WO2009052953A1 - Brennstoffzellensystem mit zumindest einer brennstoffzelle - Google Patents

Brennstoffzellensystem mit zumindest einer brennstoffzelle Download PDF

Info

Publication number
WO2009052953A1
WO2009052953A1 PCT/EP2008/008524 EP2008008524W WO2009052953A1 WO 2009052953 A1 WO2009052953 A1 WO 2009052953A1 EP 2008008524 W EP2008008524 W EP 2008008524W WO 2009052953 A1 WO2009052953 A1 WO 2009052953A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
short
cell system
circuiting
switch
Prior art date
Application number
PCT/EP2008/008524
Other languages
English (en)
French (fr)
Inventor
Markus Walter
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to DE112008002683T priority Critical patent/DE112008002683A5/de
Priority to US12/739,104 priority patent/US20110033761A1/en
Priority to JP2010530300A priority patent/JP5697451B2/ja
Priority to CN200880112505A priority patent/CN101836319A/zh
Publication of WO2009052953A1 publication Critical patent/WO2009052953A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04246Short circuiting means for defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Fuel cell system with at least one fuel cell
  • the invention relates to a fuel cell system with at least one fuel cell, which is connected to electrical connection lines.
  • An inventive fuel cell system comprises at least one fuel cell, which is connected to electrical connection lines.
  • the fuel cell can be short-circuited for a necessary emergency shutdown. It is thus provided here that a short circuit can be generated deliberately and thus defined in the desired manner. Especially with an emergency shutdown, as they e.g. In an accident situation is necessary, thus, a desired operating condition can be achieved in a reliable and low-effort manner.
  • a short circuit in the fuel cell prevents unacceptable and dangerous high voltages, so that there is no danger (in the sense of electric shock) from the voltage source.
  • the effort for the control, the installation effort and space requirements can be reduced. By no longer required at least two actuators can also be a component reduction and thus also a weight saving are made possible.
  • line is understood to mean not only electrical lines in the narrower sense, but also, for example, busbars, waveguides and the like.
  • the fuel cell system comprises a short-circuiting device, which has a pyrotechnic triggerable mechanical switch. It can also be provided that a
  • Short-circuiting device has an electro-mechanically triggered switch.
  • a short-circuiting device has a semiconductor switch whose resistance for short-circuiting the fuel cell can be reduced in a defined manner.
  • Short-circuiting device has a spark gap, in particular a Gasabieiter.
  • Gas extractors are also known to the person skilled in the art by the term gas discharge absorber, spare gap or gas-filled separating spark gap.
  • the Gasabieiter can be designed as a triggerable element with at least one ignition electrode.
  • the at least one ignition electrode can be electrically conductively connected to a device which is provided to generate a triggering pulse (current or voltage pulse) at least temporarily.
  • the short-circuit device in particular the spark gap, can be designed to generate a short circuit several times, which leads to a minimization of the maintenance costs and of the maintenance effort.
  • the short-circuiting device can be designed for generating a short circuit once.
  • the short-circuiting device has at least one additional switching element, which is designed to switch off the system in the emergency shutdown different other operating phases.
  • this additional switching element is associated with an inverter or current transformer.
  • inverters or current transformers are also also boost converter, Wegsetsteiler or combinations thereof in question.
  • the additional switching element is a switch or preferably a transistor.
  • the electrical voltage on the outgoing leads after 60 s at the latest, preferably 5 s, in particular 3 s after short-circuiting the fuel cell is less than 60 V, preferably less than 30 V, in particular nearly 0 V.
  • the system comprises a plurality of fuel cells, a so-called
  • Fuel cell stack comprises, which are short-circuited by an electrically conductive element, which is bridged for emergency shutdown all fuel cells attachable and electrically connectable to the connecting lines.
  • a situation in which an emergency shutdown is required can be detected by a specific sensor.
  • the fuel cell system is designed as a mobile system and is arranged in a vehicle, for example, an accident of the vehicle can be detected.
  • acceleration sensors are provided, depending on the detection of the accident situation by the acceleration sensors then defines an emergency shutdown and in this context, the fuel cell is short-circuited.
  • This is merely an exemplary sensor technology, via which a specific situation for an emergency shutdown can be detected.
  • an airbag deployment defines a subsequent emergency shutdown of the fuel cell system. Due to the deliberately and actively triggered short circuit of a fuel cell in an emergency shutdown, the outward voltage is almost 0 V.
  • the remaining charge is in the energy source, the fuel cell itself, implemented, which in particular has a heating of the fuel cell result.
  • the control of an emergency shutdown can be made very efficient and yet little effort in the operation of fuel cells to discharge the fuel cell can.
  • this can meet the safety standards for preventing outward high voltages.
  • electrical energy sources with voltage greater than 60 V are subject to high safety criteria, since such electrical voltages can be life-threatening.
  • FIG. 1 shows a first embodiment of a fuel cell system according to the invention
  • FIG. 2 shows a second embodiment of a fuel cell system according to the invention
  • 3 shows a third embodiment of a fuel cell system according to the invention
  • FIG. 4 shows a fourth exemplary embodiment of a fuel cell system according to the invention.
  • FIG. 1 shows a schematic illustration of a fuel cell system 1, with only the components of the fuel cell system 1 which are sufficient for the understanding of the invention being shown in this respect.
  • the fuel cell system 1 is designed as a mobile fuel cell system and arranged in a vehicle.
  • the fuel cell system 1 comprises a fuel cell stack 2 having a plurality of fuel cells, which are preferably designed as PEM fuel cells.
  • the fuel cell stack 2 is contacted with a first electrical connection line 3 and a second electrical connection line 4.
  • the first connecting line 3 has an electrical contact 5 and the second connecting line 4 has an electrical contact 6.
  • the fuel cell system 1 has a short-circuiting device 7 with a switch 8, which can be actuated via an actuating element 9.
  • a short-circuiting device 7 with a switch 8, which can be actuated via an actuating element 9.
  • Fig. 1 the open state of the short-circuiting device 7 is shown.
  • the switch 8 is electrically contacted with the electrical contacts 5 and 6 in a necessary emergency shutdown of the actuator 9 and thereby generates the short circuit.
  • a pyrotechnically triggered mechanical switch is realized by the switch 8 and the adjusting element 9.
  • the switch 8 is realized as an electro-mechanically triggered switch.
  • the normal state is defined by the "open” state or else by the "closed” state.
  • a semiconductor switch 10 may also be provided, as shown by way of example in FIG. 1 in addition to the fuel cell system 1. This
  • Semiconductor switch 10 may then be arranged instead of the switch 8 and the adjusting element 9 in the short-circuiting device 7.
  • the semiconductor switch 10 can be selectively destroyed to produce the short circuit of the fuel cell stack 2, so that it changes from a high-impedance state to a low-impedance state.
  • switches in question which are reversibly switchable, such as thyristors. These even open on their own, namely when the current is zero.
  • switches come into question in which a specially designed for this purpose alloy is melted, which then produces a short circuit.
  • a spark gap for generating the short circuit of the fuel cell stack 2 may also be provided.
  • a spark gap in particular a Gasabieiter 18 is shown.
  • the Gasabieiter 18 may be arranged in place of the switch 8 and the switching element 9 in the short-circuiting device 7.
  • the Gasabieiter 18 may have at least one unspecified Z ⁇ ndelektrode, which may be at least temporarily electrically connected to a device, not shown, for generating a trigger pulse.
  • FIG. 2 shows a further exemplary embodiment of a fuel cell system 1, in which the fuel cell stack 2 can be short-circuited via an electrically conductive element 11.
  • This electrically conductive element 11 is so mounted for emergency shutdown that it contacts the two connecting lines 3 and 4 and bridges the fuel cell.
  • a conductive connection is made across the fuel cell stack 2 so that each individual fuel cell is shorted and can discharge. This prevents possible harmful polarity reversal of individual fuel cells.
  • the problem of a short circuit of high voltage is reduced to that of an electrical voltage less than 1 V.
  • the residual charge of a fuel cell stack 2 is manageable when setting the gas supply, which is required anyway in an emergency, and does not pose a risk of overheating. For this reason, to meet the condition of a terminal voltage less than 60 V, the fuel cell stack 2 can be shorted.
  • FIG. 1 The alternatives explained for the embodiment according to FIG. 1 relate to a pyrotechnic-triggerable mechanical switch 8 or a semiconductor switch 10 and are formed, as it were, as disposable switching elements. This is in contrast to the explained in Fig. 1 embodiments of an electro-mechanically triggered switch 8 or to the illustrated in Fig. 2 switching mechanism with the electrically conductive element 11, which is actuated via an actuating element 12. These latter embodiments are designed as multi-switching elements and can thus be repeatedly activated to generate a short circuit.
  • an additional switching element 14 may be provided instead of the usual contactors, which is associated with a current transformer or inverter 13.
  • This current transformer or inverter 13 further comprises an inductance 15 and a diode 16.
  • the additional switching element 14 may be a switch or for example also a transistor.
  • an electronic switch 14 is realized in this regard, which is already present in the current transformer or inverter 13. This does not need to be dimensioned to the requirements of an accident, so that no additional effort in terms of additional components is required.
  • a further embodiment is shown in this context, in which a transistor 14 'is associated with the current transformer or inverter 13'.
  • a further switch 17 is provided.
  • an additional switch 14 ' is shown, which is normally closed. This has the advantage that the absence of voltage (ie the short circuit) is possible without active control.
  • the otherwise commonly used transistors in power converters are normally open transistors.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Brennstoffzellensystem mit zumindest einer Brennstoffzelle (2), welche mit elektrischen Anschlussleitungen (3, 4) verbunden ist, wobei die Brennstoffzelle (2) für eine erforderliche Notabschaltung kurzschließbar ist.

Description

Brennstoffzellensystem mit zumindest einer Brennstoffzelle
Die Erfindung betrifft ein Brennstoffzellensystem mit zumindest einer Brennstoffzelle, welche mit elektrischen Anschlussleitungen verbunden ist.
Bei der Verwendung von Batterien als Energiequellen in einem Fahrzeug ist es bekannt, dass ein zweipoliges Abschalten bzw. Trennen des Systems von elektrischen Energiequellen, den Batterien, mit Hilfe öffnender, elektro-mechanischer Schalter durchgeführt wird. Steuergeräte für derartige Batterien umfassen üblicherweise zwei Schütze, welche die Batterie von den nach außen geführten Kontakten trennt. Dies ist gegenwärtig auch bei einem Brennstoffzellensystem in entsprechender Weise realisiert. Ein Nachteil einer derartigen Ausführung ist darin zu sehen, dass dies relativ bauteilaufwändig ist, da ein Aktor zur Erfüllung der Sicherheitsstandards zumindest zweifach vorhanden sein muss. Ein weiterer Nachteil derartiger Ausführungen ist, dass nach der Trennung weiterhin hohe Spannungen vorhanden sind, die zu einer Gefährdung von Personen führen können. Ein Nachteil der bekannten Ausführungen mit Schützen ist, dass Schütze eine verringerte Zuverlässigkeit aufweisen, wenn sie einmal mit einem Strom mit großer Stromstärke belastet wurden. Zudem müssen beim Abschalten von Gleichströmen hohe Anforderungen erfüllt werden. Nicht zuletzt ist dadurch auch ein relativ großer Bauraum für die Vielzahl von Komponenten erforderlich, und ein hoher Montageaufwand gegeben. Darüber hinaus ist die Ansteuerung relativ aufwändig und durch die Vielzahl der Komponenten ist auch ein höheres Gewicht gegeben. All diese Nachteile tragen nicht zuletzt auch zu hohen Kosten bei.
Es ist Aufgabe der vorliegenden Erfindung, ein Brennstoffzellensystem zu schaffen, bei dem die Sicherheit der Einstellung von Betriebszuständen mit reduziertem Aufwand erreicht werden kann. Diese Aufgabe wird durch ein Brennstoffzellensystem welches die Merkmale nach Anspruch 1 aufweist, gelöst.
Ein erfindungsgemäßes Brennstoffzellensystem umfasst zumindest eine Brennstoffzelle, welche mit elektrischen Anschlussleitungen verbunden ist. Die Brennstoffzelle ist für eine erforderliche Notabschaltung kurzschließbar. Es ist hier somit vorgesehen, dass ein Kurzschluss bewusst und somit in erwünschter Weise definiert erzeugbar ist. Gerade bei einer Notabschaltung, wie sie z.B. in einer Unfall-Situation notwendig ist, kann somit in zuverlässiger und aufwandsarmer Weise ein gewünschter Betriebszustand erreicht werden. Durch einen Kurzschluss der Brennstoffzelle werden unzulässige und Personen gefährdende hohe Spannungen verhindert, so dass keine Gefahr (im Sinne eines Stromschlags) von der Spannungsquelle ausgehen kann. Nicht zuletzt kann dadurch auch der Aufwand für die Ansteuerung, der Montageaufwand und der Platzbedarf reduziert werden. Durch die nicht mehr erforderlichen zumindest zwei Aktoren kann darüber hinaus auch eine Bauteilreduzierung und somit auch eine Gewichtseinsparung ermöglicht werden.
Unter dem Begriff „Leitung" werden im Rahmen der vorliegenden Erfindung nicht nur elektrische Leitungen im engeren Sinne verstanden, sondern z.B. auch Stromschienen, Hohlleiter und dergleichen.
Vorzugsweise umfasst das Brennstoffzellensystem eine Kurzschließeinrichtung, welche einen pyrotechnisch auslösbaren mechanischen Schalter aufweist. Es kann auch vorgesehen sein, dass eine
Kurzschließeinrichtung einen elektro-mechanisch auslösbaren Schalter aufweist.
Darüber hinaus kann vorgesehen sein, dass eine Kurzschließeinrichtung einen Halbleiterschalter aufweist, dessen Widerstand zum Kurzschließen der Brennstoffzelle definiert reduzierbar ist.
Des Weiteren kann vorgesehen sein, dass eine
Kurzschließeinrichtung eine Funkenstrecke, insbesondere einen Gasabieiter aufweist. Gasabieiter sind dem Fachmann auch unter dem Begriff Gasentladungsabieiter, Spare Gap oder gasgefüllte Trennfunkenstrecke bekannt. Der Gasabieiter kann als triggerbares Element mit wenigstens einer Zündelektrode ausgebildet sein. Die wenigstens eine Zündelektrode kann mit einer Einrichtung, welche dafür vorgesehen ist, einen Auslöseimpuls (Strom- oder Spannungsimpuls) zu erzeugen, zumindest zeitweise elektrisch leitend verbunden sein.
Die Kurzschlusseinrichtung, insbesondere die Funkenstrecke kann zum mehrmaligen Erzeugen eines Kurzschlusses ausgelegt sein, was zu einer Minimierung der Wartungskosten und des Wartungsaufwands führt.
Alternativ kann die Kurzschließeinrichtung zum einmaligen Erzeugen eines Kurzschlusses ausgelegt sein.
Insbesondere weist die Kurzschließeinrichtung zumindest ein zusätzliches Schaltelement auf, welches zum Abschalten des Systems in zur Notabschaltung unterschiedlichen anderen Betriebsphasen ausgebildet ist. Derartige zur Notabschaltung unterschiedliche andere Betriebsphasen liegen beispielsweise bei der Wartung oder beim üblichen Service derartiger Systeme vor . Vorzugsweise ist dieses zusätzliche Schaltelement einem Inverter oder Stromwandler zugeordnet. Anstelle von Invertern oder Stromwandlern kommen ferner auch Hochsetzsteller, Tiefsetzsteiler oder Kombinationen daraus in Frage. Insbesondere kann vorgesehen sein, dass das zusätzliche Schaltelement ein Schalter oder vorzugsweise ein Transistor ist .
Insbesondere ist die elektrische Spannung an den nach außen geführten Anschlussleitungen nach spätestens 60 s, vorzugsweise 5 s, insbesondere 3 s nach dem Kurzschließen der Brennstoffzelle kleiner 60 V, vorzugsweise kleiner 30 V, insbesondere nahezu 0 V.
Es kann auch vorgesehen sein, dass das System eine Mehrzahl von Brennstoffzellen, einen so genannten
Brennstoffzellenstapel, umfasst, die durch ein elektrisch leitendes Element kurzschließbar sind, welche zur Notabschaltung alle Brennstoffzellen überbrückend anbringbar und mit den Anschlussleitungen elektrisch verbindbar ist.
Eine Situation, in der eine Notabschaltung erforderlich ist kann durch eine spezifische Sensorik erkannt werden. Gerade dann, wenn das Brennstoffzellensystem als mobiles System ausgebildet ist und in einem Fahrzeug angeordnet ist, kann beispielsweise ein Unfall des Fahrzeugs detektiert werden. Dazu sind beispielsweise Beschleunigungssensoren vorgesehen, wobei abhängig vom Erkennen der Unfallsituation durch die Beschleunigungssensoren dann eine Notabschaltung definiert und in diesem Zusammenhang die Brennstoffzelle kurzschließbar ist. Dies ist lediglich eine beispielhafte Sensorik, über welche eine spezifische Situation für eine Notabschaltung erkannt werden kann. Zusätzlich oder alternativ dazu kann beispielsweise auch vorgesehen sein, dass eine Airbag- Auslösung eine nachfolgende Notabschaltung des Brennstoffzellensystems definiert . Durch den bewusst und aktiv ausgelösten Kurzschluss einer Brennstoffzelle bei einer Notabschaltung wird die nach außen wirkende elektrische Spannung nahezu 0 V. Die verbleibende Restladung wird in der Energiequelle, der Brennstoffzelle selbst, umgesetzt, was insbesondere eine Erwärmung der Brennstoffzelle zur Folge hat. Durch diese Vorgehensweise kann im Betrieb von Brennstoffzellen die Regelung einer Notabschaltung sehr effizient und dennoch aufwandsarm ermöglicht werden, um die Brennstoffzelle entladen zu können. Darüber hinaus können dadurch die Sicherheitsstandards zur Verhinderung von nach außen tretenden hohen Spannungen erfüllt werden.
Ferner kann auch eine erhebliche Gewichtseinsparung gegenüber herkömmlichen Ausführungen mit zumindest zwei Aktoren und komplexer Ansteuerung von diesen erreicht werden.
Insbesondere elektrische Energiequellen mit Spannung größer 60 V (Spannungsgrenze nach Standard) unterliegen hohen Sicherheitskriterien, da derartige elektrische Spannungen lebensbedrohlich sein können.
Im Falle von Batterien, bei denen derartige hohe Spannungen auftreten können, werden daher trennende Schalter eingesetzt, diese sind jedoch aufgrund möglicher, extrem hoher Gleichströme mit entsprechend hohem Aufwand und hohen Kosten verbunden. Zudem muss wegen eines einseitigen Schlusses zwischen Energiequelle und dem Fahrzeug, insbesondere am Gehäuse, eine zweipolige Trennung vorgesehen werden.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der schematischen Zeichnungen näher erläutert. Dabei zeigen:
Fig. 1 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffzellensystems;
Fig. 2 ein zweites Ausführungsbeispiel eines erfindungsgemäßen Brennstoffzellensystems; Fig. 3 ein drittes Ausführungsbeispiel eines erfindungsgemäßen BrennstoffZeilensystems; und
Fig. 4 ein viertes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffzellensystems .
In den Figuren werden gleiche oder funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen.
In Fig. 1 ist in einer schematischen Darstellung ein Brennstoffzellensystem 1 dargestellt, wobei diesbezüglich lediglich die für das Verständnis der Erfindung ausreichenden Komponenten des Brennstoffzellensystems 1 gezeigt sind.
Das Brennstoffzellensystem 1 ist als mobiles Brennstoffzellensystem ausgebildet und in einem Fahrzeug angeordnet. Das Brennstoffzellensystem 1 umfasst im Ausführungsbeispiel einen Brennstoffzellenstapel 2 mit einer Mehrzahl von Brennstoffzellen, welche vorzugsweise als PEM- Brennstoffzellen ausgebildet sind.
Der Brennstoffzellenstapel 2 ist mit einer ersten elektrischen Anschlussleitung 3 und einer zweiten elektrischen Anschlussleitung 4 kontaktiert.
Außerhalb des Brennstoffzellenstapels 2 weist die erste Anschlussleitung 3 eine elektrische Kontaktierung 5 und die zweite Anschlussleitung 4 eine elektrische Kontaktierung 6 auf.
Darüber hinaus weist das Brennstoffzellensystem 1 eine Kurzschließeinrichtung 7 mit einem Schalter 8 auf, welcher über ein Stellelement 9 betätigbar ist. In Fig. 1 ist der geöffnete Zustand der Kurzschließeinrichtung 7 gezeigt.
Zur Erzeugung des Kurzschlusses des Brennstoffzellenstapels 2 wird bei einer erforderlichen Notabschaltung der Schalter 8 über das Stellelement 9 mit den elektrischen Kontakten 5 und 6 elektrisch kontaktiert und dadurch der Kurzschluss erzeugt.
In Fig. 1 ist durch den Schalter 8 und das Stellelement 9 ein pyrotechnisch ausgelöster mechanischer Schalter realisiert.
Es kann auch vorgesehen sein, dass der Schalter 8 als elektro-mechanisch ausgelöster Schalter realisiert ist. Bei einer derartigen Ausführung kann vorgesehen sein, dass der Normalzustand durch den „offenen" Zustand oder aber auch durch den „geschlossenen" Zustand definiert ist.
Alternativ zu einem pyrotechnisch ausgelösten mechanischen Schalter oder einem elektro-mechanisch ausgelösten Schalter kann auch ein Halbleiterschalter 10 vorgesehen sein, wie er beispielhaft in Fig. 1 ergänzend neben dem Brennstoffzellensystem 1 gezeigt ist. Dieser
Halbleiterschalter 10 kann dann anstelle des Schalters 8 und des Stellelements 9 in der Kurzschließeinrichtung 7 angeordnet sein.
Der Halbleiterschalter 10 kann zur Erzeugung des Kurzschlusses des Brennstoffzellenstapels 2 gezielt zerstört werden, so dass dieser von einem hochohmigen Zustand in einen niederohmigen Zustand wechselt .
Es kommen auch Halbleiterschalter in Frage, welche reversibel schaltbar sind, z.B. Thyristoren. Diese öffnen sich sogar von alleine, nämlich dann, wenn der Strom gleich null ist. Darüber hinaus kommen auch Schalter in Frage, bei denen eine speziell auf diesen Zweck ausgelegte Legierung aufgeschmolzen wird, welche dann einen Kurzschluss herstellt.
Als Alternative zu Halbleiterschaltern, zu einem pyrotechnisch ausgelösten mechanischen Schalter und zu einem elektromechanisch ausgelösten Schalter kann auch eine Funkenstrecke zur Erzeugung des Kurzschlusses des Brennstoffzellenstapels 2 vorgesehen sein.
Ergänzend neben dem BrennstoffZeilensystem 1 ist eine Funkenstrecke, insbesondere ein Gasabieiter 18 dargestellt. Der Gasabieiter 18 kann anstelle des Schalters 8 und des Schaltelements 9 in der Kurzschließeinrichtung 7 angeordnet sein. Der Gasabieiter 18 kann wenigstens eine nicht näher bezeichnete Zϋndelektrode aufweisen, welche mit einer nicht dargestellten Einrichtung zur Erzeugung eines Auslöseimpulses zumindest zeitweise elektrisch leitend verbunden sein kann.
In Fig. 2 ist ein weiteres Ausführungsbeispiel eines Brennstoffzellensystems 1 gezeigt, bei welchem der Brennstoffzellenstapel 2 über ein elektrisch leitendes Element 11 kurzschließbar ist. Dieses elektrisch leitende Element 11 ist zur Notabschaltung so anbringbar, dass es die beiden Anschlussleitungen 3 und 4 kontaktiert und die Brennstoffzellen überbrückt. Bei dieser Ausführung wird in einer Notsituation eine leitfähige Verbindung quer über den Brennstoffzellenstapel 2 hergestellt, so dass jede einzelne Brennstoffzelle kurzgeschlossen ist und sich entladen kann. Dadurch wird ein mögliches schädliches Umpolen von einzelnen Brennstoffzellen verhindert. Zusätzlich wird die Problematik eines Kurzschlusses hoher Spannung auf den einer elektrischen Spannung kleiner 1 V reduziert. Die Restladung eines Brennstoffzellenstapels 2 ist bei Einstellung der Gasversorgung, was im Notfall ohnehin gefordert ist, überschaubar und stellt kein Gefahrenpotential hinsichtlich einer Überhitzung dar. Aus diesem Grund kann zur Erfüllung der Bedingung einer Klemmenspannung kleiner 60 V der Brennstoffzellenstapel 2 kurzgeschlossen werden.
Die zur Ausführung gemäß Fig. 1 erläuterten Alternativen betreffen einen pyrotechnisch auslösbaren mechanischen Schalter 8 oder einen Halbleiterschalter 10 und sind quasi als Einmal-Schaltelemente ausgebildet. Dies steht im Unterschied zu den in Fig. 1 erläuterten Ausführungen eines elektro-mechanisch ausgelösten Schalters 8 oder zu dem in Fig. 2 erläuterten Schaltmechanismus mit dem elektrisch leitenden Element 11, welches über ein Stellelement 12 betätigbar ist. Diese zuletzt genannten Ausführungen sind als mehrfach schaltende Elemente konzipiert und können somit wiederholbar zur Erzeugung eines Kurzschlusses aktiviert werden.
Bei den zuerst genannten Ausführungen, welche als Einmal- Schaltelemente bezeichnet werden können, ist es zusätzlich vorgesehen, für normale Standzeiten und für den Servicebetrieb ein zuverlässiges Prinzip der Abschaltung zu implementieren. Dies ist beispielsweise in einer Ausführung gemäß Fig. 3 gezeigt. Dafür kann anstelle der üblichen Schütze ein zusätzliches Schaltelement 14 vorgesehen sein, welches einem Stromwandler oder Inverter 13 zugeordnet ist. Dieser Stromwandler oder Inverter 13 umfasst des Weiteren eine Induktivität 15 und eine Diode 16. Das zusätzliche Schaltelement 14 kann ein Schalter oder beispielsweise auch ein Transistor sein. In der Ausführung gemäß Fig. 3 ist diesbezüglich ein elektronischer Schalter 14 realisiert, der in dem Stromwandler oder Inverter 13 bereits vorhanden ist. Dieser braucht nicht auf die Anforderungen eines Unfalls dimensioniert zu werden, so dass kein Zusatzaufwand im Sinne zusätzlicher Komponenten erforderlich ist.
In Fig. 4 ist in diesem Zusammenhang ein weiteres Ausführungsbeispiel gezeigt, bei dem ein Transistor 14' dem Stromwandler oder Inverter 13' zugeordnet ist. Zusätzlich ist ein weiterer Schalter 17 vorgesehen. In dem hier gezeigten Fall ist ein zusätzlicher Schalter 14' dargestellt, welcher stromlos geschlossen ist. Das hat den Vorteil, dass die Spannungsfreiheit (d.h. der Kurzschluss) ohne aktive Ansteuerung möglich ist. Die ansonsten gewöhnlich eingesetzten Transistoren in Stromrichtern sind stromlos offene Transistoren.
Bezugszeichenliste
1 Brennstoffzellensystem
2 Brennstoffzellenstapel
3, 4 elektrische Anschlussleitungen
5, 6 elektrische Kontaktierung
7 Kurzschließeinrichtung
8 Schalter
9, 12 Stellelemente
10 Halbleiterschalter
11 leitendes Element
13, 13' Inverter oder Stromwandler
14 Schaltelement 14' Transistor
15 Induktivität
16 Diode
17 Schalter
18 Gasabieiter

Claims

Patentansprüche
1. Brennstoffzellensystem mit zumindest einer Brennstoffzelle (2), welche mit elektrischen Anschlussleitungen (3, 4) verbunden ist, dadurch gekennzeichnet, dass die Brennstoffzelle (2) für eine erforderliche Notabschaltung kurzschließbar ist.
2. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, dass eine Kurzschließeinrichtung (7) zum Kurzschließen der Brennstoffzelle (2) vorgesehen ist, die einen pyro- technisch auslösbaren mechanischen Schalter (8) aufweist.
3. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, dass eine Kurzschließeinrichtung (7) zum Kurzschließen der Brennstoffzelle (2) vorgesehen ist, die einen e- lektro-mechanisch auslösbaren Schalter (8) aufweist.
4. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, dass eine Kurzschließeinrichtung (7) zum Kurzschließen der Brennstoffzelle (2) vorgesehen ist, die einen Halb¬ leiterschalter (10) aufweist, dessen Widerstand zum Kurz¬ schließen der Brennstoffzelle (2) reduzierbar ist.
5. Brennstoffzellensystem nach Anspruch 1, dadurch gekennzeichnet, dass eine Kurzschließeinrichtung (7) zum Kurzschließen der Brennstoffzelle (2) vorgesehen ist, die eine Funkenstrecke, insbesondere einen Gasabieiter aufweist.
6. Brennstoffzellensystem nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die Kurzschließeinrichtung (7) zum einmaligen Erzeugen eines Kurschlusses ausgelegt ist.
7. Brennstoffzellensystem nach Anspruch 6, dadurch gekennzeichnet, dass die Kurzschließeinrichtung (7) ein zusätzliches Schaltelement (14, 14') aufweist, welches zum Abschalten des Systems in zur Notabschaltung unterschiedlichen anderen Betriebsphasen ausgebildet ist.
8. Brennstoffzellensystem nach Anspruch 7, dadurch gekennzeichnet, dass das Schaltelement (14, 14') einem Inverter oder Stromwandler (13, 13') zugeordnet ist.
9. Brennstoffzellensystem nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass das Schaltelement (14, 14') ein Transistor ist.
10. Brennstoffzellensystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass eine Kurzschließeinrichtung (7) zum mehrmalig wie¬ derholbaren Erzeugen eines Kurzschlusses ausgelegt ist.
11. Brennstoffzellensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die elektrische Spannung an den nach außen geführten Anschlussleitungen (3, 4) nach spätestens 60 s, bevorzugt 5 s, besonders bevorzugt 3 s nach dem Kurzschließen der Brennstoffzelle (2) kleiner 60 V, bevorzugt kleiner 30 V, besonders bevorzugt nahezu 0 V, ist.
12. BrennstoffZeilensystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das System (1) eine Mehrzahl von Brennstoffzellen (2) umfasst, die durch ein elektrisch leitendes Element (11) kurzschließbar sind, welches zur Notabschaltung alle Brennstoffzellen (2) überbrückend anbringbar ist und mit den Anschlussleitungen (3, 4) elektrisch verbindbar ist.
PCT/EP2008/008524 2007-10-22 2008-10-09 Brennstoffzellensystem mit zumindest einer brennstoffzelle WO2009052953A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112008002683T DE112008002683A5 (de) 2007-10-22 2008-10-09 Brennstoffzellensystem mit zumindest einer Brennstoffzelle
US12/739,104 US20110033761A1 (en) 2007-10-22 2008-10-09 Fuel Cell System With at Least One Fuel Cell
JP2010530300A JP5697451B2 (ja) 2007-10-22 2008-10-09 少なくとも1つの燃料電池を備えた燃料電池システム
CN200880112505A CN101836319A (zh) 2007-10-22 2008-10-09 包括至少一个燃料电池的燃料电池系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007050377A DE102007050377A1 (de) 2007-10-22 2007-10-22 Brennstoffzellensystem mit zumindest einer Brennstoffzelle
DE102007050377.8 2007-10-22

Publications (1)

Publication Number Publication Date
WO2009052953A1 true WO2009052953A1 (de) 2009-04-30

Family

ID=40328315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/008524 WO2009052953A1 (de) 2007-10-22 2008-10-09 Brennstoffzellensystem mit zumindest einer brennstoffzelle

Country Status (5)

Country Link
US (1) US20110033761A1 (de)
JP (1) JP5697451B2 (de)
CN (1) CN101836319A (de)
DE (2) DE102007050377A1 (de)
WO (1) WO2009052953A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012016246A1 (de) 2012-08-16 2013-03-14 Daimler Ag Schaltkreis, Spannungsquelle und Betriebsverfahren zum Herstellen eines niederohmigen Abschlusses einer Spannungsquelle
DE102012218556A1 (de) 2012-10-11 2014-04-17 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellensystem eines Fahrzeugs

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698202B2 (ja) * 2012-10-16 2015-04-08 本田技研工業株式会社 燃料電池システム
DE102013006254A1 (de) 2013-04-11 2014-10-16 Audi Ag Spannungsfreischaltung eines Hochvoltfahrzeugs
DE102013020673A1 (de) 2013-12-06 2015-06-11 Daimler Ag Brennstoffzellensystem und Fahrzeug mit einem Brennstoffzellensystem
DE102015010323A1 (de) 2014-12-23 2016-06-23 Daimler Ag Energiequellenanordnung mit zweipoliger Abschaltung für ein Kraftfahrzeug
DE102018211815A1 (de) * 2018-07-17 2020-01-23 Audi Ag Elektrisches Energiesystem mit Brennstoffzellen
DE102021000940A1 (de) * 2021-02-22 2022-08-25 Cellcentric Gmbh & Co. Kg Vorrichtung zur Energieverteilung
WO2022258683A2 (de) * 2021-06-09 2022-12-15 Cellcentric Gmbh & Co. Kg Vorrichtung zur elektrischen verschaltung eines brennstoffzellenstapels und einer hochvoltbatterie
WO2023232688A1 (de) * 2022-06-02 2023-12-07 Sma Solar Technology Ag Verfahren zum herstellen eines definierten zustandes eines elektrochemischen systems, trennvorrichtung und leistungswandler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519713A (en) * 1978-07-28 1980-02-12 Fuji Electric Co Ltd Stopping method of fuel cell
US4963443A (en) * 1988-06-23 1990-10-16 Fuji Electric Co., Ltd. Fuel cell system and the method for operating the same
US20030112140A1 (en) * 2001-12-17 2003-06-19 Ted Everson Fuel cell system with a detection system for fire or elevated temperatures
JP2005166566A (ja) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd 燃料電池システム
DE102005042772A1 (de) * 2005-02-24 2006-08-31 Mitsubishi Denki K.K. Brennstoffzellensystem und Verfahren zu seiner Abschaltung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317117A (en) * 1992-11-30 1994-05-31 Allen-Bradley Co., Inc. Gas deflection and isolation system for use with a high power circuit breaker
JP2003109636A (ja) * 2001-09-30 2003-04-11 Equos Research Co Ltd 燃料電池スタック
JP3893965B2 (ja) * 2001-12-13 2007-03-14 トヨタ自動車株式会社 電気式自動車
JP3826833B2 (ja) * 2002-04-19 2006-09-27 トヨタ自動車株式会社 燃料電池システム及びその制御方法
JP3766069B2 (ja) * 2003-03-31 2006-04-12 株式会社東芝 燃料電池保護回路、燃料電池保護方法および燃料電池
US20040217732A1 (en) * 2003-04-29 2004-11-04 Ballard Power Systems Inc. Power converter architecture and method for integrated fuel cell based power supplies
JP4066882B2 (ja) * 2003-05-22 2008-03-26 トヨタ自動車株式会社 車載燃料電池発電システムの制御装置および制御方法
DE10345502A1 (de) * 2003-09-30 2005-06-02 Siemens Ag Antrieb für ein Schaltgerät
JP2006197729A (ja) * 2005-01-13 2006-07-27 Toshiba Kyaria Kk 直流電源回路、半導体モジュール、モータ駆動装置及び空気調和機
JP4762569B2 (ja) * 2005-02-18 2011-08-31 本田技研工業株式会社 燃料電池システムおよびその制御方法
JP5425358B2 (ja) * 2005-10-20 2014-02-26 株式会社日立製作所 固体高分子形燃料電池システムの停止方法及び固体高分子形燃料電池システム
JP2007282332A (ja) * 2006-04-04 2007-10-25 Toyota Motor Corp 電気自動車
DE102006030671B4 (de) * 2006-07-04 2008-10-02 Moeller Gmbh Schutzschalter-Kurzschließer-Kombination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519713A (en) * 1978-07-28 1980-02-12 Fuji Electric Co Ltd Stopping method of fuel cell
US4963443A (en) * 1988-06-23 1990-10-16 Fuji Electric Co., Ltd. Fuel cell system and the method for operating the same
US20030112140A1 (en) * 2001-12-17 2003-06-19 Ted Everson Fuel cell system with a detection system for fire or elevated temperatures
JP2005166566A (ja) * 2003-12-05 2005-06-23 Nissan Motor Co Ltd 燃料電池システム
DE102005042772A1 (de) * 2005-02-24 2006-08-31 Mitsubishi Denki K.K. Brennstoffzellensystem und Verfahren zu seiner Abschaltung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012016246A1 (de) 2012-08-16 2013-03-14 Daimler Ag Schaltkreis, Spannungsquelle und Betriebsverfahren zum Herstellen eines niederohmigen Abschlusses einer Spannungsquelle
DE102012218556A1 (de) 2012-10-11 2014-04-17 Bayerische Motoren Werke Aktiengesellschaft Brennstoffzellensystem eines Fahrzeugs

Also Published As

Publication number Publication date
DE102007050377A1 (de) 2009-04-23
CN101836319A (zh) 2010-09-15
US20110033761A1 (en) 2011-02-10
DE112008002683A5 (de) 2010-09-16
JP2011503773A (ja) 2011-01-27
JP5697451B2 (ja) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2009052953A1 (de) Brennstoffzellensystem mit zumindest einer brennstoffzelle
EP3408127B1 (de) Hochvoltbordnetzsystem mit einer pyrotechnischen trennvorrichtung, und verfahren zum betreiben des hochvoltbordnetzsystems
EP3541651A1 (de) Pyrotechnischer schalter und zwischenkreis-entladungssystem
DE102017125208B4 (de) Elektrisches Sicherungselement sowie Verfahren zum Betreiben eines elektrischen Sicherungselementes
DE102016216331B3 (de) Trennvorrichtung zur Stromunterbrechung, Schutzschalter mit einem Sensor und einer Trennvorrichtung sowie Verfahren zum Betrieb einer Trennvorrichtung
DE102016213072B4 (de) Ein Hochvolt-Batteriesystem mit Sicherungseinrichtung
DE102011103834B4 (de) Schaltsystem für kraftfahrzeugenergieleiter, mit einem solchen schaltsystem ausgestattetes kraftfahrzeug sowie verfahren zum trennen eines strompfades
DE102018109824B3 (de) Hochvoltschalter, Hochvoltbordnetz in einem Kraftfahrzeug und Verfahren zum Betreiben eines Hochvoltschalters
EP3022432A1 (de) Elektronische sicherheitsabschaltung für kraftfahrzeuge
DE102012018321A1 (de) Verfahren zum Abschalten eines Batteriesystems unter Last sowie Batteriesystem
DE102010045904A1 (de) Energiespeichereinrichtung mit Kurzschlusssicherungsschaltung
DE102008047502A1 (de) Vorrichtung zur Energieverteilung in einem Fahrzeug
DE102009036216A1 (de) Pyrosicherung mit Varistoransteuerung zum Trennen eines Wechselrichters von einer Photovoltaikanlage
WO2022128521A1 (de) Fahrzeugladeschaltung mit gleichrichtereinrichtung, zwischenkreiskondensator und vor-/entladeschaltung
DE102018201677A1 (de) Batteriesystem für ein Elektrofahrzeug, Verfahren zum Betrieb eines Batteriesystems und Elektrofahrzeug
DE102018204230A1 (de) Filtervorrichtung für einen elektrischen Stromrichter, elektrischer Stromrichter und Verfahren zum Ansteuern einer Filtervorrichtung für einen elektrischen Stromrichter
DE102019220099B4 (de) Schienenfahrzeug
DE102020004737A1 (de) Elektrischer Energiespeicher für ein elektrisches Hochvoltbordnetz eines zumindest teilweise elektrisch betriebenen Kraftfahrzeugs, sowie elektrisches Hochvoltbordnetz
DE102005035487A1 (de) Leistungsschaltmodul mit skalierbarer Schaltleistung
DE102019128338A1 (de) Bordnetzkomponente für ein Kraftfahrzeug
DE102016220889B4 (de) Stromrichtervorrichtung, elektrisches Antriebssystem und Verfahren zum Betreiben einer Stromrichteranordnung
DE102017006159A1 (de) Entladevorrichtung für eine elektrische Spannungsquelle, insbesondere einen Brennstoffzellenstapel, eines Kraftfahrzeugs
DE102018133277B4 (de) Ansteuervorrichtung, trennsystem und verfahren
DE102017202208A1 (de) Versorgungseinrichtung für ein elektrisches Modul mit Sicherungselement
DE102020134453A1 (de) Anordnung zur Integration in eine Ladevorrichtung für wenigstens ein Elektrofahrzeug

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880112505.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08841561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120080026831

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2010530300

Country of ref document: JP

REF Corresponds to

Ref document number: 112008002683

Country of ref document: DE

Date of ref document: 20100916

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 12739104

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 08841561

Country of ref document: EP

Kind code of ref document: A1