WO2009034282A1 - Acier inoxydable martensitique, procédé de fabrication de pièces réalisées en cet acier et pièces ainsi réalisées. - Google Patents

Acier inoxydable martensitique, procédé de fabrication de pièces réalisées en cet acier et pièces ainsi réalisées. Download PDF

Info

Publication number
WO2009034282A1
WO2009034282A1 PCT/FR2008/051525 FR2008051525W WO2009034282A1 WO 2009034282 A1 WO2009034282 A1 WO 2009034282A1 FR 2008051525 W FR2008051525 W FR 2008051525W WO 2009034282 A1 WO2009034282 A1 WO 2009034282A1
Authority
WO
WIPO (PCT)
Prior art keywords
traces
steel
temperature
hardness
steel according
Prior art date
Application number
PCT/FR2008/051525
Other languages
English (en)
Inventor
André GRELLIER
Original Assignee
Aubert & Duval
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39272694&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009034282(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aubert & Duval filed Critical Aubert & Duval
Priority to EP08830336A priority Critical patent/EP2188402B1/fr
Priority to CN200880106281A priority patent/CN101861407A/zh
Priority to CA2698889A priority patent/CA2698889A1/fr
Priority to JP2010523562A priority patent/JP2010539325A/ja
Priority to US12/677,464 priority patent/US20100276038A1/en
Publication of WO2009034282A1 publication Critical patent/WO2009034282A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to iron and steel, more specifically, martensitic stainless steels, intended for example for the manufacture of molds for the production of plastics by injection.
  • the industry uses stainless steels of the AISI 420 family with a chromium content of 12 to 15% (in percentages by weight, like all the contents indicated in the rest of the text). , a silicon content of less than 1%, a manganese content of less than 1%, a carbon content of from 0.16 to 0.45%, and a nitrogen content which is that naturally resulting from the preparation and generally up to 0.03%.
  • the vanadium content does not exceed 0.1% and results from the simple melting of the raw materials.
  • the molybdenum content results from the melting of the raw materials and does not exceed 0.2%, unless 0.2 to 1.0% is added to improve the corrosion resistance. .
  • the X40Cr14 nomenclature steel capable of exceeding a hardness of 50 HRC by virtue of its carbon content of 0.36-0.45%, offers an appreciable abrasion resistance.
  • the performance of the material must be evaluated by obtaining a good compromise between the following properties:
  • the desired wear resistance in order to be able to produce the maximum number of parts with a guaranteed geometrical regularity, including with plastics materials made abrasive by integrating fibers or other reinforcing additives; this resistance to wear is conferred by a high hardness;
  • the object of the invention is the definition of an economic composition of steel for mold applications for the manufacture of plastic articles having compared with the references AISI 420 and X40Cr14, the following properties:
  • the subject of the invention is a martensitic stainless steel, characterized in that it comprises, in weight percentages:
  • traces Preferably ⁇ 0 ⁇ 0.0015% traces.
  • traces ⁇ S Preferably ⁇ 0.003%.
  • the invention also relates to a process for manufacturing a martensitic stainless steel part, characterized in that:
  • a machining of said steel is carried out to give it the shape of said part; austenization of said machined steel is carried out at a temperature of 990-1040O, preferably 1000-1030O;
  • quenching of the austenized steel is carried out at a rate of between 10 and 40OzmJn in the temperature range 800 to 400O; - Two incomes of hardened steel are realized to give it its final hardness.
  • Said incomes can each be carried out at a temperature of 200 to 400 ° C., preferably 300 to 380 ° C., for a minimum of 2 hours, while maintaining the nominal temperature at least 1 hour at the core, so that obtain a hardness of 49 to 55 HRC.
  • Said incomes can each be made at a temperature of 530 to 540 ° C for a minimum of 2 hours while maintaining a core temperature of the nominal temperature of at least 1 hour, so as to obtain a hardness between 42 and 50 HRC.
  • the invention also relates to a piece of stainless steel magnetitic, characterized in that the element manufactured by the process is manufactured according to the preceding method.
  • the invention is based on a steel composition whose carbon and chromium contents are simultaneously at the bottom of the ranges usually required, and sometimes even below for the chromium content, with the imposition of conditions. other elements present or to be limited or avoided. A manufacturing method is associated with this composition.
  • the approach of the inventors has focused on the real consideration of the properties of the steel resulting from the manufacture, and in particular of the industrial treatment as described above, and not according to laboratory conditions.
  • the research was carried out with the aim of optimizing the action of the alloying elements to limit the quantity introduced.
  • polishability and surface quality of the polished state of steel are degraded by:
  • the toughness mediocre for this family of steels, is, for a given hardness, the lower the chromium content is high. It could be improved by balancing the composition, especially with additions of nickel and manganese to maintain a residue of austenite quenching. This solution, which also has no effect if the incomes are made above 500 ° C, proves unstable and handicaps the hardness. as much as it was not compatible with the desired lowering of the content of alloying elements.
  • FIG. 1 shows micrographs of samples of a reference steel and of two steels according to the invention, showing the density and the distribution of the micrometric carbides in the state of use of these steels;
  • FIG. 2 which shows the influence of the temperature of the two incomes on the corrosion resistance of a steel according to the invention
  • FIG. 3 which shows the influence of the temperature of the incomes on the resistance to corrosion
  • Table 1 groups the compositions of the samples studied.
  • the "Reference" sample corresponds to a standard X40Cr14 type steel.
  • the samples Exp.1 to Exp.7 are not in accordance with the invention but make it possible to identify the disadvantages of not complying with all the conditions required by the invention.
  • Samples lnv.1 and lnv.2 are in accordance with the invention.
  • the object of the invention is therefore to design an optimized steel intended to be treated according to the range of industrial quenching speeds, preferably with a subsequent double low temperature ( ⁇ 400 ° C.) for a hardness of 52 HRC with tenacity and a corrosion resistance equal to or better than that of the reference steel AISI 420 or X40Cr14 in its usual implementation.
  • the invention has the objective of minimizing the addition of alloying elements, in particular metal elements, in order to reduce the cost of production, to prevent the presence of residual austenite after quenching, and to reduce the amplitude. interdendritic segregation is detrimental to the tenacity and quality of polish.
  • the nitrogen content should be between 0.05% and 0.15% and preferably between 0.08% and 0.12%. This element is therefore systematically present at a high content, because it is essential to form carbonitrides of type V (C 1 N) able to prevent grain growth after austenization once the dissolved chromium carbides. An excessive content would, however, be detrimental by exceeding the solubility limit in the solid state and would be a source of metallurgical defects. Nitrogen combines with carbon to impart hardness and contributes to corrosion resistance. The nitrogen content can be adjusted by blowing nitrogen gas during the preparation of the liquid steel.
  • Carbon mainly contributes to imparting the required hardness, associated with nitrogen. Given the hardness sought after low temperature income, the percentage must be between 0.22% and 0.32%. Moreover the sum C + N must be between 0.33% and 0.43% to allow, after income, to obtain the target hardness.
  • Chrome gives steel its resistance to corrosion. Given the industrial quenching speeds practiced, and the income range chosen, and according to the mechanisms mentioned above, its content must be between 10 and 12.4% and preferably between 11, 0 and 12.4% .
  • the vanadium must be present at a content of between 0.10% and 0.40% and preferably between 0.15% and 0.35%. Its presence is essential to form with carbon and nitrogen a sufficient density of micro- and nanoprepites able to prevent the growth of the grain. Too high a content would be detrimental by the excessive fixation of the carbon which would be lacking for the hardening, and by the formation, during solidification, of isolated carbides or clumps unfavorable to the tenacity and the quality of the polish.
  • Molybdenum completes the action of chromium for corrosion resistance; it is present, by recycling or by voluntary addition, at percentages between 0.10 and 1.0%. A higher content would be detrimental by increasing the amplitude of interdendritic segregation, and by the risk of forming delta ferrite.
  • Nickel may be present at levels below 1.0%, particularly because of the input by the raw materials. No favorable action of an addition within this limit for toughness was noted. On the other hand, a higher content would be likely to maintain residual austenite in the treated state.
  • Silicon is naturally present for the elaboration and deoxidation of steel. Its content must be limited to 1.0% and preferably 0.5%, because it acts on the solidification process and the delta-gamma transformation and can therefore cause the presence of delta ferrite or local segregations consecutive to the presence of this phase at the end of solidification before filling.
  • Tungsten may be present at levels below 1.0% without having a favorable or detrimental effect on the product. However, by its individual action or by synergy with molybdenum, it can promote the presence of delta ferrite in the state of use, or local precipitation or segregation originating from the presence of delta ferrite at any stage of the production. thermomechanical termination. It will be preferred to meet the condition 0.10% ⁇ Mo + W / 2 ⁇ 1, 20%.
  • Cobalt and copper have no identified beneficial effect but may be present at levels less than or equal to 1.0%; higher grades may favor the presence of residual austenite.
  • the total contents of Mn, Cu and Co is ⁇ 1, 8%, so as to limit the risk of presence of residual austenite.
  • Titanium and niobium are very reactive elements that form very hard precipitates harmful to the quality of polishing. Their content must be kept as low as possible: at most 0.010%, preferably at most 0.003% for Ti, and at most 0.050%, preferably at most 0.010% for Nb.
  • the added aluminum for the deoxidation of the steel can remain present in inclusions of oxides very harmful for the polishing.
  • the level of addition must be adapted to the processing methods used. A maximum level of 0.050% is tolerable, provided that it does not lead to the presence of inclusions of alumina or silico-aluminates in large quantities which would lead to an exceedance of the acceptable O content (0.0040% better, 0.0015%).
  • the sulfur is preferentially limited to a content of less than 0.003% to prevent the formation of sulphide inclusions.
  • it may be chosen to make a voluntary addition in the range 0.003 to 0.020% preferably associated with another element (SE up to 0.010%, Ca up to 0.020%, La up to 0.040%). %, Ce up to 0.040%) promoting the formation of globular sulphides to improve machinability, to the detriment to a certain extent of the quality of the polish.
  • Boron may be added to improve quenchability at a level not exceeding 0.0050%.
  • the products must be manufactured in accordance with the state of the art for high-quality special steels for plastics molding applications, with the aim of limiting the inclusion content and the segregation of materials. obtaining a quality polish.
  • the preparation must include, after melting, a phase of deoxidation and elimination of inclusions in a metallurgical reactor.
  • a phase of deoxidation and elimination of inclusions in a metallurgical reactor.
  • it will be practiced remelting by consumable electrode slag to improve the inclusion cleanliness and distribute the alloy elements, and above all the nitrogen, homogeneously throughout the mass.
  • thermomechanical transformation by forging or rolling completed by annealing must follow to complete the homogeneity and compactness of the microstructure.
  • the products After machining the workpiece to the final shape and before putting into operation, the products must, according to the preferred procedure, undergo a heat treatment comprising austenization at about 1020 ° C (990 to 1040 ° C, preferably 1000 ° C). 1030 ° C), a controlled quenching, for example under a pressure of neutral gas, at a speed of between 10 and 40OZmJn adapted to the size of the workpiece, then two incomes at a temperature of 200 to 400 ° C, preferably between 300 and 380 ° C to obtain a hardness close to 52 HRC _ + 2 HRC, and generally between 49 and 55 HRC.
  • the steel defined by the invention can be treated with double-feed from 530 "C to 560" C for hardnesses less than or equal to 50 HRC and greater than or equal to at 42 HRC, conditions in which corrosion resistance is sufficient.
  • the existing chromium carbides (M 23 C 6 ) in the delivery state are redissolved during the austenization that precedes quenching, and the holding temperature is limited to 1020/1030 "
  • this solution temperature a significant amount of heterogeneously distributed carbides remain, with a substitution of about 0.10 to 0.15% of the content of the carbons. carbon by nitrogen, a reduction of about 2% of the chromium content and a simultaneous introduction of vanadium, it is observed at the adequate quenching temperature that the grain, fixed by nanometric precipitates of vanadium carbons; V (C 1 N) does not increase while most of the chromium carbides have dissolved.
  • the effective density of the micrometric carbides observed on industrial products and illustrated in FIG. 1 effectively decreases significantly between the reference composition and the compositions of the invention, which constitutes a favorable factor for the quality of the polished state.
  • the corrosion resistance capacity is, theoretically according to the basic knowledge, primarily related to the chromium content available in the matrix; thermodynamic calculations show that carbons undissolved in austenization set about 0.9% chromium. This amount of chromium unavailable for corrosion resistance becomes less than 0.1% for vanadium and nitrogen alloyed experimental grades. According to the following formula:
  • the electrochemical method performed according to the ASTM G 108 standard consists, in a 1% by weight aqueous H 2 SO 4 solution, of polarizing the sample for 15 minutes at a potential of -550mV / ECS and then carrying out a forward scan. and back to 60mV / min from -55OmV to + 50OmV.
  • the intensity-potential curves at the return can have two peaks, one (Pic1) due to the dissolution of the matrix, the second (Pic 2), at a higher potential, connected to the dissolution at the right of carbide precipitates of chromium.
  • Figure 2 shows for the INV1 casting the steel sensitizes strongly vis-à-vis corrosion for revenue generated in the curing zone to 500 0 C. If the corrosion resistance is a characteristic preferable for imperative the applications envisaged, we will therefore favor low-temperature incomes (200-380 0 C).
  • compositions of the invention make it possible to obtain the hardness of 52 HRC or more after quenching under industrial conditions and double-tempered at 380 ° C., despite the softening experienced in this field for this steel family from crude. quenching, as shown in Figure 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Acier inoxydable martensitique, caractérisé en ce qu'il comprend, en pourcenta- ges pondéraux : - 0,22% ≤ C ≤ 0,32% - 0,05% ≤ N ≤ 0,15%, avec 0,33% ≤ C+N ≤ 0,43% - 10% ≤ Cr ≤ 12,4% - 0,10% ≤ V ≤ 0,40% - 0,10% ≤ Mo ≤ 1,0% - traces ≤ Ni ≤ 1,0% - traces ≤ Mn ≤ 1,0% - traces ≤ Si ≤ 1,0% - traces ≤ W ≤ 1,0% - traces ≤ Co ≤ 1,0% - traces ≤ Cu ≤ 1,0% - traces ≤ Ti ≤ 0,010% - traces ≤ Nb ≤ 0,050% - traces ≤ Al ≤ 0,050% - traces ≤ S ≤ 0,020% - traces ≤ O ≤ 0,0040% - traces ≤ P ≤ 0,03% - traces ≤ B ≤ 0,0050% - traces ≤ Ca ≤ 0,020% - traces ≤ Se ≤ 0,010% - traces ≤ La ≤ 0,040% - traces ≤ Ce ≤ 0,040% le reste étant du fer et des impuretés résultant de l'élaboration. Procédé de fabrication d'une pièce en cet acier, et pièce ainsi obtenue, tel qu'un élément de moule pour la fabrication d'articles en plastique.

Description

Acier inoxydable martensitique, procédé de fabrication de pièces réalisées en cet acier et pièces ainsi réalisées.
La présente invention concerne la sidérurgie, plus précisément, les aciers inoxydables martensitiques, destinés par exemple à la fabrication de moules de production de matières plastiques par injection.
Pour la réalisation de moules d'injection de matières plastiques, l'industrie utilise les aciers inoxydables de la famille AISI 420 présentant une teneur en Chrome de 12 à 15% (en pourcentages pondéraux, comme toutes les teneurs indiquées dans la suite du texte), une teneur en silicium de moins de 1 %, une teneur en manganèse de moins de 1 %, une teneur en carbone de 0,16 à 0,45%, et une teneur en azote qui est celle résultant naturellement de l'élaboration et allant généralement jusqu'à 0,03%. Généralement, la teneur en vanadium ne dépasse pas 0,1% et résulte de la simple fusion des matières premières. De même, la teneur en molybdène résulte de la fusion des matiè- res premières et ne dépasse pas 0,2%, à moins qu'on n'en ajoute de 0,2 à 1 ,0% pour améliorer la résistance à la corrosion. Plus spécifiquement, l'acier de nomenclature X40Cr14, capable grâce à sa teneur en carbone de 0,36- 0,45% de dépasser une dureté de 50 HRC, offre une résistance à l'abrasion appréciable. Compte tenu de l'application envisagée, la performance du matériau doit être évaluée par l'obtention d'un bon compromis entre les propriétés suivantes :
- la résistance à l'usure recherchée pour pouvoir produire le maximum de pièces avec une régularité géométrique garantie, y compris avec des ma- tières plastiques rendues abrasives par intégration de fibres ou autres additifs de renfort; cette résistance à l'usure est conférée par une dureté élevée ;
- une ténacité suffisante pour éviter des ruptures pendant le traitement thermique, les opérations de montage-démontage ou le service; pour ces aciers notablement fragiles, cette propriété se révèle contradictoire avec la précédente, la ténacité diminuant lorsque la dureté augmente ;
- une bonne polissabilité permettant d'obtenir sans difficultés un poli de qualité sur la surface du moule afin de produire des pièces en matières plasti- ques avec un aspect de surface lisse et uniforme; l'acier doit aussi pouvoir maintenir cet état poli aussi longtemps que possible,
- une résistance à la corrosion suffisante pour éviter la piqûration, le ternissement, l'altération du poli pendant le stockage des moules et pendant le service, dans le contexte de la production de matières plastiques peu ou moyennement chimiquement agressives ; les substances plus actives par exemple par re-largage d'ions chlorures, demandent des aciers ou alliages d'autres familles.
Après usinage d'une ébauche à des cotes proches de la forme finale, les moules subissent dans un four à atmosphère contrôlée le traitement thermique suivant :
- montée à la température de trempe dans l'intervalle 1000 à 1050"C, suivi d'un maintien de quelques dizaines de minutes dans ce domaine,
- trempe sous pression de gaz jusqu'à une température de l'ordre de 80O ;
- remontée en température pour deux cycles de revenus.
Il est habituellement proposé deux domaines de températures de revenu :
- revenus à basse température : 150 à 250"C - revenus vers 490/530"C dans la zone de durcisseme nt secondaire de l'acier.
Normalement, les deux revenus successifs sont effectués tous deux dans le même domaine.
Des arbitrages doivent être décidés pour le choix précis des paramètres du traitement.
Pour la trempe, il est métallurgiquement recommandé de rechercher des vitesses de trempe élevées pour bénéficier d'une microstructure martensi- tique favorable. Cependant, des vitesses de trempe élevées favorisent les déformations et génèrent des contraintes résiduelles susceptibles de conduire à des ruptures. Pratiquement, les pressions de gaz sont limitées à des valeurs de 2 à 4 bars.
Lors de l'arrêt de trempe, avant d'enchaîner sur les revenus, des ruptures sont possibles si le refroidissement se déroule jusqu'à la température am- biante. Mais le choix habituel d'arrêter le refroidissement vers 80"C ouvre au risque de conserver de l'austénite résiduelle, notamment si les revenus ultérieurs sont fixés au-dessous de 500O, et par voie de conséquence de ne pouvoir obtenir la dureté nominale recherchée. Pour les revenus, le choix des basses températures ne permet qu'une libération partielle des contraintes, et si la composition de l'acier et le cycle de trempe ont laissé subsister de l'austénite résiduelle, le revenu ne la décomposant pas, la dureté visée n'est pas atteinte. Les revenus haute température décomposent l'austénite et relaxent les contraintes résiduelles, mais diminuent la ténacité et la résistance à la corrosion.
Se pose également le problème du coût de ces aciers, de par les teneurs élevées en éléments d'alliage qu'ils requièrent, et qu'il faudrait pouvoir minimiser sans dégrader les propriétés recherchées.
Le but de l'invention est la définition d'une composition économique d'acier pour les applications de moules pour la fabrication d'articles en matières plastiques présentant par rapport aux références AISI 420 et X40Cr14, les propriétés suivantes:
- dureté équivalente préférentielle de 49 à 55 HRC à l'état traité pour résister à l'abrasion ; - résistance à la corrosion équivalente ;
- ténacité améliorée à dureté égale ;
- polissabilité améliorée ;
- tout cela pour des conditions de traitement thermique industrielles comparables aux conditions habituelles. A cet effet, l'invention a pour objet un acier inoxydable martensitique, caractérisé en ce qu'il comprend, en pourcentages pondéraux :
- 0,22% < C < 0,32%
- 0,05% < N < 0,15%, avec 0,33% < C+N < 0,43% - 10% ≤ Cr ≤ 12,4% - 0,10% ≤ V ≤ 0,40%
- 0,10% ≤ Mo ≤ 1 ,0%
- traces < Ni < 1 ,0%
- traces < Mn < 1 ,0% - traces < Si < 1 ,0% - traces ≤ W < 1 ,0%
- traces < Co < 1 ,0%
- traces < Cu < 1 ,0% - traces < Ti < 0,010%
- traces < Nb < 0,050%
- traces < Al < 0,050%
- traces < S < 0,020%
- traces < O < 0,0040% - traces < P < 0,03%
- traces < B < 0,0050%
- traces < Ca < 0,020%
- traces < Se < 0,010%
- traces < La < 0,040% - traces < Ce < 0,040% le reste étant du fer et des impuretés résultant de l'élaboration.
De préférence 0,08% < N < 0,12%.
De préférence 11 ,0% < Cr < 12,4%.
De préférence 0,15% < V < 0,35%. De préférence traces < Si < 0,5%.
De préférence 0,10% < Mo + W/2 < 1 ,20%.
De préférence traces < Ti < 0,003%.
De préférence traces < Nb < 0,010%.
De préférence traces < O < 0,0015%. De préférence traces < S < 0,003%.
De préférence traces < Mn + Cu + Co < 1 ,8%.
L'invention a également pour objet un procédé de fabrication d'une pièce en acier inoxydables martensitique, caractérisé en ce que :
- on élabore, on coule, on forge ou lamine et on recuit un acier du type précédent ;
- on réalise un usinage dudit acier pour lui donner la forme de ladite pièce ; - on réalise une austénisation dudit acier usiné à une température de 990-1040O, de préférence 1000-1030O ;
- on réalise une trempe de l'acier austénisé à une vitesse comprise entre 10 et 40OZmJn dans l'intervalle de température 800 à 400O ; - on réalise deux revenus de l'acier trempé, pour lui conférer sa dureté finale.
Lesdits revenus peuvent être chacun effectués à une température de 200 à 400"C, de préférence 300 à 380"C pendant un m inimum de 2h en assurant un maintien à cœur de la température nominale d'au moins 1h, de ma- nière à obtenir une dureté de 49 à 55 HRC.
Lesdits revenus peuvent être chacun effectués à une température de 530 à 540"C pendant un minimum de 2h en assurant un maintien à cœur de la température nominale d'au moins 1 h, de manière à obtenir une dureté comprise entre 42 et 50 HRC. L'invention a également pour objet une pièce en acier inoxydable mar- tensitique, caractérisée en ce que l'élément fabriqué par le procédé est fabriqué selon le procédé précédent.
Il peut s'agir d'un élément de moule destiné à la fabrication d'articles en matières plastiques. Comme on l'aura compris l'invention repose sur une composition d'acier dont les teneurs en carbone et chrome sont simultanément dans le bas des gammes habituellement requises, voire parfois en-dessous pour la teneur en chrome, avec l'imposition de conditions précises sur d'autres éléments présents ou devant être limités ou évités. Un procédé de fabrication est associé à cette composition.
La démarche des inventeurs s'est concentrée sur la prise en considération réelle des propriétés de l'acier issu de la fabrication, et en particulier du traitement industriel tel que décrit plus haut, et non selon des conditions de laboratoire. La recherche a été réalisée avec la préoccupation d'optimiser l'action des éléments d'alliages pour en limiter la quantité introduite.
Les principales considérations ayant conduit à l'invention sont les suivantes. La polissabilité et la qualité de surface de l'état poli de l'acier sont dégradées par :
- la présence d'inclusions non métalliques d'oxydes non réfléchissantes de la lumière, et qui de plus s'effritent ou se déchaussent au contact de l'abrasif, et forment en s'évacuant des rayures ou "queues de comètes" à la surface du moule ;
- les ségrégations interdendritiques se formant naturellement lors de la solidification du lingot et générant sur la surface des moules des zones ou lignes plus dures alternant avec des zones ou lignes plus douces, provoquant au polissage des vallonnements du fait que les zones douces se creusent plus vite que les zones dures ;
- la présence de carbures de chrome micrométriques non dissous à la trempe.
D'une manière générale, la ténacité, médiocre pour cette famille d'aciers, est, pour une dureté donnée, d'autant plus faible que la teneur en chrome est élevée. Elle pourrait être améliorée par un équilibrage de la composition, notamment avec des additions de nickel et manganèse permettant de conserver un résidu d'austénite à la trempe. Cette solution, qui par ailleurs n'a plus d'effet si les revenus sont réalisés au-dessus de 500"C, se révèle cepen- dant instable et handicape l'obtention de la dureté. Elle n'a pas été retenue, d'autant plus qu'elle n'était pas compatible avec l'abaissement recherché de la teneur en éléments d'alliage.
Pour atteindre les objectifs fixés, il a été choisi :
- d'une part de produire l'acier selon des procédés connus limitant la présence d'inclusions non métalliques oxydées, donc conférant à l'acier une basse teneur en O,
- et d'autre part de réduire globalement les éléments d'alliages, d'introduire de l'azote, et d'optimiser les équilibres entre éléments pour relever la ténacité, réduire la ségrégation interdendritique et limiter la densité de pré- cipités micrométriques.
L'invention sera mieux comprise par la description qui suit, donnée en référence aux figures annexées suivantes : - la figure 1 qui montre des micrographies d'échantillons d'un acier de référence et de deux aciers selon l'invention, montrant la densité et la distribution des carbures micrométriques à l'état d'emploi de ces aciers ;
- la figure 2 qui montre l'influence de la température des deux revenus sur la résistance à la corrosion d'un acier selon l'invention ;
- la figure 3 qui montre l'influence de la température des revenus sur la résistance à la corrosion ;
- la figure 4 qui montre les interactions de la teneur en Cr et de la vitesse de trempe sur la résistance à la corrosion ; - la figure 5 qui montre la dureté des aciers selon l'invention et d'un acier de référence en fonction de la température des revenus.
Le tableau 1 regroupe les compositions des échantillons étudiés. L'échantillon « Référence » correspond à un acier de type X40Cr14 classique. Les échantillons Exp.1 à Exp.7 sont non-conformes à l'invention mais permet- tent de dégager les inconvénients qu'il y a à ne pas respecter toutes les conditions requises par l'invention. Les échantillons lnv.1 et lnv.2 sont conformes à l'invention.
Tableau 1 : Composition chimique des aciers étudiés
Figure imgf000010_0001
L'invention a donc pour objet de concevoir un acier optimisé destiné à être traité selon la gamme des vitesses de trempe industrielles avec de préférence un double revenu ultérieur à basse température (< 400"C) pour une dureté de 52 HRC avec une ténacité et une résistance à la corrosion égales ou supérieures à celles de l'acier de référence AISI 420 ou X40Cr14 dans sa mise en œuvre habituelle.
De plus, l'invention poursuit l'objectif de limiter au maximum les additions d'éléments d'alliage en particulier les éléments métalliques pour diminuer le coût de production, prévenir la présence d'austénite résiduelle après la trempe, et réduire l'amplitude de la ségrégation interdendritique néfaste à la ténacité et à la qualité du poli.
A cet effet, les inventeurs sont parvenus aux résultats suivants sur la définition de la composition des aciers de l'invention.
La teneur en azote doit être comprise entre 0,05% et 0,15% et de préfé- rence entre 0,08% et 0,12%. Cet élément est donc présent systématiquement à une teneur élevée, car il est indispensable pour former des carbonitrures de type V(C1N) aptes à éviter le grossissement du grain à l'austénisation une fois les carbures de chrome dissous. Une teneur excessive serait cependant préjudiciable par le dépassement de la limite de solubilité dans l'état solide et se- rait source de défauts métallurgiques. L'azote s'associe au carbone pour conférer la dureté et participe à la résistance à la corrosion. La teneur en azote peut être ajustée par insufflation d'azote gazeux lors de l'élaboration de l'acier liquide.
Le carbone contribue majoritairement à conférer la dureté requise, as- socié à l'azote. Compte tenu de la dureté recherchée après revenu à basse température, le pourcentage doit être compris entre 0,22% et 0,32%. De plus la somme C+N doit être comprise entre 0,33% et 0,43% pour permettre, après revenu, d'obtenir la dureté visée.
Le chrome confère à l'acier sa résistance à la corrosion. Compte tenu des vitesses de trempe industrielles pratiqués, et de l'intervalle de revenu choisi, et selon les mécanismes évoqués plus haut, sa teneur doit être comprise entre 10 et 12,4% et de préférence entre 11 ,0 et 12,4%. Le vanadium doit être présent à une teneur comprise entre 0,10% et 0.40% et de préférence entre 0,15% et 0,35%. Sa présence est indispensable pour former avec le carbone et l'azote une densité suffisante de micro- et na- no-précipités aptes à éviter le grossissement du grain. Une teneur trop impor- tante serait néfaste par la fixation excessive du carbone qui ferait défaut pour le durcissement, et par la formation, lors de la solidification, de carbures isolés ou en amas défavorables à la ténacité et à la qualité du poli.
Le molybdène complète l'action du chrome pour la tenue à la corrosion; il est présent, par les recyclages ou par addition volontaire, à des pourcenta- ges compris entre 0.10 et 1.0%. Une teneur supérieure serait néfaste par l'accroissement de l'amplitude de la ségrégation interdendritique, et par le risque de former de la ferrite delta.
Le nickel peut être présent à des teneurs inférieures à 1 ,0%, notamment du fait de l'apport par les matières premières. Aucune action favorable d'une addition dans cette limite pour la ténacité n'a été relevée. En revanche une teneur supérieure serait susceptible de maintenir de l'austénite résiduelle à l'état traité.
Le manganèse est un élément naturellement présent dans cette famille d'acier du fait des procédés d'élaboration et des matières premières disponi- blés. Aucun effet bénéfique n'a été identifié, et il s'avère nécessaire de limiter sa concentration à 1 ,0% pour éviter l'austénite résiduelle après traitement thermique.
Le silicium est naturellement présent pour l'élaboration et la désoxyda- tion de l'acier. Sa teneur doit être limitée à 1 ,0% et de préférence 0,5%, car il agit sur le processus de solidification et la transformation delta-gamma et de ce fait peut provoquer la présence de ferrite delta ou de ségrégations locales consécutives à la présence de cette phase en fin de solidification avant cor- royage.
Le tungstène peut être présent à des teneurs inférieures à 1 ,0% sans avoir d'effet favorable ou néfaste pour le produit. Néanmoins, par son action individuelle ou par synergie avec le molybdène, il peut favoriser la présence de ferrite delta à l'état d'utilisation, ou de précipitations ou ségrégations locales ayant pour origine la présence de ferrite delta à un stade quelconque du pro- cessus thermomécanique. Il sera préféré de respecter la condition 0,10% < Mo + W/2 ≤ 1 ,20%.
Le cobalt et le cuivre n'ont pas d'effet bénéfique identifié mais peuvent être présents à des teneurs inférieures ou égales à 1.0%; des teneurs supé- rieures pourraient favoriser la présence d'austénite résiduelle.
Il est préférable que le total des teneurs en Mn, Cu et Co soit < 1 ,8%, de manière à limiter les risques de présence d'austénite résiduelle.
Le titane et le niobium sont des éléments très réactifs qui forment des précipités très durs néfastes pour la qualité du polissage. Leur teneur doit être maintenue aussi basse que possible : au plus 0,010%, de préférence au plus 0,003% pour Ti, et au plus 0,050%, de préférence au plus 0,010% pour Nb.
L'aluminium ajouté pour la désoxydation de l'acier peut rester présent dans des inclusions d'oxydes très néfastes pour le polissage. Le niveau d'addition doit être adapté aux procédés d'élaboration pratiqués. Une teneur maximale de 0,050% est tolérable, à condition qu'elle ne conduise pas à la présence d'inclusions d'alumine ou de silico-aluminates en grande quantité qui conduirait à un dépassement de la teneur en O acceptable (0,0040%, mieux 0,0015%).
Le soufre est préférentiellement limité à une teneur inférieure à 0.003% pour éviter la formation d'inclusions de sulfure. Toutefois, optionnellement, il peut être choisi d'en pratiquer une addition volontaire dans l'intervalle 0.003 à 0.020% associé de préférence à un autre élément (Se jusqu'à 0,010%, Ca jusqu'à 0,020%, La jusqu'à 0,040%, Ce jusqu'à 0,040%) favorisant la formation de sulfures globulaires afin d'améliorer l'usinabilité, au détriment dans une certaine mesure de la qualité du poli.
La teneur en oxygène maximale est de 0,0040%, de préférence 0,0015%. En effet, cet élément est un indice de la densité inclusionnaire, néfaste au poli de surface lorsqu'elle est trop élevée. Cette teneur doit être maintenue aussi basse que possible et le procédé d'élaboration de l'acier doit être choisi en conséquence. Dans la pratique, des procédés connus permettent de descendre jusqu'à O = 5ppm dans des conditions économiquement acceptables. La teneur en phosphore est limitée à 0,03% qui est une teneur courante dans cette classe d'aciers. On n'a pas noté d'effet nocif de P dans cette gamme.
Du bore peut être ajouté pour améliorer la trempabilité, à une teneur ne dépassant pas 0,0050%.
Les teneurs préférentielles indiquées pour certains éléments peuvent être imposées seules, et pas forcément en combinaison avec les autres teneurs préférentielles indiquées.
Les éléments non cités peuvent être présents à des teneurs du niveau d'impuretés résultant de l'élaboration, ne modifiant pas les propriétés que l'invention cherche à optimiser.
Les produits doivent être fabriqués selon les règles de l'art en vigueur pour les aciers spéciaux de haute qualité destinés aux applications de moulage d'articles en matières plastiques, avec l'objectif de limiter la teneur en in- clusions et la ségrégation pour l'obtention d'un poli de qualité. L'élaboration doit comprendre, après fusion, une phase de désoxydation et d'élimination des inclusions dans un réacteur métallurgique. Préférentiellement, notamment pour la fabrication de moules de forte taille et pour l'obtention des plus hautes quantités de poli, il sera pratiqué une refusion par électrode consommable sous laitier pour améliorer la propreté inclusionnaire et distribuer les éléments d'alliages, et avant tout l'azote, de manière homogène dans toute la masse.
Une transformation thermomécanique par forgeage ou laminage terminée par un recuit doit suivre pour compléter l'homogénéité et la compacité de la microstructure. Après usinage de la pièce à la forme finale et avant mise en service, les produits doivent, selon le mode opératoire préféré, subir un traitement thermique comprenant une austénisation aux environs de 1020"C (de 990 à 1040"C, de préférence 1000-1030"C), une trempe contrôlée, p ar exemple sous pression de gaz neutre, à une vitesse comprise entre 10 et 40OZmJn adaptée à la taille de la pièce, puis deux revenus à une température de 200 à 400"C, de préférence entre 300 et 380"C pour obtenir une dure té voisine de 52 HRC _+ 2 HRC, et de manière générale comprise entre 49 et 55 HRC . Optionnellement, pour des applications ne nécessitant pas une dureté supérieure à 50HRC, l'acier défini par l'invention pourra être traité par double revenu de 530"C à 560"C pour des duretés inférieure s ou égales à 50 HRC et supérieures ou égales à 42 HRC, conditions dans lesquelles la résistance à la corrosion s'avère suffisante.
Pour l'acier de référence, les carbures de Chrome (M23C6) existants à l'état de livraison sont remis en solution lors de l'austénisation qui précède la trempe, et la température du maintien est limitée vers 1020/1030 "C pour éviter le grossissement du grain. Cependant, à cette température de mise en so- lution, il subsiste une quantité significative de carbures répartis de manière hétérogène. Par une substitution d'environ 0,10 à 0,15% de la teneur en carbone par de l'azote, un abaissement d'environ 2% de la teneur en chrome et une introduction simultanée de vanadium, il est observé à la température adéquate de trempe que le grain, fixé par des précipités nanométriques de carbo- nitrures de vanadium V(C1N) ne grossit pas alors que la plus grande partie des carbures de chrome s'est dissoute.
Pour trois des compositions étudiées, le calcul comparé des équilibres à 1030° par simulation thermodynamique avec le logici el THERMOCALC (d'utilisation courante par les métallurgistes) illustre cette mutation (voir ta- bleau 2).
Tableau 2: Calcul des équilibres thermodynamiques à 1015O pour trois compositions représentatives
Figure imgf000016_0001
La densité effective des carbures micrométriques observée sur des produits industriels et illustrée sur la Figure 1 diminue effectivement de manière significative entre la composition de référence et les compositions de l'invention, ce qui constitue un facteur favorable pour la qualité de l'état poli.
Pour l'acier de référence, la capacité de résistance à la corrosion est, théoriquement selon les connaissances de base, avant tout reliée à la teneur en chrome disponible dans la matrice; les calculs thermodynamiques montrent que les carbures non dissous à l'austénisation fixent environ 0,9% de chrome. Cette quantité de chrome non disponible pour la résistance à la corrosion devient inférieure à 0,1% pour les nuances expérimentales alliées en vanadium et azote. Selon la formule suivante :
P.R.E. (Pitting Résistance Equivalent) = %Cr + 3,3 x %Mo + 3O x %N permettant conventionnellement de classer les compositions selon leur résis- tance à la piqûration et appliquée sur la composition effective de la matrice, il se révèle selon le tableau 2 que les compositions expérimentales Inv 1 et 2 présentent un coefficient voisin de celui de la référence.
Au-delà des considérations exprimées ci-dessus exprimant un potentiel à l'état brut de trempe, il convient de réaliser des mesures dans l'état effectif du métal au stade de l'usage. La méthode électrochimique pratiquée issue de la norme ASTM G 108, consiste, dans une solution aqueuse de H2SO4 à 1 % en poids, à polariser 15 minutes l'échantillon à un potentiel de -550mV/ECS puis à réaliser un balayage aller et retour à 60mV/mn de -55OmV à +50OmV. Les courbes caractéristiques intensité-potentiel au retour peuvent présenter deux pics, l'un (Pic1 ) dû à la dissolution de la matrice, le second (Pic 2), à un potentiel plus élevé, relié à la dissolution au droit des précipités de carbures de chrome. L'acier est d'autant plus sensible à la corrosion que le courant de dissolution est intense. Des courbes caractéristiques sont présentées en figures 2 et 3. Selon les pratiques habituelles pour les aciers de référence, tout en obtenant la dureté voisine de 52HRC recherchée, deux paramètres du traitement thermique s'avèrent influents pour la résistance à la corrosion: la température du revenu et la vitesse de trempe. Ces effets ont été précisés par des essais en laboratoire: a) effet du revenu:
La Figure 2 démontre pour la coulée INV1 que l'acier se sensibilise fortement vis-à-vis de la corrosion pour des revenus réalisés dans la zone de durcissement vers 5000C. Si la résistance à la corrosion est une caractéristique à privilégier impérativement pour les applications envisagées, on privilégiera donc les revenus à basse température (200-3800C).
Cette tendance se confirme pour toutes les compositions testées, comme le montre la figure 3. Celle-ci montre l'influence d'un double revenu de 2h à 380°C ou à une température avoisinant 5000C, s ur la résistance à la corrosion, en considérant le courant de corrosion au pic 2 de la figure 2. La température exacte des doubles revenus à 5000C enviro n a été ajustée pour qu'elle permette d'obtenir la même dureté qu'après un double revenu à 3800C. On constate en particulier que l'échantillon selon l'invention a une résistance à la corrosion très comparable à celle de l'échantillon de référence pour un double revenu à 3800C.
Pour les basses températures de revenu, il a par ailleurs été vérifié que la résistance à la corrosion décroît légèrement entre 2000C et 3800C pour se dégrader rapidement au-dessus de 4000C. Pour que les revenus aient l'effet escompté, il faut qu'ils durent au moins 2h, et que leur température nominale soit maintenue au cœur de la pièce pendant au moins 1h.
b) effet de la vitesse de trempe : De manière inattendue, comme en témoigne la figure 4 qui compare deux coulées expérimentales se distinguant l'une de l'autre par la seule teneur en Chrome, l'augmentation de la teneur en cet élément n'améliore pas la résistance à la corrosion dans les conditions de la trempe industrielle avec une vitesse de refroidissement de l'ordre de 20°C/minut e dans l'intervalle 900/4000C. La basse vitesse de refroidissement prov oque le développement du Pic 2 révélateur de la précipitation de carbures ou nitrures, et dont l'amplitude est d'autant plus importante que la teneur en Chrome est élevée et amplifie le courant de corrosion de la matrice (Pic 2). Ces résultats sont confirmés pour les diverses compositions étudiées. Selon l'invention, on choisira une vitesse de trempe compatible avec le savoir-faire du traitement thermique et comprise entre 10 et 40"CZmJn dans l'intervalle de température 800 à 400O. En conclusion, dans le contexte d'une trempe industrielle, c'est avec les revenus à basse température que la meilleure tenue à la corrosion est obtenue, et dans cette configuration, la variation de la teneur en chrome dans l'intervalle 10,5 à 15% ne confirme pas l'effet bénéfique habituellement reconnu pour cet élément d'alliage. Les mêmes effets défavorables de la diminution de la vitesse de trempe et de l'augmentation de la température du revenu sont constatés sur la ténacité. Cette propriété est communément simplement appréciée à partir des caractéristiques mécaniques conventionnelles d'allongement et de striction lors de l'essai de traction et d'énergie de flexion par choc sur barreaux non entaillées de dimensions 55x10x7 mm. Pour les essais concernés, on a réalisé sur tous les échantillons une trempe de 16°C/min puis un dou ble revenu de 2h. Les résultats regroupés dans le Tableau 3 démontrent :
- pour la composition Inv. 2 prise comme exemple, l'effet néfaste de l'abaissement de la vitesse de trempe ; - l'effet fragilisant du double revenu au voisinage de 500"C ;
- pour le double revenu à basse température (3800C) , la supériorité du compromis dureté/ténacité des deux aciers de l'invention par rapport à la référence.
Tableau 3: Caractéristiques mécaniques mesurées pour trois compositions sur prélèvements représentatifs de produits industriels
Figure imgf000020_0001
Les compositions de l'invention permettent l'obtention de la dureté de 52 HRC ou davantage après trempe dans les conditions industrielles et double revenu à 380"C, malgré l'adoucissement subi dans ce domaine pour cette famille d'acier à partir du brut de trempe, comme le montre la figure 5.

Claims

REVENDICATIONS
1.- Acier inoxydable martensitique, caractérisé en ce qu'il comprend, en pourcentages pondéraux :
- 0,22% < C < 0,32% - 0,05% < N < 0,15%, avec 0,33% < C+N < 0,43%
- 10%≤Cr≤ 12,4%
- 0,10% ≤V≤ 0,40%
- 0,10% < Mo < 1,0%
- traces < Ni ≤ 1,0% - traces < Mn < 1,0%
- traces ≤ Si ≤ 1,0% -traces≤W≤ 1,0%
- traces ≤ Co ≤ 1,0% -traces ≤ Cu ≤ 1,0% - traces ≤ Ti ≤ 0,010%
- traces ≤ Nb ≤ 0,050%
- traces ≤ Al ≤ 0,050%
- traces ≤ S ≤ 0,020%
- traces ≤ O ≤ 0,0040% - traces ≤ P ≤ 0,03%
- traces ≤ B ≤ 0,0050%
- traces ≤ Ca ≤ 0,020%
- traces ≤ Se ≤ 0,010%
- traces ≤ La ≤ 0,040% - traces ≤ Ce ≤ 0,040% le reste étant du fer et des impuretés résultant de l'élaboration.
2. Acier selon la revendication 1, caractérisé en ce que 0,08% ≤ N ≤ 0,12%.
3. Acier selon la revendication 1 ou 2, caractérisé en ce que 11,0% ≤ Cr ≤ 12,4%.
4. Acier selon l'une des revendications 1 à 3, caractérisé en ce que 0,15% ≤ V ≤ 0,35%.
5. Acier selon l'une des revendications 1 à 4, caractérisé en ce que traces < Si < 0,5%.
6. Acier selon l'une des revendications 1 à 5, caractérisé en ce que
0,10% ≤ Mo + W/2 ≤ 1 ,20%.
7. Acier selon l'une des revendications 1 à 6, caractérisé en ce que traces < Ti < 0,003%.
8. Acier selon l'une des revendications 1 à 7, caractérisé en ce que tra- ces < Nb < 0,010%.
9. Acier selon l'une des revendications 1 à 8, caractérisé en ce que tra- ces ≤ O < 0,0015%.
10. Acier selon l'une des revendications 1 à 9, caractérisé en ce que traces < S < 0,003%.
11. Acier selon l'une des revendications 1 à 10, caractérisé en ce que traces < Mn + Cu + Co < 1 ,8%.
12. Procédé de fabrication d'une pièce en acier inoxydables martensiti- que, caractérisé en ce que :
- on élabore, on coule, on forge ou lamine et on recuit un acier selon l'une des revendications 1 à 11 ;
- on réalise un usinage dudit acier pour lui donner la forme de ladite pièce ;
- on réalise une austénisation dudit acier usiné à une température de 990-1040O, de préférence 1000-1030O ; - on réalise une trempe de l'acier austénisé à une vitesse comprise entre 10 et 40OZmJn dans l'intervalle de température 800 à 400O ;
- on réalise deux revenus de l'acier trempé, pour lui conférer sa dureté finale.
13. Procédé selon la revendication 12, caractérisé en ce que lesdits re- venus sont chacun effectués à une température de 200 à 400"C, de préférence 300 à 380"C pendant un minimum de 2h en assurant un maintien à cœur de la température nominale d'au moins 1h, de manière à obtenir une dureté de 49 à 55 HRC.
14. Procédé selon la revendication 12, caractérisé en ce que lesdits revenus sont chacun effectués à une température de 530 à 560"C pendant un minimum de 2h en assurant un maintien à cœur de la température nominale d'au moins 1 h, de manière à obtenir une dureté comprise entre 42 et 50 HRC.
15. Pièce en acier inoxydable martensitique, caractérisée en ce que l'élément fabriqué par le procédé est fabriqué selon l'une des revendications 12 à 14.
16. Pièce selon la revendication 15, caractérisée en ce qu'il s'agit d'un élément de moule destiné à la fabrication d'articles en matières plastiques.
PCT/FR2008/051525 2007-09-10 2008-08-25 Acier inoxydable martensitique, procédé de fabrication de pièces réalisées en cet acier et pièces ainsi réalisées. WO2009034282A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP08830336A EP2188402B1 (fr) 2007-09-10 2008-08-25 Acier inoxydable martensitique, procédé de fabrication de pièces réalisées en cet acier et pièces ainsi réalisées.
CN200880106281A CN101861407A (zh) 2007-09-10 2008-08-25 马氏体不锈钢、由其制成的部件的生产方法和由此生产出的部件
CA2698889A CA2698889A1 (fr) 2007-09-10 2008-08-25 Acier inoxydable martensitique, procede de fabrication de pieces realisees en cet acier et pieces ainsi realisees.
JP2010523562A JP2010539325A (ja) 2007-09-10 2008-08-25 マルテンサイト系ステンレス鋼、この鋼から作られる部品の製造方法及びこの方法で製造される部品
US12/677,464 US20100276038A1 (en) 2007-09-10 2008-08-25 Martensitic stainless steel, method for making parts from said steel and parts thus made

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757451 2007-09-10
FR0757451A FR2920784B1 (fr) 2007-09-10 2007-09-10 Acier inoxydable martensitique, procede de fabrication de pieces realisees en cet acier et pieces ainsi realisees

Publications (1)

Publication Number Publication Date
WO2009034282A1 true WO2009034282A1 (fr) 2009-03-19

Family

ID=39272694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051525 WO2009034282A1 (fr) 2007-09-10 2008-08-25 Acier inoxydable martensitique, procédé de fabrication de pièces réalisées en cet acier et pièces ainsi réalisées.

Country Status (9)

Country Link
US (1) US20100276038A1 (fr)
EP (1) EP2188402B1 (fr)
JP (1) JP2010539325A (fr)
KR (1) KR20100059965A (fr)
CN (1) CN101861407A (fr)
CA (1) CA2698889A1 (fr)
FR (1) FR2920784B1 (fr)
RU (1) RU2010114173A (fr)
WO (1) WO2009034282A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097555A (zh) * 2010-09-14 2013-05-08 斯奈克玛 马氏体不锈钢可加工性的优化处理
CN104087854A (zh) * 2014-06-17 2014-10-08 江苏金石铸锻有限公司 马氏体不锈钢钢材

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110081839A1 (en) * 2009-10-06 2011-04-07 Apple Inc. Method and apparatus for polishing a curved edge
CN102453842A (zh) * 2010-10-18 2012-05-16 张佳秋 一种特种合金钢及制备高铁道岔整体滑床台板的方法
CN101985724A (zh) * 2010-10-28 2011-03-16 南昌航空大学 一种用于外科植入物的含稀土奥氏体不锈钢
KR101286205B1 (ko) * 2010-12-24 2013-07-15 주식회사 포스코 마르텐사이트계 스테인리스 박판 주조용 쌍롤식 박판 주조기 및 쌍롤식 박판 주조기에 의해 마르텐사이트계 스테인리스 박판을 주조하는 방법
KR101243259B1 (ko) * 2010-12-28 2013-03-13 주식회사 포스코 마르텐사이트계 스테인리스 열연박판 및 그 제조 방법
CN103388105A (zh) * 2012-05-09 2013-11-13 白松浩 一种高抗磨特种金属材料及其制造方法
DE102012013020B3 (de) * 2012-06-29 2013-05-02 Daimler Ag Verfahren zum Beschichten eines Substrats mit einem Spritzwerkstoff und damit erzeugbare Funktionsschicht
JP6359241B2 (ja) * 2013-03-26 2018-07-18 山陽特殊製鋼株式会社 鏡面性に優れた耐食性プラスチック成形金型用鋼
JP5608280B1 (ja) * 2013-10-21 2014-10-15 大同工業株式会社 チェーン用軸受部、その製造方法、及びそれを用いたチェーン
AT515157B1 (de) * 2013-11-21 2016-12-15 Böhler Edelstahl GmbH & Co KG Verfahren zur Herstellung von Kunststoffformen aus martensitischem Chromstahl und Kunststoffform
JP2017507244A (ja) * 2014-01-16 2017-03-16 ウッデホルムス アーベーUddeholms Ab ステンレス鋼およびステンレス鋼製切削工具本体
JP5705345B1 (ja) * 2014-03-06 2015-04-22 日本高周波鋼業株式会社 高鏡面プラスチック金型用鋼
CN104480270A (zh) * 2014-12-22 2015-04-01 淄博泉河工贸有限公司 一种高锰钢及部分合金钢余热热处理方法
TWI701477B (zh) * 2015-10-22 2020-08-11 日商迪愛生股份有限公司 Ffs型液晶顯示元件及ffs型液晶顯示器
JP6866692B2 (ja) * 2016-03-11 2021-04-28 大同特殊鋼株式会社 金型用鋼及び金型
US10508327B2 (en) * 2016-03-11 2019-12-17 Daido Steel Co., Ltd. Mold steel and mold
AU2017252037A1 (en) * 2016-04-22 2018-11-22 Aperam A process for manufacturing a martensitic stainless steel part from a sheet
WO2019002924A1 (fr) * 2017-06-30 2019-01-03 Aperam Procédé de soudage par points de tôles d'acier inoxydable martensitique
CN108467999B (zh) * 2018-04-27 2019-10-29 天长市协正塑业有限公司 一种高韧性塑料模具钢及其生产方法
CN110541124B (zh) * 2019-09-10 2021-05-25 成都先进金属材料产业技术研究院有限公司 含氮塑料模具扁钢锭及其工艺方法
CN110656293A (zh) * 2019-11-01 2020-01-07 育材堂(苏州)材料科技有限公司 含Mo高硬度不锈钢、热处理工艺及成形构件
CN111440995B (zh) * 2020-05-25 2021-02-05 江苏丰尚智能科技有限公司 一种小孔径环模的制造方法
CN112501396B (zh) * 2020-11-30 2022-03-18 北京航空航天大学 一种第三代轴承钢的等温淬火热处理工艺方法
CN114196875B (zh) * 2021-09-25 2022-10-28 浙江吉森金属科技有限公司 一种阀片用不锈钢及其热处理方法
CN114231717B (zh) * 2021-12-31 2024-02-02 无锡派克新材料科技股份有限公司 一种马氏体不锈钢锻件锻造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178334A1 (fr) * 1984-10-11 1986-04-23 Kawasaki Steel Corporation Aciers inoxydables martensiques pour tubes d'acier sans soudure
JPH10110248A (ja) * 1996-10-03 1998-04-28 Hitachi Metals Ltd 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
EP1288316A1 (fr) * 2001-08-29 2003-03-05 Kawasaki Steel Corporation Procédé de fabrication de tubes sans soudure en acier inoxydable martensitique à résistance et tenacité éléveés
WO2006016043A2 (fr) * 2004-07-12 2006-02-16 Industeel Creusot Acier inoxydable martensitique pour moules et carcasses de moules d'injection
WO2007063210A1 (fr) * 2005-11-29 2007-06-07 Aubert & Duval Acier pour outillage a chaud, et piece realisee en cet acier, son procede de fabrication et ses utilisations.
JP2007277639A (ja) * 2006-04-07 2007-10-25 Daido Steel Co Ltd マルテンサイト鋼

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54115617A (en) * 1978-02-28 1979-09-08 Hitachi Metals Ltd Corrosion and abrasion resistant alloy steel
JP2968844B2 (ja) * 1995-01-13 1999-11-02 日立金属株式会社 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
JPH1018001A (ja) * 1996-07-01 1998-01-20 Hitachi Metals Ltd 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
US7520942B2 (en) * 2004-09-22 2009-04-21 Ut-Battelle, Llc Nano-scale nitride-particle-strengthened high-temperature wrought ferritic and martensitic steels

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0178334A1 (fr) * 1984-10-11 1986-04-23 Kawasaki Steel Corporation Aciers inoxydables martensiques pour tubes d'acier sans soudure
JPH10110248A (ja) * 1996-10-03 1998-04-28 Hitachi Metals Ltd 耐孔食性の優れた高硬度マルテンサイト系ステンレス鋼
EP1288316A1 (fr) * 2001-08-29 2003-03-05 Kawasaki Steel Corporation Procédé de fabrication de tubes sans soudure en acier inoxydable martensitique à résistance et tenacité éléveés
WO2006016043A2 (fr) * 2004-07-12 2006-02-16 Industeel Creusot Acier inoxydable martensitique pour moules et carcasses de moules d'injection
WO2007063210A1 (fr) * 2005-11-29 2007-06-07 Aubert & Duval Acier pour outillage a chaud, et piece realisee en cet acier, son procede de fabrication et ses utilisations.
JP2007277639A (ja) * 2006-04-07 2007-10-25 Daido Steel Co Ltd マルテンサイト鋼

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103097555A (zh) * 2010-09-14 2013-05-08 斯奈克玛 马氏体不锈钢可加工性的优化处理
CN104087854A (zh) * 2014-06-17 2014-10-08 江苏金石铸锻有限公司 马氏体不锈钢钢材

Also Published As

Publication number Publication date
CA2698889A1 (fr) 2009-03-19
KR20100059965A (ko) 2010-06-04
RU2010114173A (ru) 2011-10-20
CN101861407A (zh) 2010-10-13
FR2920784B1 (fr) 2010-12-10
US20100276038A1 (en) 2010-11-04
EP2188402A1 (fr) 2010-05-26
FR2920784A1 (fr) 2009-03-13
EP2188402B1 (fr) 2012-05-23
JP2010539325A (ja) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2188402B1 (fr) Acier inoxydable martensitique, procédé de fabrication de pièces réalisées en cet acier et pièces ainsi réalisées.
EP1751321B1 (fr) Acier a haute resistance mecanique et a l&#39;usure
EP1896624B1 (fr) Composition d&#39;acier inoxydable martensitique, procede de fabrication d&#39;une piece mecanique a partir de cet acier et piece ainsi obtenue
TWI494445B (zh) 滲碳鋼零件(一)
JP5114689B2 (ja) 肌焼鋼及びその製造方法
EP1954846A1 (fr) Acier pour outillage a chaud, et piece realisee en cet acier, son procede de fabrication et ses utilisations.
EP3289109B1 (fr) Acier inoxydable martensitique, procédé de fabrication d&#39;un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit
JP5416459B2 (ja) 転動疲労寿命に優れた軸受用鋼材
TW201739931A (zh) 軋輥用外層及輥軋用複合輥
BRPI0607042B1 (pt) Aço para mola de alta resistência
BE1008531A6 (fr) Acier lamine a chaud non affine thermiquement et procede d&#39;elaboration de celui-ci.
CA2718848C (fr) Acier a hautes caracteristiques pour pieces massives
JP2008081841A (ja) 冷間鍛造性および結晶粒粗大化防止特性に優れた肌焼鋼およびそれから得られる機械部品
TWI633193B (zh) 模具用鋼
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l&#39;utilisant et pieces mecaniques ainsi realisees
FR2720410A1 (fr) Acier inoxydable ferritique à usinabilité améliorée.
EP2690187B1 (fr) Alliage, pièce et procédé de fabrication correspondants
CA2980878A1 (fr) Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
JP5705345B1 (ja) 高鏡面プラスチック金型用鋼
JP2004277818A (ja) プラスチック成形用の快削性金型用鋼
JP6735798B2 (ja) オーステナイト鋼合金及びオーステナイト鋼合金の製造方法
FR2978969A1 (fr) Acier pour la fabrication de pieces cementees, piece cementee realisee avec cet acier et son procede de fabrication
JP2017166066A (ja) 金型用鋼及び金型
JP6343946B2 (ja) 肌焼用圧延鋼材及びこれを用いた浸炭部品
BE487977A (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880106281.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08830336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008830336

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2698889

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010523562

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1862/CHENP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107007729

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010114173

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12677464

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI0816749

Country of ref document: BR

Free format text: APRESENTE DOCUMENTOS COMPROBATORIOS QUE EXPLIQUEM A DIVERGENCIA NO NOME DE UM DOS INVENTORES QUE CONSTA NA PUBLICACAO INTERNACIONAL WO 2009/034282 DE 19/03/2009 "ANDRE GRELLIER" E O CONSTANTE DA PETICAO INICIAL NO 020100020494 DE 09/03/2010 "ANDRE FRANCIS GRELLIER".

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI0816749

Country of ref document: BR

Free format text: PEDIDO RETIRADO EM RELACAO AO BRASIL POR NAO ATENDER AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO NA FASE NACIONAL E POR NAO CUMPRIMENTO DA EXIGENCIA FORMULADA NA RPI NO 2321 DE 30/06/2015.