materials commonly used in the art may also be used.
  • FIG 7 is a cross-sectional view of the conductive heating floor of Figure 6 at the location of electrode 104.
  • the electrode 112 is mounted on the conductive heating plate by drilling a hole matching the size of the electrode 112 on the conductive heating plate, and the electrode 112 should be closely fitted with the hole, such as an interference fit. And similar cooperation methods.
  • the wire 109 on the electrode 112 is mounted on a screw that mates with the electrode.
  • the insulating mud 110 is used to insulate the electrode 112 as shown, and is further insulated and fixed by a plastic protective cover 111.
  • the insulating, fixing and wire bonding of the electrodes can also be carried out by other means well known to those skilled in the art.
  • Fig. 8 is a structural exploded view showing still another conductive heat-generating floor made by using the conductive heat-generating plate of the present invention.
  • Substrate layer 202 The solid wood composite board is used, and the heat diffusion layer 206 is made of solid wood veneer.
  • a decorative layer 107 of wear resistant paint is used in place of the decorative layer 107 and the wear layer 108 of the electrically conductive heating floor of FIG.
  • a conductive heat-generating plate is first produced.
  • the structure of the conductive heat generating layer may adopt the structures in Figs. 3, 4 and 5, preferably using the structure in Fig. 4, and more preferably using the grid-like substantially uniform coating obtained by screen printing in Fig. 5.
  • the grid-shaped conductive heat-generating layer 203 is uniformly attached to the solid wood composite panel 202 by screen printing, and the thickness of the conductive heat-generating layer is 40-200 ⁇ m.
  • the conductive heat generating layer 203 is cured to form a conductive heating plate, and an electrode hole is formed on the conductive heating plate and the electrode 204 is mounted.
  • the resin layer 205 containing the far-infrared powder may be selectively coated on the conductive heating plate and/or the thermal diffusion layer. 206.
  • the resin layer 205 of the far-infrared powder is the same as the resin layer of the far-infrared powder described above.
  • the conductive heating plate and the thermal diffusion layer 206 are combined, sliced, slotted, sanded, inspected, packaged, and finished.
  • Figure 9 is a cross-sectional view of the conductive heating floor of Figure 8 at the electrode position.
  • the electrode 212 is mounted on the conductive heating plate by drilling a hole matching the size of the electrode 212 on the conductive heating plate, and the electrode 212 should be closely matched with the hole, such as an interference fit. And similar cooperation methods.
  • a wire 209 on the electrode 212 is mounted on a screw that mates with the electrode.
  • the electrode 212 is insulated as shown in the figure and further insulated and fixed by a plastic protective cover 211.
  • the insulation, fixing and wire bonding of the electrodes can also be carried out by other means well known to those skilled in the art.
  • the electrically conductive heating floor shown in Figures 6, 7, 8, and 9 is laid and installed by a conventional method.
  • the conductive heating floor of the present invention may be laid on the entire floor of the room, or may be laid in the vicinity of a room such as a sofa in a living room or a floor near a bed of a bedroom to achieve local heating.
  • the conductive heating floor can also be configured with an intelligent temperature controller, which can be, but is not limited to, a dual temperature controller, which automatically controls and adjusts the temperature by setting the floor temperature and the indoor air temperature control value.
  • the conductive heating floor shown in Figures 6, 7, 8, and 9 can be used to maintain and maintain the surface temperature of the floor at 15-70 ° C for a short time (within 5 minutes) after power-on, 5, 10 after power-on. After 30, 60, 120 minutes, the temperature of the floor surface is maintained within the range of 15-70 ⁇ , especially the temperature difference of the conductive heating floor of the grid-shaped conductive heating layer 203 uniformly attached by screen printing at different points on the floor surface. Small, uniform temperature distribution, not easy to cause local overheating.
  • Fig. 10 is a structural exploded view showing a conductive heat-generating wall panel produced by using the conductive heat-generating plate of the present invention.
  • the conductive heat-generating wall panel shown in FIG. 10 includes a balance layer 301 including a base magnesium oxide plate 302 and a conductive heat-generating layer 303, an electrode 304 mounted on the conductive heat-generating plate, and a decorative layer 306.
  • the conductive heat-generating wallboard may further include a resin glue layer 305 coated with far-infrared powder on at least one side of both sides of the magnesium oxide board.
  • the resin layer 305 of the far-infrared powder is the same as the resin layer of the far-infrared powder described above.
  • the conductive heat-generating wall panel is made by the following process: First, the conductive heat-generating layer 303 is uniformly adhered on the magnesium oxide plate 302 by brushing, spraying or screen printing, and the thickness of the conductive heat-generating layer is 40-200 micrometers. Preferably, the conductive heat-generating paint is attached to the magnesium oxide plate 302 in a grid shape by screen printing. on. After the conductive heat-generating layer is cured, a conductive heat-generating plate is formed, the electrode holes are punched and the electrode 304 is mounted, and if necessary, a resin adhesive layer 305 containing far-infrared powder is coated on at least one side of both sides of the magnesium oxide plate, and finally the balance layer 301 is electrically conductive. The heating plate and the decorative layer 306 are pressed and laminated in turn, and the cutting lines, inspection, packaging, and finished products are put into storage.
  • the conductive heat-generating wall panel of the resin layer 305 with far-infrared powder can be used to maintain and maintain the surface temperature of the wall panel at 15 - 70 ° C in a short time (within 5 minutes) after being energized. After 5, 10, 30, 60, and 120 minutes, the temperature of the wall surface was maintained within the range of 15-70 ⁇ .
  • the temperature difference at different points on the surface of the wall panel with the grid-like structured conductive heat-generating layer obtained by screen printing is small, and the temperature distribution is uniform.
  • the conductive heating floor and the conductive heating wall board in Figure 6-10 are more than 35% energy-saving compared with the air-conditioning and electric heaters.
  • the energy saving is remarkable, and the far-infrared utilization rate is high; in particular, it integrates heating, health care and decoration. Widely used in homes, hotels, restaurants and other public places.
  • Fig. 11 is an exploded perspective view showing a decorative panel for a furniture component produced by using the electrically conductive heat-generating panel of the present invention.
  • the decorative panel shown in the drawing includes a conductive heating plate and a decorative layer 407.
  • the furniture component is made of the decorative board by the following process: First, the conductive heat-generating layer 406 is uniformly adhered on the substrate board 404 by brushing, spraying or screen printing, and the conductive heat-generating layer 406 is cured to be electrically heated. The plate was punched with an electrode hole and the electrode 405 was attached, and then the decorative layer 407 was pressed on at least one surface of both surfaces of the conductive heating plate to form a decorative sheet for a furniture part as shown.
  • the structure of the conductive heat generating layer may be a conductive heat generating layer structure as shown in Figs. 3, 4 or 5.
  • the decorative panel for the furniture part shown in Fig. 11 can be used to make the transverse shelf 1000, the back panel 2000 or the vertical partition 3000 in the furniture, as shown in Fig. 12.
  • the conductive heating plate can be heated by the wires connected to the electrodes to remove moisture and prevent moisture, mold or deterioration of the items stored in the furniture.
  • the substrate is made of medium density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows:
  • the gelatin is sufficiently dissolved in water, and then the natural graphite is added to be sufficiently stirred to form a conductive heat-generating coating.
  • the above coating was then evenly applied to the surface of a medium density wood fiberboard of 81 cm X 12.5 cm, coated to an area of 79 cm X 10. 5 cm, and the thickness of the coating was about 40 ⁇ m, cured at 70-90 ° C.
  • electrode holes are formed on both sides in the longitudinal direction of the medium-density wood fiber board with the conductive heat-generating layer, and the copper electrodes are mounted.
  • 0- 5'C is connected to the 220V power supply at ambient temperature. The temperature of the surface of the conductive heating layer measured after 2, 5, 10, 30, 60, 120 minutes is as follows: 2 minutes 5 minutes 10 minutes 30 minutes 60 minutes 120 minutes
  • the substrate is made of medium density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows:
  • the gelatin is sufficiently dissolved in water, and then the natural graphite is added to be sufficiently stirred to form a conductive heat-generating coating.
  • the above coating was then evenly applied to the surface of a medium density wood fiberboard of 81 cra X 12.5 cm with a coated area of 79 cm X 10. 5 cm and a coating thickness of about 80 microns, cured at 70-90 Torr.
  • two electrode holes are formed on both sides in the longitudinal direction of the medium-density wood fiber board with the conductive heat-generating layer, and the copper electrodes are mounted.
  • the temperature of the surface of the conductive heating layer measured after the power supply of 220V is turned on at 0-5 °C ambient temperature, 2, 5, 10, 30, 60, 120 minutes is as follows - Example 3
  • the substrate is made of medium density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows:
  • the gelatin is fully dissolved in water, and then the natural graphite is added to the mixture to form a conductive heat-generating coating.
  • the coating was then evenly applied to the surface of a medium-density wood fiberboard of 81 cm X 12.5 cm with a soft brush coated to an area of 79 cm X 10. 5 cra.
  • the thickness of the coating was approximately 120 ⁇ m, 70-90 ° C. Cured under.
  • two electrode holes are formed on both sides in the longitudinal direction of the medium-density wood fiber board with the conductive heat-generating layer, and the copper electrodes are mounted.
  • the temperature of the surface of the conductive heating layer measured after the O-5'C ambient temperature is turned on 220V, 2, 5, 10, 30, 60, 120 minutes is as follows - 2 minutes 5 minutes 10 minutes 30 minutes 60 minutes 120 minutes
  • the substrate is made of medium density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows :
  • the gelatin is sufficiently dissolved in water, and then the natural graphite is added to be sufficiently stirred to form a conductive heat-generating coating.
  • the above coating was then evenly sprayed onto the surface of a medium density wood fiberboard of 81 cm X 12.5 cm with a spray coating area of 79 cm X 10. 5 cm, and the thickness of the coating was about 40 ⁇ m, 70-90 ° C cured.
  • two electrode holes are formed on both sides in the longitudinal direction of the medium-density wood fiber board with the conductive heat-generating layer, and the copper electrodes are mounted.
  • the temperature of the surface of the conductive heating layer measured after turning on the 220V power supply at 0-5 ⁇ ambient temperature, 2, 5, 10, 30, 60, 120 minutes is as follows: Example 5
  • the substrate is made of medium density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows:
  • the gelatin is sufficiently dissolved in water, and then the natural graphite is added to be sufficiently stirred to form a conductive heat-generating coating.
  • the above coating was then evenly sprayed onto the surface of a medium-density wood fiberboard of 81 cm X 12.5 cm by a spray gun having a coated area of 79 cm X 10. 5 cm, and the thickness of the coating was about 80 ⁇ m, 70-90 ⁇ solidified. After sufficient curing, the length of the medium density wood fiber board with a conductive heating layer
  • the substrate is made of medium density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows:
  • the gelatin is sufficiently dissolved in water, and then the natural graphite is added to be sufficiently stirred to form a conductive heat-generating coating.
  • the coating was then evenly sprayed onto the surface of a medium density wood fiberboard of 81 cm X 12.5 cm with a spray gun having an area of 79 cm X 10. 5 cm and a coating thickness of about 120 ⁇ m and 70-90 ° C curing.
  • two electrode holes are formed on both sides in the longitudinal direction of the medium-density wood fiber board with the conductive heat-generating layer, and the copper electrodes are mounted.
  • the temperature of the surface of the conductive heating layer measured after switching the 220V power supply at 0- 5 °C ambient temperature, 2, 5, 10, 30, 60, 120 minutes is as follows: Example 7
  • the substrate is made of high density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows:
  • the gelatin is fully dissolved in water, and then the natural graphite is added to the mixture to form a conductive heat-generating coating.
  • the above coating was then screen printed onto a surface of a 81 cm X 12.5 cm high density wood fiber board with a printing area of 79 cm X 10.5 cm, a printing thickness of about 40 ⁇ m, and cured at 70-90 ° C. After sufficient curing, the length of the high-density wood fiberboard with a conductive heating layer
  • the substrate is made of solid wood composite board.
  • the specific formulation of the conductive heating coating is as follows:
  • the polyurethane is sufficiently dissolved in acetone, and then the natural graphite is added to be sufficiently stirred to form a conductive heat-generating coating.
  • the coating was then evenly applied to the surface of a 81 cm X 12.5 cm solid wood composite board with a soft coating of 79 cm X 10. 5 cm.
  • the thickness of the coating was approximately 80 ⁇ m, 70-90 ° C. Cured under.
  • two electrode holes are formed on both sides of the length of the solid wood composite panel with the conductive heat generating layer to mount the copper electrode.
  • the temperature of the surface of the conductive heating layer measured after the 220V power supply is turned on at 0- 5 ° C ambient temperature, 2, 5, 10, 60, 120 minutes, is as follows: Example 9
  • the substrate is made of a magnesium oxide plate.
  • the specific formulation of the conductive heating coating is as follows:
  • the trimeric clear ammonia is sufficiently dissolved in acetone, and then the natural graphite is added and thoroughly stirred to form a conductive heat-generating coating.
  • the above coating was then uniformly applied to the surface of a 81 cm X 12.5 cm magnesium oxide plate with a soft brush having a coated area of 79 cm X 10. 5 cm, a thickness of the coating of about 80 ⁇ m, and curing at 70-90 Torr.
  • Two electrode holes copper electrodes are mounted on both sides of the length of the magnesium oxide sheet with a conductive heating layer
  • Two electrode holes, copper electrodes are mounted on both sides of the length of the magnesium oxide sheet with a conductive heating layer
  • the 220V power supply is turned on at 0-5 ° C ambient temperature.
  • the temperature of the surface of the conductive heating layer measured after 2, 5, 10, 60, and 120 minutes is as follows: Example 10
  • the substrate is made of fiber reinforced solid wood composite board.
  • the specific formulation of the conductive heating coating is as follows:
  • the epoxy resin is sufficiently dissolved in acetone, and then the natural graphite is added to be sufficiently stirred to form a conductive heat-generating coating.
  • the above coating was then evenly applied to the surface of a 81 cm X 12.5 cm solid wood composite panel having a coating area of 79 cm X 10. 5 cm, a coating thickness of 80 ⁇ m, and curing at 70-90 Torr.
  • two electrode holes are formed on both sides of the length of the solid wood composite panel with the conductive heat generating layer to mount the copper electrode.
  • the temperature of the surface of the conductive heating layer measured after the 220V power supply is turned on at 0-5 °C ambient temperature, 2, 5, 10, 30, 60, 120 minutes is as follows: Example 11
  • the substrate is made of medium density wood fiberboard.
  • the specific formulation of the conductive heating coating is as follows:
  • the polyurethane resin is fully dissolved in acetone, and then the natural graphite is added to the mixture to form a conductive heat-generating coating.
  • the above coating was then evenly applied to the surface of a medium-density wood fiberboard of 81 cm X 12.5 cm with a coating area of 79 cm X 10. 5 cm.
  • the coating has a thickness of 160 microns and is cured at 70-90 °C. After being sufficiently cured, two electrode holes are formed on both sides in the longitudinal direction of the medium-density wood fiber board with the conductive heat-generating layer, and the copper electrodes are mounted.
  • the temperature of the surface of the conductive heating layer measured after turning on the 220V power supply at 0-5 ⁇ ambient temperature, 2, 5, 10, 30, 60, 120 minutes is as follows: 2
  • the substrate is made of solid wood composite board.
  • the specific formulation of the conductive heating coating is as follows:
  • the polyurethane resin is sufficiently dissolved in acetone, and then natural graphite, silicon carbide micropowder, KH-550, antimony trioxide, dioctyl phthalate are added and thoroughly stirred to form a conductive heat-generating coating.
  • the above coating was then evenly applied to the surface of a 81 cm X 12.5 cm solid wood composite panel having a coated area of 79 era X 10. 5 cm, a coating thickness of about 160 ⁇ m, and curing at 70-90 ° C.
  • two electrode holes are made on both sides of the solid wood composite board with the conductive heat generating layer, and the copper electrodes are mounted.
  • the temperature of the surface of the conductive heating layer measured after turning on the 220V power supply at 0-5 ⁇ ambient temperature, 2, 5, 10, 30, 60, 120 minutes is as follows: Example 13
  • the conductive heat-generating coating material of Example 2 was printed on the surface of a 81 cm X 12.5 cm solid wood composite board by screen printing, and the printing range was 79 cm X 10. 5 cm, and the printed conductive heat-generating layer was a uniform strip. Shape, as shown in Figure 4.
  • the printing thickness is approximately 80 microns and is cured at 70-9 CTC. After being sufficiently cured, two electrode holes are formed on both sides of the length of the solid wood composite panel with the conductive heat generating layer to mount the copper electrode.
  • Conducting a 220V power supply at 0- 5 ° C ambient temperature, 2, 5, 10, 30, 60, 120 minutes after measuring the surface of the conductive heating layer The temperature list is as follows: Example 14
  • the conductive heat-generating coating material of Example 11 was printed by screen printing onto the surface of a medium-density wood fiberboard of 81 cm X 12.5 cm, and the printing range was 79 cm X 10. 5 cm.
  • the printed conductive heat-generating layer was a uniform mesh. Grid shape, as shown in Figure 5.
  • the printing thickness is about 160 microns and is cured at 70-90 °C. After being sufficiently cured, two electrode holes are formed on both sides in the longitudinal direction of the medium-density wood fiber board with the conductive heat-generating layer, and the copper electrodes are mounted.
  • 0- 5'C is connected to the 220V power supply at ambient temperature.
  • the temperature of the surface of the conductive heating layer measured after 2, 5, 10, 30, 60, 120 minutes is as follows: Example 15
  • the conductive heat-generating coating material of Example 9 was printed by screen printing onto the surface of a 81 cm X 12.5 cm magnesium oxide plate with a printing range of 79 cm X 10. 5 cm, and the printed conductive heat-generating layer was a uniform hook grid. Shape, as shown in Figure 5.
  • the printing thickness is about 80 microns and is cured at 70-90 °C. After being sufficiently cured, two electrode holes are formed on both sides in the longitudinal direction of the magnesium oxide plate with the conductive heat generating layer, and the copper electrode is mounted.
  • the temperature of the surface of the conductive heating layer measured after the 220V power supply is turned on for 2, 5, 10, 30, 60, and 120 minutes at the O-5'C ambient temperature is as follows: Example 16
  • the electrically conductive heating floor of Fig. 6 was produced in accordance with a method known in the art.
  • the conductive heating floor has, in addition to the conductive heating plate, a melamine impregnated paper as a balancing layer, a heat diffusion layer, a decorative layer and a wear layer.
  • the 220V power supply is turned on at 0-5 °C ambient temperature.
  • the temperature of the floor surface measured after 2, 5, 10, 30, 60, and 120 minutes is as follows:
  • the conductive heat-generating floor of Fig. 8 was produced by the method known in the art using the conductive heat-generating plate produced in Example 13.
  • the conductive heating floor also has a veneer as a heat diffusion layer and a wear-resistant paint decorative layer.
  • the 220V power supply is turned on at 0-5 ° C ambient temperature.
  • the temperature of the floor surface measured after 2, 5, 10, 30, 60, and 120 minutes is as follows:
  • the conductive heat-generating wall panel of Fig. 10 was produced by the method known in the art using the conductive heat-generating sheet produced in Example 15.
  • the conductive heating wall plate also has a balance layer and a decorative layer.
  • the 220V power supply is turned on at 0- 5 ° C ambient temperature.
  • the temperature of the floor surface measured after 2, 5, 10, 30, 60, and 120 minutes is as follows: Based on the description of the preferred embodiments of the present invention, it is to be understood that the invention is not limited by the details of the invention described herein. Obvious changes are equally likely to achieve the objectives of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Central Heating Systems (AREA)
  • Floor Finish (AREA)
  • Surface Heating Bodies (AREA)

Description

导电发热板及其制造方法和用途 技术领域
本发明涉及一种以电热为采暖热源的导电发热板。特别是涉及一种以电热为采暖热源并可在电热作 用下发射对人体有益的远红外波的地板或墙板及其制造方法。所述的导电发热板还可以用来加工家具部 件, 从而在环境持续潮湿时防止家具及存放在其内的东西受潮、 发霉或变质。 技术背景
现有的以电能为热源建筑地面采暖材料, 有恒定功率发热电缆和红外碳热塑料薄膜, 均为单一功能 材料。其中, 恒定功率发热电缆地暖的结构构造如图 1。 图中, 在砼楼板 8上铺设 25mm厚聚苯乙烯泡沫 板 7, 再铺设钢丝网 3, 将恒定功率发热电缆 4以蛇形方式分布并绑扎在钢丝网 3上, 浇筑 30-40mm厚 细石砼 2, 砼凝固后按照常规方法铺设木地板 1, 结构层总体较厚, 尤其是恒定功率发热电缆埋在细石 砼当中, 产品的维修十分困难甚至是不可能的。 红外碳热薄膜用于地暖的结构构造如图 2。 图中, 在砼 楼板 8上铺设 25mm厚聚苯乙烯泡沫板 7, 然后铺设嵌有电源线 5的红外碳热薄膜 6, 最后在红外碳热薄 膜 6上按照常规方法铺设木地板 1, 虽然总体厚度有所减小, 但结构层总体仍然较厚, 红外碳热薄片产 生的远红外线穿透地板是不可能的。 二者的共同缺点是构造复杂, 减小了建筑净空高度, 而且热量传递 路径长, 传热慢, 热损大, 能耗高; 涉及的材料种类多, 工种多。 发明内容
为了克服现有以电能为热源建筑暖通材料的缺点, 本发明提供一种导电发热板。该导电发热板结构 简单、 节能、 传热快, 表面温度容易控制。 所述的导电发热板包括基材, 附着在基材上的导电发热层; 其中的基材为中密度木质纤维板、 高密度木质纤维板、 实木复合板或氧化镁板; 导电发热层包括导电发 热材料和粘结剂。
所述的导电发热材料选自天然石墨、 人造石墨、 导电碳黑等; 所述的粘结剂选自树脂粘结剂如环氧 树脂粘结剂、 聚氨酯粘结剂、 三聚晴氨粘结剂等,和明胶粘结剂、 羧甲基纤维素粘结剂、 聚乙烯醇粘结 剂等。
在一个具体实施方式中,所述的导电发热层通过先制成导电发热涂料, 然后将制成的导电涂料采用 涂刷、 喷涂或印刷的方式实质性均匀地附着在基材上制成。
所述的导电发热涂料的主体配方为导电发热材料和粘结剂。所述的导电发热材料的含量以重量计为 主体配方总重量的 20-85%; 所述的粘结剂的含量以重量计为主体配方总重量的 15-80%。
确 人 本 在采用环氧树脂、 聚氨酯树脂、 三聚晴氨等配制导电发热涂料时, 选用无水乙醇或丙酮作为溶剂, 溶剂的用量为上述物质用量的 100-300%。
在采用明胶、 羧甲基纤维素、 聚乙烯醇 (PVA) 等配制导电发热涂料时, 选用水或丙酮作为溶剂, 溶剂的用量为所述物质用量的 100-300%。
根据需要, 在导电发热涂料中还可以加入适量的三乙醇胺、 对苯二酚、 偶联剂、 P且燃剂、 增韧剂等 化学助剂。
为了保证发热量及将本发明中的导电发热板用于制作导电发热地板或导电发热墙板而不实质性地 影响地板或墙板的尺寸, 所述的导电发热层的厚度为 40-200微米。
在一个优选的具体实施方式中,所述的导电发热涂料通过丝网印刷的方式印刷到基材上并呈条格状 均匀附着在基材上制成导电发热板, 导电发热层的厚度为 60-180微米。
在又一个优选的具体实施方式中,所述的导电发热涂料通过丝网印刷的方式印刷到基材上并呈网格 状均匀附着在基材上制成导电发热板, 导电发热层的厚度为 60-180微米。
根据本发明制成的导电发热板可使用正常电源 (220V、 110V), 在通过安装在所述导电发热板上的 电极供电时, 5 分钟内导电发热层表面的温度可达到 15-70'C, 并可长期维持在 15-70Ό温度范围内。
所述的导电发热板可以用来制成导电发热地板。该导电发热地板除了导电发热板外,还包括平衡层、 热扩散层、 装饰层、 耐磨层中的至少一层。 在一个优选的具体实施方式中, 所述的导电发热地板还包括 远红外发射层, 连接 220伏交流或直流电后, 导电发热层发热, 透过热扩散层向采暖区散发热量, 通电 后 5分钟内地板的表面温度达到 15-70°C, 热量传递路径短, 传热快, 热损小, 节能显著, 同时远红外 发射层在电热作用下, 产生对人体有保健作用的 4-16微米远红外波, 不受任何阻挡向采暖区发射, 远 红外利用率高。
所述的导电发热板可以用来制成导电发热墙板。该导电发热墙板除了导电发热板外,还包括平衡层、 装饰层中的至少一层。 在一个优选的具体实施方式中, 所述的导电发热墙板还包括远红外发射层, 连接 220伏交流或直流电后, 导电发热层发热, 透过装饰层向采暖区散发热量, 通电后 5分钟内地板的表面 温度达到 15-70°C , 热量传递路径短, 传热快, 热损小, 节能显著, 同时远红外发射层在电热作用下, 产生对人体有保健作用的 4-16微米远红外波, 不受任何阻挡向采暖区发射, 远红外利用率髙。
所述的导电发热板还可以用来加工家具部件,从而在环境持续潮湿时防止家具及存放在其内的东西 受潮、 发霉或变质。
为了提髙上述的导电发热地板、 导电发热墙板或用作家具部件的导电发热板材的强度和抗变形能 力, 还可以在所述导电发热地板、 导电发热墙板或用作家具部件的导电发热板材的表层和其相邻层之间 和 /或底层与其相邻层之间分别放置至少一层纤维增强层。 所述的纤维增强层采用断裂强度髙、 伸长率 小的材料, 例如但不限于玻璃纤维网或碳纤维网。
本发明还具体公开了上述的导电发热板、 导电发热地板和导电发热墙板的制造方法。 附图说明
图 1是现有的一种恒定功率发热电缆地暖结构的构造图;
图 2是现有的另一种采用红外碳热薄膜的地暖结构的构造图;
图 3为本发明一种导电发热板的结构示意图;
图 4为本发明又一种导电发热板的结构示意图;
图 5为本发明再一种导电发热板的结构示意图;
图 6 为本发明的一种导电发热地板的结构分解图;
图 7 为图 6中导电发热地板在电极位置的剖视图;
图 8为本发明的又一种导电发热地板的结构分解图;
图 9为图 8中导电发热地板在电极位置的剖视图;
图 10为本发明一种导电发热墙板的结构分解图;
图 11为釆用本发明的导电发热板制成的家具部件的结构分解图;
图 12为釆用图 11中的家具部件制成的家具的结构示意图。 具体实施方式
下面结合附图对本发明做进一步说明。应该清楚, 附图中所描述的本发明的具体实施方式仅为说明 本发明用, 并不构成对本发明的限制。 本发明的保护范围由所附的权利要求书进行限定。
图 3为本发明一种导电发热板的结构示意图。 如图 3所示, 该导电发热板包括基材层 10和附着在 基材层 10上的导电发热层 20。所述的基材层 10为中密度木质纤维板、髙密度木质纤维板、实木复合板 或氧化镁板; 导电发热层 20包括导电发热材料和粘结剂。
所述的导电发热层通过先制成导电发热涂料, 然后将制成的导电发热涂料采用涂刷、喷涂或印刷的 方式实质性均匀地附着在基材上制成。
所述的导电发热层 20应能保证在接通 220伏的直流或交流电源时, 导电发热层能够很快均匀发热 且不致产生过高的温度 (>70Ό )。 为达到这一目的, 本发明采用的导电发热材料选自天然石墨、 人造 石墨、 导电碳黑等材料。 当然也可以采用本领域技术人员熟知的其它导电发热材料。所述的粘结剂选自 树脂粘结剂如环氧树脂粘结剂、 聚胺酯树脂粘结剂、 三聚晴氨粘结剂, 和明胶粘结剂、 羧甲基纤维素 粘结剂和聚乙烯醇粘结剂等, 但并不局限于此。 所述的导电发热材料的用量占导电发热涂料主体配方总重量的 20-85%。 导电发热涂料的主体配方 为导电发热材料和粘结剂。
用来使所述导电发热材料粘结起来的粘结剂采用环氧树脂、 聚胺酯树脂、 三聚晴氨等树脂粘结剂 或明胶、 羧甲基纤维素和聚乙烯醇等粘结剂。 所述粘结剂的用量占导电发热涂料主体配方总重量的 15-80%。
为调节上述导电发热材料的导电发热性能, 根据需要, 还可以在主体配方中进一步加入碳化硅微粉 或煅焦粉, 其存在量占导电发热材料总重量的 0-20%。
为了改善导电发热层涂料的性能, 还可以针对不同的导电发热材料和粘结剂加入适量的三乙醇胺、 对苯二酚、 偶联剂、 阻燃剂、 增韧剂等化学助剂。 所述的偶联剂可以从市场上购买, 例如但不限于从山 东曲阜市华荣化工公司购买的型号为 KH-550的偶联剂; 阻燃剂可采用例如但不限于从济南湘蒙阻燃材 料公司购买的三氧化二锑及其类似物;增韧剂可采用例如但不限于从齐鲁增塑剂公司购买的邻苯二甲酸 二辛酯及其类似物。 如果需要, 适宜的偶联剂的外加量为基于导电发热涂料主体配方总重量的大约 0. 5-1. 0%; 适宜的阻燃剂的外加量为基于导电发热涂料主体配方总重量的大约 2- 5%; 适宜的增韧剂的 外加量为基于导电发热涂料主体配方总重量的大约 2-5%; 适宜的三乙醇胺的外加量为基于导电发热涂 料主体配方总重量的大约 3-7%; 适宜的对苯二酚的外加量为基于导电发热涂料主体配方总重量的大约 2-5%。
为了获得导电发热层, 首先制备导电发热涂料。 在使用环氧树脂、 聚胺酯树脂、 三聚晴氨等树脂 粘结剂时, 将树脂和无水乙醇或丙酮溶剂混合均勾, 溶剂的用量为树脂用量的 100-300%, 然后加入导电 发热材料或根据需要选择加入适量三乙醇胺、 对苯二酚、 偶联剂、 阻燃剂、 增韧剂等化学助剂及碳化硅 微粉或煅焦粉, 混合均匀。 最后将混合均匀的导电发热涂料采用涂刷、 喷涂、 印刷或本领域技术人员熟 知的其它方式均匀附着在所述的基材上。
使用明胶、 羧甲基纤维素和聚乙烯醇等水溶性粘结剂时, 将所述物质加水充分溶解, 水的用量为所 述物质用量的 100-300%,然后加入导电发热材料或根据需要选择加入适量三乙醇胺、对苯二酚、偶联剂、 阻燃剂、 增韧剂等化学助剂及碳化硅微粉或煅焦粉, 混合均匀。 最后将混合均匀的导电发热涂料采用涂 刷、 喷涂、 印刷或本领域技术人员熟知的其它方式均匀附着在所述的基材上。
所述的导电发热层 20固化后, 可在导电发热板上打电极孔并安装电极 30, 使电极与导电发热层 20 充分接触, 从而通过导线和电极 30将导电发热层 20连接到外部电源上。 当然, 也可以通过本领域技术 人员熟知的其它方式将导电发热层 20连接到外部电源上。 外部电源可为直流电源或交流电源, 电压可 为 220V, 也可以采用其它电压。
图 4为本发明又一种导电发热板的结构示意图。 如图 4所示, 该导电发热板除了导电发热层 20的 布置不同外, 其它与图 3中所示的导电发热板的结构和制造方法相同。 图 4中的导电发热层 20区别于 图 3中的导电发热层, 并不采用满涂的方式, 而是采用部分涂覆的方式, 如图中所示的条格状。 导电发 热层 20的厚度为 40-200微米, 优选 60-180微米。
为了保证导电发热层 20能够实质性均匀地附着在基材 10上,优选采用丝网印刷方式将导电发热层 20印刷到基材 10上。 丝网印刷工艺采用本领域及相关技术领域的已知技术。
图 5为本发明再一种导电发热板的结构示意图。 图 5中的导电发热层 20对图 4中的导电发热层进 一步作了改进。 为了使导电发热层在整个基材上的各个部分获得更加均勾的电阻值, 图中的导电发热层 釆用网格状结构并优选采用丝网印刷的方式将导电发热层 20印刷到基材 10上。丝网印刷工艺采用本领 域及相关技术领域的己知技术。
图 6为采用本发明的导电发热板制成的一种导电发热地板的结构分解图。从图中可以看出, 所述的 导电发热地板至少包括上述的导电发热板, 它由基材层 102和导电发热层 103构成, 安装在导电发热板 上的电极 104及平衡层 101、热扩散层 106、装饰层 107、耐磨层 108中的至少一层。导电发热层的结构 可采用图 3、 图 4和图 5中的结构, 优选采用图 4中的结构, 更优选地采用图 5中通过丝网印刷方式获 得的网格状实质上均匀涂覆在基材上的导电发热层。
所述的导电发热地板还可以带有至少一层含有远红外粉的树脂胶层 105, 含有远红外粉的树脂胶层 105可涂刷在导电发热板和 /或热扩散层 106上。 在制作带有含有远红外粉的树脂胶层的导电发热地板 时, 先将含有远红外粉的树脂胶层 105涂刷在导电发热层和 /或热扩散层 106上, 将导电发热板、 热扩 散层 106复合, 再将平衡层 101、 导电发热板和热扩散层 106复合体、 装饰层 107和耐磨层 108依次排 列, 一次复合成型, 切片、 开槽、 检验、 包装、 成品入库。
所述的远红外粉可以在市场上购买, 如从中科院硅酸盐研究所、 山东潍坊立泰材料科技有限公司等 公司购买的远红外粉。 所采用的树脂选自改性酚醛树脂、 环氧树脂、 聚氨酯树脂、 三聚晴胺树脂等。
所述的基材层 102和热扩散层 106优选中密度或高密度木质纤维板,但也可选用本领域常用的其它 木质材料。 所述的平衡层 101、 装饰层 107和耐磨层 108优选三聚氰胺浸渍纸, 但也可选用本领域常用 的其它材料。
图 7为图 6中导电发热地板在电极 104位置的剖视图。从图中可以看出,电极 112通过在导电发热 板上钻与电极 112尺寸相配合的孔将电极安装到导电发热板上, 电极 112与所述孔之间应紧密配合, 如 采用过盈配合及类似配合方式。 电极 112上的导线 109安装在与电极配合的螺丝上。 为绝缘之目的, 采 用绝缘泥 110如图所示对电极 112进行绝缘, 并采用塑料保护盖 111进一步绝缘和固定。 当然, 对电极 进行绝缘、 固定和导线连接也可以采用本领域技术人员熟知的其它方式进行。
图 8示出了采用本发明的导电发热板制作的又一种导电发热地板的结构分解图。其中的基材层 202 釆用实木复合板, 热扩散层 206采用实木单板。采用耐磨油漆装饰层 207代替图 4中导电发热地板的装 饰层 107和耐磨层 108。
在制作如图 8中所示的导电发热地板时, 首先制作导电发热板。 导电发热层的结构可采用图 3、 图 4和图 5中的结构, 优选釆用图 4中的结构, 更优选地采用图 5中通过丝网印刷方式获得的网格状实质 性均匀涂覆在实木复合板上的导电发热层。
首先在实木复合板 202上通过丝网印刷的方式均匀附着网格状导电发热层 203, 导电发热层的厚度 为 40-200微米。导电发热层 203固化后制成导电发热板, 在导电发热板上打电极孔并安装电极 204, 然 后还可以选择将含有远红外粉的树脂胶层 205涂在导电发热板和 /或热扩散层 206上。 远红外粉的树脂 胶层 205和上述的远红外粉的树脂胶层相同。 最后将导电发热板和热扩散层 206复合, 切片、 开槽、 砂 光油漆、 检验、 包装、 成品入库。
图 9为图 8中导电发热地板在电极位置的剖视图。从图中可以看出, 电极 212通过在导电发热板上 钻与电极 212尺寸相配合的孔将电极安装到导电发热板上, 电极 212与所述孔之间应紧密配合, 如采用 过盈配合及类似配合方式。 电极 212上的导线 209安装在与电极配合的螺丝上。 为绝缘之目的, 采用绝 缘泥 210如图所示对电极 212进行绝缘, 并采用塑料保护盖 211进一步绝缘和固定。 当然, 对电极进行 绝缘、 固定和导线连接也可以采用本领域技术人员熟知的其它方式进行。
图 6、 7、 8、 9中所示的导电发热地板采用常规的方法进行铺设安装。 在铺设安装时, 可以对房间 的整个地面都铺设本发明中的导电发热地板, 也可以在房间的局部如客厅的沙发附近、 卧室的床附近的 地面等进行铺设从而达到局部采暖的目的。所述的导电发热地板还可以配置智能温度控制器, 该智能温 度控制器可为但不限于双控温控制器, 通过设定地板温度和室内空气温度控制值, 自动实现温度控制和 调节。
图 6、 7、 8、 9中所示的导电发热地板可以在通电后的短时间内 (5 分钟内), 使地板上表面温度达 到并保持在 15-70°C , 在通电后 5、 10、 30、 60、 120分钟后, 地板表面的温度分别维持在 15-70Ό 范 围内,特别是通过丝网印刷方式均匀附着网格状导电发热层 203的导电发热地板在地板表面不同点的温 度差别小, 温度分布均匀, 不易产生局部过热现象。
图 10示出了采用本发明的导电发热板制作的导电发热墙板的结构分解图。图 10中所示的导电发热 墙板包括平衡层 301、 导电发热板包括基材氧化镁板 302和导电发热层 303、 安装在导电发热板上的电 极 304和装饰层 306。 所述的导电发热墙板还可以包括涂在氧化镁板两面的至少一面含有远红外粉的树 脂胶层 305。 远红外粉的树脂胶层 305和上述的远红外粉的树脂胶层相同。 所述的导电发热墙板采用下 列工艺制成: 首先在氧化镁板 302上以涂刷、 喷涂或丝网印刷的方式均匀附着导电发热层 303, 导电发 热层的厚度为 40-200微米。优选釆用丝网印刷的方式将导电发热涂料以网格状均勾附着在氧化镁板 302 上。 导电发热层固化后, 制成导电发热板, 打电极孔并安装电极 304, 如果需要, 将含有远红外粉的树 脂胶层 305涂在氧化镁板两面的至少一面, 最后将平衡层 301、导电发热板、装饰层 306依次压贴复合, 印刷切割线、 检验、 包装、 成品入库。
所述的带有远红外粉的树脂胶层 305的导电发热墙板可以在通电后的短时间内 (5 分钟内), 使墙 板上表面温度达到并保持在 15- 70°C, 在通电后 5、 10、 30、 60、 120分钟后, 墙板表面的温度分别维持 在 15- 70Ό 范围内。带有采用丝网印刷方式得到的网格状结构导电发热层的墙板表面不同点的温度差别 小, 温度分布均匀。
图 6-10中的导电发热地板和导电发热墙板相比空调和电暖器节电 35%以上,节能显著,远红外利 用率高; 特别是它将采暖、 保健和装饰融为一体, 可广泛地应用于家庭、 宾馆、 饭店及其它公共场合。
图 11 为采用本发明的导电发热板制作的一种家具部件用装饰板的结构分解图。 图中所示的装饰 板包括导电发热板和装饰层 407。 所述的家具部件用装饰板釆用下列工艺制成: 首先在基材板 404上以 涂刷、 喷涂或丝网印刷的方式均匀附着导电发热层 406, 导电发热层 406固化后制成导电加热板, 打电 极孔并安装电极 405, 然后再在导电加热板的两面的至少一面压贴装饰层 407, 制成图中所示的家具部 件用装饰板。 导电发热层的结构可以采用如图 3、 4或 5中所示的导电发热层结构。
图 11中所示的家具部件用装饰板可以制作家具中的横搁板 1000、 背板 2000或竖隔板 3000, 如 图 12所示。 在持续潮湿季节, 可以通过连接到电极上的导线供电, 使导电加热板发热, 驱除潮气, 防 止存放在家具中的物件受潮、 发霉或变质。
实施例 1
基材采用中密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000009_0001
首先将明胶充分溶于水, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。然后将上述涂料 均匀涂刷到 81cm X 12. 5cm 的中密度木质纤维板的表面, 涂覆的面积为 79cm X 10. 5cm, 涂层的厚度 为大约 40微米, 70- 90'C下固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长度方向两 侧打电极孔, 安装铜电极。 0- 5'C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后测得的导 电发热层表面的温度列表如下: 2分钟 5分钟 10 分钟 30分钟 60分钟 120分钟
12 16°C 18°C 18°C 18°C 18°C
实施例 2
基材采用中密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000010_0001
首先将明胶充分溶于水, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。然后将上述涂料 均匀涂刷到 81cra X 12. 5cm 的中密度木质纤维板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂层的厚 度为大约 80微米, 70-90Ό下固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长度方向 两侧打两个电极孔, 安装铜电极。 0-5°C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后测 得的导电发热层表面的温度列表如下-
Figure imgf000010_0002
实施例 3
基材采用中密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000010_0003
首先将明胶充分溶于水, 然后再将天然石墨加入充分搅拌均勾制成导电发热涂料。然后将上述涂料 用软刷均匀涂刷到 81cm X 12. 5cm 的中密度木质纤维板的表面, 涂覆的面积为 79 cm X 10. 5cra, 涂 层的厚度约为 120微米, 70- 90°C下固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长 度方向两侧打两个电极孔, 安装铜电极。 O-5'C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分 钟后测得的导电发热层表面的温度列表如下- 2分钟 5分钟 10 分钟 30分钟 60分钟 120分钟
18。C 24 °C 27°C 27°C 27 °C 27 "C 实施例 4
基材采用中密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000011_0001
首先将明胶充分溶于水, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。然后将上述涂料 用喷枪均匀喷涂到 81cm X 12. 5cm 的中密度木质纤维板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂 层的厚度约为 40微米, 70-90'C固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长度方 向两侧打两个电极孔, 安装铜电极。 0-5Ό环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后 测得的导电发热层表面的温度列表如下:
Figure imgf000011_0002
实施例 5
基材采用中密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000011_0003
首先将明胶充分溶于水, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。 然后将上述涂料 用喷枪均匀喷涂到 81cm X 12. 5cm 的中密度木质纤维板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂 层的厚度约为 80微米, 70-90Ό固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长度方
¾正页 (^则第 91^ 向两侧打两个电极孔, 安装铜电极。 O-5'C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后 测得的导电发热层表面的温度列表如下:
Figure imgf000012_0001
实施例 6
基材采用中密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000012_0002
首先将明胶充分溶于水, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。然后将上述涂料 用喷枪均匀喷涂到 81cm X 12. 5cm 的中密度木质纤维板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂 层的厚度约为 120微米, 70-90'C固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长度 方向两侧打两个电极孔, 安装铜电极。 0- 5°C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟 后测得的导电发热层表面的温度列表如下:
Figure imgf000012_0003
实施例 7
基材采用高密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000012_0004
首先将明胶充分溶于水, 然后再将天然石墨加入充分搅袢均匀制成导电发热涂料。然后将上述涂料 用 200目丝网印刷到 81cm X 12. 5cm 的高密度木质纤维板的表面, 印刷面积为 79 cm X 10. 5cm, 印 刷厚度约为 40微米, 70- 90'C下固化。 待充分固化后, 在带有导电发热层的高密度木质纤维板的长度方
10
更正页 (细则第 91条: ί 向两侧打两个电极孔, 安装铜电极。 0- 5°C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后 测得的导电发热层表面的温度列表如下:
Figure imgf000013_0001
实施例 8
基材采用实木复合板。 导电发热涂料的具体配方如下:
Figure imgf000013_0002
首先将聚氨酯充分溶于丙酮, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。然后将上述 涂料用软刷均匀涂刷到 81cm X 12. 5cm 的实木复合板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂层 ' 的厚度约为 80微米, 70-90°C下固化。 待充分固化后, 在带有导电发热层的实木复合板的长度方向两侧 打两个电极孔, 安装铜电极。 0- 5°C环境温度下接通 220V电源, 2、 5、 10、 60、 120、 分钟后测得的导 电发热层表面的温度列表如下:
Figure imgf000013_0003
实施例 9
基材采用氧化镁板。 导电发热涂料的具体配方如下:
Figure imgf000013_0004
首先将三聚晴氨充分溶于丙酮, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。然后将上 述涂料用软刷均匀涂刷到 81cm X 12. 5cm 的氧化镁板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂层 的厚度约为 80微米, 70-90Ό下固化。 待充分固化后, 在带有导电发热层的氧化镁板的长度方向两侧打 两个电极孔, 安装铜电极。 0-5°C环境温度下接通 220V电源, 2、 5、 10、 60、 120分钟后测得的导电发 热层表面的温度列表如下:
Figure imgf000014_0001
实施例 10
基材釆用纤维增强实木复合板。 导电发热涂料的具体配方如下:
Figure imgf000014_0002
首先将环氧树脂充分溶于丙酮, 然后再将天然石墨加入充分搅拌均匀制成导电发热涂料。然后将上 述涂料均匀涂刷到 81cm X 12. 5cm 的实木复合板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂层的厚 度为 80微米, 70- 90Ό下固化。 待充分固化后, 在带有导电发热层的实木复合板的长度方向两侧打两个 电极孔, 安装铜电极。 0-5°C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后测得的导电发 热层表面的温度列表如下:
Figure imgf000014_0003
实施例 11
基材采用中密度木质纤维板。 导电发热涂料的具体配方如下:
Figure imgf000014_0004
首先将聚氨酯树脂充分溶于丙酮, 然后再将天然石墨加入充分搅拌均勾制成导电发热涂料。然后将 上述涂料均匀涂刷到 81cm X 12. 5cm 的中密度木质纤维板的表面, 涂覆的面积为 79 cm X 10. 5cm, 涂层的厚度为 160微米, 70- 90°C下固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长 度方向两侧打两个电极孔, 安装铜电极。 0-5Ό环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分 钟后测得的导电发热层表面的温度列表如下:
Figure imgf000015_0001
2 基材采用实木复合板。 导电发热涂料的具体配方如下:
Figure imgf000015_0002
首先将聚氨酯树脂充分溶于丙酮, 然后再将天然石墨、 碳化硅微粉、 KH-550、 三氧化二锑、 邻苯二 甲酸二辛酯加入充分搅拌均匀制成导电发热涂料。 然后将上述涂料均匀涂刷到 81cm X 12. 5cm 的实木 复合板的表面, 涂覆的面积为 79 era X 10. 5cm, 涂层的厚度约为 160微米, 70-90'C下固化。 待充分固 化后, 在带有导电发热层的实木复合板的两侧打两个电极孔, 安装铜电极。 0-5Ό环境温度下接通 220V 电源, 2、 5、 10、 30、 60、 120分钟后测得的导电发热层表面的温度列表如下:
Figure imgf000015_0003
实施例 13
将实施例 2中的导电发热涂料采用丝网印刷的方式印刷到 81cm X 12. 5cm 的实木复合板的表面, 印刷范围为 79 cm X 10. 5cm, 印刷而成的导电发热层为均匀条格状, 如图 4所示。 印刷厚度约为 80 微米, 70-9CTC下固化。 待充分固化后, 在带有导电发热层的实木复合板的长度方向两侧打两个电极孔, 安装铜电极。 0- 5°C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后测得的导电发热层表面 的温度列表如下:
Figure imgf000016_0001
实施例 14
将实施例 11 中的导电发热涂料采用丝网印刷的方式印刷到 81cm X 12. 5cm 的中密度木质纤维板 的表面, 印刷范围为 79 cm X 10. 5cm, 印刷而成的导电发热层为均匀网格状, 如图 5所示。 印刷厚度 约为 160微米, 70-90°C下固化。 待充分固化后, 在带有导电发热层的中密度木质纤维板的长度方向两 侧打两个电极孔, 安装铜电极。 0- 5'C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后测得 的导电发热层表面的温度列表如下:
Figure imgf000016_0002
实施例 15
将实施例 9中的导电发热涂料采用丝网印刷的方式印刷到 81cm X 12. 5cm 的氧化镁板的表面, 印 刷范围为 79cm X 10. 5cm,印刷而成的导电发热层为均勾网格状,如图 5所示。,印刷厚度约为 80微米, 70-90°C下固化。 待充分固化后, 在带有导电发热层的氧化镁板的长度方向两侧打两个电极孔, 安装铜 电极。 O-5'C环境温度下接通 220V电源 2、 5、 10、 30、 60、 120分钟后测得的导电发热层表面的温度列 表如下:
Figure imgf000016_0003
实施例 16
釆用实施例 14中制成的导电发热板按照本领域已知的方法制作图 6中的导电发热地板。 导电发热 地板除所述的导电发热板外, 还带有作为平衡层、 热扩散层、 装饰层和耐磨层的三聚氰胺浸渍纸。 0-5 °C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后测得的地板表面的温度列表如下:
Figure imgf000016_0004
采用实施例 13中制成的导电发热板按照本领域己知的方法制作图 8中的导电发热地板。 导电发热 地板除所述的导电发热板外,还带有作为热扩散层的单板和耐磨油漆装饰层。 0-5°C环境温度下接通 220V 电源, 2、 5、 10、 30、 60、 120分钟后测得的地板表面的温度列表如下:
Figure imgf000017_0001
实施例 18
采用实施例 15中制成的导电发热板按照本领域已知的方法制作图 10中的导电发热墙板。导电发热 墙板除所述的导电发热板外, 还带有平衡层、装饰层。 0- 5°C环境温度下接通 220V电源, 2、 5、 10、 30、 60、 120分钟后测得的地板表面的温度列表如下:
Figure imgf000017_0002
基于对本发明优选实施方式的描述, 应该清楚, 由所附的权利要求书所限定的本发明并不仅仅局限 于上面说明书中所阐述的特定细节,未脱离本发明宗旨或范围的对本发明的许多显而易见的改变同样可 能达到本发明的目的。

Claims

权利 要 求
I、 一种导电发热板, 包括基材, 均匀附着在基材上的导电发热层, 其中的基材为中密度木质纤维板、 高密度木质纤维板、 实木复合板材或氧化镁板; 导电发热层由导电发热涂料制成, 所述的导电发热 涂料包括导电发热材料和粘结剂。
2、 权利要求 1中的导电发热板, 其中所述的导电发热材料选自天然石墨、 人造石墨、 导电碳黑; 所述 的粘结剂选自环氧树脂粘结剂、 聚氨酯树脂粘结剂、 三聚晴氨粘结剂、 明胶粘结剂、 羧甲基纤维素 粘结剂和聚乙烯醇粘结剂。
3、 权利要求 2中的导电发热板,其中所述的粘结剂用量占所述导电发热涂料主体配方总重量的 15-80%;
并且其中所述的导电发热材料的用量占导电发热涂料主体配方总重量的 20-85%; 导电发热涂料的主 体配方为导电发热材料和粘结剂。
4、 权利要求 3中的导电发热板, 其中所述的导电发热层的厚度为 40-200微米.
5、 权利要求 4中的导电发热板, 还包括固定在所述导电发热板上的电极。
6、 权利要求 4中的导电发热板, 其中的导电发热层为条格状结构。
7、 权利要求 5中的导电发热板, 其中的导电发热层为条格状结构。
8、 权利要求 4中的导电发热板, 其中的导电发热层为网格状结构。
9、 权利要求 5中的导电发热板, 其中的导电发热层为网格状结构。
10、 权利要求 6- 9中任一权利要求中的导电发热板, 其中的导电发热层采用丝网印刷方式制成。
II、 一种导电发热地板, 包括权利要求 1-10任一权利要求中的导电发热板。
12、 权利要求 11中的导电发热地板, 还包括至少一层含有远红外粉的树脂胶层。
13、 一种导电发热墙板, 包括权利要求 1-10任一权利要求中的导电发热板。
14、 权利要求 13中的导电发热墙板, 还包括至少一层含有远红外粉的树脂胶层。
15、 采用权利要求 1-10任一权利要求中的导电发热板制成的家具装饰板。
PCT/CN2008/000897 2007-10-29 2008-05-05 Plaque chauffante électriquement conductrice et son procédé de fabrication et application WO2009055999A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008800015781A CN101690384B (zh) 2007-10-29 2008-05-05 导电发热板及其制造方法和用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2007/003073 2007-10-29
PCT/CN2007/003073 WO2009055959A1 (fr) 2007-10-29 2007-10-29 Panneau chauffant électrique, procédé de fabrication et utilisation de celui-ci

Publications (1)

Publication Number Publication Date
WO2009055999A1 true WO2009055999A1 (fr) 2009-05-07

Family

ID=40590505

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2007/003073 WO2009055959A1 (fr) 2007-10-29 2007-10-29 Panneau chauffant électrique, procédé de fabrication et utilisation de celui-ci
PCT/CN2008/000897 WO2009055999A1 (fr) 2007-10-29 2008-05-05 Plaque chauffante électriquement conductrice et son procédé de fabrication et application

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003073 WO2009055959A1 (fr) 2007-10-29 2007-10-29 Panneau chauffant électrique, procédé de fabrication et utilisation de celui-ci

Country Status (2)

Country Link
CN (1) CN101600911A (zh)
WO (2) WO2009055959A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304694B2 (en) 2008-11-11 2012-11-06 Boquan Wang Electric heating material and laminate floor containing same and method for producing the laminate floor
CN103476158A (zh) * 2013-09-04 2013-12-25 中国科学院深圳先进技术研究院 Ptc复合材料发热膜及其制备方法和应用
CN109579118A (zh) * 2018-12-27 2019-04-05 中国科学院山西煤炭化学研究所 石墨烯智能取暖壁画

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2496889B1 (en) 2009-11-05 2017-06-28 Winstone Wallboards Limited Heating panel and method therefor
CN102387616A (zh) * 2010-08-31 2012-03-21 江苏贝尔装饰材料有限公司 导电发热板材以及制造该导电发热板材的方法
CN102312545B (zh) * 2011-07-05 2013-12-11 上海热丽电热材料有限公司 低温发热实木复合地板及其制备方法
CN102506458A (zh) * 2011-10-27 2012-06-20 江苏贝尔装饰材料有限公司 电热地板的制造方法及电热地板系统
GB201122326D0 (en) * 2011-12-23 2012-02-01 Exo Technologies Ltd Component for a building
CN104837222B (zh) * 2015-05-06 2016-11-16 南京格林木业有限公司 一种用导电发热胶膜制成的导电发热复合板材和其制备方法以及用该复合板材制成的制品
CN105928042A (zh) * 2016-05-04 2016-09-07 中国林业科学研究院木材工业研究所 一种复合电热板及其制备方法
CN112955696A (zh) * 2018-11-26 2021-06-11 迈克尔·普拉希 创建墙暖的模块化板材件及由墙暖件模块化建墙的系统
DE102018131205A1 (de) * 2018-12-06 2020-06-10 Alexander Slawinski Geschützte Infrarot-Wandflächenheizung mit flexiblem Heizgewebe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86204780U (zh) * 1986-07-07 1987-03-04 苍南县灵溪电热器材厂 一种电热台板
CN2491534Y (zh) * 2001-08-31 2002-05-15 商春成 安全节能恒温的电热地板
CN1620199A (zh) * 2004-09-30 2005-05-25 涂川俊 复合型电热炭膜及制备方法
CN2886976Y (zh) * 2005-08-16 2007-04-04 淳保林 新型碳化硅低温电热板
JP2007280695A (ja) * 2006-04-04 2007-10-25 Hiroshi Kobayashi 面状発熱体及び床暖房パネル
CN101148939A (zh) * 2007-11-01 2008-03-26 湖南大学 一种电热地板

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1778570A1 (de) * 1968-05-11 1972-03-23 Kurt Gaiser Elektrische Flaechenheizung
JPS63302229A (ja) * 1987-06-01 1988-12-09 Konishi Kk 床暖房用建材
JPH01269838A (ja) * 1988-04-20 1989-10-27 Yamaha Corp 床材
CN2140123Y (zh) * 1992-11-03 1993-08-11 许大坤 交直流两用低压涂层发热器
CN2160848Y (zh) * 1993-03-24 1994-04-06 滑中义 电热发热片
CN2208846Y (zh) * 1994-07-30 1995-10-04 朱双全 覆盖有电热涂层的家具面板
CN1106850A (zh) * 1994-09-20 1995-08-16 华中理工大学 电发热涂料
WO1997015171A2 (de) * 1995-10-17 1997-04-24 Magnus Kluge Elektrische widerstandsheizung zur raumklimatisierung in wohnungen und gebäuden
DE19622788A1 (de) * 1995-10-17 1997-12-11 Magnus Dr Kluge Elektrische Fußbodenheizung zur Raumklimatisierung in Wohnungen und Gebäuden
CN2538902Y (zh) * 2002-01-25 2003-03-05 安东宪 电热复合地板
JP3755029B2 (ja) * 2002-02-08 2006-03-15 北海道 発熱合板及び発熱複合パネル
JP2005146557A (ja) * 2003-11-12 2005-06-09 Takiron Co Ltd 階段用融雪床材及びこれを用いた階段構造
CN100353017C (zh) * 2005-12-29 2007-12-05 四川升达林业产业股份有限公司 远红外健康强化木地板及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86204780U (zh) * 1986-07-07 1987-03-04 苍南县灵溪电热器材厂 一种电热台板
CN2491534Y (zh) * 2001-08-31 2002-05-15 商春成 安全节能恒温的电热地板
CN1620199A (zh) * 2004-09-30 2005-05-25 涂川俊 复合型电热炭膜及制备方法
CN2886976Y (zh) * 2005-08-16 2007-04-04 淳保林 新型碳化硅低温电热板
JP2007280695A (ja) * 2006-04-04 2007-10-25 Hiroshi Kobayashi 面状発熱体及び床暖房パネル
CN101148939A (zh) * 2007-11-01 2008-03-26 湖南大学 一种电热地板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304694B2 (en) 2008-11-11 2012-11-06 Boquan Wang Electric heating material and laminate floor containing same and method for producing the laminate floor
CN103476158A (zh) * 2013-09-04 2013-12-25 中国科学院深圳先进技术研究院 Ptc复合材料发热膜及其制备方法和应用
CN109579118A (zh) * 2018-12-27 2019-04-05 中国科学院山西煤炭化学研究所 石墨烯智能取暖壁画

Also Published As

Publication number Publication date
CN101600911A (zh) 2009-12-09
WO2009055959A1 (fr) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2009055999A1 (fr) Plaque chauffante électriquement conductrice et son procédé de fabrication et application
US8618445B2 (en) Heating system
US5942140A (en) Method for heating the surface of an antenna dish
US9185748B2 (en) Electrical panel heating device and method and building materials for the protection thereof
EP2184547A2 (en) Electric heating material and laminate floor containing same and method for producing the laminate floor
CN207727900U (zh) 一种石墨烯热能地板
JP2023530185A (ja) プラスターボードに類似する建物パネル輻射ヒーター
JPH0732518A (ja) 建築用複合建材
CN206418724U (zh) 内置碳纤维电热层强化地板
CN109882918A (zh) 一种带蓄热和辅热功能的电热膜地暖系统
CN104179328A (zh) 一种纳米多层复合电热木地板及其制备方法
CN106703362B (zh) 内置碳纤维电热层强化地板的制备工艺及其木地板
CN107071937B (zh) 自变功率电热席及其床席、席梦思床垫、棕垫、地面供暖结构
CN211736137U (zh) 一种热辐射装饰板材
CN101690384B (zh) 导电发热板及其制造方法和用途
WO2020057599A1 (zh) 采暖建材及其制备方法
CN109882917A (zh) 一种具有蓄热功能的电热地暖系统
EP0894417A1 (en) Method for heating the surface of an antenna dish
CN211080887U (zh) 一种复合材料制成的自发热spc地板
KR102366642B1 (ko) 온열 바닥재 제조방법
JPS6338558Y2 (zh)
CN205742862U (zh) 一种加热迅速的竹木复合电热地板
CN207931196U (zh) 一种玻璃纤维与碳纤维复合保温材料
CN112432221A (zh) 一种使用寿命长的地暖
JP2000186822A (ja) タイル床暖房の構築構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001578.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC. E.P.O. FORM 1205A DATED 12.10.2010

122 Ep: pct application non-entry in european phase

Ref document number: 08748455

Country of ref document: EP

Kind code of ref document: A1