WO2009004178A2 - Module photovoltaïque comprenant un film polymère et procédé de fabrication d'un tel module - Google Patents

Module photovoltaïque comprenant un film polymère et procédé de fabrication d'un tel module Download PDF

Info

Publication number
WO2009004178A2
WO2009004178A2 PCT/FR2008/000752 FR2008000752W WO2009004178A2 WO 2009004178 A2 WO2009004178 A2 WO 2009004178A2 FR 2008000752 W FR2008000752 W FR 2008000752W WO 2009004178 A2 WO2009004178 A2 WO 2009004178A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
photovoltaic cells
module
polymer
film
Prior art date
Application number
PCT/FR2008/000752
Other languages
English (en)
Other versions
WO2009004178A3 (fr
Inventor
Hubert Lauvray
Klaus Bamberg
Original Assignee
Apollon Solar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apollon Solar filed Critical Apollon Solar
Priority to CA2690584A priority Critical patent/CA2690584A1/fr
Priority to EP08805640A priority patent/EP2158615A2/fr
Priority to US12/451,921 priority patent/US20100126560A1/en
Priority to AU2008270131A priority patent/AU2008270131A1/en
Priority to CN2008800211749A priority patent/CN101681947B/zh
Priority to JP2010512730A priority patent/JP2010530629A/ja
Publication of WO2009004178A2 publication Critical patent/WO2009004178A2/fr
Publication of WO2009004178A3 publication Critical patent/WO2009004178A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • Photovoltaic module comprising a polymer film and method of manufacturing such a module.
  • the invention relates to a photovoltaic module comprising:
  • front and rear plates each having an inner face and an outer face
  • the invention also relates to a method of manufacturing such a module.
  • a photovoltaic cell is conventionally formed on a solid silicon substrate cut into slices of a few hundred microns thick.
  • the substrate may be made of monocrystalline silicon, polycrystalline silicon or other semiconductor material. It has on its surface a network of narrow electrodes, usually silver or aluminum, designed to drain the current to one or more main electrodes from one to a few millimeters in width, also in silver or aluminum.
  • Each cell provides an illumination dependent current at an electrical voltage that depends on the nature of the semiconductor and is usually in the range of 0.45V to 0.65V for the crystalline silicon. Voltages of 6V to several tens of volts are usually required to operate electrical appliances, a module photovoltaic is generally constituted by a plurality of cells electrically connected in series. A module of 40 cells provides for example nearly 24 volts. Depending on the currents requested, several cells can also be placed in parallel. A generator can then be made by adding possibly accumulators, a voltage regulator, etc.
  • the patent application WO2004 / 095586 proposes to assemble the photovoltaic cells between front and rear plates, for example made of glass and to seal said plates with a peripheral organic sealing joint.
  • the peripheral organic sealing seal delimits, thus, a sealed interior volume, in which the photovoltaic cells are arranged side by side.
  • the assembly is then compressed and the interior volume is brought to a pressure below atmospheric pressure.
  • Such a photovoltaic module has a good long-term seal and it is simpler and less expensive to manufacture than previous photovoltaic modules using a solder paste based on tin, lead and zinc.
  • this configuration of photovoltaic module requires depositing one or more antireflection layers on both sides of the front plate, so as to overcome the optical discontinuity existing between the front plate and the antireflection layer of each photovoltaic cell receiving the light of the outside the cell.
  • such a module, sealed with a peripheral organic seal is not sufficiently resistant to shocks.
  • the object of the invention is to remedy these drawbacks and, in particular, to propose a photovoltaic module having improved impact resistance and ensuring optical continuity from the front plate. to the photovoltaic cells and more particularly to the antireflection layers of said cells.
  • one of the aims of the invention is also to propose a method of manufacturing such a photovoltaic module, which is easy to implement and does not generate additional costs.
  • FIG. 1 shows schematically and in section, a particular mode of a photovoltaic module according to the invention.
  • FIG. 2 illustrates a particular mode of fabrication of the module according to FIG. 1.
  • FIG. 3 represents, schematically and in section, an alternative embodiment of the photovoltaic module according to FIG.
  • a photovoltaic module 1 comprises front and rear plates 3, each provided with an inner face 2a, 3a and an outer face 2b, 3b.
  • the front plate 2 is preferably made of glass and the back plate 3 can be made of glass or a metal sheet.
  • a plurality of photovoltaic cells 4 are arranged side by side, between the front plates 2 and rear 3.
  • they each comprise an antireflection layer (not shown in Figure 1), with a predetermined refractive index.
  • the module 1 further comprises corresponding electrical interconnection conductors associated with said cells (not shown in FIG. 1). Said conductors are, in general, arranged, on one of the two faces, before 4a or rear 4b, photovoltaic cells 4.
  • a peripheral sealing seal 5, preferably organic, is disposed between the front plates 2 and rear 3, around the assembly formed by the plurality of photovoltaic cells 4. Said seal 5 delimits, thus, a volume 6, in which the photovoltaic cells 4 are arranged.
  • the pressure in the internal volume 6 can advantageously be maintained at a pressure lower than the atmospheric pressure.
  • the photovoltaic module comprises a polymer film 7 coming into contact with both the photovoltaic cells 4 and with the front plate 2.
  • polymer film is meant a film comprising at least one or more polymers. More particularly, the polymer film 7 is disposed on the part of the internal face of the front plate, corresponding to the part delimited by the sealing joint 5, that is to say the part of the internal face 2a of the plate before 2 forming the sealed interior volume 6 with the sealing gasket 5 and the corresponding part of the internal face 3a of the rear plate 3.
  • the sealing gasket 5 is in direct contact with the internal face 2a of the front plate 2 and with the inner face 3a of the rear plate 3.
  • the respective thicknesses of the front 2 and rear 3 plates are generally between 3mm and 4mm for the front plate 2 and between 0.1mm to 4mm for the back plate 3.
  • the thickness of the seal 5 depends on the thickness of the cells photovoltaic 4, but it is generally between 0.2mm and 1mm and more typically 0.7mm.
  • the polymer film 7 preferably has a thickness of the order of 10 .mu.m if the electrical interconnection conductors are arranged on the rear faces 4b of the photovoltaic cells 4 and of the order of the thickness of said conductors, typically 200 .mu.m, if they are arranged on the front faces 4a and rear 4b of the cells 4.
  • the polymer film 7 may consist of one or more thin layers comprising a polymer matrix.
  • the polymer matrix is, for example, formed by at least one polyacrylic polymer or at least one polyurethane polymer and, advantageously, it does not comprise a solvent.
  • the polymer matrix may be a mixture of polyacrylate polymers or copolymers containing at least 50% of an acrylic monomer of general formula CR 1 R 2 , in which the radical R 1 is hydrogen or a methyl group and the radical R 2 is hydrogen or a saturated hydrocarbon chain containing between 1 and 30 carbon atoms.
  • the saturated hydrocarbon chain may be branched or unbranched.
  • the polymer film 7 has, moreover, a refractive index between that of the front plate 2 and that of the antireflection layers of the photovoltaic cells 4.
  • the structure and / or the composition of the polymer film 7 is advantageously chosen from so that the polymer film has an intermediate refractive index, to ensure optical continuity in the photovoltaic module 1, between the front plate 2 and the photovoltaic cells 4, thus limiting the optical losses.
  • the polymer film 7 is advantageously at least partially crosslinked.
  • the photovoltaic cells 4 may comprise a silicon nitride antireflection layer, having a refractive index of the order of 2.3, while a glass plate has a refractive index of the order of 1, 5.
  • the refractive index of the polymer film 7 will be between these two values and it will advantageously be of the order of 1, 9.
  • the polymer film 7 will advantageously have a refractive index of the order of 1.76.
  • the refractive index of the polymers does not exceed the value of 1, 7 or 1, 8.
  • the polymer film 7 may, for example, be formed by a polymer matrix having a refractive index of the order of 1.7 or 1.8, for example a polyacrylic or polyurethane polymer matrix.
  • the refractive index of the polymer matrix can be adjusted so that the polymer film 7 has an intermediate refractive index value between that of the front plate 2 and that of the photovoltaic cells 4.
  • the refractive index of the polymer film 7 can reach the value of 1.9, by dispersing, in the polymer matrix of the thin layer or at least one of the thin layers in the case of a multilayer polymer film, a predetermined quantity of nanoparticles of at least one metal oxide.
  • Said metal oxide nanoparticles are, moreover, transparent to light and they advantageously have a diameter of less than or equal to 10 nm.
  • the metal oxide is, for example, titanium oxide or zirconium oxide.
  • the nanoparticles of titanium oxide are, more particularly, obtained from titanium oxide chelated in an organic compound, such as an alkoxy-organosilane, an alcohol, a polyethylene glycol derivative or a carboxylic acid, so as to pass the titanium from its +4 valence state to its +6 valence state (more stable state).
  • a dispersant is optionally used to prevent agglomeration of said nanoparticles.
  • the proportion of metal oxide nanoparticles in the polymer matrix is advantageously chosen so as to find a compromise between the desired refractive index, which varies linearly with the quantity of nanoparticles, and the attenuation of the transmission of the light in said polymer film, necessarily caused by the presence of said particles.
  • the proportion of nanoparticles of titanium oxide in the polymer matrix may advantageously be between 10% and 50% by weight and preferably between 25% and 30% by weight.
  • particles of at least one rare earth for example a metal of the lanthanide series
  • a polymer film 7 may comprise both rare earth particles and metal oxide nanoparticles.
  • the presence of such a polymer film 7 in a photovoltaic module 1 makes it possible to ensure optical continuity from the front plate 2 to the photovoltaic cells 4. It is therefore no longer necessary to deposit anti-reflection layers on the inner face 2a of the front plate 2.
  • the polymer film 7 improves the impact resistance of the photovoltaic module 1.
  • a front plate 2 glass breaks.
  • the polymer film 7 then serves as a buffer, avoiding the propagation of large cracks fragmenting the glass front plate.
  • the glass is then maintained by the polymer film 7.
  • tests have shown that the presence of such a polymer film 7 does not cause additional degassing that could be detrimental to the tightness of the interior volume 6.
  • a photovoltaic module 1 such as that shown in FIG. 1 also has the advantage of being easier and less expensive to manufacture than modules requiring the presence of anti-reflection layers.
  • the polymer film 7 is, in fact, deposited on the portion of the inner face 2a of the front plate 2, before the assembly of the photovoltaic cells and the peripheral sealing joint.
  • the polymer film 7, deposited on the front plate 2 is advantageously in a state enabling it to exhibit sufficient adhesive properties to temporarily hold, during assembly, the photovoltaic cells against the front plate 2.
  • FIG. 2 illustrates, by way of example, a particular embodiment of the photovoltaic module 1 as represented in FIG. 1.
  • a polymer film 7 is deposited on a portion of the internal face 2a of the front plate 2, at a temperature of the order of 40 ° C.
  • Said polymer film 7 has, in addition, a dynamic viscosity, at 40 ° C., of between approximately 10 3 ⁇ l (Poiseuille), or 10 4 Po or P (Poise) and about 5.10 3 Pl, or 5.10 4 Po or P.
  • Such a viscosity range makes it possible, in fact, to deposit the film 7 on a front plate 2, advantageously arranged in a vertical position, without the polymer does not flow along the inner face 2a of the front plate 2. Then, the dynamic viscosity of said film 7 reaches, after cooling to ambient temperature, that is to say at a temperature of the order of 20 0 C, a dynamic viscosity of between about 2.10 3 P 1 (about 2 ⁇ 10 4 Po) and about 1.10 4 Pl (ie 1.10 5 Po).
  • This gives said film 7 adhesive properties making it possible, during assembly, to maintain the photovoltaic cells 4 against the front plate 2. More particularly, when the front plate 2 is in a vertical position, such a range of dynamic viscosity makes it possible to maintain the photovoltaic cells 4 against the front plate 2, for at least 10 minutes, without there being displacement of said photovoltaic cells 4.
  • the deposition of the polymer film 7 is followed by the assembly of the photovoltaic module and in particular of the front plate 2 coated with the polymer film 7, the photovoltaic cells 4, the peripheral sealing gasket 5 and the plate 3.
  • the different elements of the photovoltaic module are preferably assembled, according to the method described in the patent application WO2004 / 09586.
  • the front 2 and rear 3 plates are placed in a vertical position, parallel to each other, the polymer film 7 being arranged facing the internal face 3 a of the rear plate 3.
  • the photovoltaic cells 4 and the peripheral sealing joint 5 are arranged between the two plates 2 and 3.
  • the cells 4 are, more particularly, arranged side by side, while the seal 5 is disposed at the periphery of said cells.
  • the photovoltaic cells 4, the sealing gasket 5 and the rear plate 3 are then directed towards the front plate 2 (arrows F), until:
  • the photovoltaic cells 4 come into contact with the polymer film 7
  • the sealing gasket 5 comes into contact with the internal face 2a of the front plate 2
  • the assembly is then compressed by applying a pressure between the two plates 2 and 3.
  • the sealing joint 5 delimits, then, a sealed interior volume 6 inside which are arranged the photovoltaic cells 4.
  • a depression is then , advantageously carried out inside said volume 6, preferably by suction, to ensure a contact pressure sufficient to allow the electrical conduction necessary for the proper operation of the module.
  • the polymer film 7 deposited on the inner face 2a of the front plate may advantageously be a crosslinkable polymer film.
  • crosslinkable polymer film is meant a polymer film capable of being crosslinked, that is to say a polymer film in a disordered state and able to pass into a more orderly state.
  • the polymer film can be crosslinked so as to avoid degassing phenomena.
  • the method of crosslinking a polymer depends on said polymer employed. However, a large number of polymers can be crosslinked by exposing them to ultraviolet radiation. Thus, the polymer film 7 may advantageously be exposed to said radiation, through the front plate 2 (arrows F 'in FIG. 2), once the photovoltaic module has been assembled.
  • the exposure of the polymer film 7 to ultraviolet radiation may be performed during assembly.
  • the photovoltaic cells 4 are put in contact with the polymer film 7, then the parts of the polymer film 7 not covered by the photovoltaic cells 4 are directly exposed to ultraviolet radiation.
  • the polymer film 7, provided with photovoltaic cells 4 is directly exposed to ultraviolet radiation, on the side of the internal face 2a of the front plate 2 and no longer through said plate 2, so that only the parts of the polymer film 7 not covered by the photovoltaic cells 4 are crosslinked.
  • the peripheral seal 5 and the backplate 3 are successively contacted with the inner face 2a of the front plate 2, before the assembly is compressed.
  • Such an embodiment improves the maintenance of the photovoltaic cells 4 against the front plate 2.
  • a subsequent crosslinking can, if necessary, be performed using ultraviolet radiation, through the front plate 2. This subsequent crosslinking can be carried out by voluntarily or it can progressively occur during the use of the photovoltaic module.
  • the production of the polymer film 7 integrates perfectly with the method of producing the photovoltaic module such as that described in the patent application WO2004 / 09586, without generating additional manufacturing costs, replacing a subsequent delicate and expensive step of deposition of layers. anti-reflection.
  • the photovoltaic module 1 may also include an additional polymer film 8 covering at least a portion of the inner face 3a of the rear plate 3.
  • additional polymer film 8 deposited on said back plate 3 makes it possible, in fact, to improve the impact resistance of said module.
  • the material or materials constituting said film 8 may be identical or different from the deposited material (s) to form the polymer film 7. It must, however, be crosslinked before assembly of the module.
  • a first polymeric resin film and a film for forming the front plate are laminated on the front surfaces of the photovoltaic cells and a second polymer resin film and a film for forming the back plate are laminated on the respective rear surfaces of the photovoltaic cells. Then, the laminate is heated at 150 ° C for 30 minutes. The first and second polymer resin films then form the sealing material.
  • Many other documents of the prior art have a similar teaching. By way of example, mention may be made of patent applications WO-A-2004-038462 and EP-A-1722619 in which the polymer material used as a sealing material is an ethylene / vinyl acetate copolymer, also known under the name EVA.
  • the polymer film used in the photovoltaic module does not have the function of sealing between the front and rear plates.
  • This function is, in fact, performed by a peripheral sealing gasket 5.
  • This peripheral sealing gasket thus delimits a sealed interior volume 6 in which the photovoltaic cells 4 are arranged. Therefore, the photovoltaic cells 4 are not embedded in a particular material.
  • the side walls of the photovoltaic cells 4 are free.
  • the polymer film 7 maintains the photovoltaic cells 4 against the front plate, during the assembly of said cells and the seal between the front and rear plates. It also makes it possible to ensure optical continuity between the front plate 2 and the photovoltaic cells 4 and to obtain good impact resistance.
  • the polymer film 7 is not a laminate.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Un module photovoltaïque comportant : des plaques avant (2) et arrière (3), comportant chacune des faces interne (2a) et externe (3a), une pluralité de cellules photovoltaïques (4), disposées côte à côte entre les plaques avant (2) et arrière (3) et comportant chacune une couche antireflet, et un joint de scellement (5) périphérique disposé entre les plaques avant (2) et arrière (3), autour des cellules photovoltaïques (4). La partie de la face interne (2a) de la plaque avant (2), délimitée par le joint de scellement (5) est revêtue d'un film polymère (7) présentant un indice de réfraction compris entre celui de la plaque avant (2) et celui des couches antireflets des cellules photovoltaïques (4), ledit film (7) étant en contact avec les cellules photovoltaïques (4).

Description

Module photovoltaïque comprenant un film polymère et procédé de fabrication d'un tel module.
Domaine technique de l'invention
L'invention concerne un module photovoltaïque comportant :
- des plaques avant et arrière, comportant chacune une face interne et une face externe,
- une pluralité de cellules photovoltaïques disposées côte à côte entre les plaques avant et arrière et comportant chacune une couche antireflet et,
- et un joint de scellement périphérique disposé entre les plaques avant et arrière, autour des cellules photovoltaïques.
L'invention concerne également un procédé de fabrication d'un tel module.
État de la technique
Une cellule photovoltaïque est classiquement formée sur un substrat en silicium massif découpé sous forme de tranches de quelques centaines de microns d'épaisseur. Le substrat peut être constitué de silicium monocristallin, de silicium polycristallin ou d'un autre matériau semiconducteur. Elle possède à sa surface un réseau d'électrodes étroites, généralement en argent ou en aluminium, destinées à drainer le courant vers une ou plusieurs électrodes principales de un à quelques millimètres de largeur, également en argent ou en aluminium.
Chaque cellule fournit un courant dépendant de l'éclairement sous une tension électrique qui dépend de la nature du semiconducteur et qui est habituellement de l'ordre de 0,45V à 0,65V pour le silicium cristallin. Des tensions de 6V à plusieurs dizaines de volts étant habituellement nécessaires pour faire fonctionner des appareils électriques, un module photovoltaïque est généralement constitué par une pluralité de cellules électriquement connectées en série. Un module de 40 cellules fournit par exemple près de 24 volts. Selon les courants demandés, plusieurs cellules peuvent également être placées en parallèle. Un générateur peut ensuite être réalisé en y adjoignant éventuellement des accumulateurs, un régulateur de tension, etc..
Pour fabriquer un module photovoltaïque, la demande de brevet WO2004/095586 propose d'assembler les cellules photovoltaïques entre des plaques avant et arrière, par exemple en verre et de sceller lesdites plaques avec un joint de scellement organique périphérique. Le joint de scellement organique périphérique délimite, ainsi, un volume intérieur étanche, dans lequel sont disposées côte à côte les cellules photovoltaïques. L'ensemble est ensuite comprimé et le volume intérieur est amené à une pression inférieure à la pression atmosphérique. Un tel module photovoltaïque présente une bonne étanchéité à long terme et il est plus simple et moins coûteux à fabriquer que les modules photovoitaïques antérieurs utilisant une pâte de soudure à base d'étain, de plomb et de zinc. Cependant, cette configuration de module photovoltaïque nécessite de déposer une ou plusieurs couches antireflets sur les deux faces de la plaque avant, de manière à remédier à la discontinuité optique existant entre la plaque avant et la couche antireflet de chaque cellule photovoltaïque recevant la lumière de l'extérieur de la cellule. De plus, un tel module, scellé à l'aide d'un joint de scellement organique périphérique, n'est pas suffisamment résistant aux chocs.
Objet de l'invention
L'invention a pour but de remédier à ces inconvénients et, en particulier, de proposer un module photovoltaïque présentant une résistance aux chocs améliorée et assurant une continuité optique depuis la plaque avant jusqu'aux cellules photovoltaïques et plus particulièrement jusqu'aux couches antireflets desdites cellules.
De plus, un des buts de l'invention est également de proposer un procédé de fabrication d'un tel module photovoltaïque, facile à mettre en œuvre et ne générant pas de coûts supplémentaires.
Selon l'invention, ce but est atteint par les revendications annexées.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- la figure 1 représente, schématiquement et en coupe, un mode particulier d'un module photovoltaïque selon l'invention. - la figure 2 illustre un mode particulier de fabrication du module selon la figure 1.
- la figure 3 représente, schématiquement et en coupe, une variante de réalisation du module photovoltaïque selon la figure 1.
Description de modes particuliers de réalisation
Selon un mode particulier représenté sur la figure 1 , un module photovoltaïque 1 comporte des plaques avant 2 et arrière 3, munies chacune d'une face interne 2a, 3a et d'une face externe 2b, 3b. La plaque avant 2 est avantageusement en verre et la plaque arrière 3 peut être en verre ou bien une feuille métallique. Une pluralité de cellules photovoltaïques 4 est disposée côte à côte, entre les plaques avant 2 et arrière 3. De plus, elles comportent chacune une couche antireflet (non représentée sur la figure 1), avec un indice de réfraction prédéterminé. Ainsi, trois cellules photovoltaïques 4 sont représentées sur la figure 1. De manière classique, le module 1 comporte, en outre, des conducteurs correspondants d'interconnexion électrique, associés auxdites cellules (non représentés sur la figure 1). Lesdits conducteurs sont, en général, disposés, en saillie, sur l'une des deux faces, avant 4a ou arrière 4b, des cellules photovoltaïques 4.
De plus, un joint de scellement périphérique 5, de préférence organique, est disposé entre les plaques avant 2 et arrière 3, autour de l'ensemble formé par la pluralité de cellules photovoltaïques 4. Ledit joint de scellement 5 délimite, ainsi, un volume intérieur étanche 6 dans lequel sont disposées les cellules photovoltaïques 4. Par ailleurs, comme dans la demande de brevet WO2004/095586, la pression dans le volume intérieur 6 peut être, avantageusement, maintenue à une pression inférieure à la pression atmosphérique.
Enfin, le module photovoltaïque comporte un film polymère 7 venant en contact à la fois avec les cellules photovoltaïques 4 et avec la plaque avant 2. Par film polymère, on entend un film comportant au moins un ou plusieurs polymères. Plus particulièrement, le film polymère 7 est disposé sur la partie de la face interne de la plaque avant, correspondant à la partie délimitée par le joint de scellement 5, c'est-à-dire la partie de la face interne 2a de la plaque avant 2 formant le volume intérieur étanche 6 avec le joint de scellement 5 et la partie correspondante de la face interne 3a de la plaque arrière 3. Sur la figure 1 , le joint de scellement 5 est en contact direct avec la face interne 2a de la plaque avant 2 et avec la face interne 3a de la plaque arrière 3. Les épaisseurs respectives des plaques avant 2 et arrière 3 sont généralement comprises entre 3mm et 4mm pour la plaque avant 2 et entre 0,1mm à 4mm pour la plaque arrière 3. L'épaisseur du joint de scellement 5 dépend de l'épaisseur des cellules photovoltaïques 4, mais elle est généralement comprise entre 0,2mm et 1mm et plus typiquement de 0,7mm. Le film polymère 7 a, de préférence, une épaisseur de l'ordre de 10μm si les conducteurs d'interconnexion électrique sont disposés sur les faces arrières 4b des cellules photovoltaïques 4 et de l'ordre de l'épaisseur desdits conducteurs, typiquement 200μm, si ceux-ci sont disposés sur les faces avants 4a et arrières 4b des cellules 4.
Le film polymère 7 peut être constitué d'une ou de plusieurs couches minces comprenant une matrice polymère. La matrice polymère est, par exemple, formée par au moins un polymère polyacrylique ou par au moins un polymère polyuréthane et, avantageusement, elle ne comporte pas de solvant. À titre d'exemple, la matrice polymère peut être un mélange de polymères ou de copolymères polyacrylates contenant au moins 50% d'un monomère acrylique de formule générale CR1R2, dans laquelle le radical R-i est l'hydrogène ou un groupement méthyle et le radical R2 est l'hydrogène ou une chaîne hydrocarbonée saturée comportant entre 1 et 30 atomes de carbone. La chaîne hydrocarbonée saturée peut être ramifiée ou non.
Le film polymère 7 présente, par ailleurs, un indice de réfraction compris entre celui de la plaque avant 2 et celui des couches antireflets des cellules photovoltaïques 4. En effet, la structure et/ou la composition du film polymère 7 est avantageusement choisie, de manière à ce que le film polymère présente un indice de réfraction intermédiaire, permettant d'assurer une continuité optique dans le module photovoltaïque 1 , entre la plaque avant 2 et les cellules photovoltaïques 4, limitant, ainsi, les pertes optiques. De plus, le film polymère 7 est, avantageusement, au moins partiellement réticulé. À titre d'exemple, les cellules photovoltaïques 4 peuvent comporter une couche antireflet en nitrure de silicium, ayant un indice de réfraction de l'ordre de 2,3, tandis qu'une plaque en verre présente un indice de réfraction de l'ordre de 1 ,5. Dans ce cas, l'indice de réfraction du film polymère 7 sera compris entre ces deux valeurs et il sera, avantageusement, de l'ordre de 1 ,9. Dans un autre mode de réalisation, pour des cellules photovoltaïques 4 comportant une couche supérieure en oxyde de silicium (indice de réfraction < 2), le film polymère 7 aura, avantageusement, un indice de réfraction de l'ordre de 1 ,76.
Or, en général, l'indice de réfraction des polymères ne dépasse pas la valeur de 1 ,7 ou de 1 ,8. Dans le cas d'un module comportant une plaque avant 2 en verre et des cellules photovoltaïques 4 avec des couches supérieures en oxyde de silicium, de telles valeurs d'indice de réfraction pour le film polymère 7 suffisent à assurer la continuité optique dans ledit module. Dans ce cas, le film polymère peut, par exemple, être formé par une matrice polymère présentant un indice de réfraction de l'ordre de 1,7 ou de 1 ,8, par exemple une matrice polymère polyacrylique ou polyuréthane.
Par contre, pour des cellules photovoltaïques 4 comportant des couches antireflets en nitrure de silicium et de manière plus générale, l'indice de réfraction de la matrice polymère peut être ajusté afin que le film polymère 7 présente une valeur d'indice de réfraction intermédiaire entre celle de la plaque avant 2 et celle des cellules photovoltaïques 4. À titre d'exemple, l'indice de réfraction du film polymère 7 peut atteindre la valeur de 1,9, en dispersant, dans la matrice polymère de la couche mince ou d'au moins une des couches minces dans le cas d'un film polymère sous forme de multicouche, une quantité prédéterminée de nanoparticules d'au moins un oxyde métallique. Lesdites nanoparticules d'oxyde métallique sont, de plus, transparentes à la lumière et elles présentent, avantageusement, un diamètre inférieur ou égal à 10nm. L'oxyde métallique est, par exemple, de l'oxyde de titane ou de l'oxyde de zirconium. À titre d'exemple, les nanoparticules d'oxyde de titane sont, plus particulièrement, obtenues à partir d'oxyde de titane chélaté dans un composé organique, tel qu'un alkoxy-organosilane, un alcool, un dérivé du polyéthylène glycol ou un acide carboxylique, de manière à faire passer le titane de son état de valence +4 à son état de valence +6 (état plus stable). Un dispersant est éventuellement utilisé pour éviter l'agglomération desdites nanoparticules. Par ailleurs, la proportion des nanoparticules d'oxyde métallique dans la matrice polymère est, avantageusement, choisie de manière à trouver un compromis entre l'indice de réfraction désiré, variant linéairement avec la quantité de nanoparticules, et l'atténuation de la transmission de la lumière dans ledit film polymère, nécessairement provoquée par la présence desdites particules. À titre d'exemple, la proportion de nanoparticules d'oxyde de titane dans la matrice polymère peut être, avantageusement, comprise entre 10% et 50% en poids et préférentiellement entre 25% et 30% en poids.
De plus, des particules d'au moins une terre rare, par exemple un métal de la série des lanthanides, peuvent être dispersées dans la matrice polymère de la couche mince ou de l'une des couches minces dans le cas d'un revêtement multicouche. L'ajout de telles particules adapte ou module le spectre de la lumière incidente à la réponse spectrale de la cellule. Bien entendu, un film polymère 7 peut comporter à la fois des particules de terre rare et des nanoparticules d'oxyde métallique.
Ainsi, la présence d'un tel film polymère 7 dans un module photovoltaïque 1 permet d'assurer une continuité optique depuis la plaque avant 2 jusqu'aux cellules photovoltaïques 4. Il n'est, alors, plus nécessaire de déposer des couches antireflets sur la face interne 2a de la plaque avant 2. De plus, le film polymère 7 améliore la résistance aux chocs du module photovoltaïque 1. En effet, sous un choc mécanique, une plaque avant 2 en verre se brise. Le film polymère 7 sert alors d'amortisseur, en évitant la propagation de fissures importantes fragmentant la plaque avant en verre. Le verre est alors maintenu par le film polymère 7. De plus, des tests ont montré que la présence d'un tel film polymère 7 ne provoquait pas un dégazage supplémentaire qui pourrait être néfaste à l'étanchéité du volume intérieur 6.
Un module photovoltaïque 1 tel que celui représenté sur la figure 1 présente, également, l'avantage d'être plus facile et moins coûteux à fabriquer que les modules nécessitant la présence de couches antireflets. Le film polymère 7 est, en effet, déposé sur la partie de la face interne 2a de la plaque avant 2, avant l'assemblage des cellules photovoltaïques et du joint de scellement périphérique. De plus, le film polymère 7, déposé sur la plaque avant 2, est, avantageusement, dans un état lui permettant de présenter des propriétés adhésives suffisantes pour maintenir provisoirement, pendant, l'assemblage, les cellules photovoltaïques contre la plaque avant 2.
La figure 2 illustre, à titre d'exemple, un mode particulier de réalisation du module photovoltaïque 1 tel que représenté sur la figure 1. En premier lieu et comme représenté sur la figure 2, un film polymère 7 est déposé sur une partie de la face interne 2a de la plaque avant 2, à une température de l'ordre de 400C. Ledit film polymère 7 présente, de plus, une viscosité dynamique, à 400C, comprise entre environ 103 PI (Poiseuille), soit 104 Po ou P (Poise) et environ 5.103 Pl, soit 5.104 Po ou P. Une telle gamme de viscosité permet, en effet, de déposer le film 7 sur une plaque avant 2, avantageusement disposée en position verticale, sans que le polymère ne s'écoule le long de la face interne 2a de la plaque avant 2. Puis, la viscosité dynamique dudit film 7 atteint, après refroidissement à température ambiante, c'est-à-dire à une température de l'ordre de 200C, une viscosité dynamique comprise entre environ 2.103 Pl (soit 2.104 Po) et environ 1.104 Pl (soit 1.105 Po). Ceci confère audit film 7 des propriétés adhésives permettant de maintenir, pendant l'assemblage, les cellules photovoltaïques 4 contre la plaque avant 2. Plus particulièrement, lorsque la plaque avant 2 est en position verticale, une telle gamme de viscosité dynamique permet de maintenir les cellules photovoltaïques 4 contre la plaque avant 2, pendant au moins 10 minutes, sans qu'il n'y ait déplacement desdites cellules photovoltaïques 4.
Comme représenté sur la figure 2, le dépôt du film polymère 7 est suivi de l'assemblage du module photovoltaïque et notamment de la plaque avant 2 revêtue du film polymère 7, des cellules photovoltaïques 4, du joint de scellement périphérique 5 et de la plaque arrière 3. Les différents éléments du module photovoltaïque sont, de préférence, assemblés, selon le procédé décrit dans la demande de brevet WO2004/09586. Ainsi, sur la figure 2, les plaques avant 2 et arrière 3 sont placées en position verticale, parallèlement l'une à l'autre, le film polymère 7 étant disposé en regard de la face interne 3a de la plaque arrière 3. De plus, les cellules photovoltaïques 4 et le joint de scellement périphérique 5 sont disposés entre les deux plaques 2 et 3. Les cellules 4 sont, plus particulièrement, disposées côté à côte, tandis que le joint de scellement 5 est disposé à la périphérie desdites cellules. Les cellules photovoltaïques 4, le joint de scellement 5 et la plaque arrière 3 sont ensuite dirigés vers la plaque avant 2 (flèches F), jusqu'à ce que :
- les cellules photovoltaïques 4 entrent en contact avec le film polymère 7, - le joint de scellement 5 entre en contact avec la face interne 2a de la plaque avant 2
- et la plaque arrière 3 entre en contact avec les cellules photovoltaïques 4 et le joint de scellement périphérique 5.
L'ensemble est, ensuite comprimé en appliquant une pression entre les deux plaques 2 et 3. Le joint de scellement 5 délimite, alors, un volume intérieur étanche 6 à l'intérieur duquel sont disposées les cellules photovoltaïques 4. Une dépression est, ensuite, avantageusement réalisée à l'intérieur dudit volume 6, de préférence, par aspiration, afin d'assurer une pression de contact suffisante pour permettre la conduction électrique nécessaire au bon fonctionnement du module. Le film polymère 7 déposé sur la face interne 2a de la plaque avant peut être avantageusement un film polymère réticulable. Par film polymère réticulable, on entend un film polymère apte à être réticulé, c'est-à-dire un film polymère se trouvant dans un état désordonné et apte à passer dans un état plus ordonné. Ainsi, après l'étape d'assemblage, le film polymère peut être réticulé de manière à éviter les phénomènes de dégazage. La méthode de réticulation d'un polymère dépend dudit polymère employé. Cependant, un grand nombre de polymères peut être réticulé en les exposant à des rayonnements ultraviolets. Ainsi, le film polymère 7 peut être, avantageusement, exposé auxdits rayonnements, à travers la plaque avant 2 (flèches F' sur la figure 2), une fois le module photovoltaïque assemblé.
Dans une variante de réalisation, l'exposition du film polymère 7 aux rayonnements ultraviolets peut être réalisée, pendant l'assemblage. Dans ce cas, les cellules photovoltaïques 4 sont mises en contact avec le film polymère 7, puis les parties du film polymère 7 non recouvertes par les cellules photovoltaïques 4 sont directement exposées aux rayonnements ultraviolets. Ainsi, le film polymère 7, muni des cellules photovoltaïques 4, est directement exposé aux rayonnements ultraviolets, du côté de la face interne 2a de la plaque avant 2 et non plus à travers ladite plaque 2, de sorte que seules les parties du film polymère 7 non recouvertes par les cellules photovoltaïques 4 sont réticulées. Ensuite, le joint de scellement périphérique 5 et la plaque arrière 3 sont successivement mis en contact avec la face interne 2a de Ia plaque avant 2, avant que l'ensemble ne soit comprimé. Une telle variante de réalisation améliore le maintien des cellules photovoltaïques 4 contre la plaque avant 2. Une réticulation ultérieure peut, si nécessaire, être réalisée à l'aide de rayonnements ultraviolets, à travers la plaque avant 2. Cette réticulation ultérieure peut être réalisée de manière volontaire ou bien elle peut se dérouler progressivement lors de l'usage du module photovoltaïque. La réalisation du film polymère 7 s'intègre parfaitement au procédé de réalisation du module photovoltaïque tel que celui décrit dans la demande de brevet WO2004/09586, sans générer des coûts de fabrication supplémentaires, remplaçant une étape ultérieure délicate et coûteuse, de dépôt de couches antireflets.
Dans une variante de réalisation et comme représenté sur la figure 3, le module photovoltaïque 1 peut également comporter un film polymère supplémentaire 8 recouvrant au moins une partie de la face interne 3a de la plaque arrière 3. Dans le cas d'une plaque arrière 3 en verre, un tel film polymère supplémentaire 8, déposé sur ladite plaque arrière 3 permet, en effet, d'améliorer la résistance aux chocs dudit module. Le ou les matériaux constituant ledit film 8 peuvent être identiques ou différents du ou des matériaux déposés pour former le film polymère 7. Il doit, cependant, être réticulé, avant l'assemblage du module.
Dans l'art antérieur, il a déjà été proposé d'utiliser des films en matériau polymère dans la réalisation de cellules photovoltaïques. Cependant, dans l'art antérieur, ces films en matériau polymère sont utilisés pour sceller le module photovoltaïque. À titre d'exemple, dans le brevet US6414236, un module photovoltaïque, comportant des plaques avant et arrière entre lesquelles sont disposés des éléments photovoltaïques, est scellé à l'aide d'un matériau de scellement en résine polymère. Une fois le module réalisé, ce matériau de scellement occupe tout l'espace disponible entre les deux plaques avant et arrière. Ainsi, les éléments photovoltaïques sont noyés dans le matériau de scellement. Un tel module est, par ailleurs, réalisé par laminage. Ainsi, un premier film en résine polymère ainsi qu'un film destiné à former la plaque avant sont laminés sur les surfaces avant des cellules photovoltaïques et un second film en résine polymère ainsi qu'un film destiné à former la plaque arrière sont laminés sur les surfaces arrières respectives des cellules photovoltaïques. Puis, le stratifié est chauffé à 150°C pendant 30 minutes. Les premier et second films en résine polymère forment alors le matériau de scellement. De nombreux autres documents de l'art antérieur ont un enseignement similaire. À titre d'exemple, on peut citer les demandes de brevet WO-A- 2004-038462 et EP-A-1722619 dans lesquels le matériau polymère utilisé comme matériau de scellement est un copolymère éthylène/acétate de vinyle, également connu sous le nom d'EVA.
Or, selon l'invention, le film polymère employé dans le module photovoltaïque n'a pas pour fonction d'effectuer le scellement entre les plaques avant et arrière. Cette fonction est, en effet, réalisée par un joint de scellement périphérique 5. Ce joint de scellement périphérique délimite ainsi un volume intérieur étanche 6 dans lequel sont disposées les cellules photovoltaïques 4. Par conséquent, les cellules photovoltaïques 4 ne sont pas noyées dans un matériau particulier. Ainsi, sur les figures 1 et 3, les parois latérales des cellules photovoltaïques 4 sont libres. Le film polymère 7 assure le maintien des cellules photovoltaïques 4 contre la plaque avant, lors de l'assemblage desdites cellules et du joint de scellement entre les plaques avant et arrière. Il permet, également, d'assurer une continuité optique entre la plaque avant 2 et les cellules photovoltaïques 4 et d'obtenir une bonne résistance aux chocs. Par ailleurs, le film polymère 7 n'est pas un laminé.

Claims

Revendications
1. Module photovoltaïque (1) comportant : - des plaques avant (2) et arrière (3), comportant chacune une face interne (2a, 3a) et une face externe (2b, 3b),
- une pluralité de cellules photovoltaïques (4) disposées côte à côte entre les plaques avant (2) et arrière (3) et comportant chacune une couche antireflet et, - et un joint de scellement (5) périphérique disposé entre les plaques avant (2) et arrière (3), autour des cellules photovoltaïques (4), module (1) caractérisé en ce que la partie de la face interne (2a) de la plaque avant (2) délimitée par le joint de scellement (5) est revêtue d'un film polymère (7) présentant un indice de réfraction compris entre celui de la plaque avant (2) et celui des couches antireflets des cellules photovoltaïques (4), ledit film (7) étant en contact avec les cellules photovoltaïques (4).
2. Module selon la revendication 1 , caractérisé en ce que le film polymère (7) est au moins partiellement réticulé.
3. Module selon l'une des revendications 1 et 2, caractérisé en ce que le joint de scellement périphérique (5) délimite un volume intérieur étanche (6), dans lequel sont disposées les cellules photovoltaïques (4) et maintenu à une pression inférieure à la pression atmosphérique.
4. Module selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le film polymère (7) est constitué d'au moins une couche mince comprenant une matrice polymère.
5. Module selon la revendication 4, caractérisé en ce que des nanoparticules d'au moins un oxyde métallique sont dispersées dans ladite matrice.
6. Module selon la revendication 5, caractérisé en ce que l'oxyde métallique est choisi parmi l'oxyde de titane et l'oxyde de zirconium.
7. Module selon l'une quelconque des revendications 4 à 6, caractérisé en , ce que des particules d'au moins une terre rare sont dispersées dans ladite matrice.
8. Module selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la matrice polymère est constituée par au moins un polymère polyacrylique ou par au moins un polymère polyuréthane.
9. Module selon la revendication 8, caractérisé en ce que la matrice polymère est un mélange de polymères ou de copolymères polyacrylates contenant au moins 50% d'un monomère acrylique de formule générale CR1R2 dans laquelle le radical Ri est l'hydrogène ou un groupement méthyle et le radical R2 est l'hydrogène ou une chaîne hydrocarbonée saturée comportant entre 1 et 30 atomes de carbone.
10. Module selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'au moins une partie de la face interne (3a) de la plaque arrière (3) est revêtue par un film polymère supplémentaire (8).
11. Procédé de fabrication d'un module (1) selon l'une quelconque des revendications 1 à 10, caractérisé en ce que le film polymère (7) est déposé sur ladite partie de la face interne (2a) de la plaque avant (2), avant l'assemblage des cellules photovoltaïques (4) et du joint de scellement périphérique (5) entre les plaques avant (2) et arrière (2), ledit film polymère
(7) étant dans un état dans lequel il présente des propriétés adhésives pour maintenir, pendant l'assemblage, les cellules photovoltaïques (4) contre la plaque avant (2).
12. Procédé selon la revendication 11 , caractérisé en ce que le dépôt dudit film polymère (7) est réalisé à une température de l'ordre de 400C et la viscosité dynamique dudit film est comprise entre environ 103 Pl et environ 5.103 PI, à 400C.
13. Procédé selon l'une des revendications 11 et 12, caractérisé en ce que l'assemblage des cellules photovoltaïques (4) et du joint de scellement (5) est réalisé à température ambiante, la viscosité dynamique du film polymère (7) étant comprise entre environ 2.103 Pl et environ 104 Pl à température ambiante.
14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que le film polymère (7) déposé sur ladite partie de la face interne (2a) de la plaque avant (2) est réticulable.
15. Procédé selon la revendication 14, caractérisé en ce que le film polymère (7) est réticulé, après l'assemblage des cellules photovoltaïques (4) et du joint de scellement (5), en exposant, à travers ladite plaque avant (2), ledit film (7) à des rayonnements ultraviolets.
16. Procédé selon l'une des revendications 14 et 15, caractérisé en ce que, pendant l'assemblage des cellules photovoltaïques (4) et du joint de scellement (5) entre les plaques avant (2) et arrière (3), le film polymère (7) est réticulé après Ia mise en contact des cellules photovoltaïques (4) avec le film polymère (7), en exposant directement les parties dudit film (7) non recouvertes par les cellules photovoltaïques à des rayonnements ultraviolets.
17. Procédé selon l'une quelconque des revendications 11 à 16, caractérisé en ce qu'un film polymère supplémentaire (8) est déposé sur au moins une partie de la face interne (3a) de la plaque arrière (3) et réticulé, avant l'assemblage.
PCT/FR2008/000752 2007-06-21 2008-06-03 Module photovoltaïque comprenant un film polymère et procédé de fabrication d'un tel module WO2009004178A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2690584A CA2690584A1 (fr) 2007-06-21 2008-06-03 Module photovoltaique comprenant un film polymere et procede de fabrication d'un tel module
EP08805640A EP2158615A2 (fr) 2007-06-21 2008-06-03 Module photovoltaïque comprenant un film polymère et procédé de fabrication d'un tel module
US12/451,921 US20100126560A1 (en) 2007-06-21 2008-06-03 Photovoltaic module comprising a polymer film and process for manufacturing such a module
AU2008270131A AU2008270131A1 (en) 2007-06-21 2008-06-03 Photovoltaic module comprising a polymer film and process for manufacturing such a module.
CN2008800211749A CN101681947B (zh) 2007-06-21 2008-06-03 包括聚合物膜的光伏模块及该模块的制造工艺
JP2010512730A JP2010530629A (ja) 2007-06-21 2008-06-03 ポリマーフィルムを備える太陽電池モジュールおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0704443 2007-06-21
FR0704443A FR2917899B1 (fr) 2007-06-21 2007-06-21 Module photovoltaique comprenant un film polymere et procede de fabrication d'un tel module

Publications (2)

Publication Number Publication Date
WO2009004178A2 true WO2009004178A2 (fr) 2009-01-08
WO2009004178A3 WO2009004178A3 (fr) 2009-02-26

Family

ID=38895727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000752 WO2009004178A2 (fr) 2007-06-21 2008-06-03 Module photovoltaïque comprenant un film polymère et procédé de fabrication d'un tel module

Country Status (8)

Country Link
US (1) US20100126560A1 (fr)
EP (1) EP2158615A2 (fr)
JP (1) JP2010530629A (fr)
CN (1) CN101681947B (fr)
AU (1) AU2008270131A1 (fr)
CA (1) CA2690584A1 (fr)
FR (1) FR2917899B1 (fr)
WO (1) WO2009004178A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148588A (zh) * 2010-02-05 2011-08-10 胜华科技股份有限公司 太阳能模块
EP2404125A2 (fr) * 2009-10-05 2012-01-11 Inova Lisec Technologiezentrum GmbH Élément sous vide et procédé de production
JP2012530201A (ja) * 2009-06-17 2012-11-29 アズレ,アレクサンドル 屋根用光発電タイル
CN102959716A (zh) * 2010-03-23 2013-03-06 保利瑞斯公司 包括含分散的具有不同折射指数的区域的物体的抗反射层的光生伏打装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2438624A2 (fr) * 2009-06-05 2012-04-11 Dow Corning Corporation Procédés de fabrication de modules photovoltaïques par syntonisation des propriétés optiques de composants individuels
FR2948230B1 (fr) * 2009-07-16 2011-10-21 Saint Gobain Plaque transparente texturee et procede de fabrication d'une telle plaque
FR2953993B1 (fr) 2009-12-15 2012-06-15 Commissariat Energie Atomique Dispositif electrique et/ou electronique a element elastique de contact
TWI492392B (zh) * 2010-08-27 2015-07-11 Ind Tech Res Inst 半導體元件模組封裝結構及其串接方式
EP2431423A3 (fr) 2010-09-21 2013-07-10 Rohm and Haas Company Revêtements antireflets
DE102011010776B4 (de) * 2011-02-09 2014-08-28 Dunmore Europe Gmbh Solarmodul mit einer Rückseitenfolie aus wenigstens zwei unterschiedlichen Folien mit einer Klebeschicht dazwischen
KR101758197B1 (ko) 2012-02-27 2017-07-14 주성엔지니어링(주) 태양전지 및 그 제조방법
US20180076339A1 (en) 2016-09-14 2018-03-15 The Boeing Company Prefabricated conductors on a substrate to facilitate corner connections for a solar cell array
US20190305723A1 (en) * 2018-03-28 2019-10-03 The Boeing Company Wiring for a rigid panel solar array
US11967923B2 (en) 2018-03-28 2024-04-23 The Boeing Company Single sheet foldout solar array
FR3104817B1 (fr) * 2019-12-16 2023-03-31 Commissariat Energie Atomique Procédé de fabrication d’un module photovoltaïque avec réticulation partielle et lamination
US12003210B2 (en) 2020-04-13 2024-06-04 The Boeing Company Solar array attachment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414236B1 (en) * 1999-06-30 2002-07-02 Canon Kabushiki Kaisha Solar cell module
US20030051751A1 (en) * 1998-10-13 2003-03-20 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
WO2004038462A1 (fr) * 2002-10-22 2004-05-06 Sunray Technologies, Inc. Structures a diffraction servant a rediriger et concentrer un rayonnement optique
EP1722619A1 (fr) * 2004-03-03 2006-11-15 Bridgestone Corporation Materiau pour fenetre de transmission de lumiere a blindage electromagnetique, panneau d'affichage et procede de fabrication d'un module de cellules solaires
US20060272699A1 (en) * 2003-04-16 2006-12-07 Apollon Solar Photovoltaic module and method for production thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374955A (en) * 1980-06-11 1983-02-22 California Institute Of Technology N-Butyl acrylate polymer composition for solar cell encapsulation and method
DE19614620C2 (de) * 1996-04-13 1998-04-16 Beiersdorf Ag Druckempfindliches, doppelseitiges Selbstklebeband auf Polyurethanbasis und dessen Verwendung
JPH10284745A (ja) * 1997-04-10 1998-10-23 Fuji Electric Co Ltd 太陽電池モジュール
JPH1131834A (ja) * 1997-07-10 1999-02-02 Showa Shell Sekiyu Kk ガラスサンドイッチ型太陽電池パネル
DE69924025T2 (de) * 1998-12-07 2005-07-21 Bridgestone Corp. Abdeckmaterial für solarzelle
US7094361B2 (en) * 1999-03-19 2006-08-22 Rutgers, The State University Optically transparent nanocomposite materials
JP2001077390A (ja) * 1999-06-30 2001-03-23 Canon Inc 太陽電池モジュール
JP2002270880A (ja) * 2001-03-14 2002-09-20 Shin Etsu Handotai Co Ltd 太陽電池モジュール及びその製造方法
JP2002280576A (ja) * 2001-03-16 2002-09-27 Citizen Watch Co Ltd 太陽電池およびその製造方法
JP4236416B2 (ja) * 2001-04-02 2009-03-11 ジャパンコンポジット株式会社 シート状補強材及びその製造方法
JP4076742B2 (ja) * 2001-07-13 2008-04-16 シャープ株式会社 太陽電池モジュール
JP2004327675A (ja) * 2003-04-24 2004-11-18 Sharp Corp 半導体デバイスおよびその製造方法
KR100659748B1 (ko) * 2004-11-19 2006-12-19 재단법인서울대학교산학협력재단 자외선 가교형 아크릴계 점착제 제조방법
JP4526022B2 (ja) * 2004-12-03 2010-08-18 三井・デュポンポリケミカル株式会社 積層体及びその用途
JP2006273709A (ja) * 2005-03-03 2006-10-12 Mitsubishi Chemicals Corp 高屈折率を有するナノ粒子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030051751A1 (en) * 1998-10-13 2003-03-20 Dai Nippon Printing Co., Ltd. Protective sheet for solar battery module, method of fabricating the same and solar battery module
US6414236B1 (en) * 1999-06-30 2002-07-02 Canon Kabushiki Kaisha Solar cell module
WO2004038462A1 (fr) * 2002-10-22 2004-05-06 Sunray Technologies, Inc. Structures a diffraction servant a rediriger et concentrer un rayonnement optique
US20060272699A1 (en) * 2003-04-16 2006-12-07 Apollon Solar Photovoltaic module and method for production thereof
EP1722619A1 (fr) * 2004-03-03 2006-11-15 Bridgestone Corporation Materiau pour fenetre de transmission de lumiere a blindage electromagnetique, panneau d'affichage et procede de fabrication d'un module de cellules solaires

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530201A (ja) * 2009-06-17 2012-11-29 アズレ,アレクサンドル 屋根用光発電タイル
EP2404125A2 (fr) * 2009-10-05 2012-01-11 Inova Lisec Technologiezentrum GmbH Élément sous vide et procédé de production
CN102148588A (zh) * 2010-02-05 2011-08-10 胜华科技股份有限公司 太阳能模块
CN102959716A (zh) * 2010-03-23 2013-03-06 保利瑞斯公司 包括含分散的具有不同折射指数的区域的物体的抗反射层的光生伏打装置

Also Published As

Publication number Publication date
JP2010530629A (ja) 2010-09-09
WO2009004178A3 (fr) 2009-02-26
CA2690584A1 (fr) 2009-01-08
AU2008270131A1 (en) 2009-01-08
US20100126560A1 (en) 2010-05-27
CN101681947A (zh) 2010-03-24
FR2917899A1 (fr) 2008-12-26
CN101681947B (zh) 2013-01-02
EP2158615A2 (fr) 2010-03-03
FR2917899B1 (fr) 2010-05-28

Similar Documents

Publication Publication Date Title
EP2158615A2 (fr) Module photovoltaïque comprenant un film polymère et procédé de fabrication d&#39;un tel module
EP2652548B1 (fr) Dispositif electrochrome tout-solide, bicouche electrochrome pour ce dispositif, et procede de preparation de ce dispositif.
EP2212924B1 (fr) Perfectionnements apportés à un boîtier de connexion pour éléments capables de collecter de la lumière
EP3776668A1 (fr) Module photovoltaïque léger et flexible comportant une couche avant en polymère et une couche arrière en matériau composite
EP2926388B1 (fr) Dispositif organique électronique ou optoélectronique laminé
FR2988222A1 (fr) Module photovoltaique comprenant des elements de conversion spectrale localises et procede de realisation
WO2008125746A1 (fr) Module photovoltaique et modules de production d&#39;energie ou de lumiere
FR3066433A1 (fr) Procede de lamination en particulier pour la fabrication de laminats photovoltaiques et dispositif de lamination mettant en oeuvre ledit procede de lamination
EP2212925B1 (fr) Perfectionnements apportés à des joints pour des éléments capables de collecter de la lumière
EP2513975A1 (fr) Dispositif electrique et/ou electronique a element elastique de contact
WO2020058454A1 (fr) Laminât flexible de cellules photovoltaïques et procédé de fabrication associé
WO2016102348A1 (fr) Module photovoltaïque comportant une couche polymérique pourvue d&#39;évidements formant des joints de dilatation
FR3024591A1 (fr) Procede de fabrication d’un panneau photovoltaique
WO2020120712A1 (fr) Laminât de cellules photovoltaïques résistant à l&#39;humidité et procédé de fabrication d&#39;un tel laminât
FR3081614A1 (fr) Module photovoltaique comportant une ou plusieurs diodes de bypass en face arriere d&#39;une cellule photovoltaique du module
FR3069706A1 (fr) Cellule photovoltaique ewt de type organique ou perovskite et son procede de realisation
FR2939788A1 (fr) Substrat a fonction verriere pour module photovoltaique
FR2940523A1 (fr) Tuile photovoltaique.
WO2021008947A1 (fr) Laminât de cellules photovoltaïques et procédé de fabrication associé
WO2015101661A1 (fr) Module photovoltaïque a concentration a isolation par couche d&#39;oxyde
EP4292142A1 (fr) Capteur de données physiques autonome fonctionnant grâce à l&#39;apport énergétique d&#39;un module photovoltaïque
FR3098997A1 (fr) Dispositif d’émission de lumière
FR3106695A1 (fr) Procédé pour l’étanchéité d’un dispositif microélectronique
FR2948498A1 (fr) Panneau solaire photovoltaique a diodes en couches minces
FR3118530A1 (fr) Module photovoltaïque avec electrode de mise au potentielpour centrale photovoltaïque

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880021174.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805640

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12451921

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008805640

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2690584

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008270131

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010512730

Country of ref document: JP

Ref document number: 7461/CHENP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008270131

Country of ref document: AU

Date of ref document: 20080603

Kind code of ref document: A