WO2015101661A1 - Module photovoltaïque a concentration a isolation par couche d'oxyde - Google Patents

Module photovoltaïque a concentration a isolation par couche d'oxyde Download PDF

Info

Publication number
WO2015101661A1
WO2015101661A1 PCT/EP2015/050016 EP2015050016W WO2015101661A1 WO 2015101661 A1 WO2015101661 A1 WO 2015101661A1 EP 2015050016 W EP2015050016 W EP 2015050016W WO 2015101661 A1 WO2015101661 A1 WO 2015101661A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
dissipator
metal oxide
oxide layer
layer
Prior art date
Application number
PCT/EP2015/050016
Other languages
English (en)
Inventor
Jean-Edouard De Salins
Original Assignee
Heliotrop
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heliotrop filed Critical Heliotrop
Publication of WO2015101661A1 publication Critical patent/WO2015101661A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to solar photovoltaic concentration technology, and more precisely to photovoltaic concentrating modules with a receiver comprising a substrate on which are mounted electronic components including a photovoltaic cell, and a sink on the surface of which the receiver is mounted.
  • a photovoltaic panel is a device for converting light energy into electrical energy. It comprises in particular a series of photovoltaic receivers, each comprising a substrate on which are fixed electronic components, including a photovoltaic cell adapted to generate an electric current when exposed to light transmitted by a light concentration system, generally a lens or a mirror.
  • the photovoltaic receivers In order to optimize the luminous flux transmitted by the concentration systems, the photovoltaic receivers must be positioned very precisely in the focal center of said systems.
  • FIG. 1 shows an example of box 10.
  • boxes 10 generally comprise a bottom plate 11, adapted to receive at least one photovoltaic receiver 2 and a front face 12, adapted to receive at least one energy concentration system. 13.
  • the front face and the rear face are interconnected by side walls 14 so as to define an enclosure.
  • the concentration systems 13 and the photovoltaic receivers 2 are then fixed on the front face 12 and the bottom plate 1 1. so that each receiver 2 is positioned in the focal center of the concentration system associated with it.
  • receivers 2 connected by cables, are often attached to aluminum heat sinks, as shown in FIGS. 2 and 3, when the thermal flow to be dissipated necessitates upgrading the air movements at the rear of the module.
  • the photovoltaic cell is biased to a potential of several volts or even several hundred or thousands of volts when it is in series with a long chain of generators.
  • the electrical insulation between this photovoltaic cell chain and the outer mechanical casing of the box including the dissipator 6 must have breakdown voltages ranging from 500 to 5000V according to the electrical architecture.
  • the photovoltaic receiver 2 is currently composed of a substrate 3 which may be either based on ceramic which then acts as an electrical insulator, or on the basis of thick metal of copper or aluminum type, whose thermal conduction properties allow a good spread of calories under the photovoltaic cell.
  • This substrate may be provided on its upper or lower part with an insulating film type FR-4, abbreviation of the English Flame Resistant 4, which is a composite of epoxy resin reinforced with glass fiber.
  • insulating film type FR-4 abbreviation of the English Flame Resistant 4 which is a composite of epoxy resin reinforced with glass fiber.
  • this type of insulating film constitutes a thermal barrier.
  • the photovoltaic cell 4 which is polarized, remains close to the dissipator 6 aluminum, and the edge of the substrate 3 can snap with the sole dissipator.
  • this insulating film is replaced by a glued interface that projects several millimeters beyond the edge of the substrate.
  • FIGS. 2 and 3 show an example of such a configuration.
  • a photovoltaic module with concentration comprising:
  • a receiver 2 comprising a substrate 3 on which electronic components, including a photovoltaic cell 4, are mounted, a dissipator 6 on the surface of which the receiver 2 is mounted,
  • the adhesive layer 7 extends on the surface of the dissipator under the assembly of the receiver 2 and beyond it, in order to electrically isolate the receiver from the dissipator 6 at the same time at the level of the surface 5 of the dissipator covered by the receiver 2 and at the periphery of the receiver 2, in order to avoid any breakdown between the edge of the substrate 3 and the surface of the dissipator 6.
  • the adhesive layer 7 is often made of silicone potentially loaded with ceramic to ensure good thermal conduction, typically greater than 0.5W / mK and suitable electrical insulation, with typically a dielectric strength greater than 10kV / mm.
  • the area of adhesive that protrudes from the surface of the dissipator covered by the receiver may be subjected to the concentrated luminous flux in case of misalignment of the module.
  • This concentrated luminous flux being very concentrated, with a power density typically greater than 10 W / cm 2 , or even greater than 100 W / cm 2 , and the luminous flux then burns the polymers constituting the glue, thus destroying the layer of glue exposed and altering the electrical insulation function filled by this layer of glue.
  • this burn causes a sputtering of carbonized material that pollutes the photovoltaic receiver and may degrade the performance thereof, and in the medium term to cause failures of the photovoltaic module.
  • a misalignment protector also called protective plate 15 as shown in FIG. 4.
  • the protective plate 15 is disposed between the photovoltaic modules 1 and the light concentration system constituted by a lens or a mirror (not shown), with openings facing the photovoltaic modules through which the concentrated luminous flux passes to the photovoltaic modules 1, as well as possibly the secondary optics 9 which they are provided with.
  • this sheet is expensive to buy, to remove, with the additional risk of shock with photovoltaic modules equipped with secondary optics often fragile the proximity between the metal sheet which must be connected to the ground and the receiver photovoltaic, especially when it is provided with a reflective secondary optics, increases the risks of short circuit or breakdown between these elements.
  • the document WO 2009/139896 A2 describes a photovoltaic module in which a photovoltaic cell is glued on an anodized dissipator.
  • the document WO2008 / 045187 A1 describes a photovoltaic module in which a thin dielectric layer replaces the substrate on the surface of the dissipator.
  • this thin dielectric layer is produced by anodizing the surface of the dissipator and has a thickness of between 0.1 ⁇ and 50 ⁇ .
  • anodizing does not make it possible to obtain a layer having a thickness and a quality capable of conferring satisfactory electrical insulation.
  • the adhesive layer fixing the photovoltaic cell remains exposed to a luminous flux, and therefore is likely to burn.
  • One objective of the invention is to propose a photovoltaic module with a concentration which is simple to produce at a lower cost, and which ensures good electrical insulation, as well as good thermal conductivity, between the photovoltaic receiver and the dissipator even in case of misalignment of the concentrated light flux, without requiring the presence of a protective sheet.
  • the invention proposes a photovoltaic module with concentration comprising:
  • a receiver comprising a substrate on which electronic components, including a photovoltaic cell, are mounted,
  • an insulating layer of metal oxide deposited on the surface of the dissipator and covering at least one zone at the periphery of the receiver, the portion of the metal oxide insulating layer at the level of said zone electrically isolating the receiver of the dissipator and preventing a breakdown between the sink and the peripheral edge of the receiver.
  • the insulating layer of metal oxide is deposited on the surface of the dissipator, that is to say that there is a contribution of the material of the layer, unlike the modules of the state of the art, which provide a anodizing the dissipator, that is to say an oxidation of the heatsink itself.
  • the deposition of a metal oxide layer makes it possible to obtain a much better electrical insulation than an anodized layer, and in particular makes it possible to achieve thicknesses greater than those of an anodized layer.
  • the metal oxide layer has a thickness greater than 60 ⁇ ; the metal oxide layer is deposited on the surface of the dissipator by means of a material supply;
  • the metal oxide layer is deposited by a thermal projection or plasma-assisted vapor phase deposition method
  • the metal oxide comprises Al 2 O 3 aluminum oxide in combination with
  • the metal oxide layer extends below the entire receiver and electrically isolates the receiver from the sink both at the surface (5) of the sink covered by the receiver and at the area on the periphery of the receiver ;
  • the layer of adhesive extends under the receiver without extending to the zone on the periphery of the receiver;
  • the zone covered by the metal oxide layer extends at the surface of the dissipator at least over a distance of 2 mm from said receiver;
  • the metal oxide layer is composed of an alloy comprising aluminum oxide
  • the adhesive layer extends beyond the part of the surface of the dissipator covered by the receiver, at the zone on the periphery of the receiver, and the glue of the adhesive layer is transparent for the wavelengths a concentrated flow of sunlight.
  • the invention also relates to a method of manufacturing a photovoltaic module according to the invention, comprising the steps of
  • the metal oxide layer is deposited on the surface of the dissipator by means of a material supply;
  • the metal oxide layer is deposited by a thermal projection or plasma-assisted vapor phase deposition method
  • the metal oxide layer is deposited by atmospheric plasma spraying, atmospheric plasma spraying, or by plasma-assisted chemical vapor deposition or by plasma-assisted physical vapor deposition;
  • the metal oxide layer is composed of an alloy comprising aluminum oxide, and the metal oxide layer is deposited in the form of a powder.
  • FIG. 1 is a perspective view of an example of a concentrated photovoltaic panel comprising a box and photovoltaic modules,
  • FIG. 2 is a perspective view of a photovoltaic module provided with a secondary optics, in a configuration in which the layer of adhesive protrudes from the surface of the dissipator covered by the receiver,
  • FIG. 3 is a simplified diagram of a sectional view of a photovoltaic module in the configuration of FIG. 2,
  • FIG. 4 is a perspective view of a series of photovoltaic modules provided with a protective plate
  • FIG. 5 is a perspective view of a photovoltaic module provided with a secondary optic, according to a possible embodiment of the invention
  • FIG. 6 is a simplified diagram of a sectional view of a photovoltaic module in the configuration of FIG. 5;
  • FIG. 7 is a block diagram illustrating steps of a manufacturing method according to a possible embodiment of the invention.
  • the photovoltaic module with concentration 1 comprises a receiver 2 comprising a substrate 3 on which electronic components are mounted, including a photovoltaic cell 4 adapted to generate electricity from its exposure to light transmitted by a system of concentration.
  • the substrate 3 is composed essentially of copper or aluminum, of a thickness of a few millimeters, and is surmounted by an electrical routing provided with a FR-4 type insulator and additional copper whose finish allows soldering electronic components such as the photovoltaic cell.
  • the photovoltaic cell 4 may be connected to the regions of the substrate 3 by means of electrical contacts, for example a plurality of connection wires, extending between its peripheral portion (busbar) and said ranges.
  • a secondary optics 9, here of reflective type but which can also be refractive, is fixed on the receiver 2.
  • the secondary optics 9 is adapted to compensate for any misalignment of the focal axis of the concentration system 14 associated with the axis of the sun and / or a positioning error of the cell 22 with respect to the focal center of this concentration system 14.
  • the photovoltaic cell 4 is protected by means of an encapsulant (not visible in the figures), which extends over the photovoltaic cell and covers the less partially the electrical contacts or the substrate beaches.
  • the encapsulant may for example comprise silicone.
  • the receiver 2 is attached to a heat sink 6 having a high thermal conductivity.
  • the dissipator 6 is for example extruded aluminum or injected.
  • the receiver 2 is disposed on the surface 5 of the dissipator 6.
  • the receiver 2 thus covers a part of the surface 5 of the dissipator 6.
  • the receiver 2 is held in position on the dissipator 6 by a layer of adhesive 7 between the receiver 2 and the heatsink 6.
  • An insulating layer of metal oxide 8 is deposited on the surface of the dissipator 6.
  • the insulating layer of metal oxide 8 extends on the surface of the dissipator 6 covers at least one zone on the periphery of the receiver 2.
  • the layer portion metal oxide 8 at the periphery zone electrically isolates the receiver 2 from the dissipator 6 and thus prevents breakdown between the dissipator 6 and the peripheral edge of the receiver 2.
  • the metal oxide layer portion 8 at the periphery zone extends to the surface of the dissipator at least around the receiver 2, so that the surface 5 of the dissipator 6 is entirely surrounded by said portion of metal oxide insulating layer 8.
  • this insulating layer of metal oxide 8 which performs the function of electrical insulation at the periphery of the receiver 2 to avoid breakdowns between the surface of the dissipator 5 not covered by the receiver 2 and said receiver 2.
  • the adhesive layer 7 it is not necessary for the adhesive layer 7 to cover the surface 5 of the dissipator 6 at the periphery of the receiver 2 in order to ensure electrical insulation at the periphery of the receiver 6.
  • the adhesive layer 6 can extend under the receiver assembly 2 without extending beyond the portion of the surface 5 of the dissipator 6 covered by the receiver 2, that is to say that the glue layer 7 does not extend to the zone on the periphery of the receiver 2. In this way, in case of deviation of the concentrated luminous flux, it could not come to burn the adhesive since it is protected by the receiver 2. There is therefore no constraints as to the choice of glue concerning a possible resistance to this concentrated light flux.
  • the metal oxide layer 8 extends below the entire receiver 2 and electrically isolates the receiver 2 from the dissipator 6 at both the surface 5 of the dissipator covered by the receiver 2 and at the level of the area of the surface 5 of the dissipator 6 at the periphery of the receiver 2.
  • the metal oxide layer 8 fulfills the function of electrical insulation, it is possible to choose an adhesive with degraded electrical insulation properties, but with other advantages, for example heat transfer or transparency .
  • the glue in the case where the glue extends beyond the part of the surface 5 of the dissipator 6 covered by the receiver 2, that is to say at the area on the periphery of the receiver 2, the glue the glue layer can be transparent for the wavelengths of the concentrated solar light flux. In this way, even in case of deviation of concentrated light flux that would come to meet the glue, it will not be burned.
  • the glue is for example a thermal paste based on silicone, but other types of glue can be used, such as for example silver paste.
  • the area covered by the metal oxide layer 8 extends to the surface
  • the metal oxide layer 8 has a thickness greater than 40 ⁇ , typically between 40 and 400 ⁇ , depending in particular on its composition. Preferably, the metal oxide layer 8 has a thickness greater than 60 ⁇ , and more preferably greater than 100 ⁇ . In fact, the thickness of the metal oxide layer 8 results from a compromise between on the one hand an electrical insulation which increases with the thickness, and on the other by a thermal conduction which decreases with it.
  • the metal oxide layer 8 is composed of an alloy comprising aluminum oxide. In a preferred embodiment, it is aluminum oxide of formula Al 2 O 3 in the form of powder, preferably fine.
  • a fine powder consists of grains having a diameter of less than 25 ⁇ , typically between 5 and 25 ⁇ , while a coarse powder consists of grains having a diameter of between 10 and 40 ⁇ .
  • metals may be used in the composition in combination with aluminum oxide Al 2 O 3, for example with titanium dioxide ( ⁇ 2), for example up to 3%, silicon dioxide S 1 O 2, for example up to 30% of magnesium oxide MgO2, for example up to 30%, or alternatively chromium (III) oxide of formula Cr 2 O 3, for example up to 70%.
  • 220 m has a dielectric strength of 22 kV / mm for a thermal conductivity of 2 W / m.K.
  • the presence of the metal oxide layer 8 makes it possible to reduce the thickness of the adhesive layer 7 under the receiver 2, and thus to significantly improve the thermal conduction between the receiver 2 and the dissipator 6.
  • the dielectric rigidities are determined by measuring the breakdown voltage by positioning two electrodes on either side of the layer whose dielectric strength is to be measured.
  • the thermal conductivities are measured by the hot wire method, in which a resistive wire is placed opposite a sample, which is thus subjected to a thermal flux due to the joule effect by the resistive wire. The thermal conductivity is then identified from the evolution of the temperature at a given point.
  • step S1 depositing the insulating layer of metal oxide 8 on the surface 5 of the dissipator 6
  • step S2 depositing the adhesive layer (7) intended to receive the receiver 2 (step S2),
  • the metal oxide layer 8 is deposited on the surface of the dissipator by means of an addition of material, in particular by a method of thermal spraying or plasma-assisted vapor phase deposition.
  • Thermal spraying consists of accelerating and projecting fine particles of material, constituting the metal oxide layer on the surface of the dissipator.
  • a plasma-assisted thermal spraying deposit or a flame-assisted thermal spraying or assisted by high-velocity oxygenation (also known by the acronym HVOF for the English "High velocity oxy-fuel coating spraying") .
  • the metal oxide layer 8 is deposited by atmospheric plasma spraying on the surface 5 of the dissipator 6.
  • the atmospheric plasma projection has the main advantage of its low cost for the photovoltaic application at concentration because
  • PECVD Plasma-assisted chemical vapor deposition
  • PVD Plasma-Enhanced Physical Vapor Deposition
  • the metal oxide layer 8 covers at least one zone at the periphery of the surface 5 of the dissipator 6 intended to be covered by the receiver 2, and preferably also extends to the entire surface 5 of the dissipator 6 intended to be covered by the receiver 2. to be covered by the receiver 2.
  • a photovoltaic module can be manufactured in the following manner.
  • the insulating layer of metal oxide is deposited on the surface 5 of the dissipator 6, then the machining of the dissipator 6 is carried out, with for example the cutting or drilling thereof, especially in anticipation of the connection requirements.
  • the assembly is then cleaned to remove the residues from these operations.
  • the adhesive layer 7 is then deposited on an area intended to receive the receiver 2.
  • the adhesive may be deposited by screen printing or by removal from the pump.
  • the receiver 6 is then positioned on this adhesive layer 7. Then follows a polymerization step of the photovoltaic module thus assembled, that is to say provided with its receiver 2.
  • the dissipator 6 is then fixed on a bottom plate of the concentrating box.
  • An earth connection of the box and the dissipator 6 is then carried out, for example by means of the holes previously made in the dissipator 6, said holes not being covered by the metal oxide layer 8, or else by hardening the 6.
  • the receiver 2 is connected in series with other photovoltaic receivers.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un module photovoltaïque à concentration (1) comprenant: un récepteur (2) comprenant un substrat (3) sur lequel sont montés des composants électroniques dont une cellule photovoltaïque (4), un dissipateur (6) à la surface (5) duquel est disposé le récepteur (2), ledit récepteur (2) couvrant une partie de la surface (5) du dissipateur (6), une couche de colle entre le récepteur (2) et le dissipateur (6), caractérisé par une couche isolante d'oxyde métallique (8) déposée à la surface (5) du dissipateur (6) et couvrant au moins une zone en périphérie du récepteur (2), la portion de couche isolante d'oxyde métallique (8) au niveau de ladite zone isolant électriquement le récepteur (2) du dissipateur (6) et empêchant un claquage entre le dissipateur (6) et le rebord de périphérie du récepteur (2). L'invention concerne également son procédé de fabrication.

Description

MODULE PHOTOVOLTAÏQUE A CONCENTRATION A ISOLATION PAR
COUCHE D'OXYDE
DOMAINE DE L'INVENTION
L'invention concerne la technologie solaire à concentration photovoltaïque, et plus précisément des modules photovoltaïques à concentration avec un récepteur comprenant un substrat sur lequel sont montés des composants électroniques dont une cellule photovoltaïque, et un dissipateur à la surface duquel est monté le récepteur.
ARRIERE-PLAN TECHNOLOGIQUE
Un panneau à concentration photovoltaïque est un dispositif permettant de convertir une énergie lumineuse en une énergie électrique. Il comprend notamment une série de récepteurs photovoltaïques, comprenant chacun un substrat sur lequel sont fixés des composants électroniques, dont notamment une cellule photovoltaïque adaptée pour générer un courant électrique lors de son exposition à de la lumière transmise par un système de concentration de lumière, généralement une lentille ou un miroir.
Afin d'optimiser le flux lumineux transmis par les systèmes de concentration, les récepteurs photovoltaïques doivent être positionnés de manière très précise dans le centre focal desdits systèmes.
Il a donc été proposé d'utiliser des caissons afin de positionner précisément les récepteurs photovoltaïques par rapport aux systèmes de concentration. La figure 1 présente un exemple de caisson 10. De tels caissons 10 comprennent généralement une tôle de fond 1 1 , adaptée pour recevoir au moins un récepteur photovoltaïque 2 et une face avant 12, adaptée pour recevoir au moins un système de concentration d'énergie lumineuse 13. La face avant et la face arrière sont reliées entre elles par des parois latérales 14 de manière à définir une enceinte. On fixe alors sur la face avant 12 et la tôle de fond 1 1 les systèmes de concentration 13 et les récepteurs photovoltaïques 2 de sorte que chaque récepteur 2 soit positionné dans le centre focal du système de concentration qui lui est associé.
Ces récepteurs 2, reliés par câbles, sont souvent fixés sur des dissipateurs en aluminium, comme illustré sur les figures 2 et 3, quand le flux thermique à dissiper nécessite de valoriser les mouvements d'air à l'arrière du module.
La cellule photovoltaïque est polarisée à un potentiel de plusieurs volts voire plusieurs centaine ou milliers de volts quand elle est en série d'une longue chaîne de générateurs.
L'isolation électrique entre cette chaîne de cellules photovoltaïque et l'enveloppe mécanique extérieure du caisson dont fait partie le dissipateur 6 doit tenir des tensions de claquage allant de 500 à 5000V suivant l'architecture électrique.
Le récepteur photovoltaïque 2 est couramment composé d'un substrat 3 qui peut être ou bien à base de céramique qui fait alors office d'isolant électrique, ou bien à base de métal épais de type cuivre ou aluminium, dont les propriétés de conduction thermique permettent un bon étalement des calories sous la cellule photovoltaïque.
Ce substrat peut être muni sur sa partie supérieure ou inférieure d'un film isolant type FR-4, abréviation de l'anglais Flame Résistant 4, qui est un composite de résine époxy renforcé de fibre de verre. Cependant, ce type de film isolant constitue une barrière thermique.
Mais dans ces dernières configurations, la cellule photovoltaïque 4, qui est polarisée, reste à proximité du dissipateur 6 en aluminium, et la tranche du substrat 3 peut claquer avec la semelle du dissipateur.
Par conséquent il est fréquent que l'on remplace ce film isolant par une interface collée qui dépasse de plusieurs millimètres le bord du substrat.
Les figures 2 et 3 présentent un exemple d'une telle configuration. Sur ces figures sont représentés un module photovoltaïque à concentration comprenant :
- un récepteur 2 comprenant un substrat 3 sur lequel sont montés des composants électroniques dont une cellule photovoltaïque 4, - un dissipateur 6 à la surface duquel est monté le récepteur 2,
- une couche de colle 7 entre le récepteur 2 et le dissipateur 6,
- une optique secondaire 9 réflective fixée sur le récepteur photovoltaïque 2.
La couche de colle 7 s'étend à la surface du dissipateur sous l'ensemble du récepteur 2 et au-delà de celui-ci, afin d'isoler électriquement le récepteur du dissipateur 6 à la fois au niveau de la surface 5 du dissipateur couverte par le récepteur 2 et au niveau de la périphérie du récepteur 2, afin d'éviter tout claquage entre la tranche du substrat 3 et la surface du dissipateur 6.
Ainsi, la couche de colle 7 est souvent constituée de silicone potentiellement chargé en céramique pour assurer une bonne conduction thermique, typiquement supérieure à 0,5W/mK et une isolation électrique convenable, avec typiquement une rigidité diélectrique supérieure à 10kV/mm.
Toutefois la zone de colle qui dépasse de la surface du dissipateur couverte par le récepteur peut être soumise au flux lumineux concentré en cas de désalignement du module. Ce flux lumineux concentré étant très concentré, avec une densité de puissance typiquement supérieure à 10W/cm2, voire supérieure à 100W/cm2, et le flux lumineux brûle alors les polymères constituant la colle, détruisant alors la couche de colle exposée et altérant la fonction d'isolation électrique remplie par cette couche de colle.
De plus, cette brûlure provoque une pulvérisation de matière carbonisée qui pollue le récepteur photovoltaïque et risque de dégrader la performance de celui-ci, et à moyen terme de provoquer des défaillances du module photovoltaïque.
II est classique de protéger cette zone par un "protecteur de dépointage" aussi appelé tôle de protection 15 telle que représentée en figure 4. La tôle de protection 15 est disposée entre les modules photovoltaïques 1 et le système de concentration de lumière constitué par une lentille ou un miroir (non représenté), avec des ouvertures en regard des modules photovoltaïques par lesquelles passe le flux lumineux concentré à destination des modules photovoltaïques 1 , ainsi qu'éventuellement les optiques secondaires 9 dont ils sont munis.. Cependant, cette tôle est coûteuse à l'achat, à la dépose, avec en outre des risques de choc avec les modules photovoltaïques équipés d'une optique secondaire souvent fragile la proximité entre cette tôle métallique qui doit être reliée à la masse et le récepteur photovoltaïque, surtout lorsqu'il est pourvu d'une optique secondaire réflective, augmente les risques de court-circuit ou de claquage entre ces éléments.
Le document WO 2009/139896 A2 décrit un module photovoltaïque dans lequel une cellule photovoltaïque est collée sur un dissipateur anodisé. De même, le document WO2008/045187 A1 décrit un module photovoltaïque dans lequel une fine couche diélectrique remplace le substrat à la surface du dissipateur. Dans un mode de réalisation, cette fine couche diélectrique est réalisée par une anodisation de la surface du dissipateur et présente une épaisseur comprise entre 0,1 μιτι et 50 μιτι. De fait, l'anodisation ne permet pas d'obtenir une couche présentant épaisseur et une qualité propre à conférer une isolation électrique satisfaisante. Par ailleurs, la couche de colle fixant la cellule photovoltaïque reste exposée à un flux lumineux, et donc est susceptible de brûler.
Le document US 2002/0148497 A1 décrit un module photovoltaïque dans lequel une feuille thermiquement conductrice est placée entre une carte de circuit et le dissipateur, celui-ci étant anodisé pour en améliorer les performances de refroidissement et sa capacité de résistance aux intempéries. En revanche, cette anodisation ne permet pas une bonne isolation électrique entre la cellule photovoltaïque et le dissipateur, celle-ci étant obtenue par le substrat de la carte de circuit.
Par conséquent, il n'a pas encore été proposé de module photovoltaïque à concentration permettant d'obtenir une isolation électrique entre le récepteur et le dissipateur pouvant admettre une tension de plusieurs kilovolts, sans risquer d'être endommagé par une exposition à la lumière concentrée, même en cas de déviation du faisceau lumineux et/ou de déplacement des éléments de protection tels que la tôle de protection. RESUME DE L'INVENTION
Un objectif de l'invention est de proposer un module photovoltaïque à concentration qui soit simple à réaliser à moindre coût, et qui assure une bonne isolation électrique, ainsi qu'une bonne conductivité thermique, entre le récepteur photovoltaïque et le dissipateur même en cas de désalignement du flux lumineux concentré, sans nécessiter la présence d'une tôle de protection.
Pour cela, l'invention propose un module photovoltaïque à concentration comprenant :
- un récepteur comprenant un substrat sur lequel sont montés des composants électroniques dont une cellule photovoltaïque,
- un dissipateur à la surface duquel est disposé le récepteur, ledit récepteur couvrant une partie de la surface du dissipateur,
- une couche de colle entre le récepteur et le dissipateur,
caractérisé par une couche isolante d'oxyde métallique déposée à la surface du dissipateur et couvrant au moins une zone en périphérie du récepteur, la portion de couche isolante d'oxyde métallique au niveau de ladite zone isolant électriquement le récepteur du dissipateur et empêchant un claquage entre le dissipateur et le rebord de périphérie du récepteur.
La couche isolante d'oxyde métallique est déposée à la surface du dissipateur, c'est-à-dire qu'il y a un apport de la matière de la couche, contrairement aux modules de l'état de la technique, qui prévoient une anodisation du dissipateur, c'est-à-dire une oxydation du dissipateur lui-même. Le dépôt d'une couche d'oxyde métallique permet d'obtenir une bien meilleure isolation électrique qu'une couche anodisée, et permet notamment d'atteindre des épaisseurs supérieures à celles d'une couche anodisée.
Ce module est avantageusement complété par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
- la couche d'oxyde métallique présente une épaisseur supérieure à 60 μιτι; - la couche d'oxyde métallique est déposée à la surface du dissipateur au moyen d'un apport de matière;
- la couche d'oxyde métallique est déposée par un procédé de projection thermique ou de dépôt en phase vapeur assisté par plasma;
- l'oxyde métallique comprend de l'oxyde d'aluminium AI2O3 en combinaison avec
- du dioxyde de titane ΤΊΟ2, ou
- du dioxyde de silicium S1O2, ou
- de l'oxyde de magnésium MgO2, ou
- de l'oxyde chrome (III) de formule Cr2O3.
- la couche d'oxyde métallique s'étend sous l'ensemble du récepteur et isole électriquement le récepteur du dissipateur à la fois au niveau de la surface (5) du dissipateur couverte par le récepteur et au niveau de la zone en périphérie du récepteur ;
-la couche de colle s'étend sous le récepteur sans s'étendre à la zone en périphérie du récepteur ;
- la zone couverte par la couche d'oxyde métallique s'étend à la surface du dissipateur au moins sur une distance de 2 mm à partir dudit récepteur ;
- la couche d'oxyde métallique est composée d'un alliage comprenant de l'oxyde d'aluminium ;
- la couche de colle s'étend au-delà de la partie de la surface du dissipateur couverte par le récepteur, au niveau de la zone en périphérie du récepteur, et la colle de la couche de colle est transparente pour les longueurs d'onde d'un flux concentré de lumière solaire.
L'invention concerne également un procédé de fabrication d'un module photovoltaïque selon l'invention, comprenant les étapes de
- dépôt de la couche isolante d'oxyde métallique à la surface du dissipateur,
- dépôt de la couche de colle destinée à recevoir le récepteur,
- positionnement du récepteur sur la couche de colle. Ce procédé est avantageusement complété par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
- la couche d'oxyde métallique est déposée à la surface du dissipateur au moyen d'un apport de matière;
- la couche d'oxyde métallique est déposée par un procédé de projection thermique ou de dépôt en phase vapeur assisté par plasma;
- la couche d'oxyde métallique est déposée par projection par plasma atmosphérique, projection par plasma atmosphérique, ou par dépôt chimique en phase vapeur assisté par plasma, ou par dépôt physique en phase vapeur assisté par plasma;
- la couche d'oxyde métallique est composée d'un alliage comprenant de l'oxyde d'aluminium, et la couche d'oxyde métallique est déposée sous forme de poudre.
BREVE DESCRIPTION DES DESSINS
D'autres caractéristiques, buts et avantages de la présente invention apparaîtront mieux à la lecture de la description détaillée qui va suivre, et au regard des dessins annexés donnés à titre d'exemples non limitatifs et sur lesquels :
- la figure 1 est une vue en perspective d'un exemple d'un panneau photovoltaïque à concentration comprenant un caisson et des modules photovoltaïques,
- la figure 2 est une vue en perspective d'un module photovoltaïque muni d'une optique secondaire, dans une configuration dans laquelle la couche de colle dépasse de la surface du dissipateur couverte par le récepteur,
- la figure 3 est un schéma simplifié d'une vue en coupe d'un module photovoltaïque dans la configuration de la figure 2,
- la figure 4 est une vue en perspective d'une série de modules photovoltaïques pourvue d'une tôle de protection, - la figure 5 est une vue en perspective d'un module photovoltaïque muni d'une optique secondaire, selon un mode de réalisation possible de l'invention
- la figure 6 est schéma simplifié d'une vue en coupe d'un module photovoltaïque dans la configuration de la figure 5 ;
- la figure 7 est un schéma de principe illustrant des étapes d'un procédé de fabrication selon un mode de réalisation possible de l'invention. DESCRIPTION DETAILLEE
En référence aux figures 5 et 6, qui représentent un mode de réalisation possible de l'invention, le module photovoltaïque à concentration 1 comprend un récepteur 2 comprenant un substrat 3 sur lequel sont montés des composants électroniques dont une cellule photovoltaïque 4 adaptée pour générer de l'électricité à partir de son exposition à la lumière transmise par un système de concentration. De préférence, le substrat 3 est composé essentiellement de cuivre ou d'aluminium, d'une épaisseur de quelques millimètres, et est surmonté d'un routage électrique pourvu d'un isolant de type FR-4 et de cuivre additionnel dont la finition permet de braser les composants électroniques tels que la cellule photovoltaïque.
La cellule photovoltaïque 4 peut être connectée à des plages du substrat 3 par l'intermédiaire de contacts électriques, par exemple plusieurs fils de connexion, s'étendant entre sa partie périphérique (busbar) et lesdites plages.
Une optique secondaire 9, ici de type réflective mais qui peut également être réfractive, est fixée sur le récepteur 2. L'optique secondaire 9 est adaptée pour compenser un éventuel défaut d'alignement de l'axe focal du système de concentration 14 associé avec l'axe du soleil et/ou une erreur de positionnement de la cellule 22 par rapport au centre focal de ce système de concentration 14.
La cellule photovoltaïque 4 est protégée à l'aide d'un encapsulant (non visible sur les figures), qui s'étend sur la cellule photovoltaïque et recouvre au moins partiellement les contacts électriques voire les plages du substrat. L'encapsulant peut par exemple comprendre du silicone.
Le récepteur 2 est fixé sur un dissipateur 6 thermique présentant une conductivité thermique élevée. Le dissipateur 6 est par exemple en aluminium extrudé ou injecté.
Le récepteur 2 est disposé à la surface 5 du dissipateur 6. Le récepteur 2 couvre donc une partie de la surface 5 du dissipateur 6. Le récepteur 2 est maintenu en position sur le dissipateur 6 par une couche de colle 7 entre le récepteur 2 et le dissipateur 6.
Une couche isolante d'oxyde métallique 8 est déposée à la surface du dissipateur 6. La couche isolante d'oxyde métallique 8 s'étend à la surface du dissipateur 6 couvre au moins une zone en périphérie de du récepteur 2. La portion de couche d'oxyde métallique 8 au niveau de la zone en périphérie isole électriquement le récepteur 2 du dissipateur 6 et empêche ainsi un claquage entre le dissipateur 6 et le rebord de périphérie du récepteur 2.
De préférence, la portion de couche d'oxyde métallique 8 au niveau de la zone en périphérie s'étend à la surface 5 du dissipateur au moins autour du récepteur 2, de sorte que la surface 5 du dissipateur 6 est entièrement entourée par ladite portion de couche isolante d'oxyde métallique 8.
II en résulte que c'est cette couche isolante d'oxyde métallique 8 qui remplit la fonction d'isolation électrique à la périphérie du récepteur 2 afin d'éviter les claquages entre la surface du dissipateur 5 non couverte par le récepteur 2 et ledit récepteur 2.
Par conséquent, il n'est pas nécessaire que la couche de colle 7 recouvre la surface 5 du dissipateur 6 en périphérie du récepteur 2 afin d'assurer l'isolation électrique au niveau de la périphérie du récepteur 6.
Ainsi, la couche de colle 6 peut s'étendre sous l'ensemble du récepteur 2 sans s'étendre au-delà de la partie de la surface 5 du dissipateur 6 couverte par le récepteur 2, c'est-à-dire que la couche de colle 7 ne s'étend pas à la zone en périphérie du récepteur 2. De cette manière, en cas de déviation du flux lumineux concentré, celui-ci ne pourrait venir brûler la colle puisqu'celle-ci est protégée par le récepteur 2. Il n'y a donc pas de contraintes quant au choix de la colle concernant une éventuellement résistance à ce flux lumineux concentré.
De préférence, la couche d'oxyde métallique 8 s'étend sous l'ensemble du récepteur 2 et isole électriquement le récepteur 2 du dissipateur 6 à la fois au niveau de la surface 5 du dissipateur couverte par le récepteur 2 et au niveau de la zone de la surface 5 du dissipateur 6 en périphérie du récepteur 2.
Dans la mesure où la couche d'oxyde métallique 8 remplit la fonction d'isolation électrique, il est possible de choisir une colle avec des propriétés d'isolation électrique dégradées, mais présentant d'autres avantages, par exemple de transfert thermique ou de transparence.
Ainsi, dans le cas où la colle s'étend au-delà de la partie de la surface 5 du dissipateur 6 couverte par le récepteur 2, c'est-à-dire au niveau de la zone en périphérie du récepteur 2, la colle de la couche de colle peut être transparente pour les longueurs d'onde du flux concentré de lumière solaire. De cette manière, même en cas de déviation du flux lumineux concentré qui viendrait alors à rencontrer la colle, celle-ci ne serai pas brûlée.
La colle est par exemple une pâte thermique à base de silicone, mais d'autres types de colle peuvent être employés, comme par exemple de la pâte d'argent.
La zone couverte par la couche d'oxyde métallique 8 s'étend à la surface
5 du dissipateur 6 au moins sur une distance de 2 mm à partir dudit récepteur 2.
La couche d'oxyde métallique 8 présente une épaisseur supérieure à 40 μιτι, comprise typiquement entre 40 et 400 μιτι, en fonction notamment de sa composition. De préférence, la couche d'oxyde métallique 8 présente une épaisseur supérieure à 60 μιτι, et de préférence encore supérieure à 100 μιτι. De fait, l'épaisseur de la couche d'oxyde métallique 8 résulte d'un compromis entre d'une part une isolation électrique qui augmente avec l'épaisseur, et d'autre par une conduction thermique qui diminue avec celle-ci.
La couche d'oxyde métallique 8 est composée d'un alliage comprenant de l'oxyde d'aluminium. Dans un mode de réalisation préférentiel, il s'agit de l'oxyde d'aluminium de formule AI2O3 sous forme de poudre, fine de préférence. Une poudre fine est constituée de grains présentant un diamètre inférieur à 25 μιτι, typiquement comprise entre 5 et 25 μιτι, tandis qu'une poudre grossière est constituée de grains présentant un diamètre compris entre 10 et 40 μιτι.
D'autres métaux peuvent intervenir dans la composition en combinaison avec l'oxyde d'aluminium AI2O3, avec par exemple du dioxyde de titane (ΤΊΟ2), par exemple jusqu'à 3%, du dioxyde de silicium S1O2, par exemple jusqu'à hauteur de 30%, de l'oxyde de magnésium MgO2, par exemple jusqu'à hauteur de 30%, ou bien encore de l'oxyde chrome (III) de formule Cr2O3, par exemple jusqu'à 70%.
Ci-dessous dans le tableau 1 , quelques exemples de composition avec leur isolation électrique et leur conductivité thermique.
Figure imgf000013_0001
Tableau 1 Pour comparaison, une couche de colle silicone d'une épaisseur de
220 m présente une rigidité diélectrique de 22 kV/mm pour une conductivité thermique de 2 W/m.K. La présence de la couche d'oxyde métallique 8 permet de diminuer l'épaisseur de la couche de colle 7 sous le récepteur 2, et donc d'améliorer significativement la conduction thermique entre le récepteur 2 et le dissipateur 6.
Les rigidités diélectriques sont déterminées par la mesure de la tension de claquage en positionnant deux électrodes de part et d'autre de la couche dont on cherche à mesurer la rigidité diélectrique. Les conductivités thermiques sont mesurée par la méthode du fil chaud, dans laquelle on dispose un fil résistif en vis-à-vis d'un échantillon, qui est ainsi soumis à un flux thermique dû à l'effet joule par le fil résistif. On identifie alors la conductivité thermique à partir de l'évolution de la température en un point donné.
En référence à la figure 7, un procédé de fabrication va maintenant être décrit pour la fabrication d'un module photovoltaïque à concentration selon l'invention, comprenant les étapes de :
- dépôt de la couche isolante d'oxyde métallique 8 à la surface 5 du dissipateur 6 (étape S1 ),
- dépôt de la couche de colle (7) destinée à recevoir le récepteur 2 (étape S2),
- positionnement du récepteur 2 sur la couche de colle 7 (étape S3). De préférence, la couche d'oxyde métallique 8 est déposée à la surface du dissipateur au moyen d'un apport de matière, notamment par un procédé de projection thermique ou de dépôt en phase vapeur assisté par plasma.
La projection thermique consiste à accélérer et à projeter de fines particules de matière, constituant la couche d'oxyde métallique à la surface du dissipateur. On peut notamment utiliser un dépôt par projection thermique assistée par plasma, ou un dépôt par projection thermique assistée par flamme ou assistée par oxygaz grande vitesse (également connu sous l'acronyme HVOF pour l'anglais " High velocity oxy-fuel coating spraying").
De préférence, la couche d'oxyde métallique 8 est déposée par projection par plasma atmosphérique sur la surface 5 du dissipateur 6. La projection par plasma atmosphérique présente comme principal avantage son faible coût pour l'application photovoltaïque à concentration du fait
- des faibles contraintes d'environnement de travail (condition ambiantes de température et pression), et
- de sa compatibilité avec de forts volumes pour des investissements réduits. D'autres procédés de dépôt peuvent être mis en œuvre. Par exemple, les procédés de dépôt en phase vapeur assisté par plasma suivants peuvent être utilisés :
- Dépôt chimique en phase vapeur assisté par plasma (ou PECVD, pour Plasma-Enhanced Chemical Vapor Déposition en anglais) ;
- Dépôt physique en phase vapeur assisté par plasma (ou PEPVD, pour Plasma-Enhanced Physical Vapor Déposition en anglais).
La couche d'oxyde métallique 8 couvre au moins une zone en périphérie de la surface 5 du dissipateur 6 destinée à être couverte par le récepteur 2, et de préférence, s'étend également à l'ensemble de la surface 5 du dissipateur 6 destinée à être couverte par le récepteur 2.
Plus en détail, selon un mode de réalisation possible, un module photovoltaïque peut être fabriqué de la façon suivante. La couche isolante d'oxyde métallique est déposée à la surface 5 du dissipateur 6, puis l'usinage du dissipateur 6 est réalisé, avec par exemple le tronçonnage ou le perçage de celui-ci, notamment en prévision des besoins de connexion. L'ensemble est alors nettoyé pour retirer les résidus de ces opérations.
La couche de colle 7 est ensuite déposée sur une zone destinée à recevoir le récepteur 2. La colle peut être déposée par sérigraphie ou par dépose à la pompe. Le récepteur 6 est alors positionné sur cette couche de colle 7. Suit alors une étape de polymérisation du module photovoltaïque ainsi assemblé, c'est-à-dire muni de son récepteur 2.
Le dissipateur 6 est alors fixé sur une tôle de fond du caisson à concentration. Une mise à la terre du caisson et du dissipateur 6 est alors effectuée, par exemple au moyen des trous précédemment réalisés dans le dissipateur 6, lesdits trous n'étant pas couverts par la couche d'oxyde métallique 8, ou bien encore en écrouissant le métal de la tôle de fond sur le dissipateur 6. Enfin, le récepteur 2 est branché en série avec d'autres récepteurs photovoltaïques.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés aux figures annexées. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.

Claims

REVENDICATIONS
1 . Module photovoltaïque à concentration (1 ) comprenant :
- un récepteur (2) comprenant un substrat (3) sur lequel sont montés des composants électroniques dont une cellule photovoltaïque (4),
- un dissipateur (6) à la surface (5) duquel est disposé le récepteur (2), ledit récepteur (2) couvrant une partie de la surface (5) du dissipateur (6),
- une couche de colle (7) entre le récepteur (2) et le dissipateur (6), caractérisé par une couche isolante d'oxyde métallique (8) déposée à la surface (5) du dissipateur (6) et couvrant au moins une zone en périphérie du récepteur (2), la portion de couche isolante d'oxyde métallique (8) au niveau de ladite zone isolant électriquement le récepteur (2) du dissipateur (6) et empêchant un claquage entre le dissipateur (6) et le rebord de périphérie du récepteur (2).
2. Module selon la revendication précédente, dans lequel la couche d'oxyde métallique présente une épaisseur supérieure à 60 μιτι.
3. Module selon l'une des revendications précédentes, dans lequel la couche d'oxyde métallique est déposée à la surface du dissipateur au moyen d'un apport de matière.
4. Module selon l'une des revendications précédentes, dans lequel la couche d'oxyde métallique est déposée par un procédé de projection thermique ou de dépôt en phase vapeur assisté par plasma.
5. Module selon l'une des revendications précédentes, dans lequel l'oxyde métallique comprend de l'oxyde d'aluminium AI2O3 en combinaison avec
- du dioxyde de titane ΤΊΟ2, ou
- du dioxyde de silicium S1O2, ou
- de l'oxyde de magnésium MgÛ2, ou
- de l'oxyde chrome (III) de formule Cr2O3.
6. Module selon l'une des revendications précédentes, dans lequel la couche d'oxyde métallique (8) s'étend sous l'ensemble du récepteur (2) et isole électriquement le récepteur (2) du dissipateur (6) à la fois au niveau de la surface (5) du dissipateur couverte par le récepteur (2) et au niveau de la zone en périphérie du récepteur (2).
7. Module selon l'une des revendications précédentes, dans lequel la couche de colle (6) s'étend sous le récepteur (2) sans s'étendre à la zone en périphérie du récepteur (2).
8. Module selon l'une des revendications précédentes, dans lequel la zone couverte par la couche d'oxyde métallique (8) s'étend à la surface (5) du dissipateur (6) au moins sur une distance de 2 mm à partir dudit récepteur (2).
9. Module selon l'une des revendications précédentes, dans lequel la couche d'oxyde métallique (8) est composée d'un alliage comprenant de l'oxyde d'aluminium.
10. Module selon l'une des revendications précédentes dans lequel la couche de colle (7) s'étend au-delà de la partie de la surface (5) du dissipateur (6) couverte par le récepteur (2), au niveau de la zone en périphérie du récepteur (2), la colle de la couche de colle (7) étant transparente pour les longueurs d'onde d'un flux concentré de lumière solaire.
1 1 . Procédé de fabrication d'un module photovoltaïque selon l'une des revendications précédentes, comprenant les étapes de
- dépôt de la couche isolante d'oxyde métallique (8) à la surface du dissipateur,
- dépôt de la couche de colle (7) destinée à recevoir le récepteur (2), - positionnement du récepteur (2) sur la couche de colle (7).
12. Procédé selon la revendication précédente, dans lequel la couche d'oxyde métallique est déposée à la surface du dissipateur au moyen d'un apport de matière.
13. Procédé selon l'une des revendications 1 1 à 12, dans lequel la couche d'oxyde métallique est déposée par un procédé de projection thermique ou de dépôt en phase vapeur assisté par plasma.
14. Procédé de fabrication selon l'une des revendications 1 1 à 13, dans lequel la couche d'oxyde métallique (8) est déposée par projection par plasma atmosphérique, ou par dépôt chimique en phase vapeur assisté par plasma, ou par dépôt physique en phase vapeur assisté par plasma.
15. Procédé selon l'une des revendications 1 1 à 14, dans lequel la couche d'oxyde métallique (8) est composée d'un alliage comprenant de l'oxyde d'aluminium, et la couche d'oxyde métallique (8) est déposée sous forme de poudre.
PCT/EP2015/050016 2014-01-03 2015-01-02 Module photovoltaïque a concentration a isolation par couche d'oxyde WO2015101661A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1450034 2014-01-03
FR1450034A FR3016238A1 (fr) 2014-01-03 2014-01-03 Module photovoltaique a concentration a isolation par couche d'oxyde

Publications (1)

Publication Number Publication Date
WO2015101661A1 true WO2015101661A1 (fr) 2015-07-09

Family

ID=50780627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/050016 WO2015101661A1 (fr) 2014-01-03 2015-01-02 Module photovoltaïque a concentration a isolation par couche d'oxyde

Country Status (2)

Country Link
FR (1) FR3016238A1 (fr)
WO (1) WO2015101661A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614906A (zh) * 2020-12-16 2021-04-06 浙江晴达新能源科技有限公司 一种电热联产光伏板及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289903A1 (fr) * 1987-05-04 1988-11-09 AlliedSignal Inc. Substrats métalliques à revêtement céramique pour applications électroniques
US20020148497A1 (en) * 2001-03-23 2002-10-17 Makoto Sasaoka Concentrating photovoltaic module and concentrating photovoltaic power generating system
WO2008045187A2 (fr) * 2006-10-04 2008-04-17 United Technologies Corporation Gestion thermique de cellules photovoltaïques à concentrateur
WO2009139896A2 (fr) * 2008-05-16 2009-11-19 Soliant Energy, Inc. Panneau solaire photovoltaïque à concentration
US20100326492A1 (en) * 2009-06-30 2010-12-30 Solarmation, Inc. Photovoltaic Cell Support Structure Assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0289903A1 (fr) * 1987-05-04 1988-11-09 AlliedSignal Inc. Substrats métalliques à revêtement céramique pour applications électroniques
US20020148497A1 (en) * 2001-03-23 2002-10-17 Makoto Sasaoka Concentrating photovoltaic module and concentrating photovoltaic power generating system
WO2008045187A2 (fr) * 2006-10-04 2008-04-17 United Technologies Corporation Gestion thermique de cellules photovoltaïques à concentrateur
WO2009139896A2 (fr) * 2008-05-16 2009-11-19 Soliant Energy, Inc. Panneau solaire photovoltaïque à concentration
US20100326492A1 (en) * 2009-06-30 2010-12-30 Solarmation, Inc. Photovoltaic Cell Support Structure Assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614906A (zh) * 2020-12-16 2021-04-06 浙江晴达新能源科技有限公司 一种电热联产光伏板及其制造方法

Also Published As

Publication number Publication date
FR3016238A1 (fr) 2015-07-10

Similar Documents

Publication Publication Date Title
EP3000131B1 (fr) Mono cellule photovoltaïque semi-transparente en couches minces
FR2917899A1 (fr) Module photovoltaique comprenant un film polymere et procede de fabrication d'un tel module
EP3182081A1 (fr) Dispositif de detection a membranes bolometriques suspendues a fort rendement d'absorption et rapport signal sur bruit
EP2466283A1 (fr) Détecteur infrarouge à base de micro-planches bolométriques suspendues
WO2019101634A1 (fr) Module électrique de puissance
EP3154082A1 (fr) Structure dbc amelioree dotee d'un support integrant un materiau a changement de phase
EP2981156B1 (fr) Panneau photovoltaïque et un procédé de fabrication d'un tel panneau
FR2945670A1 (fr) Dispositif photovoltaique et procede de fabrication
EP2046571A1 (fr) Eclairage au moyen de leds
WO2015101661A1 (fr) Module photovoltaïque a concentration a isolation par couche d'oxyde
EP3052909B1 (fr) Circuit imprime flexible a faible emissivite
FR3073981A1 (fr) Module photovoltaique multi-cellules semi-transparent soumis a ombrage peripherique recurrent
FR2853993A1 (fr) Procede de realisation d'un module photovoltaique et module photovoltaique realise par ce procede
EP3721481B1 (fr) Fabrication d'un sous-module a concentration integrant un materiau dissipateur de chaleur
EP0244302B1 (fr) Boitier assurant la stabilisation thermique des équipements tels que des composants électroniques qu'il contient
FR2964642A1 (fr) Dispositif d'isolation thermique et procede de fabrication
FR2958449A1 (fr) Dispositif de controle thermique d'un tube a collecteur rayonnant
FR2940523A1 (fr) Tuile photovoltaique.
WO2015044359A1 (fr) Fixation d'une optique secondaire sur un récepteur photovoltaïque
EP2175298A1 (fr) Système de stabilisation d'une structure rigide soumise à des déformations thermoélastiques
EP3334032A1 (fr) Structure de conversion thermophotovoltaïque
EP2527259B1 (fr) Pièce de remplacement de réflecteur optique solaire pour satellite
FR2717033A1 (fr) Miroir chauffant à structure feuilletée.
EP4272261A1 (fr) Module photovoltaïque avec electrode de mise au potentiel pour centrale photovoltaïque
EP2735032A1 (fr) Amelioration de la longevite et de l'ergonomie des modules solaires hybrides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15700009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15700009

Country of ref document: EP

Kind code of ref document: A1