WO2009028726A1 - 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2009028726A1
WO2009028726A1 PCT/JP2008/065925 JP2008065925W WO2009028726A1 WO 2009028726 A1 WO2009028726 A1 WO 2009028726A1 JP 2008065925 W JP2008065925 W JP 2008065925W WO 2009028726 A1 WO2009028726 A1 WO 2009028726A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating coating
grain
steel sheet
electrical steel
oriented electrical
Prior art date
Application number
PCT/JP2008/065925
Other languages
English (en)
French (fr)
Inventor
Minoru Takashima
Mineo Muraki
Makoto Watanabe
Tomofumi Shigekuni
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to CN2008801045394A priority Critical patent/CN101790599B/zh
Priority to US12/675,158 priority patent/US8409370B2/en
Priority to EP08828141.5A priority patent/EP2186924B1/en
Publication of WO2009028726A1 publication Critical patent/WO2009028726A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/188Orthophosphates containing manganese cations containing also magnesium cations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Definitions

  • Insulating coating solution for grain-oriented electrical steel sheet and
  • the present invention is a directional electromagnetic wave with excellent tension induced by a coating, moisture absorption resistance, moisture-absorption resistance, rust resistance, and lamination factor.
  • the present invention relates to a chromium-free insulation coating for a grain oriented electrical steel sheet used in the manufacture of steel sheets.
  • the present invention also relates to a method for producing a grain-oriented electrical steel sheet having an insulating coating using the chromium-free insulating coating treatment liquid for grain-oriented electrical steel.
  • noise generated from power transformers has become a problem as pollution.
  • the main cause of noise in power transformers is magnetostriction of grain-oriented electrical steel sheets used as transformer core materials.
  • an industrially advantageous solution is to coat the grain-oriented electrical steel sheet with an insulating coating.
  • the coating tension is the tension applied to the grain-oriented electrical steel sheet by the formation of the insulating coating.
  • the coating of grain-oriented electrical steel sheets is usually a ceramic forsterite film formed by secondary recrystallization annealing and a phosphate-based insulation applied on the ceramic forsterite film. It consists of a film.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 48-39338
  • Patent Document 2 Japanese Patent Application Laid-Open No.
  • Patent Document 2 colloidal silica, phosphate, and chromium compounds (for example, one or two selected from chromic anhydride, chromate and dichromate). Insulating coating solution containing the above is applied to the steel sheet and then baked. The insulating coating formed by these methods has an effect of improving magnetostriction characteristics by applying tensile stress to the grain-oriented electrical steel sheet.
  • these insulating film treatment liquids contain a chromium compound such as chromic anhydride, chromate or dichromate as a component for maintaining the moisture absorption resistance of the insulating film satisfactorily. Contains hexavalent chromium.
  • Patent Document 2 discloses a technique in which a chromium compound is not added.
  • the power in terms of moisture absorption resistance is extremely disadvantageous.
  • hexavalent chromium contained in the insulation coating solution is reduced to trivalent chromium by baking and rendered harmless.
  • Patent Document 3 discloses colloidal silica, aluminum phosphate and boric acid as a so-called chromium-free insulating coating solution for grain-oriented electrical steel sheets that does not substantially contain chromium.
  • an insulating film treatment solution containing one or more selected from sulfates of Mg, Al, Fe, Co, Ni, and Zn is disclosed, and Japanese Patent Publication No. 58-44744
  • the gazette (Patent Document 4) contains colloidal silica and magnesium phosphate, and further includes an insulating film treatment liquid containing one or more selected from sulfates of Mg, Al, Mn and Zn. Is disclosed.
  • Patent Document 3 and Patent Document 4 were used, there were problems in film tension and moisture absorption resistance in response to the recent demand for film characteristics.
  • Patent Document 5 JP 2007-233 A (Patent Document 5) describes (I) as a method for solving the problem of coating film tension and lack of moisture absorption resistance, which becomes a problem when the insulating coating solution is made chrome-free.
  • a chromium-free insulating coating treatment solution is disclosed. Disclosure of the invention
  • the present invention has been developed in view of the above-described present situation, and aims at the following items.
  • the inventors have developed a directionality after secondary recrystallization annealing on an insulating coating solution containing various compounds in addition to various phosphates and colloidal silica. It was applied to electrical steel sheets and then baked. The properties of the coatings obtained were investigated.
  • the inventors investigated the optimal composition of the chromium-free insulating coating solution for grain-oriented electrical steel sheets using various phosphates and titanium chelate compounds.
  • a method for producing a grain-oriented electrical steel sheet having an insulating coating using the chromium-free insulating coating treatment solution was studied. And by these examination, this invention was completed. That is, the gist configuration of the present invention is as follows.
  • An insulating coating solution for grain-oriented electrical steel sheets characterized by comprising.
  • the insulating film treatment liquid is chromium-free and particularly contains substantially no Cr.
  • the treatment liquid is preferably an aqueous solution.
  • a method for producing a grain-oriented electrical steel sheet having an insulating film wherein the baking treatment is performed at a temperature of 350 ° C or higher and 1100 ° C or lower.
  • the insulating film treatment liquid is chromium-free and particularly contains substantially no Cr.
  • the treatment solution should be an aqueous solution! /.
  • one cold rolling or intermediate annealing (intermediate) It is preferable that the final thickness is finished by two or more cold rollings that sandwich the annealing). Further, after the primary recrystallization annealing, it is preferable to apply the secondary recrystallization annealing after applying an annealing separator containing MgO as a primary component.
  • Figure 1 shows the effect of titanium lactate on the insulating coating solution [Ti (C 3 H 5 ⁇ 2 ) 2 on the moisture absorption resistance of the insulating coating (vertical axis: P elution amount per 150 cm 2 , unit: ⁇ g).
  • (OH) 2 ] is a graph showing the effect of the amount added (horizontal axis: amount of added calories in terms of Ti with respect to P0 4 lmol, unit: mol).
  • Fig. 2 shows the amount of titanium lactate [Ti (C 3 H 5 0 2 ) 2 (OH) 2 ] added (horizontal axis: the same as in Fig. 1) on the coating tension (vertical axis, unit: MPa) of the insulating coating. It is a graph which shows an influence.
  • Si02 27mass% of colloidal silica (water) 450ml (Si0 2: 2mol) , and,
  • Ti (C 3 H 5 0 2 ) 2 (OH) 2 ] (titanium lactate) was prepared in an amount of 0.005 to 5.0 mol in terms of Ti.
  • a treatment solution not containing titanium lactate was also prepared.
  • the titanium latate was supplied as a solid and dissolved in the treatment liquid.
  • the amount of the processing solution only the amount necessary for the following experiment was prepared while maintaining the above blending ratio.
  • the length direction is the rolling direction
  • the width is 30 mm
  • X length S A test piece of 280 mm was collected by shearing, and then the insulating coating on one side was removed. The amount of curvature deformation at the end of the test piece was measured with one end 30 mm in the length direction of the steel plate fixed, and the coating tension ⁇ was calculated from the following equation (1). In order to eliminate the influence of the weight of the steel sheet, the amount of warpage was measured with the length direction of the steel sheet in the horizontal direction and the width direction in the vertical direction.
  • the steel sheet having the above insulating coating was kept in air at a temperature of 50 ° C and a dew point of 50 ° C for 200 hours. Then, the steel plate surface was observed visually and the area ratio of the wrinkles was measured.
  • the space factor was evaluated by a method based on JIS C 2550.
  • FIGS. Figure 1 shows the addition of titan lactate [Ti (C 3 H 5 0 2 ) 2 (OH) 2 ] that affects the elution amount of P in the insulation coating (vertical axis: 150 g 2 , unit: ⁇ g), that is, moisture absorption resistance. It shows the effect of the amount (horizontal axis: amount added to P0 4 lmol)
  • Fig. 2 shows the effect of the amount of titanium lactate [Ti (C 3 H 5 0 2 ) 2 (OH) 2 ] (horizontal axis) on the coating tension of the insulating coating.
  • the added amount of titanium latate [Ti (C 3 H 5 0 2 ) 2 (OH) 2 ] is the number of moles in terms of Ti.
  • the amount of titanium lactate [Ti (C 3 H 5 0 2 ) 2 (OH) 2 ] was good in the range of 0.005 to 5.0 mol in terms of Ti.
  • the insulating coating solution of the present invention is preferably an aqueous solution. That is, the insulating coating of the present invention
  • the treatment liquid preferably comprises at least one selected from the group consisting of phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn, colloidal silica, and titanium clay M compound using water as a solvent. Contains. First, the forces that are phosphates Mg, Ca, Ba, Sr, Zn, Al and! It is necessary to select one or more of ln phosphates to contain. This is because with other phosphates, a coating with good moisture absorption resistance cannot be obtained unless a chromium compound (for example, chromates) is added.
  • a chromium compound for example, chromates
  • Mg (H 2 P0 4 ) 2 , Ca (H 2 P0 4 ) 2 , Ba (H 2 P0 4 ) 2 , Sr are the primary phosphates of Mg Ca, Ba, Sr, Zn, Al and Mn.
  • (H 2 P0 4 ) 2 , Zn (H 2 P0 4 ) 2 , A1 (H 2 P0 4 ) 3 , and Mn (H 2 P0 4 ) 2 are easily dissolved in water and are therefore suitable for the present invention. Can be.
  • P0 4 in the phosphate For I mol, it is necessary to 0.2 ⁇ 10mol containing colloidal silica as Si0 2.
  • Colloidal silica is an indispensable component because it forms a low thermal expansion compound with the phosphate to generate a film tension. Further, in order to exhibit the left effect, the amount, the P0 phosphorus in salt 4: Si0 2 in terms of at 0.2mol or more relative to I mol, it is preferable that the lOmol hereinafter.
  • the type of colloidal silica is not particularly limited as long as the stability of the solution and the compatibility with the above-described phosphate are obtained.
  • colloidal silica containing a sol containing aluminum (A1) can also be used.
  • the amount of A1 is preferably 1.0 or less in terms of Al 2 0 3 / SiO 2 ratio.
  • the insulating coating solution of the present invention particularly contains a titanium chelate compound in a range of 0.01 to 4.0 mol in terms of Ti with respect to P0 4 : lmol in the phosphate. is important.
  • the titanium chelate compound is a compound in which a ligand having a plurality of coordinates is bound to a tetravalent hexacoordinate titanium atom.
  • the titanium chelate compound is represented by the following formula (2): (Formula ()
  • any titanium chelate compound that does not cause precipitation when mixed in an insulating coating solution can be advantageously applied.
  • R is hydrogen or an organic group
  • R 3 and R 4 are organic groups, and each organic group has 10 or less carbon atoms. Examples of suitable compounds will be described later.
  • the amount of titanium chelate compound added to P0 4 : lmol in phosphate must be O.Olmol or more in terms of Ti.
  • a more preferable addition amount of the titanium chelate compound is 0.05 to 3.0 mol in terms of Ti.
  • the reason why the moisture absorption resistance is improved by the addition of the titanium chelate compound is considered as follows.
  • P_ ⁇ of-free in phosphate 4 that were not taken into vitreous is silica and phosphorus Sanshioryoku formation are those bound to titanium the titanium chelate compounds, insolubilized in the insulating film it is conceivable that. For this reason, it is estimated that moisture absorption resistance improves. Even when Ca, Mg, Mn, Fe, Zn, Co, Ni, or Cu organic compounds are added, the moisture absorption resistance is slightly improved, but the titanium chelate compounds are more resistant to these. The effect of improving hygroscopicity is remarkably large.
  • the titanium chelate compound is a complex in which a chelate compound is coordinated to Ti, and any can be applied as long as it can be blended in the insulating coating solution without causing precipitation.
  • titanium diisopropoxy bis (acetylacetonate) [Ti (iC 3 H 7 0) 2 (C 5 H 7 0 2 ) 2 ] (titanium di-iso-propoxy bis-acetylacetonate), titanium tetraacetyl Noreacetonate [Ti (C 5 H 7 0 2 ) 4 ] (titanium tetra-acetyl acetonate), titanium lactate [Ti (C 3 H 5 0 2 ) 2 (OH) 2 ], titanium diisopropoxybis (triethanol Amineto) [Ti (i one C 3 H 7 0) 2 ( C 6 H 14 0 3 N) 2] (titanium di-iso-propoxy bis (triethanol aminato)) and the like.
  • relatively strong molecular weight M and titanium lactate are particularly preferable.
  • Titanium compounds are generally highly reactive.
  • a titanium chelate compound is a compound in which a ligand having a plurality of coordination sites is bonded to a titanium atom, so that the titanium atom is inactivated. For this reason, it is extremely stable in the insulating coating solution without reacting with water, phosphate, or colloidal silica. And, at the beginning of the baking process, that is, until the drying of the coating solution is completed, the hydrolysis hardly occurs and the titanium compound is not precipitated. Therefore, titanium titanium chelate compounds which are added is surely baked into the insulation coating bonded to P0 4.
  • the titanium in the applied titanium chelate stays in the insulating film until the end of the baking process where it does not precipitate and fall off due to some reaction during the baking process. And it is estimated that this makes the coating composition uniform and improves the moisture absorption resistance and anti-mold properties.
  • the concentration of the above main components in the insulating coating solution is not particularly limited. However, when the concentration is low, the insulating coating becomes thin, and when the concentration is high, the viscosity of the insulating coating treatment liquid increases and the workability of coating and the like decreases.
  • the concentration range of the colloidal silica opium titanium chelate compound is automatically determined once the phosphate concentration is determined.
  • the following substances may be added to the insulating coating solution of the present invention.
  • boric acid may be added to improve the heat resistance of the insulating coating.
  • Si0 2 , A1 2 0 3 having a primary particle size of 50 to 2000 nm or less and One or more selected from Ti0 2 may be contained.
  • the reason why the fusion resistance is required is as follows. direction When a magnetic steel sheet is used for a steel core type transformer, the steel sheet is rolled and formed into a core shape, and then subjected to strain relief annealing (800 ° CX for about 3 hours). At that time, there is a force S for adhering between adjacent coatings. Such a fusion reduces the interlayer insulation resistance of the iron core, which in turn causes the magnetic properties to deteriorate.
  • the insulating coating solution can be collected. Above, a total of about borate 'Si0 2 or the like and other additives, it is preferable that the degree to which the content is equal to or less than 30 mass%.
  • the insulating film treatment solution is chromium-free, and it is particularly desirable that it does not substantially contain Cr.
  • substantially does not contain means that Cr derived from impurities contained in the raw material is tolerated but not actively added.
  • many of the components such as phosphate, colloidal silica, and titanium chelate compound are available as commercial products for industrial use, and any amount of Cr contained in these commercial products is acceptable.
  • a steel slab for grain-oriented electrical steel sheets having a predetermined component composition is rolled to a final thickness. Thereafter, after performing primary recrystallization annealing and secondary recrystallization annealing, the above-described insulating coating treatment liquid of the present invention is applied to the surface of the steel sheet and then baked at a temperature of 350 ° C. to 1100 ° C.
  • the slab for grain-oriented electrical steel sheets is hot-rolled, hot-rolled sheet annealing is performed as necessary, and the final rolling is performed by one or more cold rollings sandwiching intermediate annealing. The plate thickness.
  • any conventionally known slab can be used as the component yarn of the slab.
  • the production method is not particularly limited, and any conventionally known production method can be used.
  • the main components of a slab for a typical grain-oriented electrical steel sheet are C: 0.10 mass% or less, Si: 2.0 to 4.5 mass%, Mn: 0.01 to 1.0 mass%.
  • various inhibitors are usually used in grain-oriented electrical steel sheets.
  • elements corresponding to the inhibitors are added. For example, as an inhibitor
  • MnSe and Sb When MnSe and Sb are used, Mn, Se (about 100 to 300 ppm) and Sb (about 0.01 to 0.2 mass%) can be added.
  • S, Al, N, and Se are generally extracted from the steel sheet in the secondary recrystallization annealing process and reduced to the impurity level.
  • a known method can be applied to hot rolling of the slab for grain-oriented electrical steel sheet, but the thickness after hot rolling is preferably in the range of 1.5 to 3.0 mm.
  • the hot-rolled sheet after hot rolling may be subjected to hot-rolled sheet annealing as necessary for further improvement of magnetic properties.
  • the hot-rolled sheet that has been subjected to hot rolling or further hot-rolled sheet annealing is subjected to cold rolling to obtain a final thickness.
  • the cold rolling may be performed once or may be cold rolling performed twice or more with intermediate annealing.
  • the primary recrystallization annealing following the cold rolling is performed in order to promote the primary recrystallization, but may be performed also as decarburization by controlling the atmosphere or the like.
  • the treatment conditions for primary recrystallization annealing can be set according to the purpose, but it is desirable to perform continuous annealing at a temperature of 800 to 950 ° C for 10 to 600 seconds.
  • nitriding treatment may be performed using ammonia gas or the like during the primary recrystallization annealing or after the primary recrystallization annealing.
  • the crystal grains obtained by the primary recrystallization annealing have excellent magnetic properties in the rolling direction by secondary recrystallization, so-called Goss orientation (Goss orientation) ) Is a process of preferential growth.
  • the conditions for secondary recrystallization annealing are preferably set at a force of 800 to 1250 ° C for about 5 to 300 hours, which can be set according to the purpose.
  • a forsterite film is formed. Generate on a steel plate.
  • a forsterite film has been formed for the purpose of further improving the iron loss of grain-oriented electrical steel sheets. /, Insulating coating treatment in the state is also being considered! / If the forsterite film is not formed, do not apply an annealing separator or apply an annealing separator that does not contain MgO as the main component (such as alumina).
  • the chromium-free insulating treatment film treatment liquid of the present invention can be applied regardless of the presence or absence of a forsterite film.
  • the chromium-free insulating coating treatment liquid of the present invention is applied to the grain-oriented electrical steel sheet after the secondary recrystallization manufactured through the series of steps as described above, and then a baking treatment is performed.
  • the chromium-free insulating coating solution may be diluted by adding water to adjust the density in order to improve the coating property. Further, at the time of coating are a roll coater (ro ll coater), it can be used known means.
  • the baking temperature is desirably 750 ° C or higher. This is because film tension is generated by baking at 750 ° C or higher. However, when grain-oriented electrical steel is used for the iron core of the transformer, the baking temperature should be 350 ° C or higher. This is because the core is often subjected to strain relief annealing for about 3 hours at a temperature of 800 ° C. In this case, the film tension is manifested during this strain relief annealing.
  • the maximum baking temperature range is 350 ° C or higher and 1100 ° C or lower.
  • the thickness of the insulating coating is not particularly limited, but is preferably in the range of 1 to 5 / z m per side. Since the film tension is proportional to the thickness of the film, if it is less than 1 / im, the film tension may be insufficient depending on the purpose. On the other hand, if it exceeds 5 ⁇ , the space factor may decrease more than necessary.
  • the thickness of the insulating film can be controlled to the target value by the concentration of the insulating film treatment liquid, the coating amount, the coating conditions (for example, the pressing condition of the roll coater), and the like.
  • the steel slab was hot-rolled to obtain a hot-rolled sheet having a thickness of 2.0 mm, and then subjected to hot-rolled sheet annealing at 1000 ° C. for 60 seconds. After that, this hot-rolled sheet was subjected to a first cold rolling to an intermediate sheet thickness of 1.5 mm, followed by an intermediate annealing at 1100 ° C for 60 seconds, and then a second cold rolling to a final sheet thickness of 0.22 mm. The cold-rolled sheet was used.
  • this cold-rolled sheet was subjected to primary recrystallization annealing at 820 ° C x 150 seconds, which also served as decarburization. Then, after applying an annealing separator (MgO slurry), secondary recrystallization annealing was performed at 1200 ° C for 15 hours to obtain a grain-oriented electrical steel sheet having a forsterite coating.
  • MgO slurry annealing separator
  • An insulating coating solution was prepared by mixing the titanium chelate compound shown in Table 1 with a Ti conversion in the range of 0.005 to 5.0 mol. The liquid volume In this way, only the amount necessary for the following experiment was prepared while maintaining the above blending ratio. The same applies hereinafter.
  • These insulating film treatment solutions were applied to the surface of the grain-oriented electrical steel sheet and baked at 750 ° C. for 1 minute. The film thickness was 2 ⁇ m per side.
  • the above-mentioned chromium-free insulating coating treatment liquid was not mixed with titanium chelate compound, and magnesium sulfate heptahydrate instead of titanium chelate compound: lmol (Mg conversion ), Titanium oxide colloid (non-chelating Ti compound): 0.3 mol (Ti conversion), and chromic anhydride (chromium compound): lmol (Cr conversion)
  • titanium chelate compound lmol (Mg conversion )
  • titanium oxide colloid non-chelating Ti compound
  • Ti conversion chromic anhydride
  • Cr conversion chromium compound
  • a grain-oriented electrical steel sheet having an insulating coating was manufactured using the insulating coating treatment liquid shown in “Invention 3” of Example 1 in Patent Document 5.
  • this insulation coating solution is 50% primary phosphoric acid A1: 50ml (solid 35g), 20% colloidal silica: 100ml (solid 23g) and dispersion of colloidal compound containing Fe Liquid (Fe: equivalent to 1.2 g) ( ⁇ ⁇ 1.0, average particle size: 12 awakening, Fe203 equivalent solid content concentration: 7.5%).
  • the coating tension, moisture absorption resistance, weather resistance and space factor were evaluated by the following methods.
  • a test piece having a width of 30 mm and a length of 280 mm was collected by shearing from the grain-oriented electrical steel sheet having the insulating coating, with the length direction being the rolling direction, and then the insulating coating on one side was removed. Then, the length of one end of the steel sheet was fixed at 30 mm, the amount of warpage at the end of the test piece was measured, and the film tension ⁇ was calculated from the following equation (1). Here, the amount of warpage was measured with the length direction of the steel plate being horizontal and the width direction being vertical.
  • the grain-oriented electrical steel sheet having the above insulating coating was maintained in air at a temperature of 50 ° C and a dew point of 50 ° C for 200 hours. Thereafter, the surface of the steel plate was visually observed, and the fender resistance was evaluated by the area ratio of the wrinkles.
  • the space factor was evaluated by a method based on JIS C 2550. Table 1 shows the measurement results.
  • P0 4 0.1 mol of boric acid and Al 2 0 3 0.3 mol are added to 1 mol.
  • a chromium-free insulating coating treatment solution to which a titanium chelate compound was added in a range of 0.01 to 4.0 mol in terms of Ti was used, coating tension, moisture absorption resistance, It was possible to form an insulating film excellent in antibacterial properties, space factor, and misaligned film characteristics.
  • the insulating film characteristics of these inventive examples were at or above the level of the comparative examples to which chromium compounds were added.
  • a slab for grain-oriented electrical steel sheets having a composition was hot-rolled to obtain a hot-rolled sheet having a thickness of 2.5 mm, and then hot-rolled at 1050 ° C. for 60 seconds; Subsequently, a cold-rolled sheet having a thickness of 0.30 mm was obtained by cold rolling. Next! /, The cold rolled sheet was subjected to a first recrystallization annealing at 900 ° C for 30 seconds.
  • an annealing separator (MgO slurry) is applied, followed by secondary recrystallization annealing at 880 ° CX for 50 hours, followed by further annealing at 1200 ° CX for 15 hours, thereby providing a directional electromagnetic with a forsterite film.
  • a steel plate was obtained.
  • 500 ml of various phosphate aqueous solutions shown in Table 2 (containing 1 mol of PO 4 in terms of PO 4 ) and 1000 ml of colloidal silica (aqueous) in various concentrations (0.5 to 10 mol in terms of SiO 2 ).
  • Insulating coating solution containing 0.5 mol of Ti (C 3 H 5 0 2 ) 2 (OH) 2 ] in terms of Ti was prepared.
  • These treatment liquids were applied to the surface of the grain-oriented electrical steel sheet and subjected to a baking treatment at 1030 ° C. for 60 seconds.
  • the film thickness after baking was 3 / zm per side.
  • Chromium compound (chromic anhydride (Gr0 3 , PO4: 1 mol to 1 mol)) added instead of titanium chelate compound
  • a chromium-free insulating coating solution for grain-oriented electrical steel sheets with appropriate amounts of titanium chelate compound added with appropriate amounts of various phosphates and colloidal silica specified in the present invention is used.
  • excellent insulating film characteristics were obtained with respect to all of film tension, moisture absorption resistance, weather resistance and space factor.
  • an annealing separator (MgO slurry) is applied, followed by secondary recrystallization annealing at 880 ° CX for 50 hours, followed by bow I and further annealing at 1200 ° CX for 15 hours to have a forsterite coating.
  • a grain-oriented electrical steel sheet was obtained.
  • the film tension, moisture absorption resistance, and anti-mold space factor were evaluated in the same manner as in Example 1.
  • the film tension was also evaluated after strain relief annealing at 800 ° C for 3 hours in order to investigate the effect of strain relief annealing.
  • an insulating film having excellent film tension, moisture absorption resistance, and anti-mold space factor can be formed on the surface of the grain-oriented electrical steel sheet. Reduction, and in turn, reduction of noise pollution.
  • the chromium-free insulating coating solution for grain-oriented electrical steel sheets of the present invention does not contain a chromium compound, so that waste liquid treatment becomes easy and is preferable from the viewpoint of environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Mg、Ca、Ba、Sr、Zn、AlおよびMnのリン酸塩のうちから選ばれる1種または2種以上を含有し、この選択した該リン酸塩中のPO4を基準とし、該PO4:1molに対し、コロイド状シリカをSiO2換算で0.5~10molおよびチタンキレート化合物をTi換算で0.01~4.0mol配合した処理液とすることにより、絶縁被膜処理液をクロムフリーとした場合に顕著に発生する被膜張力および耐吸湿性の低下を防止し、優れた絶縁被膜特性、すなわち被膜張力、耐吸湿性、防錆性および占積率に優れる方向性電磁鋼板を得ることができる、方向性電磁鋼板用クロムフリー絶縁被膜処理液を得る。

Description

方向性電磁鋼板用絶縁被膜処理液、および
絶縁被膜を有する方向性電磁鋼板の製造方法 技術分野
本発明は、被膜張力 ( tension induced by a coating )、耐吸湿' I"生、 moisture - absorption resistance)、防鲭性 (rust resistance)およぴ占積率(lamination factor)に優れた方向性電磁鋼板 の製造に用いられる、方向性電磁鋼板(gr明ain oriented electrical steel sheet)用のクロムフリー (chromium- free)絶縁被膜^理液(treatment solution for insulation coating)に関するものである。
本発明はまた、この方向性電磁鋼板用クロムフリー絶縁被膜処理液を用いた絶縁被膜を有する 方向性電磁鋼板の製造方法に関するものである。 背景技術
近年、電力用変圧器から発生する騒音が公害として問題となっている。 電力用変圧器の騒 音の主原因は、変圧器の鉄心材料として用いられる方向性電磁鋼板の磁歪(magnetostriction) であ。 変圧器の騷音を減らすためには、方向性電磁鋼板の磁歪を小さくすることが必要であり、 工業上有利な解決方法は、方向性電磁鋼板に絶縁被膜を被覆することである。
方向性電磁鋼板の絶縁被膜に必要とされる特性として、被膜張力、耐吸湿性、防鲭性おょぴ 占積率がある。 これらの特性のなかで、磁歪の低減には、被膜張力を確保することが重要であ る。 ここで、被膜張力とは、絶縁被膜の形成によって方向性電磁鋼板に付与される張力のことで める。 方向性電磁鋼板の被膜は、通常、二次再結晶焼鈍(secondary recrystallization annealing)に より形成されたセラミック質のフォルステライト被膜と、その上に施されるリン酸塩系 (phosphate - based)の絶縁被膜から成り立っている。この絶縁被膜を形成する方法として、特開昭 48 - 39338号公報 (特許文献 1)およぴ特開昭 50- 79442号公報 (特許文献 2)に開示された技術が 知られている。 これらの技術においては、コロイド状シリカ(colloidal silica)と、リン酸塩と、クロム 化合物(chromium compound) (例えば無水クロム酸、クロム酸塩および重クロム酸塩のうち力 選 ばれる 1種または 2種以上)とを含有する絶縁被膜処理液を鋼板に塗布し (coating)、その後、焼 付け (baking)をする。 これらの方法によって形成される絶縁被膜は、方向性電磁鋼板に引張応力を与えることにより、 磁歪特性を改善する効果を有する。 しかし、これらの絶縁被膜処理液は、絶縁被膜の耐吸湿性 を良好に維持するための成分として、無水クロム酸、クロム酸塩または重クロム酸塩などのクロム 化合物を含み、したがって、これらに由来する 6価クロムを含有する。 特許文献 2にはクロム化合 物を添加しない技術も開示されている力 耐吸湿性の観点力 は極めて不利である。 ここで、絶 縁被膜処理液中に含まれる 6価クロムは、焼付けにより 3価クロムに還元されて無害化される。 し かし、処理液の廃液処理作業において取り扱いに種々の負担が生じるという問題がある。
一方、クロムを実質上含有しない、いわゆるクロムフリーの方向性電磁鋼板用絶縁被膜処理液 として、特公昭 57 - 9631号公報 (特許文献 3)には、コロイド状シリカ、リン酸アルミニウムおよびホウ 酸を含有し、さらに Mg、 Al、 Fe、 Co、 Niおよび Znの硫酸塩のうちから選ばれる 1種または 2種以上 を含有する絶縁被膜処理液が開示されており、また、特公昭 58-44744号公報 (特許文献 4)には、 コロイド状シリカおよびリン酸マグネシウムを含有し、さらに Mg、 Al、 Mnおよび Znの硫酸塩のうちか ら選ばれる 1種または 2種以上を含有する絶縁被膜処理液が開示されている。 し力 ながら、特 許文献 3および特許文献 4の絶縁被膜処理液を用いた場合には、近年の被膜特性に対する要 求に対して、被膜張力、耐吸湿性の点で問題があった。
絶縁被膜処理液をクロムフリー化した際に問題となる、被膜張力おょぴ耐吸湿性の不足などを 解決する方法として、特開 2007- 233 号公報 (特許文献 5)には、(I)コロイド状シリカ、(II)リン酸 塩、および(III) Fe、 Al、 Ga、 Tiおよび Zrのうち力ら選ばれる 1種または 2種以上の金属元素を含 有するコロイド状化合物の分散液、を含有するクロムフリー絶縁被膜処理液が開示されてレ、る。 発明の開示
〔発明が解決しょうとする課題〕
しかしながら、本発明者らの研究では、特許文献 5で示される絶縁被膜処理液を用いた場合 には、焼付け直後はベタツキのない表面が得られる力 1ヶ月、 2ヶ月といった長期の保管中には ベタツキを生じ、耐吸湿性がなお不十分と 、う問題がある。
本発明は、上記の現状に鑑み開発されたもので、以下の各項を目的とする。
-絶縁被膜処理液をクロムフリー化した場合に問題となる被膜張力および耐吸湿性の低下を 防止すること
•優れた絶縁被膜特性、すなわち被膜張力、耐吸湿性、防鲭性および占積率に優れる方向性 電磁鋼板を得ることができる方向性電磁鋼板用クロムフリー絶縁被膜処理液をを提供すること
•上記の方向性電磁鋼板用クロムフリー絶縁被膜処理液を用いた、絶縁被膜を有する方向性 電磁鋼板の製造方法を提供すること。 〔課題を解決するための手段〕
さて、上記の課題を解決すべく、発明者らは、各種のリン酸塩とコロイド状シリカの他、さらに各 種の化合物を配合した絶縁被膜処理液を、二次再結晶焼鈍後の方向性電磁鋼板に塗布し、そ の後焼付けした。 そして得られた被膜の特性につ V、て調査した。
その結果、チタンキレート化合物(chelate compound)を添加することにより、所望の特性を有 する絶縁被膜を得られることを見出した。 さらに、発明者らは、種々のリン酸塩、チタンキレート 化合物を用いて、方向性電磁鋼板用クロムフリー絶縁被膜処理液の最適組成を検討した。 そ れと共に、該クロムフリー絶縁被膜処理液を用いた絶縁被膜を有する方向性電磁鋼板の製造方 法について検討した。 そしてこれらの検討により、本発明を完成させた。 すなわち、本発明の要旨構成は、次のとおりである。
(1)
•Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから選ばれる少なくとも 1種と、
'該リン酸塩中の P〇4: lmolに対し、コロイド状シリカを Si02換算で 0.2〜10molおよびチタンキレ 一ト化合物を Ti換算で 0.01〜 Omolとを、
含有することを特徴とする方向性電磁鋼板用絶縁被膜処理液。 ここで、絶縁被膜処理液はクロムフリーであり、とくに Crを実質的に含有しないことが望ましい。 なお、処理液は水性溶液であることが望ましレ、。
(2)方向性電磁鋼板用スラブを、圧延により最終板厚 (final sheet thickness)に仕上げ、つい で一次再結晶焼鈍(primary recrystallization annealing)後、二次再結晶焼鈍を施し、さらに絶縁 被膜処理液を塗布したのち、焼付け処理を行う一連の工程により、方向性電磁鋼板を製造する に際し、
前記絶縁被膜処理液として、
•Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから選ばれる少なくとも 1種と、
-該リン酸塩中の P04を基準として、該 P04 : lmolに対し、コロイド状シリカを Si02換算で 0.2〜 lOmolおよびチタンキレート化合物を Ti換算で 0,01〜4·0πιο1とを、
含有する絶縁被膜処理液を用い、
焼付け処理を 350°C以上 1100°C以下の温度で行うことを特徴とする絶縁被膜を有する方向性 電磁鋼板の製造方法。 ここで、絶縁被膜処理液はクロムフリーであり、とくに Crを実質的に含有しないことが望ましい。 なお、処理液は水性溶液であることが望まし!/、。
また、上記の圧延としては、熱間圧延 (hot rolling)を施し、その後、あるいはさらに熱延板焼鈍 ( normalizing annealing )を施したのち、 1回の冷間圧延( cold rolling )または中間焼鈍 (intermediate annealing)を挟む 2回以上の冷間圧延により前記最終板厚に仕上げることが好適 である。 さらに、上記一次再結晶焼鈍後、 MgOを主体とする(containing MgO as a primary component)焼鈍分離剤 (annealing separator)を塗布してから上記二次再結晶焼鈍を施すことが 好ましい。 図面の簡単な説明
図 1は、絶縁被膜の耐吸湿性 (縦軸: 150cm2当たりの P溶出量、単位: μ g)に及ぼす、絶縁被 膜処理液へのチタンラクテート [Ti(C3H52)2(OH)2]添加量 (横軸: P04 lmolに対する Ti換算添カロ 量、単位: mol)の影響を示すグラフである。
図 2は、絶縁被膜の被膜張力(縦軸、単位: MPa)に及ぼす、チタンラクテート [Ti(C3H502)2 (OH)2]添加量 (横軸:図 1に同じ)の影響を示すグラフである。 発明を実施するための最良の形態
以下、本発明の基礎となった実験結果について説明する。
まず、絶縁被膜処理液として、
Figure imgf000006_0001
lmol)に対して、
. Si02: 27mass%のコロイド状シリカ(水性) 450ml (Si02: 2mol)、および、
'チタンラクテート [Ti(C3H502)2(OH)2] (titanium lactate)を Ti換算で 0.005〜5.0molの範囲 を配合した絶縁被膜処理液を用意した。 また、比較のためチタンラクテートを含まない処理液 も用意した。 なお、チタンラタテートは固体で供給し、処理液に溶解させた。 また処理液の液量 としては、上記配合比率を維持しつつ、以下の実験に必要な量だけ用意した。
これらの絶縁被膜処理液を、フォルステライト被膜を有する二次再結晶焼鈍後の方向性電磁 鋼板 (板厚: O. mm)に塗布し、 800°C, 20秒の焼付け処理を施し、片面あたり厚さ: 2 u mの絶縁 被膜を形成させた。 力くして得られた方向性電磁鋼板について、次に示す方法により、被膜張 力、耐吸湿性、防鲭性おょぴ占積率を評価した。
(1)被膜張力
上記の絶縁被膜を有する方向性電磁鋼板から、長さ方向を圧延方向として、幅: 30mm X長 さ: 280mmの試験片をせん断により採取し、次いで片面の絶縁被膜を除去した。 鋼板の長さ方 向の片端 30mmを固定して試験片端部の反り量(amount of curvature deformation)の大きさを測 定し、次の式(1)から被膜張力 σを算出した。 なお、鋼板の自重の影響を排除するため、水平 方向に鋼板の長さ方向を、鉛直方向に幅方向をそれぞれ向けて、反り量を測定した。
σ (MPa) = 1.2152 X 105(MPa) X板厚 (mm) X反り (mm)/250(mm)/250(mm) · · .式 (1)
(2)耐吸湿性
上記の絶縁被膜を有する方向性電磁鋼板から、 50mm X 50mmの試験片 3枚を採取し、これら を 100°Cの蒸留水中で 20分間浸漬煮沸(dip and boil)した。 そして、被膜表面力 溶出した P量 (P溶出量 (amount of elution of P) )を定量分析し、平均値を求めて耐吸湿性の指標とした。
(3)防鲭性
温度 50°C、露点 50°Cの空気中に上記の絶縁被膜を有する鋼板を 200時間保持した。 その後、 鋼板表面を目視観察して、鲭の面積率を測定した。
(4)占積率
占積率は、 JIS C 2550に準拠する方法で評価した。
結果を、図 1および 2に示す。 図 1に、絶縁被膜の P溶出量 (縦軸: 150cm2当たり、単位: μ g)すなわち耐吸湿性に及ぼすチ タンラクテート [Ti(C3H502)2(OH)2]の添加量 (横軸: P04 lmolに対する添加量)の影響を示す。 また図 2には、絶縁被膜の被膜張力に及ぼすチタンラクテート [Ti(C3H502)2(OH)2]の添加量 (横 軸)の影響をそれぞれ示す。 図中のチタンラタテート [Ti(C3H502)2(OH)2]の添加量は、 Ti換算で の mol数である。
チタンラクテート [Ti(C3H502)2(OH)2]の添加量が、 P04 : lmolに対して、 O.Olmol以上になると、 耐吸湿性が著しく向上し、また被膜張力の改善も認められた。
一方、添加量力 .0molを超えた場合には、耐吸湿性は問題な力 たものの、被膜張力は低下 が認められた。
なお、防鑌性おょぴ占積率については、チタンラクテート [Ti(C3H502)2(OH)2]の添加量力 Ti 換算で 0.005〜5.0molの範囲で良好であった。 次に、本発明の限定理由について説明する。
(絶縁被膜処理液)
本発明の絶縁被膜処理液は水性溶液とすることが好ましい。 すなわち、本発明の絶縁被膜 処理液は、好ましくは水を溶媒として、 Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうち力 選 ばれる少なくとも 1種と、コロイド状シリカと、チタンキレー M匕合物とを含有して構成される。 まず、リン酸塩である力 Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび!lnのリン酸塩のうちから 1種または 2種 以上選んで含有させることが必要である。 これら以外のリン酸塩では、クロム化合物(例えばクロ ム酸塩類)を添加しない場合には、耐吸湿性の良好な被膜が得られないからである。特に、 Mg Ca、 Ba、 Sr、 Zn、 Alおよび Mnの第一リン酸塩である Mg(H2P04)2、 Ca(H2P04)2、 Ba(H2P04)2、 Sr(H2 P04)2、 Zn(H2P04)2、 A1(H2P04)3、 Mn(H2P04)2は、水に容易に溶解するため、本発明に好適に用 いることができる。 また、これらの第一リン酸塩の水和物も同様に好適である。 上記リン酸塩中の P04 : lmolに対して、コロイド状シリカを Si02として 0.2〜10mol含有する必要 がある。 コロイド状シリカは、上記リン酸塩と共に低熱膨張率の化合物(low thermal expansion compound)を形成して、被膜張力を発生するため、必須の成分である。 また、左記効果を発揮 するためには、配合量を、上記リン酸塩中の P04 : lmolに対して Si02換算で 0.2mol以上、 lOmol以 下とすることが好ましい。
コロイド状シリカの種類は、溶液の安定性や、上記リン酸塩等との相溶性が得られる限り、特に 限定はされない。 例えば、市販の酸性タイプ(acid- type)である ST- O (日産化学(株)(Nissan Chemical Industries, LTD.)製 Si02含有量: 20mass%)が挙げられる力 アルカリ性タイプのコロイ ド状シリカでも使用することができる。
なお、絶縁被膜の外観を改善するため、アルミニウム (A1)を含有するゾルを含んだコロイド状 シリカを使用することもできる。 この場合、 A1量は Al203/Si02比に換算して 1.0以下とすることが 好ましレヽ。 本発明の絶縁被膜処理液では、耐吸湿性を高めるために、リン酸塩中の P04 : lmolに対して、 チタンキレート化合物を Ti換算で、 0.01〜4.0molの範囲で含有することが特に重要である。 なお、 チタンキレート化合物とは、 4価 6配位のチタン原子に対し、複数の配位座(coordinates)をもつ配 位子 (ligand)が結合したもので、代表的には、下式 (2) (式 ( )
Figure imgf000009_0001
の構造を有する化合物である。
' 力 うなチタンキレート化合物としては、絶縁被膜処理液中に配合されたときに沈殿 (sedimentation)を生じないチタンキレートィヒ合物であれば、いずれもが有利に適用できる。 ただ し、一般に R は水素又は有機基で、 R3、 R4は有機基であり、各有機基の炭素数は 10以下で ある。 好適な化合物例については後述する。
良好な耐吸湿性を得るためには、リン酸塩中の P04: lmolに対して、チタンキレート化合物の添 加量を、 Ti換算で、 O.Olmol以上とする必要がある。 一方、 4.0molを超えて添加すると、被膜の熱 膨張率が増加し、被膜張力が低下するため好ましくない。なお、チタンキレートイ匕合物の、より好 適な添加量は、 Ti換算で、 0.05〜3.0molである。 ここで、チタンキレート化合物の添加により、耐吸湿性が向上する理由は、次のとおりと考えら れる。
焼付け処理時に、シリカとリン酸塩力 形成されるガラス質にとりこまれなかったリン酸塩中のフ リーの P〇4は、チタンキレート化合物中のチタンと結合し、絶縁被膜中で不溶化するものと考えら れる。 このため、耐吸湿性が向上すると推定される。 なお、 Ca、 Mg、 Mn、 Fe、 Zn、 Co、 Niあるい は Cuの有機化合物を添加した場合においても、若干の耐吸湿性の向上が見られるが、チタンキ レート化合物はこれらに比べ、耐吸湿性向上の効果が格段に大きい。 この理由は、 Ca、 Mg、 Mn、 Fe、 Zn、 Co、 Niおよび Cuは 2価あるいは 3価であるのに対して、 Tiは 4価であり、結合の手が多く 結合力が強レ、ことにあると考えられる。 ここで、チタンキレート化合物とは、 Tiにキレート化合物が配位した錯体のことであり、絶縁被膜 処理液中に沈殿を生ずることなく配合できるものであれば、いずれもが適用可能である。 例えば、 チタンジイソプロポキシビス(ァセチルァセトネート) [Ti(i-C3H70)2(C5H702)2] (titanium di-iso-propoxy bis - acetylacetonate)、チタンテトラァセチノレアセトネート [Ti(C5H702)4] (titanium tetra- acetyl acetonate)、チタンラクテート [Ti(C3H502)2(OH)2]、チタンジイソプロポキシビス(トリ エタノールアミネート) [Ti(i一 C3H70)2(C6H1403N) 2] (titanium di-iso-propoxy bis(triethanol aminato))などが挙げられる。 これらの中では、比較的分子量力 M、さいチタンラクテートが、とくに 好ましい。
チタン化合物は、一般に反応性が高い。しかし、チタンキレート化合物は、複数の配位座を持 つ配位子がチタン原子に結合した化合物であるため、チタン原子が不活性化されている。 この ため、絶縁被膜処理液中では、水、リン酸塩、コロイド状シリカと反応せず極めて安定である。 そ して、焼付け処理の初期、すなわち塗布液の乾燥が完了するまで、加水分解をほとんど起こさず、 チタン化合物が析出されることがない。 そのため、添加されたチタンキレート化合物中のチタン は、 P04と結合して絶縁被膜中に確実に焼付けられる。 つまり、塗布されたチタンキレート中の チタンが焼付け処理中に何らかの反応で析出して抜け落ちることなぐ焼付け処理終了まで絶縁 被膜内に留まると考えられる。 そして、このことにより、被膜組成が均一となり、耐吸湿性おょぴ 防鲭性が向上するものと推定される。
なお、 Tiィ匕合物として、本発明のようなチタンキレート化合物ではなぐ Ti含有コロイド物質を用 いた場合には、焼付け直後はベタツキのない表面が得られる力 1ヶ月、 2ヶ月といった長期保管 中にはベタツキが生じるという不利がある。 すなわち、本発明ほど良好な耐吸湿性は望めない。 以上の主要成分の、絶縁被膜処理液中の濃度はとくに限定する必要は無い。 しかし、濃度 が低いと絶縁被膜が薄くなり、また濃度が高いと絶縁被膜処理液の粘性が大きくなつて塗布等の 作業性が低下する。 これらを考慮すると、上記リン酸塩について P04換算で概ね 0.02〜20mol/ リットル程度の範囲内とすることが好ましい。 コロイド状シリカおょぴチタンキレート化合物の濃度は、 リン酸塩の濃度が決まれば、自ずから濃度範囲が決定される。 上記の他、本発明の絶縁被膜処理液には、以下の物質を添加してもよい。
まず、絶縁被膜の耐熱性を向上させるために、硼酸を添加してもよい。
また、本発明の絶縁被膜処理液に、方向性電磁鋼板の耐融着性(sticking resistance)や滑り 性を向上させるために、 1次粒径 50〜2000nm以下の Si02、 A1203および Ti02から選ばれる 1種ま たは 2種以上を含有してもよい。 なお、耐融着性が求められる理由は下記の通りである。 方向 性電磁鋼板が卷鉄心型の変圧器に用いられる場合、鋼板が卷かれ、鉄心の形に成形された後、 歪取焼鈍 (800°C X 3時間程度)が施される。 その際、隣接する被膜同士で融着する(sticking)こ と力 Sある。このような融着は、鉄心の層間絶縁抵抗を低下させることになり、ひいては磁気特性を 劣化させる原因となるので、絶縁被膜には、耐融着性を付与させることが望ましい。 また、滑り性 については、方向性電磁鋼板が積鉄心(laminated core)型の変圧器に用いられる場合、鋼板の 積み作業を円滑に行うために 、鋼板同士の滑り性を良好にすることが望ましい。
以上の他にも、絶縁被膜処理液に用いられることのある、種々の添加物をカ卩えることができる。 以上の、硼酸 'Si02等およびその他の添加物については合計で、含有量が 30mass%以下となる 程度とすることが好ましい。 絶縁被膜処理液はクロムフリーであり、とくに Crを実質的に含有しないことが望ましい。 ここで 「実質的に含有しない」とは、原料に含まれた不純物を由来とする Crは許容するが、積極的に添 加しないという意味である。 例えば上記リン酸塩、コロイド状シリカ、チタンキレート化合物等の各 成分の多くは、工業用の市販品として入手可能であり、これら市販品に含まれる不純物程度の Cr 量であれば許容される。
(方向性電磁鋼板の製造方法)
次に、本発明のクロムフリー絶縁被膜処理液を用いた絶縁被膜を有する方向性電磁鋼板の製 造方法について説明する。
所定の成分組成を有する方向性電磁鋼板用鋼スラブを圧延して最終板厚とする。 その後、 一次再結晶焼鈍と二次再結晶焼鈍を施した後、上述した本発明の絶縁被膜処理液を鋼板表面 に塗布し、次いで 350°C〜1100°Cの温度で焼付け処理する。 一般的には、前記方向性電磁鋼 板用スラブに熱間圧延を施し、必要に応じて熱延板焼鈍を施し、さらに 1回または中間焼鈍を挟 む 2回以上の冷間圧延によって前記最終板厚とする。
本発明において、スラブの成分糸且成は、特に制限されることはなぐ従来公知のいずれもが適 合する。 また、製造方法についても特に制限されることはなぐ従来公知の製造方法いずれをも 使用することができる。 ちなみに、代表的な方向性電磁鋼板用スラブの主要成分は、 C : 0.10mass%以下、 Si: 2.0〜4.5mass%ぉょぴ Mn : 0.01〜1.0mass%である。 また、方向性電磁鋼板で は種々のインヒビターが用いられるのが通常であり、.前記主要成分の他に、インヒビターに応じた 元素が添加される。 例えば、インヒビターとして
.MnSを用いる場合は、 S : 200ppm程度(すなわち約 100〜300ppm :以下 ppmは mass ppmを意 味する)、 •A1Nを用いる場合は、 sol.Al: 200ppm程度(すなわち約 100〜300ppm)、
.MnSeと Sbを用いる場合は、 Mn、 Se (約 100〜300ppm)および Sb (約 0.01〜0.2mass%) を添加することができる。
なお、上記組成中、 S、 Al、 Nおよび Seは、一般に二次再結晶焼鈍工程で鋼板から大部分が抜 け、不純物レベルまで低減される。 方向性電磁鋼板用スラブの熱間圧延は、公知の方法を適用できるが、熱間圧延後の板厚は、 1.5〜3.0mmの範囲とすることが望ましい。熱間圧延後の熱延板には、磁気特性のさらなる改善な どの必要に応じて熱延板焼鈍を施してよい。
その後、熱間圧延またはさらに熱延板焼鈍を施された前記熱延板に、冷間圧延を施して最終 板厚とする。 冷間圧延は、 1回としてもよぐまた、中間焼鈍を挟む 2回以上の冷間圧延であって あよい。
冷間圧延に続く一次再結晶焼鈍は、一次再結晶を促進するために施すが、雰囲気等の制御 により、脱炭を兼ねて行ってもよい。 一次再結晶焼鈍の処理条件は、目的等に応じて設定が可 能であるが、 800〜950°Cの温度で 10〜600秒間、連続焼鈍を行うことが望ましい。 なお、一次再 結晶焼鈍中、あるいは一次再結晶焼鈍後に、アンモニアガスなどを用いて窒化処理(nitriding treatment)を施すこともできる。
続く二次再結晶焼鈍は、一次再結晶焼鈍で得た結晶粒(一次再結晶粒: primary recrystallized grain)を、二次再結晶によって圧延方向に磁気特性が優れる結晶方位、いわゆる ゴス方位(Goss orientation)に優先的に成長 (preferential growth)させる工程である。 二次再結 晶焼鈍の条件は、目的等に応じて設定が可能である力 800〜1250°Cの温度で 5〜300時間程度 とするのが好ましい。
ここで、一般には前記一次再結晶焼鈍後、 MgOを主体とする(すなわち十分に MgOを含有す る)焼鈍分離剤を塗布してから前記二次再結晶焼鈍を施すことにより、フォルステライト被膜を鋼 板上に生成させる。
また、近年では、方向性電磁鋼板の鉄損を、より一層改善することを目的として、フォルステラ イト被膜が形成されてレ、な!/、状態で絶縁被膜処理をすることも検討されて!/、る。 フォルステライト 被膜を形成させない場合は、焼鈍分離剤を塗布しないか、 MgOを主体としない (例えばアルミナ 系など)焼鈍分離剤を塗布する。
本発明のクロムフリー絶縁処理被膜処理液は、フォルステライト被膜の有無にかかわらず適用 することができる。 上記のような一連の工程を経て製作した二次再結晶後の方向性電磁鋼板に、本発明のクロム フリー絶縁被膜処理液を塗布し、その後、焼付け処理を行う。
クロムフリー絶縁被膜処理液は、塗布性の向上のために、水等を加えて希釈し密度を調整し ても良い。 また、塗布する際には、ロールコーター(roll coater)など、公知の手段を使用すること ができる。
焼付け温度は、 750°C以上であることが望ましい。 これは、 750°C以上で焼付けることによって、 被膜張力が発生するからである。 ただし、方向性電磁鋼板が変圧器の鉄心に使用される場合、 焼付け温度は、 350°C以上であれば良い。 これは、鉄心の製造に際しては、 800°Cの温度で 3時 間程度の歪取焼鈍が施されることが多ぐこの場合、被膜張力は、この歪取焼鈍時に発現するか らである。
一方、 1100°Cを超えると防鲭性が劣化するため、 1100°C以下とする。 以上より、焼付け温度 の最大範囲は 350°C以上 1100°C以下とする。 絶縁被膜の厚さは、特に限定されないが、片面あたり l〜5 /z mの範囲とするのが好ましい。被 膜張力は被膜の厚さに比例するため、 1 /i m未満では、目的によっては被膜張力が不足する可能 性がある。 一方 5 μ πιを超えると占積率が必要以上に低下する場合がある。 絶緣被膜の厚さは、 絶縁被膜処理液の濃度、塗布量、塗布条件 (例えばロールコーターの押し付け条件)などにより 目標値に芾 lj御することがでさる。
〔実施例〕
(実施例 1)
C:0.05mass%、 Si:3mass%、 sol.Al:0.02mass%、 Mn:0.04mass%、 S:0.02mass%を含有し、残部は Feおよび不可避的不純物である組成を有する方向性電磁鋼板用スラブを熱間圧延して板厚: 2.0mmの熱延板とし、その後、 1000°C X 60秒の熱延板焼鈍を施した。 その後、この熱延板を 1回 目の冷間圧延により中間板厚: 1.5mmとし、次いで 1100°C X 60秒の中間焼鈍を施し、その後、 2 回目の冷閬圧延により最終板厚: 0.22mmの冷延板とした。 次に、この冷延板に脱炭を兼ねた 820°C X 150秒の 1次再結晶焼鈍を施した。 その後、焼鈍分離剤(Mg〇スラリー)を塗布した後、 1200°C X 15時間の二次再結晶焼鈍を施して、フォルステライト被膜を有する方向性電磁鋼板を 得た
次に、リン酸マグネシウム Mg(H2P04)2を P〇4換算で lmol含有する水溶液 500mlに対して、コロイ ド状シリカ(水性) 700ml(SiO2換算で 3molを含有)、およぴ表 1に示すチタンキレート化合物を Ti換 算で 0.005〜5.0molの範囲で変化させて配合した絶縁被膜処理液を用意した。 なお、液量とし ては、上記配合比率を維持しつつ、以下の実験に必要な量だけ用意した。 以下同様である。 これらの絶縁被膜処理液を、上記の方向性電磁鋼板の表面に塗布し、 750°C X 1分の焼付け処 理を施した。 被膜厚さは、片面あたり 2 μ mとした。
また、比較例として、上記のクロムフリー絶縁被膜処理液中にチタンキレートイ匕合物を配合しな かったもの、およびチタンキレート化合物の代わりに硫酸マグネシウムの七水和物: lmol (Mg換 算)、酸化チタンコロイド (非キレートの Ti化合物):0.3mol(Ti換算)、および無水クロム酸 (クロム化 合物):lmol (Cr換算)のいずれかを配合したクロムフリー絶縁被膜処理液を用いて、それぞれ同 様に絶縁被膜を有する方向性電磁鋼板を製作した。
さらに、従来例として、特許文献 5における実施例 1の「本発明 3」に示される絶縁被膜処理液 を用いて、絶縁被膜を有する方向性電磁鋼板を製作した。ちなみに、この絶縁被膜処理液は、 50%第一リン酸 A1 : 50ml (固形分 (solid) 35g)、 20%コロイダノレシリカ: 100ml (固形分 23g)および Fe を含有するコロイド状化合物の分散液 (Fe : 1.2g相当) (ΡΗ1·0、平均粒子径: 12醒、 Fe203換算固 形分濃度: 7.5%)を配合したものである。 このようにして得られた絶縁被膜を有する方向性電磁鋼板について、被膜張力、耐吸湿性、 防鲭性および占積率を下記の方法で評価した。
(1)被膜張力
上記の絶縁被膜を有する方向性電磁鋼板から、長さ方向を圧延方向として、幅: 30mm X長 さ: 280mmの試験片をせん断により採取し、その後片面の絶縁被膜を除去した。 そして鋼板の 長さ方向の片端 30mmを固定して、試験片端部の反り量の大きさを測定し、次の式 (1)から被膜張 力 σを算出した。 ここで、反り量は鋼板の長さ方向を水平に、幅方向を鉛直方向として、測定し た。
σ (MPa) = 1.2152 X 105( Pa) X板厚 (mm) X反り (mm)/250(mm)/250(mm) · · '式 (1)
(2)耐吸湿性
上記の絶縁被膜を有する方向性電磁鋼板から、 50mm X 50mmの試験片 3枚を採取し、これら を 100°Cの蒸留水中で 20分間浸漬煮沸した。 そして、被膜表面からの P溶出量を定量分析し、 平均値を求めて指標とした。
(3)防鲭性
温度 50°C、露点 50°Cの空気中に、上記の絶縁被膜を有する方向性電磁鋼板を 200時間保持 した。 その後、鋼板表面を目視観察し、鲭の面積率で防鲭性を評価した。
(4)占積率
占積率は、 JIS C 2550に準拠する方法で評価した。 以上の測定結果を表 1に示す。
Figure imgf000015_0001
*1) P04 : 1 mdに対する mol数 (Ti、Mgまたは Crに換算)
*2) P溶出量で評価
*3)鯖発生部の面積率で評価
*4)チタンキレ-ト化合物の代替物として添加
*5) 50%第 1リン酸 AI: 50ml (固形分 35g)、 20%コロイタ'ルシリカ: 100ml (固形分 23g)および Feを含有する コ Π仆'状化合物の分散液 (Fe : 1.2g相当) (pH1.0、平均粒子径: 12nm、Fe203換算固形分濃度: 7.5%)を配合したもの
*6) P04: 1 mol に対して硼酸 0.1 molおよび Al203 0.3molを添加 同表に示したとおり、本発明に従い、チタンキレートイ匕合物を Ti換算で 0.01〜4.0molの範囲で 添加したクロムフリー絶縁被膜処理液を用いた場合には、被膜張力、耐吸湿性、防鲭性および占 積率のレ、ずれの被膜特性にも優れる絶縁被膜を形成することができた。 これら本発明例の絶縁 被膜特性は、クロム化合物を添加した比較例と同等以上の水準であった。
(実施例 2)
C:0.03mass%、 Si:3mass%、 Mn:0.04mass%, S:0.01mass%未満、 Sb:0.03mass% sol.Al:0.01mass% 未満を含有し、残部は Feおよび不可避的不純物である組成を有する方向性電磁鋼板用スラブを 熱間圧延し、板厚: 2.5mmの熱延板としたのち、 1050°C X 60秒の熱延板; 鈍を施した。 次いで、 冷間圧延により板厚: 0.30mmの冷延板とした。 次!/、で、この冷延板に 900°C X 30秒の 1次再結晶 焼鈍を施した。 その後、焼鈍分離剤(MgOスラリー)を塗布し、 880°C X 50時間の二次再結晶焼 鈍を施し、引き続き 1200°C X 15時間の焼鈍をさらに施すことにより、フォルステライト被膜を有する 方向性電磁鋼板を得た。 次に、表 2に示す種々のリン酸塩の水溶液 500ml(PO4換算で lmolを含有)に対して、種々の濃 度のコロイド状シリカ(水性) 1000ml(SiO2換算で 0.5〜10molを含有)およびチタンラタテート [Ti(C3 H502)2(OH)2]を Ti換算で 0.5mol配合した絶縁被膜処理液を用意した。 そしてこれらの処理液を 上記の方向性電磁鋼板の表面に塗布して、 1030°C X 60秒の焼付け処理を施した。なお、焼付け 処理後の被膜厚さは、片面あたり 3 /z mとした。
この焼付け処理後の方向性電磁鋼板について、実施例 1と同様の方法で、被膜張力、耐吸湿 性、 Ρ方鑌性おょぴ占積率を評価した。
結果を表 2に示す。
表 2
Figure imgf000017_0001
*1 ) P04: 1 mol に対する mol数
*2) P溶出量で評価
*3) 鯖発生部の面積率で評価
*4)チタンキレート化合物に代えて、クロム化合物 (無水クロム酸 (Gr03、 PO4 : 1 mol に対し 1 mol))添加
同表に示したとおり、本発明で規定される種々のリン酸塩とコロイド状シリカを適量配合したも のに、チタンキレート化合物を適量添加した方向性電磁鋼板用クロムフリー絶縁被膜処理液を用 いた場合、被膜張力、耐吸湿性、防鲭性および占積率のすべてについて優れた絶縁被膜特性 を得ることができた。
(実施例 3)
C:0.03mass%、 Si:3mass%、 n:0.04mass%, S:0.01mass%未満、 Sb:0.03mass% Sol.Al:0.01raass% 未満を含有し、残部は Feおよび不可避的不純物である組成を有する方向性電磁鋼板用スラブを 熱間圧延し、板厚: 2.5mmの熱延板としたのち、 1050°C X 60秒の熱延板焼鈍を施した。 次いで、 冷間圧延により板厚: 0.30mmの冷延板とした。 次いで、この冷延板に 900°C X 30秒の 1次再結晶 焼鈍を施した。 その後、焼鈍分離剤(MgOスラリー)を塗布し、 880°C X 50時間の二次再結晶焼 鈍を施し、弓 Iき続き 1200°C X 15時間の焼鈍をさらに施すことにより、フォルステライト被膜を有する 方向性電磁鋼板を得た。 次いで、リン酸マグネシウム Mg(H2P04)2水溶液 250ml (P04換算で 0.5mol)と、リン酸アルミニゥ ム A1(H2P04)3水溶液 250ml (P04換算で 0.5mol)とを混合し、 P04合計で lmol含有する混合水溶液 500mlを用意した。 当該リン酸塩水溶液に対して、コロイド状シリカ 700ml (SiO2換算で 3mol)およ ぴチタンラタテート [Ti(C3H502)2(〇H)2]を Ti換算で l.Omol配合した絶縁被膜処理液を用意した。 次いで、これらの処理液を上記の方向性電磁鋼板の表面に塗布し、表 3に示す温度で焼付け処 理を施した。なお、表中の温度は、均熱温度とし、焼付時間は 30秒、焼付け処理後の被膜厚さは、 片面あたり 3 // mとした。
この焼付け処理後の方向性電磁鋼板について、実施例 1と同様の方法で、被膜張力、耐吸湿 性、防鲭性おょぴ占積率を評価した。 なお、被膜張力については、歪取焼鈍の影響を調査する ため、 800°C X 3時間の歪取焼鈍後にも評価を行った。
結果を表 3に示す。
表 3
Figure imgf000018_0001
*1 ) P溶出量で評価
*2)鐫発生部の面積率で評価 同表に示したとおり、焼付け処理の温度が、本発明の範囲内: 350〜1100°Cであるとき、歪取 焼鈍後の被膜張力、耐吸湿性、防鲭性おょぴ占積率のすべてについて優れた特性を得ることが できた。 産業上の利用の可能性
本発明によれば、方向性電磁鋼板の表面に、被膜張力、耐吸湿性、防鲭性おょぴ占積率が 共に優れた絶縁被膜を形成することができるので、方向性電磁鋼板の磁歪の低減、ひいては騷 音公害の低減を達成することができる。
また、本発明の方向性電磁鋼板用クロムフリー絶縁被膜処理液は、クロム化合物を含有しない ため、廃液処理が容易となり、環境保護の面からも好ましい。 なおかつ、クロム化合物を含有す る絶縁被膜処理液を用いた場合に匹敵する優れた被膜特性を有する、絶縁被膜を有する方向 性電磁鋼板を製造することができる。

Claims

請求の範囲
1. .Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうち力 選ばれる少なくとも 1種と、
-該リン酸塩中の P04 : lmolに対し、コロイド状シリカを Si02換算で 0.2〜10molおよびチタ ンキレート化合物を Ti換算で 0.01〜 Omolとを、
含有する方向性電磁鋼板用絶縁被膜処理液。
2. Crを実質的に含有しな ヽ、請求項 1に記載の方向性電磁鋼板用絶縁被膜処理液。
3. 方向性電磁鋼板用スラブを、圧延により最終板厚に仕上げ、ついで一次再結晶焼鈍後、 二次再結晶焼鈍を施し、さらに絶縁被膜処理液を塗布したのち、焼付け処理を行う一連の工程 により、絶縁被膜を有する方向性電磁鋼板を製造する方法であって、
前記絶縁被膜処理液として、 Mg、 Ca、 Ba、 Sr、 Zn、 AIおよび Mnのリン酸塩のうちから選ばれる 少なくとも 1種と、該リン酸塩中の P04: lmolに対し、コロイド状シリカを Si02換算で 0.2〜10molおよ ぴチタンキレート化合物を Ti換算で 0.01〜4.0molとを含有する絶縁被膜処理液を用い、
前記焼付け処理を 350°C以上 1100°C以下の温度で行う絶縁被膜を有する方向性電磁鋼板の 製造方法。
4. 請求項 3に記載の方向性電磁鋼板の製造方法であって、前記絶縁被膜処理液が Crを実 質的に含有しなレヽ、絶縁被膜を有する方向性電磁鋼板の製造方法。
5. 請求項 3または 4に記載の方向性電磁鋼板の製造方法であって、
前記方向性電磁鋼板用スラブを、熱間圧延後、あるいはさらに熱延板焼鈍を施したのち、
1回の冷間圧延または中間焼鈍を挟む 2回以上の冷間圧延により前記最終板厚に仕上げる、 絶縁被膜を有する方向性電磁鋼板の製造方法。
6. 請求項 3または 4に記載の方向性電磁鋼板の製造方法であって、
前記一次再結晶焼鈍後、 MgOを主体とする焼鈍分離剤を塗布してから前記二次再結晶焼鈍 を施す、絶縁被膜を有する方向性電磁鋼板の製造方法。
7. 請求項 5に記載の方向性電磁鋼板の製造方法であって、
前記一次再結晶焼鈍後、 MgOを主体とする焼鈍分離剤を塗布してから前記二次再結晶焼鈍を 施す、絶縁被膜を有する方向性電磁鋼板の製造方法。
PCT/JP2008/065925 2007-08-30 2008-08-28 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 WO2009028726A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008801045394A CN101790599B (zh) 2007-08-30 2008-08-28 方向性电磁钢板用绝缘覆膜处理液以及具有绝缘覆膜的方向性电磁钢板的制造方法
US12/675,158 US8409370B2 (en) 2007-08-30 2008-08-28 Treatment solution for insulation coating for grain oriented electrical steel sheet and method for producing grain oriented electrical steel sheet having insulation coating
EP08828141.5A EP2186924B1 (en) 2007-08-30 2008-08-28 Solution for treatment of insulating coating film for oriented electromagnetic steel sheet, and method for production of oriented electromagnetic steel sheet having insulating coating film thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-224742 2007-08-30
JP2007224742A JP5104128B2 (ja) 2007-08-30 2007-08-30 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法

Publications (1)

Publication Number Publication Date
WO2009028726A1 true WO2009028726A1 (ja) 2009-03-05

Family

ID=40387424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065925 WO2009028726A1 (ja) 2007-08-30 2008-08-28 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US8409370B2 (ja)
EP (1) EP2186924B1 (ja)
JP (1) JP5104128B2 (ja)
KR (1) KR101175059B1 (ja)
CN (1) CN101790599B (ja)
RU (1) RU2431698C1 (ja)
WO (1) WO2009028726A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507006A (ja) * 2013-02-08 2016-03-07 ティッセンクルップ エレクトリカル スティール ゲゼルシャフト ミット ベシュレンクテル ハフツングThyssenkrupp Electikal Steel GmbH 絶縁皮膜形成用組成物および方向性電磁鋼板
CN105755454A (zh) * 2016-03-03 2016-07-13 福建省闽发铝业股份有限公司 一种铝型材涂装前无铬钝化表面处理剂

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593942B2 (ja) * 2010-08-06 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
DE102013208618A1 (de) * 2013-05-10 2014-11-13 Henkel Ag & Co. Kgaa Chromfreie Beschichtung zur elektrischen Isolierung von kornorientiertem Elektroband
US10403417B2 (en) 2013-11-28 2019-09-03 Jfe Steel Corporation Electrical steel sheet provided with insulating coating
PL2902509T3 (pl) * 2014-01-30 2019-04-30 Thyssenkrupp Electrical Steel Gmbh Płaski produkt z teksturowanej stali elektrotechnicznej, obejmujący powłokę izolacyjną
JP5900705B2 (ja) * 2014-01-31 2016-04-06 Jfeスチール株式会社 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法およびクロムフリー張力被膜付き方向性電磁鋼板の製造方法
KR101867257B1 (ko) 2014-04-24 2018-06-12 제이에프이 스틸 가부시키가이샤 방향성 전기 강판용의 크롬 프리 절연 피막 처리액 및 크롬 프리 절연 피막 형성 방향성 전기 강판
KR101963990B1 (ko) * 2014-12-24 2019-03-29 제이에프이 스틸 가부시키가이샤 방향성 전기 강판 및 그 제조 방법
JP6931968B2 (ja) * 2014-12-26 2021-09-08 日本製鉄株式会社 電磁鋼板
RU2689353C1 (ru) * 2015-09-02 2019-05-27 ДжФЕ СТИЛ КОРПОРЕЙШН Обрабатывающий раствор для получения изоляционного покрытия и способ изготовления металла, имеющего изоляционное покрытие
JP6323423B2 (ja) * 2015-09-25 2018-05-16 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6455414B2 (ja) * 2015-12-02 2019-01-23 Jfeスチール株式会社 方向性電磁鋼板の製造方法
KR102190623B1 (ko) * 2016-08-30 2020-12-14 제이에프이 스틸 가부시키가이샤 피막 부착 금속, 피막 형성용 처리액 및 피막 부착 금속의 제조 방법
CN109563626B (zh) * 2016-09-13 2021-04-13 杰富意钢铁株式会社 带无铬绝缘张力被膜的取向性电磁钢板及其制造方法
KR102268306B1 (ko) 2016-10-31 2021-06-23 닛폰세이테츠 가부시키가이샤 방향성 전자 강판
JP6851948B2 (ja) * 2017-10-05 2021-03-31 株式会社デンソー コア板及びその製造方法
KR102464102B1 (ko) * 2018-03-22 2022-11-09 닛폰세이테츠 가부시키가이샤 방향성 전자 강판 및 방향성 전자 강판의 제조 방법
CN113248947A (zh) * 2021-05-21 2021-08-13 武汉科技大学 一种可修饰取向硅钢表面的无铬无机绝缘涂料及其制备方法
JPWO2023277029A1 (ja) * 2021-06-30 2023-01-05

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS579631B2 (ja) 1978-04-28 1982-02-22
JPS5844744B2 (ja) 1979-11-22 1983-10-05 川崎製鉄株式会社 方向性珪素鋼板にクロム酸化物を含まない張力付加型の上塗り絶縁被膜を形成する方法
JPH04165022A (ja) * 1990-10-27 1992-06-10 Nippon Steel Corp 鉄心加工性および耐粉塵化性が優れた方向性電磁鋼板の絶縁皮膜形成方法
JP2002047576A (ja) * 2000-08-01 2002-02-15 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液と処理方法
JP2005240125A (ja) * 2004-02-27 2005-09-08 Nippon Steel Corp 絶縁被膜特性の良好な無方向性電磁鋼板
JP2006328501A (ja) * 2005-05-27 2006-12-07 Nippon Parkerizing Co Ltd 金属用化成処理液および処理方法
JP2007023329A (ja) 2005-07-14 2007-02-01 Nippon Steel Corp クロムを含有しない電磁鋼板用絶縁被膜剤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE402470B (sv) 1976-10-29 1978-07-03 Asea Ab Sett att behandla ett med en isolerande skyddsbeleggning av silikat forsett foremal av kiselhaltigt stal
FR2672305B1 (fr) * 1991-02-05 1994-05-06 Usine Aciers Chatillon Gueugnon Procede pour former un revetement isolant adherent sur une tole d'acier magnetique.
WO2005090636A1 (ja) * 2004-03-19 2005-09-29 Jfe Steel Corporation 絶縁被膜を有する電磁鋼板
JP3636203B1 (ja) * 2004-07-16 2005-04-06 ユケン工業株式会社 クロムを含まない防錆用水系コーティング組成物
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS579631B2 (ja) 1978-04-28 1982-02-22
JPS5844744B2 (ja) 1979-11-22 1983-10-05 川崎製鉄株式会社 方向性珪素鋼板にクロム酸化物を含まない張力付加型の上塗り絶縁被膜を形成する方法
JPH04165022A (ja) * 1990-10-27 1992-06-10 Nippon Steel Corp 鉄心加工性および耐粉塵化性が優れた方向性電磁鋼板の絶縁皮膜形成方法
JP2002047576A (ja) * 2000-08-01 2002-02-15 Sumitomo Metal Ind Ltd 電磁鋼板の絶縁皮膜形成用処理液と処理方法
JP2005240125A (ja) * 2004-02-27 2005-09-08 Nippon Steel Corp 絶縁被膜特性の良好な無方向性電磁鋼板
JP2006328501A (ja) * 2005-05-27 2006-12-07 Nippon Parkerizing Co Ltd 金属用化成処理液および処理方法
JP2007023329A (ja) 2005-07-14 2007-02-01 Nippon Steel Corp クロムを含有しない電磁鋼板用絶縁被膜剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2186924A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016507006A (ja) * 2013-02-08 2016-03-07 ティッセンクルップ エレクトリカル スティール ゲゼルシャフト ミット ベシュレンクテル ハフツングThyssenkrupp Electikal Steel GmbH 絶縁皮膜形成用組成物および方向性電磁鋼板
JP2017145506A (ja) * 2013-02-08 2017-08-24 ティッセンクルップ エレクトリカル スティール ゲゼルシャフト ミット ベシュレンクテル ハフツングThyssenkrupp Electikal Steel GmbH 方向性電磁鋼板
US11440846B2 (en) 2013-02-08 2022-09-13 Nippon Steel Corporation Solution for forming insulation coating and grain-oriented electrical steel sheet
CN105755454A (zh) * 2016-03-03 2016-07-13 福建省闽发铝业股份有限公司 一种铝型材涂装前无铬钝化表面处理剂

Also Published As

Publication number Publication date
KR20100049617A (ko) 2010-05-12
CN101790599B (zh) 2011-12-21
CN101790599A (zh) 2010-07-28
US20100206437A1 (en) 2010-08-19
EP2186924A1 (en) 2010-05-19
JP5104128B2 (ja) 2012-12-19
EP2186924A4 (en) 2015-06-03
EP2186924B1 (en) 2016-10-05
KR101175059B1 (ko) 2012-08-16
US8409370B2 (en) 2013-04-02
RU2431698C1 (ru) 2011-10-20
JP2009057591A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
WO2009028726A1 (ja) 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法
JP5181571B2 (ja) 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
US8535455B2 (en) Treatment solution for insulation coating for grain oriented electrical steel sheet and method for producing grain oriented electrical steel sheet having insulation coating
WO2007136115A1 (ja) 高張力絶縁被膜を有する方向性電磁鋼板及びその絶縁被膜処理方法
WO2007007417A1 (ja) クロムを含まない絶縁皮膜を有する方向性電磁鋼板及びその絶縁皮膜剤
US9011585B2 (en) Treatment solution for insulation coating for grain-oriented electrical steel sheets
JP5309735B2 (ja) 絶縁被膜処理剤と該被膜処理剤を塗布した方向性電磁鋼板及びその絶縁被膜処理方法
JP2014095129A (ja) 方向性電磁鋼板およびその製造方法
CA3032648C (en) Grain-oriented magnetic steel sheets having chromium-free insulating tension coating, and methods for producing such steel sheets
JP4983334B2 (ja) 方向性電磁鋼板用絶縁被膜処理液および方向性電磁鋼板の製造方法
JP6652229B1 (ja) クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法
JP3276567B2 (ja) 皮膜特性の優れる絶縁皮膜剤及びそれを用いた方向性電磁鋼板の製造方法
WO2020138069A1 (ja) 方向性電磁鋼板及びその製造方法
JP2012158799A (ja) クロムレス張力被膜用処理液およびクロムレス張力被膜の形成方法
CN112771203B (zh) 无铬绝缘被膜形成用处理剂、带绝缘被膜的方向性电磁钢板及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880104539.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08828141

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107004458

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2008828141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008828141

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12675158

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010111884

Country of ref document: RU