WO2009010410A1 - Überwachungsverfahren einer aufzugsanlage - Google Patents

Überwachungsverfahren einer aufzugsanlage Download PDF

Info

Publication number
WO2009010410A1
WO2009010410A1 PCT/EP2008/058721 EP2008058721W WO2009010410A1 WO 2009010410 A1 WO2009010410 A1 WO 2009010410A1 EP 2008058721 W EP2008058721 W EP 2008058721W WO 2009010410 A1 WO2009010410 A1 WO 2009010410A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
signal
bus node
monitoring method
transmitter
Prior art date
Application number
PCT/EP2008/058721
Other languages
English (en)
French (fr)
Inventor
Astrid Sonnenmoser
Kurt Heinz
Original Assignee
Inventio Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL08774798T priority Critical patent/PL2167413T3/pl
Application filed by Inventio Ag filed Critical Inventio Ag
Priority to US12/669,322 priority patent/US8443944B2/en
Priority to CN2008800249407A priority patent/CN101754920B/zh
Priority to CA2707389A priority patent/CA2707389C/en
Priority to MX2010000566A priority patent/MX2010000566A/es
Priority to RU2010105545/11A priority patent/RU2482050C2/ru
Priority to JP2010516454A priority patent/JP2011502908A/ja
Priority to EP08774798A priority patent/EP2167413B1/de
Priority to AU2008277777A priority patent/AU2008277777B2/en
Priority to ES08774798T priority patent/ES2400928T3/es
Priority to BRPI0814107-0A2A priority patent/BRPI0814107A2/pt
Publication of WO2009010410A1 publication Critical patent/WO2009010410A1/de
Priority to HK10111679.3A priority patent/HK1145485A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B13/00Doors, gates, or other apparatus controlling access to, or exit from, cages or lift well landings
    • B66B13/22Operation of door or gate contacts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0087Devices facilitating maintenance, repair or inspection tasks
    • B66B5/0093Testing of safety devices

Definitions

  • the invention relates to a monitoring method of an elevator installation according to the definition of the preamble of the independent patent claim.
  • Conventional elevator systems have safety circuits consisting of series-connected safety elements.
  • these security elements monitor the condition of manhole or cabin doors.
  • Such a security element can be a contact.
  • An open contact shows that e.g. a door is open and a potentially inadmissible door condition has occurred. If an inadmissible open state of the doors is identified when the contact is open, the safety circuit is interrupted. This has the consequence that a drive or brakes, which act on the travel of an elevator car, bring the elevator car to a standstill.
  • WO2005 / 000727 discloses a safety system for an elevator installation which has a control unit and at least one bus node and a bus.
  • the bus allows communication between the bus node and the control unit.
  • the bus node monitors by means of a security element that is part of the bus node, for example, the state of manhole and cabin doors.
  • the bus node consists of a receiver and a transmitter.
  • the receiver is designed so that it reads digital presetting signals from the control unit, converts them into an analog signal and acts on the security element.
  • the sender measures the analogue signal after the safety element and converts it into a digital signal.
  • the transmitter represents the control unit This digital information is available. This information is either sent from the bus nodes as digital signals to the control unit or is requested by the control unit by means of a query.
  • control unit To ensure safe operation of the elevator system and the current state of the elevator system is known, digital information between the control unit and the bus node must be exchanged in short time intervals. This means that the control unit must have high computing capacities to evaluate a large number of digital signals and information.
  • the bus is heavily loaded by signals that are transmitted between the control unit and the bus node, and has correspondingly high data transmission capacities.
  • the object of the present invention is thus to provide a monitoring method of an elevator installation, with a reduced data exchange between the control unit and bus node and with a control unit which has lower computing capacities.
  • the monitoring method according to the invention of an elevator installation has a control unit and at least one bus node.
  • This bus node has a receiver, a transmitter and a security element.
  • the control unit and the bus node communicate via a bus.
  • the procedure performs the following steps:
  • control unit transmits a digital default signal to the receiver;
  • digital preset signal is converted by the receiver into an analogue signal;
  • the security element is acted upon by the receiver with the analog signal
  • a digital signal of the control unit is provided by the transmitter.
  • the transmitter Upon detection of an analog null signal, the transmitter transmits a digital signal to the control unit.
  • the advantage of this monitoring method lies in the low data exchange between the control unit and the bus node. Since the bus node with open security element, so if e.g. a shaft door or car door is open, communicates this potentially dangerous state of the control unit, eliminates a consistently short-timed communication between the control unit and bus node. Therefore, control units with lower computing capacities and buses with smaller data transmission capacities can be used, which leads to lower costs.
  • the digital command signal is transmitted from the control unit to the receiver at time intervals.
  • the security element is acted upon by the receiver with an analog signal corresponding to the preceding digital default signal.
  • the digital signal provided by the transmitter is polled by the control unit at time intervals. These time intervals are preferably selected on the order of 100 s.
  • the advantage of this relatively long preset and query intervals is a further relief of the bus between the control unit and the bus node and a further reduction of the signals and data to be processed by the control unit.
  • a digital signal is transmitted spontaneously from the transmitter to the control unit. This is e.g. This is the case when the transmitter detects an analogue zero signal when the security element is open. Due to the spontaneous transmission of the digital signal, measures are taken by the control unit to bring the elevator into a safe operating state.
  • the advantage of the spontaneous transmission of a digital signal from the transmitter to the control unit is based on the fact that the elevator can be operated safely despite relatively long preset and interrogation intervals.
  • the monitoring method also includes a test method.
  • a test procedure a bus node is tested by the control unit at time intervals. This test procedure is performed by the control unit at least once a day.
  • the bus node is acted upon by the control unit with a digital zero-specification signal, which is converted by the receiver into an analog zero signal. Accordingly, the transmitter measures an analog zero signal. It is thus transmitted a correct digital signal from the bus node spontaneously to the control unit with the correct operation.
  • the advantage of this test method lies in the simple and reliable verification of the functionality of a Bus node, respectively, the spontaneous transmission behavior of the transmitter.
  • this test procedure an opened security element is simulated and the corresponding spontaneous transmission behavior of the transmitter is provoked.
  • the functionality of the bus node for normal operation is already tested at each default polling cycle.
  • Fig.l is a schematic view of a security system according to the invention.
  • FIG. 1 A schematic view of a second embodiment of a security system according to the invention.
  • FIG. 3 is a schematic view of a third embodiment of a security system according to the invention.
  • Fig.l shows an embodiment of a security system 10 according to the invention, which is technically adapted to carry out the monitoring process.
  • the security system 10 has a control unit 11 and at least one bus node 13. The communication between the control unit 11 and the bus node 13 via a bus 12. So it can be sent between the bus node 13 and the control unit 11 data in both directions via the bus ,
  • the bus node 13 itself consists of a receiver 14, a transmitter 15 and a security element 16.
  • the receiver 14 or the transmitter 15 are each designed so that the former receives control signals 11 from the control unit 11 and provides the latter status information as signals of the control unit 11.
  • the control unit 11, the bus 12 and the at least one bus node 13 form a bus system. Within this bus system each bus node 13 has its own, unique address. This message is used to establish the message between the controller 11 and a bus node 13.
  • the control unit 11 is via the bus 12 digital Vorga- besignale signals to the receiver 14.
  • the control unit addresses a particular bus node 13 and tells its receiver 14, the default signal.
  • the receiver 14 receives this default signal and generates the default signal corresponding to an analog signal which is applied to the security element 16.
  • the application of the analog signal is symbolized by the arrow 16.1.
  • the analog signal can be a certain voltage, current or frequency.
  • the security element 16 shows the state of a security-relevant element.
  • the security element 16 finds e.g. as door contact, latch contact, buffer contact, flap contact, sensor, actuator, drive switch or emergency stop switch application.
  • the security element 16 is designed such that a closed security element 16 represents a safe state and an open security element 16 a potentially dangerous state of an elevator installation.
  • the transmitter 15 behind the security element 16 the incoming analog signal. This measurement is indicated by the arrow 16.2. provides. After the measurement, the transmitter 15 converts the measured analog signal into a digital signal. The transmitter 15 finally provides the digital signal to the control unit 11.
  • the control unit 11 sends a current, voltage or frequency value specification signal to a selected bus node 13 by indicating the address of the bus node 13 and a current, voltage or frequency value in digital form.
  • This default signal is renewed at certain time intervals, i. the control unit 11 sends the bus node 13 a new current, voltage or frequency value.
  • the new value is different from the previous value.
  • the receiver generates a certain analog signal according to the default signal.
  • the transmitter 15 measures this analog signal and provides the measured value as a digital signal.
  • the control unit 11 addresses the transmitter 15 of the bus node 13 and provides the data of the current, voltage or frequency value provided as a digital signal via a read function.
  • time intervals between such default polling cycles are basically freely adjustable and depend primarily on the reliability of the bus node components. Preferably, these time intervals last several seconds. With high reliability, you can also set time intervals of 100s or longer.
  • the control unit 11 performs this procedure with all
  • Bus node 13 in turn and checks their resonance. That the default signals and those of the respective stations
  • a fault current, an error voltage or an error frequency is present when the transmitter 15 measures a current of 0 mA, a voltage of 0 mV or a frequency of 0 Hz. This corresponds to the state of an opened security element, e.g. an open cabin or shaft door.
  • the transmitter 15 sends the measured value spontaneously to the control unit 11. Thanks to the unique address of the bus node 13, the control unit 11 is able to pinpoint the error accurately. If necessary, the control unit 11 takes measures to remedy the error or to convert the elevator into a safe operating mode.
  • These operating modes include i.a.
  • the secure operation of a bus node 13 depends primarily on the functionality of the receiver 14 and transmitter 15. Since the receiver 14 and the transmitter 15 are already tested at each default polling cycle on their functionality in normal operation, the bus node 13 requires a separate test to check the spontaneous transmission behavior of the transmitter 15 when an error occurs. In this separate test, an open security element 16 is simulated. The control unit 11 simulates the opened security element 16 in that a default signal of 0 mA, 0 mV or 0 Hz is given to a specific bus node 13. It is therefore a zero default test. If the functioning of the bus node 13 is correct, the bus node 13 or its transmitter 15 must spontaneously report to the control unit 11. This test guarantees that each opening of a security element 16 leads to a spontaneous transmission of a digital signal of the bus node 13 to the control unit 11.
  • This test is performed in a timely manner for each bus node 13. Since during this test the control unit 11 can not recognize any real information about the state of the safety element 16 of a bus node 13 being tested, the test time is kept as short as possible and the test is performed only as often as necessary. The test time is largely dependent on the speed of data transmission via the bus 12 and is usually 50 to 100 ms. The frequency of the zero-prescription test depends primarily on the reliability of the transmitter 15 used. The more reliable the transmitter 15, the less frequently it must be tested in order to ensure safe operation of the elevator.
  • the zero-prescription test is carried out at least once a day. This test can also be repeated in the order of minutes or hours.
  • each bus node 13 thus has min. At least two security elements 16.a, 16.b, 16.n In FIG. 2, for example, three security elements 16.a, 16.b, 16.n monitor the condition of a safety-relevant element of the elevator.
  • Each security element 16.a, 16.b, 16.n is preferably located at a separate outlet l ⁇ .la, l ⁇ .lb, l ⁇ .ln of the receiver 14, the security elements 16. a, 16. b, 16. n according to Asserted default signal of the control unit 11 with an analog signal. These signals may have the same or different values.
  • the transmitter 15 measures at a respective separate input 16. 2. a, 16.2. b, 16.2. n the incoming analog signal. In normal operation, the transmitter 15 provides the measured analog values as digital signals to the control unit 11, which regularly polls the bus nodes 13. If at an entrance 16.2. a, 16.2. b, 16.2. n an analog zero signal is measured, this reports the transmitter 15 of the control unit 11 spontaneously.
  • FIG. 3 shows a third embodiment of the security system 10 according to the invention.
  • the states of several safety-related elements of the elevator are detected by means of a bus node 13.
  • Each state of a security-relevant element is detected by a security element 16. d, 16. e, 16. m.
  • the combination of the security elements 16. d, 16. e, 16. m in a bus node 13 is preferably realized when the security-relevant elements to be monitored are spatially close to each other, such as upper adjacent shaft doors or the cabin door and an alarm button attached to the elevator car.
  • the control unit 11 preferably sends for each security element 16. d, 16. e, 16. m different default signals to the receiver 14.
  • the receiver 14 converts the default signals into a corresponding analog signal and acts on the respective security element 16. d, 16. e, 16. m via a separate output l ⁇ .ld, l ⁇ .le, l ⁇ .lm
  • the transmitter 15 measures for each security element at a separate input 16.2. d, 16.2. e, 16.2. m the incoming analog signal.
  • the transmitter provides the measured analog values as digital signals to the control unit 11, which periodically polls the bus nodes 13.
  • the transmitter 15 also provides the information at which input 16.2. d, 16.2. e, 16.2. m the analogue signal was measured. If at an entrance 16.2. d, 16.2. e, 16.2. m analog zero signal is measured, thanks to the separate inputs 16.2. d, 16.2. e, 16.2. m, uniquely locate the source of the error.
  • the advantage of this embodiment is the smaller number of required bus node 13 and the resulting cost savings.
  • bus node 13 can be designed such that the state of several security-relevant elements of the elevator is detected with one redundant security element 16 each.
  • the bus nodes 13 described in FIGS. 2 and 3 become available during normal operation at each default polling cycle their resonance and tested by means of a zero-preset signal. These tests are preferably carried out for each security element 16. a, 16. b, 16. n; 16. d, 16. e, 16. m separately. So that the functionality of all outputs of the receiver 14 and all inputs of the transmitter 15 is individually tested.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Small-Scale Networks (AREA)

Abstract

Das Überwachungsverfahren einer Aufzugsanlage besitzt eine Steuereinheit (11) und mindestens einem Busknoten (13), welcher Busknoten (13) einen Empfänger (14), einen Sender (15) und ein Sicherheitselement (16) aufweist. Die Steuereinheit (11) und der Busknoten (13) kommunizieren über einen Bus (12). Das Überwachungsverfahren verfügt über folgende Schritte: von der Steuereinheit (11) wird ein digitales Vorgabesignal an den Empfänger (14) übermittelt; das digitale Vorgabesignal wird vom Empfänger (14) in ein analoges Signal gewandelt; das Sicherheitselement (16) wird vom Empfänger (14) mit dem analogen Signal beaufschlagt (16.1); bei geschlossenem Sicherheitselement (16) wird das analoge Signal vom Sender (15) erfasst (16.2); für ein erfasstes analoges Signal wird vom Sender (15) ein digitales Signal der Steuereinheit (11) bereitgestellt; wobei bei Erfassen eines analogen Nullsignals vom Sender (15) ein digitales Signal an die Steuereinheit (11) übermittelt wird.

Description

Überwachungsverfahren einer Aufzugsanlage
Die Erfindung betrifft ein Überwachungsverfahren einer Aufzugsanlage gemäss der Definition des Oberbegriffs des un- abhängigen Patentanspruchs .
Herkömmliche Aufzugsanlagen weisen Sicherheitskreise auf, die aus in Serie geschalteten Sicherheitselementen bestehen. Diese Sicherheitselemente überwachen zum Beispiel den Zustand von Schacht- oder Kabinentüren. Ein solches Sicher- heitselement kann ein Kontakt sein. Ein offener Kontakt zeigt, dass z.B. eine Türe offen steht und ein potentiell unzulässiger Türzustand aufgetreten ist. Wird nun bei geöffnetem Kontakt ein unzulässiger offener Zustand der Türen i- dentifiziert, so wird der Sicherheitskreis unterbrochen. Dies hat zur Folge, dass ein Antrieb oder Bremsen, die auf die Fahrt einer Aufzugskabine einwirken, die Aufzugskabine zum Stillstand bringen.
Aus der Patentschrift WO2005/000727 ist ein Sicherheitssystem für eine Aufzugsanlage bekannt, das über eine Steuer- einheit sowie mindestens einen Busknoten und einen Bus verfügt. Der Bus ermöglicht eine Kommunikation zwischen den Busknoten und der Steuereinheit. Der Busknoten überwacht mittels eines Sicherheitselements, der Bestandteil des Busknotens ist, z.B. den Zustand von Schacht- und Kabinentüren. Desweiteren besteht der Busknoten aus einem Empfänger und einem Sender. Dabei ist der Empfänger so ausgelegt, dass er digitale Vorgabesignale von der Steuereinheit liest, diese in ein analoges Signal umwandelt und das Sicherheitselement damit beaufschlagt. Der Sender wiederum misst nach dem Si- cherheitselement das analoge Signal und wandelt dieses in ein digitales Signal um. Der Sender stellt der Steuereinheit diese digitalen Informationen zur Verfügung. Diese Informationen werden entweder von den Busknoten als digitale Signale an die Steuereinheit gesandt oder werden von der Steuereinheit mittels Abfrage angefordert.
Damit ein sicherer Betrieb der Aufzugsanlage gewährleistet und der aktuelle Zustand der Aufzugsanlage bekannt ist, müssen in kurzen Zeitintervallen digitale Informationen zwischen der Steuereinheit und den Busknoten ausgetauscht werden. Dies bedeutet, dass die Steuereinheit über hohe Rechen- kapazitäten verfügen muss, um eine Vielzahl von digitalen Signalen und Informationen auswerten zu können. Zudem wird der Bus durch Signale, die zwischen der Steuereinheit und den Busknoten übermittelt werden, stark belastet und besitzt dementsprechend hohe Datenübertragungskapazitäten.
Die Aufgabe der vorliegenden Erfindung ist es also ein Überwachungsverfahren einer Aufzugsanlage bereit zu stellen, mit einem reduzierten Datenaustausch zwischen Steuereinheit und Busknoten und mit einer Steuereinheit, welche über geringere Rechenkapazitäten verfügt.
Die Aufgabe wird durch die Erfindung gemäss der Definition des unabhängigen Anspruchs gelöst.
Das erfindungsgemässe Überwachungsverfahren einer Aufzugsanlage verfügt über eine Steuereinheit und mindestens einen Busknoten. Dieser Busknoten weist einen Empfänger, ei- nen Sender und ein Sicherheitselement auf. Die Steuereinheit und der Busknoten kommunizieren über einen Bus. Das Verfahren führt folgende Schritte aus:
von der Steuereinheit wird ein digitales Vorgabesignal an den Empfänger übermittelt; das digitale Vorgabesignal wird vom Empfänger in ein analoges Signal gewandelt;
das Sicherheitselement wird vom Empfänger mit dem analogen Signal beaufschlagt;
bei geschlossenem Sicherheitselement wird das analoge Signal vom Sender erfasst;
für ein erfasstes analoges Signal wird vom Sender ein digitales Signal der Steuereinheit bereitgestellt; und
bei Erfassen eines analogen Nullsignals wird vom Sender ein digitales Signal an die Steuereinheit übermittelt.
Der Vorteil dieses Überwachungsverfahrens liegt im geringen Datenaustausch zwischen Steuereinheit und Busknoten. Da der Busknoten bei offenem Sicherheitselement, also wenn z.B. eine Schachttüre oder Kabinentüre offen steht, diesen poten- tiell gefährlichen Zustand der Steuereinheit mitteilt, entfällt eine durchgängig kurzgetaktete Kommunikation zwischen Steuereinheit und Busknoten. Darum lassen sich Steuereinheiten mit geringeren Rechenkapazitäten sowie Busse mit kleineren Datenübertragungskapazitäten einsetzten, was zu geringe- ren Kosten führt.
Vorteilhafterweise wird das digitale Vorgabesignal von der Steuereinheit an den Empfänger in Zeitintervallen übermittelt. Während dieses Zeitintervalls wird das Sicherheitselement vom Empfänger mit einem dem vorangehenden digitalen Vorgabesignal entsprechenden analogen Signal beaufschlagt. Im Normalbetrieb wird das vom Sender bereitgestellte digitale Signal von der Steuereinheit in Zeitintervallen abgefragt. Diese Zeitintervalle werden vorzugsweise in der Grös- senordnung von 100s gewählt. Der Vorteil dieser relativ langen Vorgabe- und Abfrageintervalle ist eine weitere Entlastung des Bus zwischen der Steuereinheit und den Busknoten und eine weitere Reduktion der von der Steuereinheit zu verarbeitenden Signale und Da- ten .
Vorteilhafterweise wird bei Erfassen eines analogen Nullsignals ein digitales Signal vom Sender an die Steuereinheit spontan übermittelt. Dies ist z.B. der Fall, wenn bei geöffnetem Sicherheitselement vom Sender ein analoges Nullsignal erfasst wird. Aufgrund der spontanen Übermittlung des digitalen Signals werden von der Steuereinheit Massnahmen ergriffen, um den Aufzug in einen sicheren Betriebszustand zu bringen .
Der Vorteil der spontanen Übermittlung eines digitalen Signals vom Sender an die Steuereinheit ist darauf begründet, dass der Aufzug trotz relativ langer Vorgabe- und Abfrageintervalle sicher betrieben werden kann.
Vorteilhafterweise beinhaltet das Überwachungsverfahren auch ein Testverfahren. In diesem Testverfahren wird ein Busknoten von der Steuereinheit in Zeitintervallen getestet. Dieses Testverfahren wird von der Steuereinheit mindestens einmal täglich durchgeführt. Dabei wird der Busknoten von der Steuereinheit mit einem digitalen Null-Vorgabesignal beaufschlagt, das von dem Empfänger in ein analoges Nullsignal gewandelt wird. Dementsprechend misst der Sender ein analoges Nullsignal. Es wird also bei korrekter Funktionsweise ein entsprechendes digitales Signal vom Busknoten spontan an die Steuereinheit übermittelt.
Der Vorteil dieses Testverfahrens liegt in der einfachen und zuverlässigen Überprüfung der Funktionsfähigkeit eines Busknotens, respektive des spontanen Sendeverhaltens des Senders. In diesem Testverfahren wird ein geöffnetes Sicherheitselement simuliert und das entsprechende spontane Übermittlungsverhalten des Senders provoziert. Die Funktionsfä- higkeit des Busknotens für den Normalbetrieb wird schon bei jedem Vorgabe-Abfrage-Zyklus getestet.
Im Folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele und drei Figuren verdeutlicht und weiter im Detail beschrieben. Es zeigen:
Fig.l eine schematische Ansicht eines erfindungsgemässen Sicherheitssystems;
Fig.2 eine schematische Ansicht einer zweiten Ausführungsform eines erfindungsgemässen Sicherheitssystems;
Fig.3 eine schematische Ansicht einer dritten Ausführungsform eines erfindungsgemässen Sicherheitssystems;
Vorliegendes Überwachungsverfahren ist besonders geeignet für Aufzugsanlagen wie eingangs beschrieben wurde. Fig.l zeigt eine Ausführungsform eines erfindungsgemässen Sicherheitssystems 10, das technisch angepasst ist, das Überwachungsverfahren durchzuführen. Das Sicherheitssystem 10 verfügt über eine Steuereinheit 11 und mindestens einen Busknoten 13. Die Kommunikation zwischen der Steuereinheit 11 und dem Busknoten 13 erfolgt über einen Bus 12. Es können also zwischen dem Busknoten 13 und der Steuereinheit 11 Daten in beide Richtungen über den Bus geschickt werden. Der Busknoten 13 selbst besteht aus einem Empfänger 14, einem Sender 15 und einem Sicherheitselement 16. Der Empfänger 14 bzw. der Sender 15 sind jeweils so ausgelegt, dass ersterer Vor- gabesignale von der Steuereinheit 11 empfängt und letzterer Zustandsinformationen als Signale der Steuereinheit 11 bereitstellt .
Die Steuereinheit 11, der Bus 12 und der mindestens eine Busknoten 13 bilden ein Bussystem. Innerhalb dieses Bussystems besitzt jeder Busknoten 13 eine eigene, eindeutige Adresse. Über diese Adresse erfolgt der Nachrichtenaufbau zwischen der Steuerung 11 und einem Busknoten 13.
Die Steuereinheit 11 gibt über den Bus 12 digitale Vorga- besignale an den Empfänger 14. Die Steuereinheit adressiert dabei einen bestimmten Busknoten 13 und teilt seinem Empfänger 14 das Vorgabesignal mit. Der Empfänger 14 empfängt dieses Vorgabesignal und generiert dem Vorgabesignal entsprechend ein analoges Signal, das auf das Sicherheitselement 16 beaufschlagt wird. Das Beaufschlagen des analogen Signals ist durch den Pfeil 16.1 symbolisiert. Das analoge Signal kann eine bestimmte Spannung, Stromstärke oder Frequenz sein .
Das Sicherheitselement 16 zeigt den Zustand eines sicher- heitsrelevanten Elements. So findet das Sicherheitselement 16 z.B. als Türkontakt, Riegelkontakt, Pufferkontakt, Klappenkontakt, Sensor, Aktuator, Fahrschalter oder Notstoppschalter Anwendung. Das Sicherheitselement 16 ist dabei so ausgelegt, dass ein geschlossenes Sicherheitselement 16 ei- nen sicheren Zustand und ein offenes Sicherheitselement 16 einen potentiell gefährlichen Zustand einer Aufzugsanlage darstellt .
Bei geschlossenem Sicherheitselement 16 misst der Sender
15 hinter dem Sicherheitselement 16 das ankommende analoge Signal. Dieser Messvorgang wird durch den Pfeil 16.2 darge- stellt. Nach der Messung wandelt der Sender 15 das gemessene analoge Signal in ein digitales Signal um. Der Sender 15 stellt schliesslich das digitale Signal der Steuereinheit 11 bereit .
Im Normalbetrieb sendet die Steuereinheit 11 ein Strom-, Spannungs- oder Frequenzwertvorgabesignal an einen ausgewählten Busknoten 13 mittels Angabe der Adresse des Busknotens 13 und eines Strom-, Spannungs- oder Frequenzwerts in digitaler Form. Dieses Vorgabesignal wird in bestimmten Zeitintervallen erneuert, d.h. die Steuereinheit 11 sendet dem Busknoten 13 einen neuen Strom-, Spannungs- oder Frequenzwert. Vorzugsweise unterscheidet sich der neue Wert vom vorhergehenden Wert. Innerhalb eines solchen Zeitintervalls erzeugt der Empfänger gemäss Vorgabesignal ein gewisses ana- loges Signal. Bei geschlossenem Sicherheitselement misst der Sender 15 dieses analoge Signal und stellt den gemessenen Wert als digitales Signal bereit. Im Takt des oben genannten Zeitintervalls adressiert die Steuereinheit 11 den Sender 15 des Busknotens 13 und verschafft sich über eine Lesefunktion die Daten des als digitales Signal bereitgestellten Strom-, Spannungs- oder Frequenzwerts.
Die Zeitintervalle zwischen solchen Vorgabe-Abfrage- Zyklen sind grundsätzlich frei einstellbar und hängen primär von der Zuverlässigkeit der Busknotenkomponenten ab. Vor- zugsweise dauern diese Zeitintervalle mehrere Sekunden. Bei hoher Zuverlässigkeit lassen sich auch Zeitintervalle von 100s oder länger einstellen.
Die Steuereinheit 11 führt dieses Verfahren mit allen
Busknoten 13 der Reihe nach durch und prüft deren Resonanz. D.h. die Vorgabesignale und die von den jeweiligen Sendern
15 bereitgestellten digitalen Signale werden von der Steuer- einheit 11 verglichen. Falls die Vorgabesignale mit den bereitgestellten digitalen Signalen übereinstimmen, erkennt die Steuereinheit, dass der Empfänger 14 und der Sender 15 richtig funktionieren.
Ein Fehlerstrom, eine Fehlerspannung bzw. eine Fehlerfrequenz liegt dann vor, wenn der Sender 15 einen Strom von 0 mA, eine Spannung von 0 mV oder eine Frequenz von 0 Hz misst. Dies entspricht dem Zustand eines geöffneten Sicherheitselements, also z.B. einer geöffneten Kabinen- oder Schachttüre. Wird nun z.B. ein Fehlerstrom vom Sender 15 gemessen, sendet der Sender 15 den gemessenen Wert spontan an die Steuereinheit 11. Dank der eindeutigen Adresse des Busknotens 13 ist die Steuereinheit 11 fähig den Fehler genau zu lokalisieren. Gegebenenfalls ergreift die Steuereinheit 11 Massnahmen, um den Fehler zu beheben oder den Aufzug in einen sicheren Betriebsmodus zu überführen. Diese Betriebsmodi umfassen u.a. die Aufrechterhaltung einer Restverfügbarkeit des Aufzugs in einem sicheren Fahrbereich der Aufzugskabine, die Evakuation eingeschlossener Passagiere, ein Notstop oder schliesslich die Alarmierung von Wartungs- und Servicepersonal, um eingeschlossene Passagiere zu befreien und/oder um einen von der Steuereinheit nicht behebbaren Fehler zu beseitigen.
Der sichere Betrieb eines Busknotens 13 hängt primär von der Funktionsfähigkeit des Empfängers 14 und Senders 15 ab. Da der Empfänger 14 und der Sender 15 bereits bei jedem Vorgabe-Abfrage-Zyklus auf deren Funktionsfähigkeit im Normalbetrieb getestet werden, bedarf der Busknoten 13 eines separaten Tests, um das spontane Sendeverhalten des Senders 15 bei auftreten eines Fehlers zu überprüfen. In diesem separaten Test wird ein geöffnetes Sicherheitselement 16 simuliert. Die Steuereinheit 11 simuliert das geöffnete Sicherheitselement 16 dadurch, dass ein Vorgabesignal von 0 mA, 0 mV oder 0 Hz einem bestimmten Busknoten 13 vorgegeben wird. Es handelt sich dabei also um einen Null- Vorgabetest. Bei einwandfreier Funktionsweise des Busknotens 13 muss sich der Busknoten 13 bzw. dessen Sender 15 spontan bei der Steuereinheit 11 melden. Dieser Test garantiert, dass jede Öffnung eines Sicherheitselements 16 zu einer spontanen Übermittlung eines digitalen Signals des Busknotens 13 an die Steuereinheit 11 führt.
Dieser Test wird zeitlich wiederkehrend für jeden Busknoten 13 durchgeführt. Da während dieses Tests die Steuereinheit 11 keine realen Informationen über den Zustand des Si- cherheitselements 16 eines getesteten Busknotens 13 erkennen kann, wird die Testzeit so kurz wie möglich gehalten und der Test nur so oft wie nötig durchgeführt. Die Testzeit ist dabei weitgehend von der Geschwindigkeit der Datenübermittlung über den Bus 12 abhängig und beträgt in der Regel 50 bis 100 ms. Die Häufigkeit des Null-Vorgabetests richtet sich primär nach der Zuverlässigkeit des verwendeten Senders 15. Je zuverlässiger der Sender 15 desto seltener muss dieser getestet werden, damit ein sicherer Betrieb des Aufzugs gewährleistet werden kann.
In der Regel wird der Null-Vorgabetest mindestens einmal täglich durchgeführt. Dieser Test kann aber auch im der Grössenordung von Minuten oder Stunden wiederholt werden.
Fig.2 zeigt eine zweite Ausführungsform des erfindungsge- mässen Sicherheitssystems 10. Im Unterschied zum Sicher- heitssystem 10 aus Fig.l ist das Sicherheitselement 16 redundant ausgelegt. Jeder Busknoten 13 verfügt also über min- destens zwei Sicherheitselemente 16. a, 16. b, 16. n. In Fig.2 überwachen beispielsweise drei Sicherheitselemente 16. a, 16. b, 16. n den Zustand eines sicherheitsrelevanten Elements des Aufzugs. Jedes Sicherheitselement 16. a, 16. b, 16. n liegt dabei vorzugsweise an einem separaten Ausgang lβ.l.a, lδ.l.b, lδ.l.n des Empfängers 14, der die Sicherheitselemente 16. a, 16. b, 16. n gemäss Vorgabesignal der Steuereinheit 11 mit einem analogen Signal beaufschlagt. Diese Signale können gleiche oder unterschiedliche Werte aufweisen. Bei geschlossenen Kontakten 16. a, 16. b, 16. n misst der Sender 15 an je einem separaten Eingang 16.2. a, 16.2. b, 16.2. n das ankommende analoge Signal. Im Normalbetrieb stellt der Sender 15 die gemessenen analogen Werte als digitale Signale der Steuereinheit 11 zur Verfügung, die die Busknoten 13 regel- massig abfragt. Falls an einem Eingang 16.2. a, 16.2. b, 16.2. n ein analoges Nullsignal gemessen wird, meldet dies der Sender 15 der Steuereinheit 11 spontan mit.
Der Vorteil dieser Ausführungsform ist, dass auch günstigere nicht sichere Sicherheitselemente 16. a, 16. b, 16. n ver- wendet werden können. Durch deren redundante Auslegung ist eine sichere Zustandsüberwachung des Aufzugs gewährleistet.
In Fig.3 wird eine dritte Ausführungsform des erfindungs- gemässen Sicherheitssystems 10 gezeigt. In dieser Ausführungsform werden die Zustände mehrerer sicherheitsrelevanter Elemente des Aufzugs mittels eines Busknotens 13 erfasst. Jeder Zustand eines sicherheitsrelevanten Elements wird durch ein Sicherheitselement 16. d, 16. e, 16. m erfasst. Die Zusammenfassung der Sicherheitselemente 16. d, 16. e, 16. m in einen Busknoten 13 wird vorzugsweise dann realisiert, wenn die zu überwachenden sicherheitsrelevanten Elemente räumlich nahe beieinander liegen, wie z.B. obere benachbarte Schacht- türen oder die Kabinentür und ein auf der Aufzugskabine angebrachter Alarmknopf.
Die Steuereinheit 11 sendet vorzugsweise für jedes Sicherheitselement 16. d, 16. e, 16. m unterschiedliche Vorgabe- Signale an den Empfänger 14. Der Empfänger 14 wandelt die Vorgabesignale in ein entsprechendes analoges Signal und beaufschlagt das jeweilige Sicherheitselement 16. d, 16. e, 16. m über einen separaten Ausgang lβ.l.d, lδ.l.e, lδ.l.m. Bei geschlossenen Sicherheitselementen 16. d, 16. e, 16. m misst der Sender 15 für jedes Sicherheitselement an einem separaten Eingang 16.2. d, 16.2. e, 16.2. m das ankommende analoge Signal. Auch hier stellt im Normalbetrieb der Sender die gemessenen analogen Werte als digitale Signale der Steuereinheit 11 zur Verfügung, die die Busknoten 13 regelmässig abfragt. Vorzugsweise stellt der Sender 15 auch die Information bereit an welchem Eingang 16.2. d, 16.2. e, 16.2. m das analoge Signal gemessen wurde. Falls an einem Eingang 16.2. d, 16.2. e, 16.2. m ein analoges Nullsignal gemessen wird, lässt sich dank der separaten Eingänge 16.2. d, 16.2. e, 16.2. m, die Fehlerquelle eindeutig lokalisieren.
Der Vorteil dieser Ausführungsform ist die kleinere Anzahl benötigter Busknoten 13 und die damit erzielbare Kosteneinsparung.
Die in Fig.2 und 3 dargestellten Beispiele lassen sich auch kombinieren. So können Busknoten 13 dermassen ausgelegt sein, dass der Zustand mehrerer sicherheitsrelevanter Elemente des Aufzugs mit je einem redundanten Sicherheitselement 16 erfasst wird.
Die in Fig.2 und 3 beschriebenen Busknoten 13 werden so- wohl im Normalbetrieb bei jedem Vorgabe-Abfrage-Zyklus auf deren Resonanz sowie mittels eines Null-Vorgabesignals getestet. Diese Tests erfolgen vorzugsweise für jedes Sicherheitselement 16. a, 16. b, 16. n; 16. d, 16. e, 16. m separat. Damit die Funktionsfähigkeit aller Ausgänge des Empfängers 14 und aller Eingänge des Senders 15 einzeln mitgetestet wird.

Claims

Ansprüche
1. Überwachungsverfahren einer Aufzugsanlage mit einer Steuereinheit (11) und mindestens einem Busknoten (13), welcher Busknoten (13) einen Empfänger (14), einen Sen- der (15) und ein Sicherheitselement (16) aufweist; die Steuereinheit (11) und der Busknoten (13) kommunizieren über einen Bus (12); mit den folgenden Schritten: von der Steuereinheit (11) wird ein digitales Vorgabesignal an den Empfänger (14) übermittelt; das digitale Vorga- besignal wird vom Empfänger (14) in ein analoges Signal gewandelt; das Sicherheitselement (16) wird vom Empfänger (14) mit dem analogen Signal beaufschlagt (16.1); bei geschlossenem Sicherheitselement (16) wird das analoge Signal vom Sender (15) erfasst (16.2); für ein er- fasstes analoges Signal wird vom Sender (15) ein digitales Signal der Steuereinheit (11) bereitgestellt, dadurch gekennzeichnet, dass bei Erfassen eines analogen Nullsignals vom Sender (15) ein digitales Signal an die Steuereinheit (11) übermittelt wird.
2. Überwachungsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass das digitale Vorgabesignal von der Steuereinheit (11) an den Empfänger (14) in Zeitintervallen übermittelt wird und dass während dieses Zeitintervalls das Sicherheitselement (16) vom Empfänger (14) mit ei- nem dem vorangehenden digitalen Vorgabesignal entsprechenden analogen Signal beaufschlagt wird.
3. Überwachungsverfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass im Normalbetrieb das vom Sender (15) bereitgestellte digitale Signal von der Steuereinheit (11) in Zeitintervallen abgefragt wird.
4. Überwachungsverfahren nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass als Zeitintervall vorzugsweise 100s gewählt wird.
5. Überwachungsverfahren nach einem der vorangehenden An- sprüche, dadurch gekennzeichnet, dass bei Erfassen eines analogen Nullsignals ein digitales Signal vom Sender (15) an die Steuereinheit (11) spontan übermittelt wird.
6. Überwachungsverfahren nach einem der vorangehenden An- sprüche, dadurch gekennzeichnet, dass bei geöffnetem
Sicherheitselement (16) vom Sender (11) ein analoges Nullsignal erfasst wird.
7. Überwachungsverfahren nach Anspruch 5, dadurch gekennzeichnet, dass aufgrund der spontanen Übermittlung des digitalen Signals von der Steuereinheit (11) Massnahmen ergriffen werden, um den Aufzug in einen sicheren Betriebszustand zu bringen.
8. Überwachungsverfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Busknoten (13) von der Steuereinheit (11) in Zeitintervallen getestet wird.
9. Überwachungsverfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Busknoten (13) von der Steuereinheit (11) mit einem digitalen Vorgabesignal beaufschlagt wird und der Busknoten (13) von der Steuereinheit (11) abgefragt wird.
10. Überwachungsverfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass als Zeitintervall vorzugsweise 100s gewählt wird.
11. Überwachungsverfahren nach Anspruch 8, dadurch gekennzeichnet, dass der Busknoten (13) von der Steuereinheit (11) mit einem digitalen Null-Vorgabesignal beaufschlagt wird, welches Vorgabesignal von dem Empfänger (14) in ein analoges Nullsignal gewandelt wird, und ein digitales Signal vom Busknoten (13) spontan an die Steuereinheit (11) übermittelt wird.
12. Überwachungsverfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Busknoten (13) von der Steuereinheit (11) mindestens täglich getestet wird.
13. Überwachungsverfahren nach einem der Ansprüche 11 bis 12, dadurch gekennzeichnet, dass der Busknoten (13) von der Steuereinheit (11) stündlich getestet wird.
14. Überwachungsverfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass der Busknoten (13) von der Steuereinheit (11) minütlich getestet wird.
15. Sicherheitssystem (10) angepasst zur Durchführung des Überwachungsverfahrens nach einem der vorangehenden Ansprüche .
16. Aufzug mit einem Sicherheitssystem (10) nach Anspruch 15.
PCT/EP2008/058721 2007-07-17 2008-07-04 Überwachungsverfahren einer aufzugsanlage WO2009010410A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2010105545/11A RU2482050C2 (ru) 2007-07-17 2008-07-04 Способ контроля лифтовой установки
US12/669,322 US8443944B2 (en) 2007-07-17 2008-07-04 Monitoring method for an elevator installation
CN2008800249407A CN101754920B (zh) 2007-07-17 2008-07-04 电梯设备的监控方法
CA2707389A CA2707389C (en) 2007-07-17 2008-07-04 Method for monitoring a lift installation
MX2010000566A MX2010000566A (es) 2007-07-17 2008-07-04 Metodo de monitoreo de sistema de elevadores.
PL08774798T PL2167413T3 (pl) 2007-07-17 2008-07-04 Sposób nadzorowania dźwigu szybowego
JP2010516454A JP2011502908A (ja) 2007-07-17 2008-07-04 エレベータ装置の監視方法
ES08774798T ES2400928T3 (es) 2007-07-17 2008-07-04 Procedimiento de supervisión de una instalación de ascensor
AU2008277777A AU2008277777B2 (en) 2007-07-17 2008-07-04 Method for monitoring a lift system
EP08774798A EP2167413B1 (de) 2007-07-17 2008-07-04 Überwachungsverfahren einer aufzugsanlage
BRPI0814107-0A2A BRPI0814107A2 (pt) 2007-07-17 2008-07-04 Processo de controle de uma instalação de elevadores
HK10111679.3A HK1145485A1 (en) 2007-07-17 2010-12-15 Method for monitoring a lift system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07112651 2007-07-17
EP07112651.0 2007-07-17

Publications (1)

Publication Number Publication Date
WO2009010410A1 true WO2009010410A1 (de) 2009-01-22

Family

ID=38984174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/058721 WO2009010410A1 (de) 2007-07-17 2008-07-04 Überwachungsverfahren einer aufzugsanlage

Country Status (14)

Country Link
US (1) US8443944B2 (de)
EP (1) EP2167413B1 (de)
JP (1) JP2011502908A (de)
KR (1) KR20100043185A (de)
CN (1) CN101754920B (de)
AU (1) AU2008277777B2 (de)
BR (1) BRPI0814107A2 (de)
ES (1) ES2400928T3 (de)
HK (1) HK1145485A1 (de)
MX (1) MX2010000566A (de)
MY (1) MY159057A (de)
PL (1) PL2167413T3 (de)
RU (1) RU2482050C2 (de)
WO (1) WO2009010410A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333717A (zh) * 2009-02-25 2012-01-25 因温特奥股份公司 具有监控系统的电梯
WO2013020806A1 (de) 2011-08-11 2013-02-14 Inventio Ag Testverfahren einer aufzugsanlage und eine überwachungseinrichtung zum durchführen des testverfahrens
EP2607286A1 (de) 2011-12-19 2013-06-26 Inventio AG Testverfahren einer Aufzugsanlage und eine Überwachungseinrichtung zum Durchführen des Testverfahrens
CN103648950A (zh) * 2011-08-11 2014-03-19 因温特奥股份公司 安全元件的功能监测
EP2930134B1 (de) 2014-04-09 2018-05-30 Kone Corporation Sicherheitssystem und Verfahren für sicherheitskritische Komponenten in einer Aufzugsanlage
US11365088B2 (en) 2015-12-21 2022-06-21 Inventio Ag Monitoring device for a passenger transport system, testing method and passenger transport system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014339263B2 (en) * 2013-10-23 2017-08-03 Inventio Ag Safety system for a lift, lift system and method for operating such a safety system
CN105829232B (zh) * 2013-12-18 2017-12-08 因温特奥股份公司 用于电梯设备的安全系统
WO2016091779A1 (de) * 2014-12-10 2016-06-16 Inventio Ag Aufzugsystem mit sicherheitsüberwachungssystem mit einer master-slave-hierarchie
CN107250019B (zh) * 2014-12-18 2019-12-31 因温特奥股份公司 用于运行具有临时参与者的电子安全系统的方法
CN107250021B (zh) * 2014-12-18 2019-10-11 因温特奥股份公司 用于运行具有临时参与者的电子安全系统的方法
US10745244B2 (en) 2017-04-03 2020-08-18 Otis Elevator Company Method of automated testing for an elevator safety brake system and elevator brake testing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173814B1 (en) * 1999-03-04 2001-01-16 Otis Elevator Company Electronic safety system for elevators having a dual redundant safety bus
US6267219B1 (en) * 2000-08-11 2001-07-31 Otis Elevator Company Electronic safety system for escalators
US20040173410A1 (en) * 2001-09-18 2004-09-09 Romeo Deplazes Safety circuit for lift doors
WO2005000727A1 (de) * 2003-06-30 2005-01-06 Inventio Ag Sicherheitssystem einer aufzugsanlage
US20050082121A1 (en) * 2003-10-20 2005-04-21 Inventio Ag Safety system for an elevator installation and method of operating an elevator installation with a safety system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7624974A (en) * 1973-12-20 1976-06-10 Production Eng Co Ltd Electric fences
JPH02233486A (ja) * 1989-02-28 1990-09-17 Otis Elevator Co エレベータ用ケーブル断線検出装置
DE9015495U1 (de) * 1990-11-12 1992-01-02 Technischer Ueberwachungs-Verein Bayern E.V., 8000 Muenchen, De
JP3045790B2 (ja) * 1991-01-28 2000-05-29 三菱電機株式会社 エレベーターの信号伝送装置
US5387769A (en) * 1993-06-01 1995-02-07 Otis Elevator Company Local area network between an elevator system building controller, group controller and car controller, using redundant communication links
RU15716U1 (ru) * 2000-07-28 2000-11-10 Горохов Сергей Львович Устройство для анализа состояния дверей шахты лифта
CN1132776C (zh) * 2000-07-29 2003-12-31 肖明欢 电梯门锁开关监测装置及其监测方法
US6467585B1 (en) * 2001-07-05 2002-10-22 Otis Elevator Company Wireless safety chain for elevator system
US7334665B2 (en) * 2004-03-02 2008-02-26 Thyssenkrupp Elevator Capital Corporation Interlock wiring communication system for elevators
JP5068534B2 (ja) * 2005-08-31 2012-11-07 三菱電機株式会社 エレベータの制御システム
ES2557328T3 (es) * 2007-06-18 2016-01-25 Inventio Ag Dispositivo y procedimiento para controlar un dispositivo de frenado
ES2499340T3 (es) * 2007-08-07 2014-09-29 Thyssenkrupp Elevator Ag Sistema de elevador
BRPI0918532A2 (pt) * 2008-09-19 2015-12-08 Inventio Ag método para operar um sistema de elevação, dispositivo de entrada de chamada, sistema de elevação compreendendo um dispositivo de entrada de chamada deste tipo e método para aperfeiçoar um sistema de elevação com um dispositivo de entrada de chamada deste tipo.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6173814B1 (en) * 1999-03-04 2001-01-16 Otis Elevator Company Electronic safety system for elevators having a dual redundant safety bus
US6267219B1 (en) * 2000-08-11 2001-07-31 Otis Elevator Company Electronic safety system for escalators
US20040173410A1 (en) * 2001-09-18 2004-09-09 Romeo Deplazes Safety circuit for lift doors
WO2005000727A1 (de) * 2003-06-30 2005-01-06 Inventio Ag Sicherheitssystem einer aufzugsanlage
US20050082121A1 (en) * 2003-10-20 2005-04-21 Inventio Ag Safety system for an elevator installation and method of operating an elevator installation with a safety system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333717B (zh) * 2009-02-25 2014-03-12 因温特奥股份公司 具有监控系统的电梯和电梯的通讯方法
CN102333717A (zh) * 2009-02-25 2012-01-25 因温特奥股份公司 具有监控系统的电梯
KR20140066717A (ko) * 2011-08-11 2014-06-02 인벤티오 아게 엘리베이터 시스템용 시험 방법 및 이 시험 방법을 실행하는 모니터링 장치
CN103648950A (zh) * 2011-08-11 2014-03-19 因温特奥股份公司 安全元件的功能监测
CN103813972A (zh) * 2011-08-11 2014-05-21 因温特奥股份公司 电梯设备的测试方法和用于实施该测试方法的监控装置
WO2013020806A1 (de) 2011-08-11 2013-02-14 Inventio Ag Testverfahren einer aufzugsanlage und eine überwachungseinrichtung zum durchführen des testverfahrens
CN103648950B (zh) * 2011-08-11 2016-04-13 因温特奥股份公司 安全元件的功能监测
US9695016B2 (en) 2011-08-11 2017-07-04 Inventio Ag Functional monitoring of a safety element
AU2012292475B2 (en) * 2011-08-11 2017-07-27 Inventio Ag Test method for an elevator system and a monitoring device for carrying out the test method
US9902592B2 (en) 2011-08-11 2018-02-27 Inventio Ag Method and monitoring device for testing an elevator system
KR102003576B1 (ko) 2011-08-11 2019-07-24 인벤티오 아게 엘리베이터 시스템용 시험 방법 및 이 시험 방법을 실행하는 모니터링 장치
EP2607286A1 (de) 2011-12-19 2013-06-26 Inventio AG Testverfahren einer Aufzugsanlage und eine Überwachungseinrichtung zum Durchführen des Testverfahrens
EP2930134B1 (de) 2014-04-09 2018-05-30 Kone Corporation Sicherheitssystem und Verfahren für sicherheitskritische Komponenten in einer Aufzugsanlage
US11365088B2 (en) 2015-12-21 2022-06-21 Inventio Ag Monitoring device for a passenger transport system, testing method and passenger transport system

Also Published As

Publication number Publication date
CN101754920A (zh) 2010-06-23
MX2010000566A (es) 2010-03-08
EP2167413B1 (de) 2012-12-05
AU2008277777A1 (en) 2009-01-22
MY159057A (en) 2016-12-15
US20120273307A1 (en) 2012-11-01
RU2482050C2 (ru) 2013-05-20
ES2400928T3 (es) 2013-04-15
HK1145485A1 (en) 2011-04-21
JP2011502908A (ja) 2011-01-27
AU2008277777B2 (en) 2014-01-16
BRPI0814107A2 (pt) 2015-02-03
US8443944B2 (en) 2013-05-21
CN101754920B (zh) 2013-07-03
EP2167413A1 (de) 2010-03-31
RU2010105545A (ru) 2011-08-27
KR20100043185A (ko) 2010-04-28
PL2167413T3 (pl) 2013-05-31

Similar Documents

Publication Publication Date Title
EP2167413B1 (de) Überwachungsverfahren einer aufzugsanlage
EP2741993B1 (de) Testverfahren einer aufzugsanlage und eine überwachungseinrichtung zum durchführen des testverfahrens
DE69632014T2 (de) Analyzing Procedure
EP1638880B2 (de) Sicherheitssystem einer aufzugsanlage
DE102017107284B4 (de) Verfahren und steuergerät zum überwachen eines bordnetzes eines fahrzeugs
DE60029312T2 (de) Elektronische sicherheitsschaltung für aufzüge
EP0082859B1 (de) Antiblockierregelsystem
EP1427662A1 (de) Siecherheitskreis für aufzugstüren
DE3522418C2 (de)
WO2016096599A1 (de) Verfahren und vorrichtung zum rückwirkungsfreien erfassen von daten
DE102005014804A1 (de) Bordnetzsystem für ein Kraftfahrzeug sowie Steuergerät und intelligentes Energieversorgungsgerät für ein Bordnetzsystem eines Kraftfahrzeugs
EP2167358A1 (de) Verfahren zum statischen überprüfen eines bremssystems eines fahrzeugs
EP2613463B1 (de) Verfahren zur überwachung eines transmitters und entsprechender transmitter
EP1398238B1 (de) Diagnose- und Überwachungsvorrichtung einer Bremszuspanneinrichtung eines Fahrzeugs
EP1469627B1 (de) Verfahren zur signaltechnisch sicheren Datenübertragung
EP2607286A1 (de) Testverfahren einer Aufzugsanlage und eine Überwachungseinrichtung zum Durchführen des Testverfahrens
WO2022167044A1 (de) System zum erfassen eines zustands einer fahrzeugkomponente
DE102006017628A1 (de) Verfahren und Vorrichtung zum Betrieb einer Signaleinrichtung einer Eisenbahnanlage
EP2013731A1 (de) Schaltungsanordnung und verfahren zum betrieb einer schaltungsanordnung
EP3963291B1 (de) Sensoranordnung zum überwachen eines technischen systems und verfahren zum betreiben einer sensoranordnung
EP3281365A1 (de) Schnittstellenerweiterungseinrichtung für eine netzwerkeinrichtung und verfahren zum betrieb einer schnittstellenerweiterungseinrichtung
WO2020099111A1 (de) Verfahren zur verhinderung der deaktivierung einer unzulässigen anzahl von gleichartigen komponenten eines schienenfahrzeugs
EP2950176A1 (de) Verfahren und Automatisierungskomponente zur Generierung einer Ereignismeldung
DE102012008116A1 (de) Verfahren zur Fehlerklassifikation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880024940.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08774798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2010/000566

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2707389

Country of ref document: CA

Ref document number: 20107000933

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010516454

Country of ref document: JP

Ref document number: 2008774798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 316/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008277777

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010105545

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2008277777

Country of ref document: AU

Date of ref document: 20080704

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010000192

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 12669322

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0814107

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100118