WO2009015661A2 - Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber - Google Patents

Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber Download PDF

Info

Publication number
WO2009015661A2
WO2009015661A2 PCT/DE2008/001282 DE2008001282W WO2009015661A2 WO 2009015661 A2 WO2009015661 A2 WO 2009015661A2 DE 2008001282 W DE2008001282 W DE 2008001282W WO 2009015661 A2 WO2009015661 A2 WO 2009015661A2
Authority
WO
WIPO (PCT)
Prior art keywords
eps
absorber
coated
bodies
ferrimagnetic
Prior art date
Application number
PCT/DE2008/001282
Other languages
English (en)
French (fr)
Other versions
WO2009015661A3 (de
Inventor
Hans-Dieter Cornelius
Original Assignee
Glatt Systemtechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glatt Systemtechnik Gmbh filed Critical Glatt Systemtechnik Gmbh
Priority to US12/452,906 priority Critical patent/US20100200794A1/en
Priority to AT08801118T priority patent/ATE499407T1/de
Priority to EP08801118A priority patent/EP2173798B1/de
Priority to JP2010518496A priority patent/JP2010534944A/ja
Priority to DE502008002683T priority patent/DE502008002683D1/de
Publication of WO2009015661A2 publication Critical patent/WO2009015661A2/de
Publication of WO2009015661A3 publication Critical patent/WO2009015661A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/224Surface treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/008Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with a particular shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/038Use of an inorganic compound to impregnate, bind or coat a foam, e.g. waterglass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Definitions

  • the invention relates to a method for producing a microwave absorber according to the preamble of claim 1 and a thereafter produced absorber for microwaves with a wide bandwidth (1-100 GHz).
  • Such absorbers can be used advantageously wherever reflection coefficients of> 20 dB are also required in the far field without transmission.
  • This is a quasi-closed-cell foam absorber which can also be used to produce flat surface shapes.
  • DE 296 21 804 U1 describes a radiation-absorbing material consisting of a fine-grained constituent, for example a polymer, glass, rock or low-density ceramic, and an electrically conductive constituent, which are bonded to a binder.
  • the fine-grained ingredient may comprise expanded polystyrene grains.
  • the invention has for its object to provide a method for producing a microwave absorber, consisting of a pack of bodies of expanded polystyrene, hereinafter referred to as EPS body, on which a coating of ferromagnetic material is applied to indicate with which a reflection coefficient of> 20 dB is achieved without transmission and thus the evaluable radar cross section remains small. Furthermore, an absorber for microwaves is to be specified, which was prepared by a method according to the invention.
  • the microwave absorber is constructed from a package of EPS bodies with a coating of ferromagnetic material applied to them.
  • the EPS bodies have the advantage that the transmission-inhibiting influence, due to the material-dependent, low dielectric constant of the polystyrene and the very small mass-volume ratio, caused by the expansion of the polystyrene, negligibly small and thus is virtually transparent to microwaves.
  • the evaluable radar cross-section according to the invention decreases for the following reasons.
  • the first reason is that the package has a large number of walls of ferromagnetic material and at frequencies of ⁇ 15 GHz, the penetration depth is still so large that a plurality of spheres are irradiated at correspondingly small layer thicknesses of the microwaves and thus at the Grenzvidschreibgän - From ferrimagnetic material to EPS bodies, a fractional attenuation of microwaves by diffuse reflection takes place, which ultimately leads to absorption of the microwaves.
  • the absorptive ferrimagnetic material is distributed as a foam-like absorbent surface throughout the entire volume of the package.
  • the number of EPS bodies should be as large as possible.
  • the second reason for reducing the evaluable RadarquerSchnittes is given when the relief of the illuminated package surface is formed by the dome of the spherical EPS body.
  • a packing surface results when the spherical EPS bodies are arranged as a hexagonally packed monolayer.
  • the packing surface is then twice as large compared to planar fabrics and increases the absorption capacity even at frequencies of> 15 GHz, where due to the decreasing penetration depth absorption almost exclusively takes place only in the near-surface areas.
  • the disadvantage of the increased reflection surface is insignificant, since the dome shape triggers a diffuse reflection and thus the evaluable radar cross section remains small.
  • the diffuse reflection remains with incident radiation within an azimuth of 170 °, due to the calf shape, kon- constant.
  • the diameter of the coated, spherical EPS body is then adapted to trigger the diffuse reflection as a function of the wavelength accordingly.
  • the remaining transmission of microwaves through the package can be prevented by means of a metallic protective foil insulated from the EPS bodies on the side facing away from the incident rays.
  • the microwaves reflected on the protective film are then absorbed in the reverse direction as it penetrates the package.
  • the absorber is prepared by selecting those with a residual content of pentane as the EPS body.
  • the EPS bodies are coated with a polymer, so that the diffusion of pentane from the EPS bodies at temperatures below 100 0 C is hindered.
  • a coating of ferrimagnetic material a mixture of a polymeric matrix and a ferrimagnetic powder is subsequently applied.
  • the EPS bodies coated in this way are introduced into a technologically predefined form and exposed in the mold to a stream of steam at a temperature above 100 ° C. until the remaining fraction of pentane has evaporated and the EPS bodies have been inflated.
  • EPS-body those with a diameter of 0.5 to 10 mm are selected.
  • the ball diameters within the package are selected so differently that the maximum possible number of balls per unit volume is present.
  • ferrimagnetic material particles of metal oxide solid state orders which have small coercivities at high initial permeabilities. Regardless of the particle size, this condition is given for soft-magnetic, crystalline materials, such as spinels of Mn-Zn ferrite.
  • the particle size is determined by the coating process and should be ⁇ 5 microns when sprayed in conjunction with the aqueous dispersion of copolymers.
  • Metal oxide solid state orders with hexagonal lattice structure, eg Sr ferrite or Ba ferrite have too high coercivities compared to spinels and are not energetically excited by the incident electromagnetic wave in the far field, ie at radiation energies of about 10 mW Remagnetization can take place.
  • these ferrites eg Sr-ferrite as M-type
  • These milled hexagonal ferrite are mainly used in absorbers for frequencies of> 15 GHz, as compared with the spinels with required, frequency-dependent permeability is still large enough.
  • the selected particles of the ferrimagnetic material are generally powdery and, depending on the applications described, have an average size of 200 ⁇ m to 5 ⁇ m in diameter.
  • the ferrimagnetic particles are embedded in a polymeric matrix.
  • the polymeric matrix not only bonds the particles to one another, but also prevents the direct surface contact between the particles from being restricted as a result of agglomeration.
  • mixing of carbon particles e.g. Carbon black, adapted to the conductivity of the polymer.
  • the EPS bodies are spray-coated prior to coating with the polymeric matrix with an aqueous polyvinyl hol-solution and dried in an air stream at 60 0 C.
  • the resulting film coating serves as an additional barrier and prevents premature outdiffusion of the pentane from the EPS bodies.
  • spinel ferrite eg Mn-Zn ferrite, polyvinyl acetate, which has pH values of .ltoreq.7 as an aqueous dispersion
  • polymeric matrix to which a polyisocyanate crosslinker has additionally been added
  • hexagonal ferrites for example Sr ferrite as M type
  • a polymeric matrix of styrene-butadiene copolymers or acrylate-styrene copolymers is necessary.
  • aqueous dispersions of styrene-butadiene copolymers have dispersants with pH values of> 7 and limit the formation of Sr ions owing to the OH-ion excess. Furthermore, their use is also useful because these copolymers have a lower dielectric constant than polyvinyl acetate, which is advantageous at frequencies of> 15 GHz combined with the lower penetration depth.
  • the absorber produced according to the method consists of a packing with a ferrimagnetic powder within a polymer matrix coated EPS body, which corresponds to the outer structure of a technologically used form.
  • the absorber may have a flat lattice girder made of square or tubular honeycomb, in which the coated EPS body are glued in at least one monolayer.
  • the absorber made of packed, coated EPS bodies or these constructed as monolayers in areal gratings with a coating of particles of ferrimagnetic material have a high absorption capacity in a wide band range (1-100 GHz) for microwaves and additionally developed diffuse reflection properties as a monolayer , which reduce the evaluable radar cross-section.
  • the packed, coated EPS bodies have a small mass, low thermal conductivity and also a high sound absorption capacity. With these properties, the product "absorber for microwaves" can be advantageously produced and used for other end products. Accordingly, the absorber is after Claim 8, an element for reducing the mass and the thermal conductivity or increasing the sound absorption capacity of an end product.
  • FIG. 1 shows a diagram with the reflection coefficients as a function of the frequency. Belonging to the embodiment II, Figure 2 shows a perspective section through an absorber according to the invention.
  • the inventive method for producing an absorber for microwaves to ⁇ 15 GHz is described in more detail, the absorber should have a predetermined, not defined here form.
  • the still expandable EPS body (polystyrene balls) are spray-coated with an aqueous polyvinyl alcohol solution and dried in a stream of air at 60 0 C.
  • This method feature is intended to prevent the remaining pentane from escaping in the expanded polystyrene as a result of further process steps, but at least obstructing it.
  • the further coating is carried out with a mixture of a polymeric matrix and pulverized spinels of Mn-Zn ferrites, as a ferrimagnetic material.
  • a so-called slurry is prepared.
  • EPS body pack has a thickness of 50 mm and the coating on the individual EPS bodies has a thickness of approximately 0.1 mm. The transmission is no longer detectable at a packing thickness of 50 mm.
  • the prepared, aqueous slurry consists of the following Festoffan negligence: 70 wt .-% Mn-Zn ferrite powder with a particle size of less than 5 microns, 25 wt .-% polyvinyl acetate and polyisocyanate crosslinker and 5 wt .-% acetylene black.
  • the coated EPS bodies are placed in a sealable mold, which images the negative of the shaped body to be produced.
  • the coated EPS bodies with steam are acted upon, the (is the usual loading ranging between 100 and 130 0 C) a temperature of 115 ° C.
  • the heat input causes the EPS bodies to become elastic and to be inflated with the help of increasing pentane vapor pressure. eliminates the still open porosity and increases the contact area of the EPS body.
  • the hot steam also leads to the fact that the polymeric matrix and the barrier layer made of polyvinyl alcohol is elastic and partially peeled off, so that the swelling of the EPS body is not affected. Under the deformation pressure, the compressed, coated EPS bodies are glued together using the polymers.
  • the polyisocyanate crosslinker is so dimensioned that the polymeric matrix is only partially dissolved in the hot water vapor and remains elastic.
  • FIG. 1 shows, by way of example for an absorber produced according to the method, the reflection coefficient as a function of the frequency in the case of undetectable transmission.
  • the incident radiation power was 10 mW.
  • the packing thickness is 50 mm.
  • FIG. 2 shows a partial section through the absorber with the coated EPS bodies positioned in the lattice girder, before the coated EPS bodies are inflated by means of steam at 125 ° C. and the open porosity between the honeycomb walls in a further process step and the coated EPS bodies is closed.
  • the absorber is constructed on a flat elastic lattice girder 1 made of plastic with honeycomb structure.
  • FIG. 2 further shows with the item number 2 an adhesive, the coated EPS body 3, the spherical cap 4 and the walls 5 of the lattice girder 1.
  • EPS bodies with a mean diameter of 3.2 mm which still contain a residual amount of pentane and as a single sphere, based on their diameter, approximately fill in the hexagonal honeycomb opening.
  • the EPS spheres are spray-coated analogously to Example I with an aqueous polyvinyl alcohol solution and dried in an air stream at 60 0 C. Since it concerns the absorption of electromagnetic waves with frequencies greater than 15 GHz, it is necessary to change the polymeric matrix and the ferrimagnetic material compared to Embodiment I.
  • a so-called slurry is prepared. It consists of an aqueous dispersion of styrene-butadiene copolymers in which the powdered, ferromagnetic material of Sr ferrite is mixed as M-type.
  • the slurry has to be stirred continuously, otherwise the ferrimagnetic material will decant despite the smaller particle size compared to embodiment I and segregation will occur.
  • the removal of water results in the polymeric matrix of styrene-butadiene copolymer and bonds the ferrimagnetic particles or Groups of agglomerated particles with each other.
  • the optimum absorption, ie no transmission takes place, is achieved at frequencies of> 70 GHz if the thickness of the coating on the individual coated EPS body 3 is approximately 0.1 mm.
  • honeycomb For the production of the absorber, a so-called honeycomb was selected as lattice girder 1, which supports the structure of the hexagonally packed monolayer.
  • Honeycombs are honeycombed hexagonal structures made of polyamide paper and possess, also due to their low mass, a dielectric constant of ⁇ 2.
  • the honeycomb height is 1.5 mm, that is about 0.5 times the diameter of the EPS body used.
  • the hexagonal honeycomb openings are sprayed with a liquid, solvent-borne styrene-butadiene copolymer as adhesive 2. Thereafter, the coated EPS body 3 are pressed into the openings of the honeycomb adhesive adhesive 2 on the end faces of the honeycomb walls is pushed by the balls in the wall region of the honeycomb.
  • the lattice girder is inserted with the inserted monolayer of coated EPS bodies in a sealable container, which serves water vapor at a temperature of 125 0 C through the open porosity between the coated EPS bodies and honeycomb walls.
  • Embodiment I causes the residual proportion of pentane in the coated EPS bodies that they inflate, are pressed against the honeycomb wall and glued to it. Also, the protruding dome approach each other due to diameter enlargement, so that the "visible" for the beam part of honeycomb webs, even in the worst case, when the electromagnetic radiation orthogonal to the honeycomb surface reaches the monolayer reaches a minimum value.
  • the adhesive on the honeycomb wall prevents the previously assumed starting position within the honeycomb grid from being complied with.
  • the absorber can then be removed from the sealable container and dried in a stream of air at 110 0 C.
  • the absorber is extremely flexible and can be easily adapted to the technological equipment in use and can be used from 70 GHz.
  • the above absorber with a monolayer of coated EPS bodies 2 on a lattice girder 1 can easily be modified if the frequency is between 15 and 70 GHz in the case of use by arranging two layers of coated EPS bodies with correspondingly greater honeycomb height or analogously to Application Example I an additional ball packing, but with the polymeric matrix and the ferrimagnetic material according to Embodiment I, with respect to the incident rays facing away from the monolayer is placed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Hard Magnetic Materials (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Absorbers für Mikrowellen bestehend aus einer Packung expandierter Polystyrolkörper (EPS-Körper), auf denen eine Beschichtung aus ferrimagnetischen Partikeln aufgebracht ist und einen danach hergestellten Absorber. Verfahrensgemäß wird in der Folge auf die EPS-Körper eine Umhüllung aus synthetischem Polymer ausbildet und eine polymere Matrix, in die ferrimagnetische Partikel eingebettet sind, aufgebracht. Die beschichteten EPS-Körper werden in eine Form eingebracht und ein Wasserdampfstrom eingeleitet. Dabei expandieren die EPS-Körper durch den Dampfdruck vom Restanteil des Pentans im EPS-Körper und nehmen ihre endgültige Größe und Form ein. Der Absorber, hergestellt mit dem Verfahren, besteht aus einer Packung EPS-Körper, die mit einem ferrimagnetischen Pulver innerhalb einer polymeren Matrix beschichtet sind und dessen äußere Struktur einer technologisch eingesetzten Form entspricht.

Description

Beschreibung
Verfahren zur Herstellung eines Absorbers für Mikrowellen und danach hergestellter Absorber
Technisches Gebiet
[ 1 ] Die Erfindung betrifft ein Verfahren zur Herstellung eines Absorbers für Mikrowellen nach dem Oberbegriff des Anspruchs 1 sowie einen danach hergestellten Absorber für Mikrowellen mit einer weiten Bandbreite (1-100 GHz). Derartige Absorber können überall dort vorteilhaft einge- setzt werden, wo ohne Transmission Reflexionskoeffizienten von >20 dB auch im Fernfeld verlangt werden. Dabei handelt es sich um einen quasi, geschlossenzelligen Schaumabsorber, mit dem auch ebene Flächenformen realisiert werden können.
Stand der Technik
[2] Nach dem Stand der Technik sind verschiedene Lösungen zur Absorption von Mikrowellen bekannt. Beispielsweise beschreibt die DE 296 21 804 Ul eine Strahlung absorbierendes Material, bestehend aus einem feinkörnigen Bestand- teil, z.B. ein Polymer, Glas, Gestein oder Keramik mit geringer Dichte, und einen elektrisch leitenden Bestandteil, die mit einem Bindemittel verbunden sind. Der feinkörnige Bestandteil kann expandierte Polystyrolkörner aufweisen. Darstellung der Erfindung
[3] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Absorbers für Mikrowellen, bestehend aus einer Packung von Körpern aus expandiertem Polystyrol, in der Folge als EPS-Körper bezeichnet, auf denen eine Beschichtung aus ferromagnetischem Material aufgebracht ist, anzugeben, mit dem ohne Transmission ein Reflexionskoeffizient von >20 dB erreicht wird und somit der auswertbare Radarquerschnitt klein bleibt. Weiterhin soll ein Absorber für Mikrowellen angegeben werden, welcher mit einem erfindungsgemäßen Verfahren hergestellt wurde .
[4] Die Erfindung löst die Aufgabe für das Verfahren durch die im Anspruch 1 angegebenen Merkmale. Die Aufgabe für einen Absorber wird durch die Merkmale des Anspruchs 6 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet und werden nachstehend zusammen mit der Beschreibung der bevorzugten Ausführung der Erfindung, einschließlich der Zeichnung, näher dar- gestellt.
[5] Der Absorber für Mikrowellen wird aus einer Packung von EPS-Körpern, auf denen eine Beschichtung aus ferri- magnetischem Material aufgebracht ist, aufgebaut. Die EPS- Körper haben den Vorteil, dass der transmissionshemmende Einfluss, bedingt durch die Werkstoffabhängige, geringe Dielektrizitätszahl des Polystyrols und das sehr kleine Masse—Volumenverhältnis, hervorgerufen durch die Expansion des Polystyrols, vernachlässigbar klein und somit für Mikrowellen praktisch durchsichtig ist. [ 6 ] Bei einer Packung von mit einem ferrimagnetischen Material beschichteten EPS-Körpern verringert sich der auswertbare Radarquerschnitt erfindungsgemäß aus den folgenden Gründen. Der erste Grund ist, dass die Packung eine große Anzahl von Wänden aus ferromagnetischem Material aufweist und bei Frequenzen von <15 GHz ist die Eindringtiefe noch so groß, dass eine Vielzahl von Kugeln bei entsprechend geringen Schichtdicken von den Mikrowellen durchstrahlt werden und somit an den Grenzflächenübergän- gen von ferrimagnetischem Material zu EPS-Körpern eine fraktionierte Dämpfung der Mikrowellen durch diffuse Reflexion stattfindet, was letztlich zu einer Absorption der Mikrowellen führt. Zusätzlich ist das absorptionsfähige ferrimagnetische Material als schaumähnliche Ab- sorptionsfläche über das gesamte Volumen der Packung verteilt. Die Anzahl der EPS-Körpern ist dabei möglichst groß zu wählen. Der zweite Grund zur Verringerung des auswertbaren RadarquerSchnittes ist gegeben, wenn das Relief der angestrahlten Packungsoberfläche durch die Kalotten der kugelförmigen EPS-Körper gebildet wird. Eine solche Packungsoberfläche entsteht, wenn die kugelförmigen EPS-Körpern als hexagonal gepackte Monolage angeordnet werden. Die Packungsoberfläche ist dann gegenüber ebenen Flächengebilden um das zweifache größer und erhöht das Absorptionsvermögen auch bei Frequenzen von >15 GHz, wo bedingt durch die abnehmende Eindringtiefe eine Absorption fast ausschließlich nur noch in den oberflächennahen Bereichen stattfindet. Der Nachteil der vergrößerten Reflexionsfläche ist dabei unbedeutend, da die Kalotten- form eine diffuse Reflexion auslöst und damit der auswertbare Radarquerschnitt klein bleibt. Die diffuse Reflexion bleibt bei einfallender Strahlung innerhalb eines Azimutes von 170° , bedingt durch die Kailottenform, kon- stant. Der Durchmesser der beschichteten, kugelförmigen EPS-Körper ist dann zwecks Auslösen der diffusen Reflexion in Abhängigkeit von der Wellenlänge entsprechend anzupassen.
[ 7 ] Wenn anwendungsbedingt die Dicke der Packung begrenzt ist, kann die noch vorhandene Transmission von Mikrowellen durch die Packung mittels einer gegenüber den EPS-Körpern isolierte, metallische Schutzfolie an der gegenüber den einfallenden Strahlen abgewandten Seite verhindert werden. Die an der Schutzfolie reflektierten Mikrowellen werden anschließend beim Durchdringen der Packung in umgekehrter Richtung absorbiert.
[8] Verfahrensgemäß wird der Absorber hergestellt, indem als EPS-Körper solche mit einem Restanteil von Pentan ausgewählt werden. Die EPS-Körper werden mit einem Polymer umhüllt, so dass die Diffusion von Pentan aus den EPS- Körpern bei Temperaturen kleiner 1000C behindert wird. Als Beschichtung aus ferrimagnetischem Material wird in der Folge eine Mischung aus einer polymeren Matrix und einem ferrimagnetischen Pulver aufgebracht. Die derart beschichteten EPS-Körper werden in eine technologisch vorgegebene Form eingebracht und in der Form einem Wasserdampfström mit einer Temperatur über 100° C ausgesetzt bis der Restanteil von Pentan verdampft ist und die EPS-Körper aufge- bläht sind. Abhängig von der verwendeten polymeren Matrix gemäß Anspruch 3 wird diese entweder durch den Wassersdampf wieder angelöst oder infolge des Wärmeeintrages erweicht, beide Effekte führen letztlich dazu, dass die beschichteten EPS-Körper miteinander verklebt werden. Durch das Aufblähen der beschichteten EPS-Körper wird die offene Porosität beseitigt, die Klebefläche vergrößert und somit zusätzlicher Klebstoff vermieden. Diese vorteilhafte Lösung ist besonders deshalb vorteilhaft, da jeder weitere Klebstoffanteil das Eindringvermögen der Mikrowellen verringert .
[9] Als EPS-Körper werden solche mit einem Durchmesser von 0,5 bis 10 mm ausgewählt. Dabei werden die Kugeldurchmesser innerhalb der Packung so unterschiedlich ausgewählt, dass eine möglichst maximale Kugelanzahl pro Volumeneinheit vorliegt.
[10] Als ferrimagnetisches Material werden Partikel metalloxydischer Festkörperordnungen verwendet, die bei hohen Anfangspermeabilitäten kleine Koerzitivfeldstärken aufweisen. Gegeben ist unabhängig von der Partikelgröße diese Bedingung bei weichmagnetischen, kristallinen Werk- Stoffen wie z.B. Spinellen aus Mn-Zn-Ferrit. Die Partikelgröße wird durch den Beschichtungsprozess bestimmt und sollte beim Aufsprühen in Verbindung mit der wässrigen Dispersion aus Copolymerisaten bei < 5 Mikrometer liegen. Metalloxydische Festkörperordnungen mit hexagonaler Git- terstruktur, z.B. Sr-Ferrit bzw. Ba-Ferrit, besitzen gegenüber Spinellen zu hohe Koerzitivfeldstärken und werden von der einfallenden elektromagnetischen Welle im Fernfeld, d.h. bei Strahlungsenergien von ca. 10 mW, nicht energetisch so angeregt, dass eine Ummagnetisierung statt- finden kann. Deshalb müssen diese Ferrite, z.B. Sr-Ferrit als M-Typ, bis zu einer Partikelgröße von <500 nm mittels Mahlen verkleinert werden, erst dann erreichen sie Koerzitivfeldstärken von <50 kA/m, d.h. analog den Werten von weichmagnetischen Werkstoffen. Diese gemahlenen hexagona- len Ferrit werden vorwiegend bei Absorbern für Frequenzen von >15 GHz eingesetzt, da gegenüber den Spinellen die mit erforderliche, frequenzabhängige Permeabilität noch groß genug ist.
[11] Die ausgewählten Partikel des ferrimagnetischen Materials sind allgemein pulverförmig und weisen abhängig von den beschriebenen Anwendungsfällen eine mittlere Größe von 200 um bis 5 μm Durchmesser auf.
[12] Die ferrimagnetischen Partikel sind in einer polymeren Matrix eingebettet. Dabei verklebt die polymere Matrix nicht nur die Partikel untereinander, sondern verhindert auch, dass der direkte Flächenkontakt zwischen den Partikeln infolge Agglomeratbildung eingeschränkt wird. In Abhängigkeit von dem komplexen Widerstand der verwendeten ferrimagnetischen Partikel, wird durch Zumischen von KohlestoffPartikeln, z.B. Ruß, die Leitfähig- keit des Polymers angepasst.
[13] Die EPS-Körper werden vor der Beschichtung mit der polymeren Matrix mit einer wässrigen Polyvinylalko- hol—Lösung sprühbeschichtet und im Luftstrom bei 600C getrocknet. Der so entstandene Filmüberzug dient als zusätzliche Barriere und verhindert mit das vorzeitige Ausdiffundieren des Pentans aus den EPS-Körpern.
[14] Für die polymere Matrix hat sich bei der Verwendung von Spinellferriten, z.B. Mn-Zn-Ferrit, Polyvinyl- acetat, dass als wässrige Dispersion pH-Werte von =<7 aufweist, bewährt, dem zusätzlich ein Polyisocyanat-Ver- netzer zugesetzt werden kann. Demgegenüber ist bei der Verwendung von hexagonalen Ferriten, z.B. Sr-Ferrit als M- Typ, eine polymere Matrix aus Styrol-Butadien-Copolymeri- saten bzw. Acrylsäureester-Styrol-Copolymerisaten notwen- dig. Die davon wässrigen Dispersionen von Styrol-Butadien- Copolymerisäten besitzen Dispergierungsmittel mit pH- Werten von >7 und schränken durch den OH-Ionen-Überschuss die Bildung von Sr-Ionen ein. Des Weiteren ist deren Verwendung auch deshalb sinnvoll, da diese Copolymerisate gegenüber dem Polyvinyacetat eine geringere Dielektrizi- tätszahl aufweisen, was bei Frequenzen von > 15GHz verbunden mit der geringeren Eindringtiefe von Vorteil ist.
[15] Der verfahrensgemäß hergestellte Absorber besteht aus einer Packung mit einem ferrimagnetischen Pulver innerhalb einer polymeren Matrix beschichteten EPS-Kör- pern, die der äußeren Struktur einer technologisch eingesetzten Form entspricht.
[16] Der Absorber kann einen flächigen Gitterträger aus eckigen oder tubusförmigen Waben aufweisen, in dem die beschichteten EPS-Körper in mindestens einer Monolage eingeklebt sind.
[17] Der Absorber aus gepackten, beschichteten EPS- Körpern oder diese aufgebaut als Monolage in flächigen Gittern mit einer Beschichtung aus Partikeln ferrimagnetischen Materials besitzen in einem weiten Bandbereich ( 1- 100 GHz) für Mikrowellen ein hohes Absorptionsvermögen und aufgebaut als Monolage zusätzlich diffuse Reflexionseigenschaften, die den auswertbaren Radarquerschnitt verklei- nern. Die gepackten, beschichteten EPS-Körper haben eine kleine Masse, geringe Wärmeleitfähigkeit und auch ein hohes Schallabsorptionsvermögen. Mit diesen Eigenschaften kann das Produkt "Absorber für Mikrowellen" in vorteilhafter Weise auch für andere Endprodukte hergestellt und eingesetzt werden. Dementsprechend ist der Absorber nach Anspruch 8 ein Element zur Verringerung der Masse und der Wärmeleitfähigkeit oder zur Erhöhung des Schallabsorptionsvermögens eines Endproduktes.
Ausführungsbeispiele
[18] Die Erfindung wird nachstehend an zwei Ausführungsbeispielen näher erläutert. Figur 1 zeigt ein Diagramm mit den Reflexionskoeffizienten in Abhängigkeit von der Frequenz. Zugehörig zum Ausführungsbeispiel II zeigt die Figur 2 einen perspektivischen Schnitt durch einen erfindungsgemäß hergestellten Absorber.
Ausführungsbeispiel I
[19] Im Ausführungsbeispiel I wird das erfindungsgemäße Verfahren zur Herstellung eines Absorbers für Mikrowellen bis < 15 GHz näher beschrieben, wobei der Absorber eine vorgegebene, hier nicht näher definierte Form, aufweisen soll.
[20] Ausgewählt werden EPS-Körper mit einem mittleren Durchmesser von 6 mm, die noch einen Restanteil von Pentan enthalten.
[21] Zunächst werden die noch expansionsfähigen EPS- Körper (Styroporkugeln) mit einer wässrigen Polyvinylalkohol-Lösung sprühbeschichtet und im Luftstrom bei 600C getrocknet. Mit diesem Verfahrensmerkmal soll verhindert werden, dass infolge weiterer Verfahrensschrit- te das noch vorhandene Pentan im expandierten Polystyrol entweicht, mindestens jedoch behindert wird. [22] Danach erfolgt die weitere Beschichtung mit einer Mischung aus einer polymeren Matrix und pulverisierten Spinellen aus Mn-Zn-Ferriten, als ferrimagnetisches Material. Als Ausgangsmaterial für die nachfolgende Sprüh- beschichtung wird eine sog. Slurry vorbereitet. Sie besteht aus einer wässrigen Dispersion von Polyvinylaceat und einem Polyisocyanat-Vernetzer, in der das pulverförmi- ge, ferrimagnetische Material eingemischt ist. Während der Sprühbeschichtung muss die Slurry permanent gerührt wer- den, sonst dekantieren die ferrimagnetischen Partikel und es kommt zur Entmischung. Die derart beschichteten EPS- Körper werden im Luftstrom bei 800C getrocknet. Durch den Wasserentzug entsteht die polymere Matrix aus Polyvinylaceat und verklebt die ferrimagnetischen Partikel mit- einander. Die optimale Absorption wird erreicht, wenn die EPS-Körper-Packung eine Dicke von 50 mm und die Beschichtung auf den einzelnen EPS-Körpern eine Stärke von ca. 0,1 mm aufweist. Dabei ist die Transmission bei einer Packungsdicke von 50 mm nicht mehr nachweisbar.
[23] Die angesetzte, wässrige Slurry besteht aus folgenden Festoffanteilen: 70 Gew.-% Mn-Zn-Ferritpulver mit einer Partikelgröße von kleiner 5 Mikrometer, 25 Gew.-% Polyvinylacetat und Polyisocyanat-Vernetzer und 5 Gew.-% Acetylenruß .
[24] Anschließend werden die beschichteten EPS-Körper in eine verschließbare Form eingebracht, die das Negativ des herzustellenden Formkörpers abbildet. In der Form werden die beschichteten EPS-Körper mit Wasserdampf beaufschlagt, der eine Temperatur von 115° C (der übliche Be- reich liegt zwischen 100 und 1300C). Der Wärmeeintrag führt dazu, dass die EPS-Körper elastisch werden und mit Hilfe des steigenden Pentandampfdruckes aufbläht werden, die noch offene Porosität beseitigt und die Berührungsflächen der EPS-Körper vergrößert. Der heiße Wasserdampf führt weiterhin auch dazu, dass die polymere Matrix und die Barriereschicht aus Polyvinylalkohol elastisch und teilweise abgelöst wird, so dass das Aufblähen der EPS- Körper nicht beeinträchtigt wird. Unter dem Verformungsdruck werden die zusammengepressten, beschichteten EPS- Körper mit Hilfe der Polymere miteinander verklebt. Der Polyisocyanat-Vernetzer ist dabei so bemessen, dass die polymere Matrix im heißem Wasserdampf nur partiell angelöst wird und elastisch bleibt.
[25] Abschließend wird die gesamte Packung von beschichteten EPS-Körpern in der Form bei 1000C getrocknet und der fertiggestellte Absorber kann aus der Form entfernt werden.
[26] Figur 1 zeigt beispielhaft für einen verfahrensgemäß hergestellten Absorber den Reflexionskoeffizienten in Abhängigkeit von der Frequenz bei nicht nachweisbarer Transmission. Die einfallende Strahlungsleistung betrug 10 mW. Die Packungsdicke liegt bei 50 mm.
Ausführungsbeispiel II
[27] In Ausführungsbeispiel II wird die Herstellung eines flexiblen Absorbers beschrieben, bei dem die be- schichteten EPS-Körper als Monolage angeordnet sind und der für Frequenzen von >15 GHz eingesetzt werden kann. Die zugehörige Zeichnung Figur 2 zeigt einen Teilschnitt durch den Absorber mit den in den Gitterträger positionierten, beschichteten EPS-Körpern, bevor in einen weiteren Verfah- rensschritt die beschichteten EPS-Körper mittels Wasserdampf bei 125° C aufgebläht werden und die offene Porosität zwischen den Wabenwänden und den beschichteten EPS-Körpern verschlossen wird. Unter Anwendung des Verfahrens ist der Absorber auf einem ebenen elastischen Gitterträger 1 aus Kunststoff mit wabenförmiger Struktur aufgebaut. Figur 2 zeigt weiter mit der Positionsnummer 2 einen Klebstoff, die beschichteten EPS-Körper 3, die Kugelkalotte 4 und die Wände 5 des Gitterträgers 1.
[28] Ausgewählt werden EPS-Körper mit einem mittleren Durchmesser von 3,2 mm, die noch einen Restanteil von Pentan enthalten und als Einzelkugel, bezogen auf deren Durchmesser, in etwa die sechseckige Wabengitteröffnung ausfüllen.
[29] Zunächst werden die EPS-Kugeln analog Ausführungsbeispiel I mit einer wässrigen Polyvinylalkohol—Lösung sprühbeschichtet und im Luftstrom bei 600C getrocknet. [30] Da es sich um die Absorption von elektromagnetischen Wellen mit Frequenzen größer > 15 GHz handelt, ist es erforderlich die polymere Matrix und das ferrimagneti- sche Material gegenüber Ausführungsbeispiel I zu verändern. Als Ausgangsmaterial für die nachfolgende Sprüh- beschichtung wird eine so genannte Slurry vorbereitet. Sie besteht aus einer wässrigen Dispersion von Styrol- Butadien-Copolymerisaten in der das pulverförmige, ferri- magnetische Material aus Sr-Ferrit als M-Typ eingemischt ist. Während der Sprühbeschichtung muss die Slurry perma- nent gerührt werden, sonst dekantiert trotz der gegenüber dem Ausführungsbeispiel I geringerer Partikelgröße das ferrimagnetische Material und es kommt zur Entmischung.
[31] Die derart beschichteten EPS-Körper werden im
Luftstrom bei 800C getrocknet. Durch den Wasserentzug entsteht die polymere Matrix aus Styrol-Butadien-Copolyme- risat und verklebt die ferrimagnetischen Partikel bzw. Gruppen von agglomerierten Partikeln miteinander. Die optimale Absorption, d.h. es findet auch keine Transmission statt, wird bei Frequenzen von > 70 GHz erreicht, wenn die Dicke der Beschichtung auf den einzelnen be- schichteten EPS-Körper 3 ca. 0,1 mm beträgt.
[32] Zur Herstellung des Absorbers wurde als Gitterträger 1 ein so genannter Honeycomb ausgewählt, der den Aufbau der hexagonal gepackten Monolage unterstützt. Honeycombs sind wabenförmige Sechseckstrukturen aus Polyamid-Papier und besitzen, auch bedingt durch ihre geringe Masse, eine Dielektrizitätszahl von < 2. Die Wabenhöhe ist 1,5 mm, d.h. in etwa das 0,5-fache des Durchmessers der verwendeten EPS-Körper. Vor dem Einbringen der beschichteten EPS-Körper werden die sechs- eckigen Wabenöffnungen mit einen flüssigen, lösemittelhal- tigen Styrol-Budatien-Copolymerisat als Klebstoff 2 besprüht. Danach werden die beschichteten EPS-Körper 3 in die Öffnungen der Wabe gedrückt, anhaftender Klebstoff 2 auf den Stirnseiten der Wabenwände wird durch die Kugeln mit in den Wandbereich der Wabe geschoben. Bedingt durch das Verhältnis Wabenhöhe/Kugeldurchmesser = ca. 0,5 ragt ein Teil des Kugelkörpers als Kalottenoberflächen 4 über Wabenhöhenniveau heraus und es entsteht die für die Absorption und diffusen Reflexion der einfallenden Strahlen notwendige Monolagenoberflache. Die so gestaltete Monola- genoberflache hat somit wie vorausgesetzt keinen zusätzlichen Klebstoff auf den Kalottenoberfachen, da sich der Klebstoff 2 nur an den Wänden 5 der Wabe befindet. [33] In Fortsetzung des erfindungsgemäßen Verfahrens wird der Gitterträger mit der eingelegten Monolage von beschichteten EPS-Körpern in einen verschließbaren Behälter eingebracht, der dazu dient, Wasserdampf mit einer Temperatur von 125 0C durch die offene Porosität zwischen den beschichteten EPS-Körpern und der Wabenwände zu leiten. Wie schon im Ausführungsbeispiel I bewirkt der Restanteil von Pentan in den beschichteten EPS-Körpern, dass sich diese aufblähen, gegen die Wabenwand gedrückt und mit dieser verklebt werden. Auch die überstehenden Kalotten nähern sich infolge Durchmessererweiterung gegenseitig an, so dass der für die Strahlen "sichtbare" Teil von Wabenstegen auch im schlechtesten Fall, wenn die elektromagnetische Strahlung orthogonal zur Wabenfläche die Monolage erreicht, einen minimalen Wert erreicht. Der an der Wabenwand befindliche Klebstoff verhindert, dass die vorher eingenommene Ausgangsposition innerhalb des Wabengitters eingehalten wird. Der Absorber kann dann aus dem verschließbaren Behälter entnommen und im Luftstrom bei 1100C getrocknet werden.
[34] Der Absorber ist außerordentlich flexibel und kann im Einsatz gut an die technologischen Einrichtungen ange- passt werden und ist ab 70 GHz einsetzbar.
[35] Der vorstehende Absorber mit einer Monolage von beschichteten EPS-Körpern 2 auf einem Gitterträger 1 kann leicht modifiziert werden, wenn im Einsatzfall die Frequenz zwischen 15 und 70 GHz liegt, indem zwei Lagen von beschichteten EPS-Körpern bei entsprechend größerer Wabenhöhe angeordnet werden oder analog Anwendungsbeispiel I eine zusätzliche Kugelpackung, aber mit der polymeren Matrix und den ferrimagnetischen Material nach Ausführungsbeispiel I, gegenüber den einfallenden Strahlen abgewandten Seite der Monolage platziert wird.

Claims

Ansprüche
1. Verfahren zur Herstellung eines Absorbers für Mikrowellen, bestehend aus einer Packung expandierter Polystyrolkörper (EPS-Körper), auf denen eine Beschichtung aus ferrimagnetischen Partikeln aufgebracht ist, dadurch gekennzeichnet, dass in der Folge
EPS-Körper mit einem Restanteil von Pentan ausgewählt werden,
- eine wässrigen Polyvinylalkohol—Lösung aufgebracht und anschließend im Luftstrom bei 600C getrocknet wird, so dass sich eine Umhüllung aus synthetischem Polymer ausbildet, die das Ausdiffundieren von Pentan bei Temperaturen kleiner 1000C behindert, - Aufbringung einer Mischung aus einer wässrigen
Dispersion von Copolymerisaten und ferrimagnetischen Partikeln,
- Trocknung der beschichteten EPS-Körper, so dass sich die aufgebrachte Mischung in eine polymere Matrix umwandelt, in die ferrimagnetische Partikel eingebettet sind,
Einbringung der beschichteten EPS-Körper in eine technologisch vorgegebene Form und
- Einleitung eines WasserdampfStromes mit einer Temperatur über 100° C in die Form, so dass die
EPS-Körper durch den Dampfdruck vom Restanteil des Pentans ihre endgültige Größe und Form einnehmen.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als wässrige Dispersion von Copolymerisaten ein Polyvinylacetat mit einem Polyisocyanat-Vernetzer, eine wässrige anionische Dispersion eines carboxylier- ten Styrol-Butadien-Copolymerisates oder eine feindisperse, wässrige Dispersion eines Acrylsäureester- Styrol-Copolymerisates, die ein anionisches Emulgator- system aufweist, verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich- net, dass die Mischung wässriger Dispersion von Copolymerisaten und ferrimagnetischen Partikeln aus folgenden Feststoffanteilen hergestellt wird: 5-
40 Gew-% Polymerisat, 2-5 Gew-% Acetylenruß und 93— 55 Gew-% ferrimagnetische Partikel.
4. Verfahren nach einem der Ansprüche 1 bis 3 , dadurch gekennzeichnet, dass als EPS-Körper solche mit kugelförmiger Form und mit einem Durchmesser von 0,5 bis 10 mm ausgewählt werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als ferrimagnetisches Pulver solches mit einer Partikelgröße von 200 nm bis 15 μm ausgewählt wird.
6. Absorber für Mikrowellen, hergestellt mit einem Verfahren nach einem der Ansprüche 1 bis 5, bestehend aus einer Packung EPS-Körper, die mit einem ferrimagnetischen Pulver innerhalb einer polymeren Matrix beschichtet sind und dessen äußere Struktur einer technologisch eingesetzten Form entspricht.
7. Absorber nach Anspruch 6, dadurch gekennzeichnet, dass der Absorber einen flächigen Gitterträger ( 1 ) aus eckigen oder tubusförmigen Waben aufweist, in dem die EPS-Körper ( 3 ) , die mit einem ferrimagnetischen Pulver innerhalb einer polymeren Matrix beschichtet sind, in mindestens einer Monolage eingeklebt sind.
8. Absorber nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Absorber ein Element zur Verringerung der Masse und der Wärmeleitfähigkeit oder zur Erhöhung des Schallabsorptionsvermögens eines Endproduktes ist.
PCT/DE2008/001282 2007-07-28 2008-07-28 Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber WO2009015661A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/452,906 US20100200794A1 (en) 2007-07-28 2008-07-28 Method for producing an absorber for microwaves and absorber produced according to the method
AT08801118T ATE499407T1 (de) 2007-07-28 2008-07-28 Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber
EP08801118A EP2173798B1 (de) 2007-07-28 2008-07-28 Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber
JP2010518496A JP2010534944A (ja) 2007-07-28 2008-07-28 マイクロ波用の吸収材の製造方法並びに該方法により製造された吸収材
DE502008002683T DE502008002683D1 (de) 2007-07-28 2008-07-28 Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007035560.4 2007-07-28
DE102007035560A DE102007035560A1 (de) 2007-07-28 2007-07-28 Verfahren zur Herstellung eines Absorbers für Mikrowellen und danach hergestellter Absorber

Publications (2)

Publication Number Publication Date
WO2009015661A2 true WO2009015661A2 (de) 2009-02-05
WO2009015661A3 WO2009015661A3 (de) 2009-04-02

Family

ID=40157400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001282 WO2009015661A2 (de) 2007-07-28 2008-07-28 Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber

Country Status (6)

Country Link
US (1) US20100200794A1 (de)
EP (1) EP2173798B1 (de)
JP (1) JP2010534944A (de)
AT (1) ATE499407T1 (de)
DE (2) DE102007035560A1 (de)
WO (1) WO2009015661A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130140076A1 (en) * 2010-05-10 2013-06-06 Korea Institute Of Machinery & Materials Waveband electromagnetic wave absorber and method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130330511A1 (en) * 2012-06-08 2013-12-12 Fred Sharifi Gigahertz electromagnetic absorption in a material with textured surface
CN103408788B (zh) * 2013-08-06 2015-04-08 南京洛普电子工程研究所 阻燃型聚苯乙烯泡沫吸波材料及其制备方法
DE102018009255A1 (de) * 2018-11-24 2020-05-28 Rolf Siegel Verfahren zur Oberflächenmodifizierung von aus nieder-energetischen Kunststoff hergestellten Partikeln

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2617698A1 (de) * 1976-04-23 1977-11-10 Reuter Technologie Gmbh Elektrisch leitfaehige schaumstoff- formkoerper
JPS60141732A (ja) * 1983-12-28 1985-07-26 Kanegafuchi Chem Ind Co Ltd 導電性スチレン系樹脂発泡性粒子、それからなる発泡体及びその製造法
EP0425886A2 (de) * 1989-10-26 1991-05-08 General Electric Company Erweiterte thermoplastische Schaumstoffperlen mit sehr hoher Frequenzenergie
JPH11302614A (ja) * 1998-04-23 1999-11-02 Nitto Denko Corp 加熱剥離型粘着シート

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL282827A (de) * 1961-09-05
CA2011740A1 (en) * 1989-04-07 1990-10-07 Glen Connell Microwave heatable materials
US5667621A (en) * 1995-05-19 1997-09-16 Hughes Aircraft Company Non-aqueous, adhesive-free method of bonding expanded polymeric parts
GB2308127A (en) 1995-12-15 1997-06-18 Ams Polymers Radiation absorbing materials
US5698306A (en) * 1995-12-29 1997-12-16 The Procter & Gamble Company Microwave susceptor comprising a dielectric silicate foam substrate coated with a microwave active coating
US5853632A (en) * 1995-12-29 1998-12-29 The Procter & Gamble Company Process for making improved microwave susceptor comprising a dielectric silicate foam substance coated with a microwave active coating
GB2325568A (en) * 1997-03-27 1998-11-25 Ams Polymers Radiation absorbent fluid
US6664520B2 (en) * 2001-05-21 2003-12-16 Thermal Solutions, Inc. Thermal seat and thermal device dispensing and vending system employing RFID-based induction heating devices
EP2181939B1 (de) * 2002-02-08 2015-05-20 Graphic Packaging International, Inc. Mikrowelleninteraktive Verpackungsmaterial
US20040137202A1 (en) * 2002-10-25 2004-07-15 The Procter & Gamble Company Multifunctional adhesive food wraps
AU2004209027B2 (en) * 2003-02-04 2009-06-11 Bvpv Styrenics Llc Coating composition for thermoplastic resin particles for forming foam containers
US7982168B2 (en) * 2004-08-25 2011-07-19 Graphic Packaging International, Inc. Absorbent microwave interactive packaging
DE102008036500A1 (de) * 2008-08-05 2010-02-11 Hans-Dieter Cornelius Verfahren zur Herstellung eines graduierten Mikrowellenabsorbers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2617698A1 (de) * 1976-04-23 1977-11-10 Reuter Technologie Gmbh Elektrisch leitfaehige schaumstoff- formkoerper
JPS60141732A (ja) * 1983-12-28 1985-07-26 Kanegafuchi Chem Ind Co Ltd 導電性スチレン系樹脂発泡性粒子、それからなる発泡体及びその製造法
EP0425886A2 (de) * 1989-10-26 1991-05-08 General Electric Company Erweiterte thermoplastische Schaumstoffperlen mit sehr hoher Frequenzenergie
JPH11302614A (ja) * 1998-04-23 1999-11-02 Nitto Denko Corp 加熱剥離型粘着シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130140076A1 (en) * 2010-05-10 2013-06-06 Korea Institute Of Machinery & Materials Waveband electromagnetic wave absorber and method for manufacturing same
US9929475B2 (en) * 2010-05-10 2018-03-27 Korea Institute Of Machinery & Materials Waveband electromagnetic wave absorber and method for manufacturing same

Also Published As

Publication number Publication date
ATE499407T1 (de) 2011-03-15
EP2173798B1 (de) 2011-02-23
EP2173798A2 (de) 2010-04-14
JP2010534944A (ja) 2010-11-11
US20100200794A1 (en) 2010-08-12
DE102007035560A1 (de) 2009-01-29
DE502008002683D1 (de) 2011-04-07
WO2009015661A3 (de) 2009-04-02

Similar Documents

Publication Publication Date Title
EP2173798B1 (de) Verfahren zur herstellung eines absorbers für mikrowellen und danach hergestellter absorber
EP0884993B1 (de) Absorberelement aus superabsorbierenden schäumen mit anisotropem quellverhalten
DE102004037318A1 (de) Radiowellen-Absorber und Verfahren zu seiner Herstellung
DE19653930A1 (de) Schallschluckende Bauplatte
DE19949631B4 (de) Verbundabsorber für elektromagnetische Wellen, Verfahren zum Anordnen des Verbundabsorbers und reflexionsfreier Raum mit diesem Verbundabsorber
DE60005897T2 (de) Absorber für Funkwellen
DE69836457T2 (de) Platten und material zur absorbtion elektromagnetischer wellen
DE69908187T2 (de) Anordnung zur fokussierung mit einer homogenen dielektieschen luneberg linse undverfahren zur herstellung
AT397529B (de) Verbundfolie
DE102012023181A1 (de) Verfahren zur Herstellung von zumindest zweilagigen Schaumstoffplatten durch strukturiertes Verkleben
DE4404071C2 (de) Anordnung zur Absorption von elektromagnetischen Wellen und Verfahren zur Herstellung dieser Anordnung
DE2263044B2 (de) Verfahren zum herstellen waermeisolierender teilchen
DE69125444T2 (de) Elektromagnetische Strahlung absorbierendes Material mit doppelt umhüllten Partikeln
DE3415243A1 (de) Formkoerper mit magnetischen eigenschaften und seine herstellung
JP2772404B2 (ja) 構造用電波吸収材
CH654936A5 (de) Optische anzeigezelle und verfahren zu ihrer herstellung.
DE102011108755A1 (de) Multifunktionelle Wandelemente
DE2717010C2 (de)
DE29805592U1 (de) Fließfähige strahlungsabsorbierende Materialien
DE3936196C2 (de) Polymermaterial und Struktur zur Absorption elektromagnetischer Wellen
DE29621804U1 (de) Strahlung absorbierendes Material
DE202004017115U1 (de) Wärmedämmplatte
DE1591244A1 (de) Gegenueber Mikrowellen reflexionsarmes Verbundelement
KR19980087776A (ko) 전자파 및 자계용 차폐시트와 그 제조방법
DE3936291A1 (de) Material mit radarabsorbierenden eigenschaften und dessen verwendung bei verfahren zur tarnung gegen radarerfassung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08801118

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010518496

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008801118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12452906

Country of ref document: US