WO2008152224A2 - Valve cardiaque prothétique mécanique - Google Patents

Valve cardiaque prothétique mécanique Download PDF

Info

Publication number
WO2008152224A2
WO2008152224A2 PCT/FR2008/000621 FR2008000621W WO2008152224A2 WO 2008152224 A2 WO2008152224 A2 WO 2008152224A2 FR 2008000621 W FR2008000621 W FR 2008000621W WO 2008152224 A2 WO2008152224 A2 WO 2008152224A2
Authority
WO
WIPO (PCT)
Prior art keywords
flap
valve
valve according
flaps
shutter
Prior art date
Application number
PCT/FR2008/000621
Other languages
English (en)
Other versions
WO2008152224A3 (fr
Inventor
Didier Lapeyre
Original Assignee
Lapeyre Industries Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA2685802A priority Critical patent/CA2685802C/fr
Priority to EP08805533.0A priority patent/EP2142143B1/fr
Priority to CN200880023156.4A priority patent/CN101754729B/zh
Priority to AU2008263806A priority patent/AU2008263806B2/en
Application filed by Lapeyre Industries Llc filed Critical Lapeyre Industries Llc
Priority to MX2009011839A priority patent/MX2009011839A/es
Priority to BRPI0810224A priority patent/BRPI0810224B8/pt
Priority to JP2010504794A priority patent/JP5322013B2/ja
Priority to KR1020097025103A priority patent/KR101496274B1/ko
Priority to US12/598,516 priority patent/US10182907B2/en
Priority to NZ581537A priority patent/NZ581537A/xx
Priority to RU2009144546/14A priority patent/RU2475212C2/ru
Publication of WO2008152224A2 publication Critical patent/WO2008152224A2/fr
Publication of WO2008152224A3 publication Critical patent/WO2008152224A3/fr
Priority to IL201881A priority patent/IL201881A/en
Priority to IL222517A priority patent/IL222517A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2403Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with pivoting rigid closure members

Definitions

  • the present invention relates to a mechanical prosthetic heart valve.
  • bioprostheses which are taken from the animal then chemically treated or constructed from biological tissues on the model of a natural valve
  • bioprostheses offer biological performances that are the same as those of a natural heart valve because they respect the natural structure of the flow of blood through the heart cavities. the aorta.
  • the patient may forget that he is wearing an artificial heart valve.
  • the bioprostheses do not cause acoustic nuisance, which also helps to make the patient forget that he is carrying an artificial heart valve.
  • These bioprostheses have a limited life because of their inevitable calcification over time, which requires a replacement after a period of about ten years on average. Once initiated, this calcification accelerates and destroys the valve with the consequent progressive degradation of valve function and its impact on the heart muscle. Calcification occurs more rapidly in young than in older subjects, limiting the scope of bioprosthetics to subjects over 65 years of age or to subjects whose life expectancy is less than the lifetime of the patient. bioprosthesis.
  • This powerful biological phenomenon is the very one that governs the physiological process of healing the vessel's inner lining. It prevents leakage of blood outside the circulatory system. It is therefore essential to the maintenance of life and difficult to thwart.
  • coagulation deposits can not only impede the mechanical function of the valve on the bloodstream, which puts the lives of patients at risk, but also migrate into the circulation
  • thrombosis generates thrombosis and creates a chronic disease that is self-sustaining.
  • Normalized Ratio at a level at least two and one-half times the physiological value (INR 2.5).
  • Patients with a mechanical valve in the mitral position must maintain their blood coagulability at a rate at least three and a half times greater than the physiological value (INR 3.5).
  • This difference in the "harmfulness" of mechanical prostheses between the aortic position and the mitral position is due to the fact that the velocity of the blood is lower through the mitral orifice than through the aortic orifice.
  • the duration of filling of the heart through the mitral valve (typically of the order of 450 milliseconds to 70 cycles per minute) is indeed longer than the duration of the ejection of blood through the aorta (typically from the order of 300 milliseconds).
  • the contact time of the blood with the prosthetic valve in the mitral position is therefore longer, which allows the coagulation processes to be completed.
  • 6,395,024 discloses a mechanical prosthetic heart valve which comprises a ring provided with an inner peripheral surface centered about an axis and three flaps arranged near the inner peripheral surface of the ring. These three flaps are adapted to effect a pivoting movement between, on the one hand, a closed position preventing the blood from flowing through the valve and, on the other hand, an open position in which the flow of blood crosses the valve in an axial direction.
  • the ring comprises, on the one hand, an edge, called downstream edge, connecting the inner peripheral surface to an outer peripheral surface and which is placed on the downstream side of the flow and, on the other hand, three slots or protuberances which are extend from this edge downstream, in the axial direction.
  • Each flap comprises a central portion provided with two lateral flanges which each cooperate with means for rotating the flap respectively arranged on the inner surfaces of two consecutive crenellations.
  • the space in which each flap side wing pivots is called the pivotal space.
  • each window allows a satisfactory rinsing of the outer face of the lateral wings of the flaps by retrograde flow.
  • this outer face can be swept by the flow of blood flowing from the ventricle to the aorta.
  • the reflux of blood through these windows into the aortic sinuses when the valve is closed can ensure rinsing of the outer side of the lateral wings, preventing a volume of blood can be retained captive in the pivoting spaces of the shutter.
  • the lower edge of the windows described above forms with the leading edge of the lateral wings of the flaps, when they are in open position, a second opening having a triangular shaped form.
  • This second opening (called “cleft” in English terminology) is “dynamic” because the surface of the orifice thus formed increases gradually when the flap passes from the closed position to the open position. It allows the direct passage to the outside of the flaps of the blood conveyed by the anterograde flow and provides an additional scan of the leading edge and the outer face of the wings of the flaps.
  • the Applicant has found from implantations performed on the animal that the effect of this additional arrangement on blood flow was not the same in the mitral position and the aortic position. Indeed, the aforementioned arrangement has been effective on a large number of animals implanted with the valve in the mitral position and left for many months without anticoagulant protection, while it was otherwise animals on which the same valve has been implanted in the aortic position.
  • the blood under low pressure can flow through the second openings ("clefts") from the inside of the valve to the the outside in the flap pivoting spaces, during ventricular filling, and flush critical pivoting spaces.
  • the blood pressure generated by the heart, during ventricular ejection, through the aortic implanted valve is ten times higher than the blood pressure exerted through the valve implanted in the mitral position.
  • the rinsing effect in the aortic position creates, at each heartbeat, powerful lateral "jets" which exceed the desired rinsing goal and reach traumatic values for blood cells.
  • the traumatic threshold recognized by the state of the art in the field is around a force of 150 dynes / cm 2 for blood platelets and 1000 dynes / cm 2 for red blood cells. Beyond these values, the blood elements are sheared, the platelets release their coagulants, which can cause coagulation complications.
  • the hinge mechanism of the flaps imposes an unfavorable geometry to a good structure of the blood flow in the pivoting spaces. It generates shears and micro turbulence in the immediate vicinity of surfaces relatively poorly scanned by the blood stream.
  • the amplitude of this phenomenon is related to the number of articulation zones of the valve. It is therefore larger for a heart valve to three flaps that have six pivoting spaces for a two-part heart valve that has only four.
  • the present invention aims to remedy at least one of the disadvantages of the prior art by proposing a mechanical prosthetic heart valve, characterized in that it comprises:
  • annular support having an inner peripheral surface centered around a longitudinal axis X, at least two movable flaps which are arranged in an articulated manner on the inner peripheral surface of the support so as to be able to perform a rotational movement around each other; a flap rotation axis perpendicular to the longitudinal axis, to pass from an open position of the valve, in which the open flaps delimit between them a main orifice centered on the longitudinal axis and through which the blood flows axially, at a closed position of the valve, in which the closed flaps prevent the blood from flowing back through the main orifice, the annular support having an edge placed on the downstream side of the anterograde flow, called the downstream edge, and several extensions articular which extend axially from the downstream edge and whose number corresponds to that of the flaps, each flap having a central portion symmetrically framed by two lateral wings which are inclined relative to this central part, these two wings cooperating respectively, to allow rotation of the flap, with the inner surfaces of two articular
  • the outer surface of the flaps is better swept by the flow of blood than before, in particular, in line with the lateral wings of the flaps.
  • the invention makes it possible to considerably reduce the risk of blocking the shutters at the opening, which could occur by interposing a coagulation deposit between the outer surfaces of the lateral parts of the shutters and the internal surfaces facing the articular extensions. corresponding.
  • this interposition by coagulation deposits can also be the source of embolism in the peripheral blood circulation.
  • the invention thus makes it possible to eliminate or, at the very least, drastically reduce the use of anticoagulant drugs.
  • the Applicant has been able to observe, thanks to the analysis of the microstructure of the blood flow at this point, when the flaps are in the open position, the presence downstream of the junction zone, close to the pivoting spaces, a micro-vortex current that recurs at each cycle.
  • each lateral wing of each flap is connected to the central part of the shutter by a junction zone whose outer surface is convex and which, over at least part of its length including the portion of the downstream zone of the anterograde flow (trailing edge), has a radius of curvature large enough to prevent the formation of swirling flows at the neighborhood of this surface.
  • the increase in the radius of curvature has the consequence of keeping the portion of the flap concerned by this modification of the radius of curvature in a flow zone subjected to a velocity gradient substantially similar to that to which the remainder of the flap is subjected. , further attenuating the distortions of the flow in this critical zone.
  • the part of the flap concerned by this particular arrangement is, for example, that located from a distance of about 20% of the flap leading edge.
  • Such a radius of curvature depends on the dimensions of the flap and is determined by the skilled person for each size of valve, so as to obtain the desired effect.
  • the radius of curvature of the junction zone located on the downstream side of the flow is at least 2 mm for a valve intended to be implanted in the aortic position and at least 3 mm for a valve intended for to be implanted in a mitral position.
  • each lateral wing of each of the flaps is connected to the central part of the shutter by a junction zone whose outer surface is convex and has the general shape of a cone portion whose apex is located towards the upstream of the antegrade flow.
  • the radius of curvature between each lateral wing and the central part of the flap is not substantially modified in the immediate vicinity of the leading edge of the flap, but it is all the more modified. that one approaches the trailing edge of the shutter (edge of the shutter located on the downstream side of the flow).
  • each lateral wing of each flap is connected to the central part of the flap by a junction zone whose outer surface is convex and has the general shape of a cylinder portion.
  • the axis of rotation of each flap is virtual, located outside the flap, between the latter and the annular support, and extends in a direction taken by moving from one side wing of the flap to the opposite lateral wing.
  • the flap rotation axis is located at a distance from the longitudinal axis X which is greater than 75% of the radius of the annular support.
  • each of the articulation facets of a flap and the corresponding extension facet of the articular extension concerned of the annular support define between them, when the flap is in the closed position, a pivoting space of the flap, this space disappearing when the flap hinge facet comes, in the open position, bearing against the corresponding extension facet.
  • the volume of the pivoting space is less than 2 / 10Oe of the volume displaced by the flap during its passage from the closed position to the open position.
  • the outer surface of the central part of the flap has a generally convex general shape in a direction taken by moving from one side wing of the flap to the opposite side wing.
  • each flap has an inner surface facing the main orifice of the valve and which has a generally substantially concave shape in a direction taken by moving from one side wing of the flap to the side wing opposite.
  • the main orifice delimited by the inner surfaces of the flaps has, in projection in a plane perpendicular to the longitudinal axis of the annular support, a passage section offered to the flow which is equal to at least 75% of the internal surface delimited by the annular support in this same plane.
  • each flap when the valve is in the open position, each flap defines, between its outer surface and the inner peripheral surface portion of the annular support which separates the two articular extensions with which the flap cooperates, a secondary orifice.
  • each secondary orifice has a general crescent shape.
  • the dimension of the secondary orifice, taken in a radial direction, in projection in a plane perpendicular to the longitudinal axis of the annular support is less than 20% of the internal radius of the annular support.
  • each secondary orifice has, in a plane perpendicular to the longitudinal axis of the annular support, a passage section offered to the flow which is less than 7% of the internal surface delimited by the annular support in this same plane.
  • the articular extensions are each without any through aperture.
  • the annular support has on its inner peripheral surface, near the downstream edge and for each flap, two stops causing the immediate pivoting of the flap in its open position when the blood pressure is exerted on the inner face of the flap. shutter.
  • the annular support has on its inner peripheral surface, for each flap, two support means for the flap in the closed position, said support means of each flap being arranged between the two articular extensions with which the lateral flanges of the flange respectively cooperate. shutter.
  • each stop in projection in a plane perpendicular to the longitudinal axis of the annular support, each stop is angularly spaced from the nearest support means by a distance substantially corresponding to at least half the width of said support means, the width being measured, in the plane considered, in a tangential direction relative to the annular support.
  • the stops are arranged between the flap support means.
  • each flap comprises at its periphery, on the one hand, a leading edge which is disposed on the upstream side of the antegrade blood flow and cooperates with the inner surface of the annular support in the closed position of the flap and, on the other hand, a trailing edge disposed on the downstream side of the anterograde flow.
  • each flap support means cooperates with a contact zone of the flap leading edge in a surface contact and not a linear contact when closing said flap.
  • each flap support means has an upper end surface, a portion on the side opposite to the nearest joint extension has a radius of curvature large enough to cooperate with the transverse rectilinear contact area of the edge. flap attack following a surface contact and not linear.
  • the trailing edge of each flap has a substantially triangular shape and, in the closed position of the valve, the trailing edges of the three flaps cooperate with one another to form a trihedron whose tip is directed towards the downstream.
  • each flap has, in its central part, at the trailing edge, an area aligned along the axis of symmetry of the flap and which is substantially in the shape of a ski spatula at its free end downstream, the end substantially spatulated flap forming a tip which deviates from the extension of the inner surface of said flap at an angle substantially between 2 and 4 °.
  • the three substantially spatulated ends of the flaps remain spaced apart from one another, in the closed position of the valve, by at least 50 microns and form between them a central interstice in the form of a star with three branches.
  • each of the three branches extends over a distance corresponding to at least one third of the total length of the trailing edge of the flaps.
  • each shutter on the one hand, in the closed position, forms with a plane perpendicular to the longitudinal axis (X) of the annular support a closure angle of between 30 ° and 50 ° and, on the other hand, in the open position, is substantially parallel to the direction of flow.
  • the closing angle is between 40 ° and 50 ° for valves intended to be implanted in the mitral position.
  • each flap has on its outer surface one or more zones provided with grooves which promote the orientation of the blood flow towards the lateral flaps of the flap.
  • the annular support has on its outer peripheral surface, for the valves intended to be implanted in aortic position, a peripheral rib for fixing a suture ring, the rib being configured so that its general shape reproduce the profile of a substantially sinusoidal curve having a vertex arranged at the right of each joint extension and a hollow between two consecutive articular extensions.
  • the invention also relates to a movable flap intended to be mounted on an annular support of a mechanical prosthetic heart valve, comprising at its periphery, on the one hand, a leading edge which is intended for be disposed on the upstream side of the anterograde blood flow and, on the other hand, a trailing edge which is intended to be disposed on the downstream side of this flow, the flap comprising a central portion symmetrically framed by two lateral wings which are inclined with respect to this central part, each lateral wing being connected to the central part by a junction zone whose outer surface is convex and which, on at least one part of its length including the trailing edge, has a radius of curvature large enough to avoid the separation of the flow and the formation of swirling flows in the vicinity of this junction surface.
  • the radius of curvature of the junction zone to the right of the trailing edge is at least 2 mm for a valve intended to be implanted in the aortic position and at least 3 mm for a valve intended to be implanted. in mitral position.
  • the outer surface of the junction zone has the general shape of a cone portion whose apex is located on the opposite side to the trailing edge of the flap.
  • the outer surface of the junction zone has the general shape of a cylinder portion.
  • the flap has an outer surface and an inner surface opposite to each other and each connecting the leading edge to the trailing edge.
  • the outer surface of the central part of the flap has a generally convex general shape in a direction taken by moving from one side wing of the flap to the opposite side wing.
  • the inner surface of the central portion of the flap has a generally substantially concave shape in a direction taken by moving from one side wing of the flap to the opposite side wing.
  • the flap has on its outer surface one or more zones provided with grooves which promote the orientation of the blood flow towards the lateral wings.
  • the flap has, in its central part, at the trailing edge, an area aligned along the axis of symmetry of the flap and which is substantially in the form of a ski spatula at its free end, the end substantially spatulate flap forming a tip which deviates from the extension of the inner surface of said flap at an angle substantially between 2 and 4 °.
  • the flap is rigid.
  • the flap is made from a biocompatible material and is optionally made of monolithic carbon, graphite with a pyrolytic carbon coating or in a synthetic polymer with wear resistance properties comparable to those pyrolytic carbon.
  • FIG. 1 is a schematic perspective view of a valve according to the invention with the flaps arranged in the open position
  • - Figure 2 is a schematic perspective view of the valve of Figure 1 with the shutters in the closed position
  • Figure 3 is a partial schematic view showing the cooperation of a shutter in the open position with an articular extension according to the invention and respectively according to the prior art (dashed), seen from the outside of the valve;
  • FIG. 4a is a partial schematic perspective view of the interior of the valve, showing the arrangement of a shutter in the open position housed between two articular extensions of the support;
  • - Figure 4b is an enlarged partial schematic view of a support means cooperating with the leading edge of a flap;
  • FIGS. 5 and 7 are schematic front views and perspective of the outer surface of a shutter according to the invention.
  • FIGS. 6 and 8 are schematic front views and in perspective of the outer surface of a flap according to the prior art
  • FIG. 9 is a view of a shutter according to the invention in cross section in a plane containing the axis of symmetry Z;
  • - Figure 10 is a schematic top view of a valve according to the invention with the flaps in the closed position;
  • - Figure 11 is a partial schematic view showing the arrangement of the lateral wings of two flaps in the open position relative to an articular extension 32 of the valve;
  • FIG. 12 is a schematic top view of a valve according to the invention with the flaps in the open position
  • FIGS. 13 and 14 are partial schematic views taken in the plane of the central portion of a flap according to the invention, respectively the leading edge and the trailing edge of one of the junction areas of said flap;
  • - Figure 15 is a schematic sectional view of a longitudinal section of a shutter according to the invention;
  • FIG. 16 is an enlarged partial schematic view of a pivoting space of a valve according to the invention.
  • FIG. 17 is a partial schematic view showing the inclination of a shutter in the closed position of a valve according to the invention.
  • - Figure 18 is a schematic representation of the flow of blood on the outer surface of a shutter according to the invention in the absence of grooves
  • - Figure 19 is a schematic view showing the flow of blood on the outer surface of a shutter according to the invention in the presence of grooves
  • FIG. 20 is a partial schematic view of a possible shape of grooves according to the invention.
  • a mechanical prosthetic heart valve according to the invention comprises an annular support in the form of a ring 12 which defines inside it an internal passage 14 for the cyclic flow of blood under the action of cardiac contractions.
  • the flow through the valve 10 in the open position thereof is referred to as antegrade current and its direction of flow is indicated by the arrow A in Figure 1.
  • retrograde current the current flowing in the opposite direction when closing the valve.
  • the central internal passage 14 for the flow of blood is delimited by the inner peripheral surface 16 of the annular support 12 and which will serve as support for three movable flaps 18, 20, 22 which will be described later.
  • the heart valve 10 is centered about a longitudinal axis X and has a symmetry of revolution about this axis.
  • the annular support 12 also has an outer peripheral surface 24 having a peripheral rib 26 intended to receive a suture ring, not shown, for example, made of textile, which enables the surgeon to fix the valve to the cardiac tissues in a known manner by means of stitches. suture.
  • valve In Figure 1 the valve is shown in the open position in which the flaps 18, 20 and 22 are in said raised or open position, the flow of blood passing through the valve in the anterograde direction, while in Figure 2, the valve is shown in closed position with the flaps in said lowered or closed position.
  • valve may comprise, without this affecting the principle of the invention, only two parts and, in this case, the annular support 12 is of elliptical shape and the oval-shaped flaps, or more than three parts .
  • a valve designed to be implanted in the mitral position has, for example, two oval-shaped flaps, but it may also comprise three flaps of another shape.
  • the annular support 12 has an upstream edge or leading edge 28 connecting the inner peripheral surface 16 to the outer peripheral surface 24 and which is placed on the upstream side of the anterograde flow.
  • the annular support also has a downstream edge or trailing edge 30 which is located on the downstream side of the anterograde flow and which also connects the inner peripheral surface 16 to the outer peripheral surface 24 of the annular support.
  • the support 12 also comprises three articular extensions or protuberances 32, 34, 36 which extend from the downstream downstream edge 30, parallel to the longitudinal axis direction X, and which thus form axially extending slots. relative to the peripheral edge 30 and whose base is substantially the same width (dimension perpendicular to the X axis) as the vertex.
  • joint extensions 32, 34, 36 in number equal to that of the flaps, are in fact of reduced dimensions compared to the slots equipping cardiac valves of the prior art, as shown schematically in the partial view of FIG. , where it was deliberately superimposed a dotted articular extension noted 2 of a heart valve of the prior art to the joint extension 34 of the valve 10 according to the invention.
  • the area of the articular extension 2 projected in the plane of FIG. 3 has been reduced by at least 50%.
  • the articular extensions of the valve 10 according to the invention do not comprise any through-opening, unlike the articular extensions of the valves of the prior art, and in particular those exposed in US Pat. No. 6,395,024. That the articular extensions have no through opening improves the behavior of the valve according to the invention vis-à-vis the flow when it is implanted aortic position.
  • 6 395 024 has six small openings distributed two by two symmetrically on each of the articular extensions and whose function is to allow the cleaning of the leading edge of the flaps when they are in the open position (raised). Since in the aortic position the blood flow regime is a regime of high pressures, there is a phenomenon of shearing blood flow through these small openings. This results in the creation of six high velocity side jets against the aortic wall and this results in activation of the coagulation phenomenon.
  • the flap 18 comprises a central portion 38 to which are connected two lateral wings 40, 42 framing the latter symmetrically and which are inclined relative thereto ( Figures 1 and 7).
  • the shutter 18 is symmetrical with respect to a plane passing through the axis Z (axis of symmetry) and which is perpendicular to the plane of FIG. 5.
  • the shutter 18 comprises a leading edge 44 which, in the open position of the shutter, as shown in Figures 1, 4a and 4b, is placed on the upstream side of the anterograde flow (arrow A) and, in the closed position, cooperates with the inner peripheral surface 16 of the annular support 12 with specific means arranged on this surface, as will be seen later.
  • This leading edge 44 has a convex shape whose curvature oriented downwards (FIGS. 4a, 4b, 5 and 7) is adapted to cooperate with the inner surface 16 of the valve.
  • the flap 18 comprises, on the side of the flap opposite the side where the leading edge is located, a trailing edge 46 which is disposed on the downstream side of the antegrade flow.
  • the trailing edge 46 comprises two symmetrical portions 46a and 46b which respectively extend from the lateral wings 40 and 42 to a downstream end zone 48 where they meet. join to form a point. This point 48 is aligned along the axis of symmetry Z of the flap.
  • the portions 46a and 46b thus give the trailing edge 46 a substantially triangular shape of inverted V whose point coincides with the end zone 48.
  • the end zone 48 which is visible in FIG. 7, showing the outer surface 45 of the flap 18 is, for example, raised relative to the outer surface of the flap so as to adopt the substantially "spatulas" shape of an end of the flap. a ski spatula.
  • this outer surface has, for example, a generally planar shape in a direction taken by moving from one side wing of the flap to the opposite side wing.
  • the substantially spatulated end 48 of the flap forms a point which deviates from the extension of the inner surface 47 of the flap by an angle which is substantially between 2 ° and 4 °.
  • the spatulated end 48 of the flap is not parallel to the flow while the flap body is substantially parallel to the direction of the flow.
  • each flap reinforces the hydrodynamic mechanism of early closure of the flap accompanying the deceleration of the anterograde flow and which is due to the gradual establishment during this phase of a subtle positive transient pressure gradient. between the outer and inner surfaces of the shutter.
  • FIG. 10 illustrates, in a view from above, the flaps 18, 20, 22 of the valve 10 in the closed position, in which the spatulated ends 48 are spaced from each other by a distance of at least 50 microns.
  • a central interstice 49 in the form of a star with three branches is thus formed between the respective trailing edges of these flaps.
  • This gap prevents any risk of cavitation when closing the shutters and avoids the generation of noise at closing by eliminating the contact between the trailing edges of the flaps at their end zones 48.
  • each of the branches extends over a distance corresponding to at least one third of the total length of the trailing edge of the flaps.
  • the shutter 18, like all the other shutters, and in particular the shutter 20 in FIGS. 1 to 3 cooperates with the inner peripheral surface 16 of the annular support 12 and, more specifically , with means for guiding the shutter in rotation, as well as with support means which are arranged radially on the inner peripheral surface of the valve.
  • the flaps are able to effect a rotational movement between their open position of FIG. 1 and their closed position of FIG. 2.
  • the means for guiding the rotation of the flap comprise two profiled recesses 50 and 52 arranged in the thickness of the two respective articular extensions 32 and 36 and which form tracks or arcs for guiding and retaining the lateral wings of the shutter. More particularly, these tracks or arcs cooperate with parts of the trailing edge 46 of the flap which are located at a so-called terminal portion of the side wings 40, 42 ( Figures 3, 4a and 11).
  • the valve 10 also comprises several different support means of each flap which are arranged on the inner peripheral surface 16 of the support 12.
  • two first lower supporting or supporting means 60, 62 of the flap 18 have a streamlined hydrodynamic shape whose cross section increases in the direction of flow of the anterograde flow.
  • the profiled shape ends with an asymmetric hoop-shaped upper end surface 60a, 62a whose slope is more inclined on the opposite side to the articular extensions as shown in FIG. 4b for the support means 62.
  • the upper end surface 62a cooperates with a contact zone 44a of the leading edge 44 in order to establish a surface contact between them during the closure of the flap, when said contact zone moves towards the base of the flap. insertion of the support means which is located on the inner peripheral surface 16 of the valve.
  • This surface contact makes it possible to distribute the wear due to the contact of the two elements (leading edge of the flap and support means) on a surface instead of having a contact along a nip, as would be the case with the symmetrical profile of the support means 61 shown in dashed lines in Figure 4b.
  • the distribution of forces is therefore better distributed thanks to the asymmetrical profile of the head (upper end) of the support means 62 and, more particularly, thanks to the portion 62a1 of the head of the latter which has a radius of curvature large enough to obtain surface contact with the rectilinear contact zone 44a of the leading edge.
  • the portion 62a1 has a substantially planar shape, for example, made in the form of a flat, thus conferring on the upper end surface 62a a convex profile on the side of the nearest and substantially flat joint extension on the opposite side .
  • the flap 18 In the closed position, the flap 18 then rests with its leading edge 44 (FIG. 4a) on the upper end surfaces 60a, 62a of the means support and, in particular, on the flattened portions of these surfaces.
  • two first distinct lower support means of the same type as that described above are also provided on the valve for each other component: the support means 63, 65 for the shutter 20 and the support means 67, 69 for the flap 22, as shown in FIG.
  • the valve also comprises second lower support or support means arranged substantially in the median and lower part of each articular extension (FIGS. 4a, 11 and 12) and which are in the form of an element 64, 66, 68 bow-shaped vessel pointing upward, profiled in the direction of anterograde flow.
  • Each of the profiled elements 64, 66, 68 of the respective articular extensions 32, 36 and 34 has sufficiently spaced lateral edges (approximately a distance equal to the thickness of the flaps) to serve as support for the lateral edges of the flaps in position. closed.
  • first lower support means 60 and 63 and the respective upper support means 70 and 72 of these flaps are offset radially relative to each other in order to avoid that the upper support means are placed in the wake of the first lower support means. This thus makes it possible to avoid the creation, between these lower and upper support means, of micro-disturbances of the flow which would be favorable to the activation of blood platelets.
  • This arrangement also ensures that the flap and support surfaces between the first lower support means and the upper support means are sufficiently flushed by the flow during the cardiac cycle.
  • the upper end surface of each first lower support means is well exposed to the retrograde current during closure of the flap.
  • the upper stops 70 and 71 come into contact with the outer surface of the flap in its upstream portion from the first milliseconds of opening of the valve.
  • the volume of the upper support means is substantially increased, thus making the impact surface larger between them. and the outer surface of the flap near its leading edge.
  • the concentration of mechanical stresses at the point of contact is reduced, which in the long run avoids possible alterations in the local surface state of the shutter.
  • the upper support means must not be too far away from the first lower support means to maintain the effect synchronous and symmetrical opening of the two lateral flaps of the flap and not to increase the volume of the upper bearing means in a proportion that may induce an unnecessary disturbance on the blood flow.
  • each upper support means 70, 71 of its first support means closest bottom 60, 62 by a distance which corresponds substantially to at least one dimension (width) of the first lower bearing means which is measured radially.
  • the radial dimension or width of the lower support means is approximately 1.5 mm, and the upper support means is thus spaced radially at least 1.5 mm from the wake of the first support means corresponding lower.
  • the upper bearing means (abutment) is preferably wider in its upstream part and more tapered in its downstream part since only the upstream part comes into contact with the outer surface of the flap at its opening and which it is important to reduce locally. the stress concentration during the impact.
  • the leading edge 44 of the flap 18 is arranged between the first lower support means 60, 62 and the upper support means 70, 71.
  • each rotation in rotation defines an axis of rotation (shown in phantom in FIGS. 5 and 7) which extends in a direction taken by moving from one lateral wing of the shutter to the opposite side wing.
  • the axis of rotation is located at a distance from the longitudinal axis X of the valve (in a plane perpendicular to this axis) which is greater than 75% of the radius of the annular support 12 of a flap, and this, while allowing blood flow between the outer surface of the flap and the inner peripheral surface 16 of the annular support.
  • each axis of rotation is virtual because it is located entirely outside the corresponding flap, between the latter and the annular support.
  • the axis is therefore very eccentric with respect to the center of gravity of the shutter.
  • the resultant of the frictional forces acting on the flap exerts relative to the virtual axis a movement sufficient to initiate closure of the flap during the deceleration of the blood flow. This promotes the closing movement and makes it much less violent than with some valves of the prior art whose shutters close abruptly, causing both noise and trauma to the blood cells circulating.
  • This eccentric arrangement of the axes of rotation of the flaps makes it possible to arrange the flaps, in the open position of the valve, substantially parallel to the axis of the blood flow, or even in a plane substantially exceeding the angle of 90.degree. relative to the plane perpendicular to the X axis, because the only friction forces are sufficient to initiate their closure.
  • the presence of the raised end in the shape of a ski spatula of the end zone 48 of each flap contributes to promoting the early closure of the flaps during the deceleration of the flow by using the natural forces of the flow.
  • the upper bearing means 70, 71 move away from the first lower support means 60, 62 of the flap 18 and thus increase the leverage sought when the upper edge of the flap lifts due to the pressure exerted on its inner surface at the beginning of the opening phase of the cardiac cycle.
  • a very weak hydrodynamic force applied to the inner surface of the closed shutter then causes almost immediately the symmetrical tilting of the flap around its axis of rotation.
  • the articular extensions arranged on the downstream edge of the annular support 12 are of considerably reduced dimensions with respect to the joint extensions of the tri-fold valves of the prior art. Therefore, when the flaps are raised (valve in the open position as in Figures 1, 3, 4a, 11 and 12) the outer surface of each side wing of each of the flaps which is arranged in abutment against a part lateral expansion of a corresponding joint extension is considerably reduced compared to the prior art.
  • FIG. 11 shows in broken lines the articulation facets 42a and 40a of the lateral wings 42 and 40 of the respective flaps 18 and 20 in contact with the respective extension facets 50a and 52a of the articular extension 32.
  • Removal of non-biological surfaces in contact with each other in the flap pivotal space therefore eliminates or at least minimizes the risk of coagulation deposition in this area.
  • the invention thus eliminates in practice a vital risk of valvular dysfunction resulting in acute circulatory insufficiency.
  • the sum of the fractions of the outer surfaces of the two lateral wings of each flap, that is to say the articulation facets 40a and 42a, which are arranged, in the open position of the shutter, against the respective extension facets 52a and 50a of the corresponding joint extension corresponds to a surface substantially less than 5% to the total outer surface of the flap.
  • the surface of the two extension facets is thus, for example, equal to 1, 4% of the total outer surface of the shutter.
  • the width of the base of each articular extension can be reduced with respect to the width of its top, so that the extension visible on Figure 3 is more like a mushroom than a niche.
  • the lateral flanks of the extension will thus be concave instead of being substantially rectilinear as in FIG.
  • FIGS 6 and 8 illustrate a flap 100 of a mechanical prosthetic heart valve trifold according to the prior art, respectively in top view and in perspective.
  • the flap 100 comprises two lateral wings 102 and
  • connection area is thus similar to the flow at a "ridge" on the outer surface of the flap.
  • each lateral flange with the central part of the flap is constant.
  • this "edge" on the outer surface of the shutter generates, in the flow, a singularity in the form of a small zone of recirculation downstream, recirculation which is in the immediate vicinity facets of articulation and extension.
  • This singularity increases the kinetic energy of the blood cells and in particular the platelets, increases their residence time on the surrounding surfaces and consequently increases the risk of formation of coagulation deposits.
  • the lateral flanges 40, 42 of each flap for example the flap 18 shown in FIGS. 5 and 7, each form with the central portion 38 to which they are connected a junction zone 80, 82 of convex outer surface, whose radius of curvature is sufficiently large to prevent the formation of swirling flows in the vicinity of this surface. More particularly, if we consider the length of this junction zone which extends from the leading edge to the trailing edge (parallel to the Z axis), this radius of curvature must be large enough on at least a part of its length including the trailing edge 46 of the shutter.
  • the radius of curvature close to the leading edge 44 may be of low value and, over a portion of the length of this junction zone which includes the trailing edge 46, a higher value which makes it possible to avoid the flow to detach from the outer surface of the flap and generate local disturbances.
  • a small value of the radius of curvature near the leading edge makes it possible to use lower support means of small size and which thus make little obstruction to the flow.
  • the value of the radius of curvature increases in the direction of the anterograde flow along the flap, that is to say towards the trailing edge of the latter.
  • FIGS. 5 and 7 An embodiment in accordance with this teaching is, for example, illustrated in FIGS. 5 and 7, wherein the convex outer surface of the junction zone 80, 82 has the general shape of a cone portion whose apex is located towards upstream of the antegrade flow, that is to say the side of the leading edge 44 of the flap, and the opening of the cone is located at the trailing edge.
  • the top of the cone may be located more or less near the leading edge in the desired shape.
  • the radius of curvature increases, for example, progressively from the leading edge, or near it, towards the trailing edge.
  • Figures 13 and 14 respectively illustrate the schematic views taken in the plane of the flap, the leading edge 44 and the trailing edge 46.
  • the inner surface of the junction area 80, 82 also has the general shape of a cone portion.
  • the value of the radius of curvature at the leading edge for the valves implanted in the aortic position is between 1 and 2 mm and is, for example, equal to 1.15 mm for a valve of outside diameter 19 mm and 1.5 mm. mm for an outer diameter valve 31 mm.
  • the value of the radius of curvature at the trailing edge is at least 2 mm, more particularly between 2 and 4 mm and is, for example, equal to 2.5 mm for a diameter of 19 mm and 3.3 mm for a diameter of 31 mm.
  • the respective corresponding values of the radii of curvature on the inner surface of the flap are 0.5 and 0.6 mm for the leading edge and 1, 5 and 1, 8 mm for the trailing edge.
  • the values of radii of curvature at the leading edge are between 1 and 2 mm and are, for example, equal to 1.32 mm for a valve of external diameter 25 mm and to
  • They are at least 2 mm at the trailing edge, more particularly between 2 and 4 mm and are, for example, 2.9 mm for a diameter of 25 mm and 3.3 mm for a diameter of 33 mm. mm.
  • the respective corresponding values of the radii of curvature on the inner surface of the flap are 0.52 and 0.6 mm for the leading edge and 1, 6 and 1, 8 mm for the trailing edge.
  • the value of the radius of curvature at the leading edge is 50 °, plus or minus 5 °.
  • the outer surface 45 of the central part of the shutter 18 is given a shape, for example, substantially convex in a direction taken by moving from the lateral wing 40 at the opposite side wing 42 ( Figure 15) instead of a generally planar shape.
  • This convex shape only concerns the zone of the flap close to the leading edge, between the axis of rotation of the flap and the leading edge, the region of the flap located downstream of the axis of rotation is, for its part, rather concave.
  • the stroke of the leading edge on the lower lower support means will be substantially shorter, thereby increasing the wear resistance of the valve.
  • the convex outer surface of the junction zone between the central part of the flap and each lateral flange adopts the general shape of a cylindrical portion and the radius of curvature is therefore constant.
  • the radius of curvature on the outer surface of the flaps is at least 2 mm, more particularly between 2 and 4 mm and, for example, equal to 2.5 mm for a valve of outer diameter equal to 19 mm. It is comprised in 2 and 4 mm and, for example, equal to 3.3 mm for a valve of external diameter equal to 33 mm for valves implanted in the mitral position.
  • the arrangement of the cylinder portion junction zone may be useful in some applications where the radius of curvature in the vicinity of the flap leading edge should not be as small as possible.
  • each of the articulation facets of each flap for example, the facet 40 a in FIG. 16
  • the corresponding extension facet for example, the facet 52a in FIG. 16
  • volume of the pivot space is less than
  • the valve thus comprises six pivoting spaces 120 in the closed position (FIGS. 2, 10 and 15).
  • junction regions 80, 82 of the flaps have the shape of a cone portion or a truncated cone, it is found that the downstream part of these zones (situated on the trailing edge side 46) is lowered relative to at the part of these upstream zones, that is to say at the leading edge 44 (FIGS.
  • the zone of joining between the trailing edges of the flaps is lowered, compared with the prior art, with respect to a plane perpendicular to the longitudinal axis X, such that the plane containing the flap leading edge 28 of the annular support 12 (FIG. 17).
  • the angle A is therefore reduced thanks to the invention.
  • this angle is between 30 and 50 ° and an angle value of 35 ° is particularly suitable for the aortic position.
  • an angle of up to 50 ° can be advantageous. It should be noted, however, that a closing angle of 35 ° can be adopted for all sizes of aortic and mitral valves.
  • the pivoting space 120 ( Figure 16) becomes more flared and more accessible to retrograde rinsing by the blood stream than in the valves of the prior art where this space is cashed between less flared walls that further impede access for flow.
  • pivoting spaces of the rigid three-flap valve are critical spaces for the resistance of the valve to coagulation phenomena.
  • the specific arrangement of this space according to the invention aims to reduce as much as possible any stasis on the adjacent walls (flaps and joint extensions), any singularity in the microstructure of the flow at this point and any foreign surface useless to its immediate neighborhood.
  • the outer surface 45 of the central portion 38 of each flap is shaped, for example, substantially convex, which increases the central surface of the flaps exposed to the flow antegrade when the valve is in the open position. Coupled with the arrangement of the junction zone with increased radius of curvature between the central part and the lateral flaps of the flaps, this convexity aims to distribute the flow uniformly over the entire outer surface of the flaps and in particular on the lateral facets dedicated to pivoting. This is contrary to what is achieved by the prior art described in US Pat. No. 6,395,024, wherein the shape of the outer surface of the flap tends to move the flow away from the lateral flanges by steering it more readily towards the center of the shutter.
  • the main orifice is delimited by the inner surfaces of the shutters.
  • the inner surface 47 of the central part of the flaps preferably has in its upstream part a generally concave shape in a direction taken by moving from a lateral flange 40 to the opposite lateral flange 42 (FIG. 15), which positions the upstream portion of each flap including the leading edge in an anterograde blood flow area where the velocities are substantially slower than toward the center of the valve.
  • the upstream portion is that located between the leading edge and the axis of rotation of the flap.
  • the anterograde flow meeting the leading edge of the flaps is less subject to disturbances than with flaps whose inner surface is of convex shape in the plane of FIG. 15.
  • the main orifice is thus substantially widened with respect to the prior art and the passage section offered to the flow by this orifice in a plane perpendicular to the X axis, in particular in the portion of the orifice defined by the upstream portion of the flaps, is at least equal to 75% of the internal surface delimited by the support 12.
  • Each secondary orifice 14b, 14c, 14d is, for its part, defined by the space offered to the flow between the outer surface of one of the three flaps and the inner peripheral surface portion of the support 12 which separates the articular extensions with which the relevant part cooperates.
  • the secondary orifices each have a general crescent shape.
  • each secondary orifice 14b-d is rinsing orifices of the outer surfaces of the flaps and in particular of their lateral wings. It will be noted that the largest passage section offered to flow by each secondary orifice 14b-d in a plane perpendicular to the axis X is less than 7% of the internal surface delimited by the support 12. Moreover, the dimension of each secondary orifice taken in a radial direction passing through the center of the support 12, in a plane perpendicular to the axis X, is less than 20% of the internal radius of the support.
  • Figure 18 illustrates the structure of the flow on the flat, even concave outer surface 45 of a shutter in the open position.
  • the Applicant has modified the structure of the outer surface of the valves. flaps to promote the orientation of the blood flow to the lateral flaps of the flaps as illustrated in Figure 19.
  • the modified outer surface 145 is thus provided with a plurality of grooves 147 shown by way of example in Fig. 20 with a V-shaped cross-section and which are oriented to channel the blood flow in a controlled manner.
  • the grooves can be oriented differently according to the areas of the outer surface of the flap where they are arranged: the grooves arranged near the center of the flap are oriented axially along the axis of symmetry Z of the flap, while the grooves arranged near the wings lateral 40, 42 have an axial orientation which forms with the axis Z an angle, for example, between 5 ° and 7.
  • This angle can be more pronounced as the grooves are close to the wings. Such an arrangement distributes the flow over a larger surface of the flap and thus promotes the cleaning of the lateral wings. It should be noted that other possible shapes of cross-sections of the grooves are conceivable: U-shaped round shapes, rectangular shapes, trapezoidal shapes, L-shaped fins, etc.
  • these grooves have a height h which corresponds substantially to the thickness of the boundary layer of the blood flow on the flap and which is, for example, of the order of 0.01 mm.
  • the thickness of the boundary layer can be obtained from the dimensions of a shutter, by applying a scale factor of 1 / (Reynolds number) 1 A
  • the distance separating two consecutive grooves is adjusted according to the risk of contamination of the grooves.
  • the grooves provided on all or part of the outer surface of the flaps contribute to thicken and stabilize the boundary layer of the flow, thus reducing the turbulent friction and the resulting friction drag generated by the meeting of the flow and the outer surface of the shutters.
  • These grooves are obtained in a known manner, for example, by molding when the flaps are made of biocompatible polymers, or by an isotropic diamond deposit a few microns thick if the flaps are made from another material, or by micro-machining.
  • the inner surface of the flaps can also be grooved to promote a different flow distribution.
  • the peripheral rib 26 provided for fixing a suture ring is for example specifically configured so that its general shape, which can be seen in FIGS. 1 to 3, reproduces the profile of a curve. substantially sinusoidal.
  • the vertices of the sinusoidal curve are respectively arranged at the right of each of the articular extensions 32, 34, 36 (top 26a to the right of the extension 34) of the support and the recesses are respectively arranged between two consecutive articular extensions: the recess 26b is arranged between the extensions 34 and 36 while hollow 26c is arranged between extensions 32 and 34.
  • the profile of the rib 26 generally follows the contour of the trailing edge 30 of the support 12.
  • the rigid flap valve according to the invention, different materials can be used.
  • a biocompatible metal such as titanium or stellite.
  • the flaps in turn can be made from a biocompatible material, for example monolithic carbon, or graphite with a pyrolytic carbon coating.
  • the flaps can also be made in a biocompatible synthetic polymer and which has wear resistance properties comparable to those of pyrolytic carbon.
  • a material such as the "Peek" (acronym for
  • Polyetheretherketone has a low density of the order of 1, 2 and is particularly suitable for making shutters.
  • This material is carbon reinforced to increase the wear resistance of the shutters.
  • Such material is provided, for example, by Ensinger
  • valve according to the invention can be made of titanium for the annular support 12 and "peek" for the flaps, which provides a pair of materials perfectly suited to the friction and wear encountered on this type of valve.
  • the "Peek” as a material for manufacturing the shutters and the pyrolytic carbon for the support, or even the pyrolytic carbon for the shutters and the support.

Abstract

L'invention concerne une valve cardiaque prothétique mécanique qui comprend un support annulaire (12) sur lequel sont agencés, de façon articulée, au moins deux volets mobiles (18, 20, 22) et plusieurs extensions articulaires (32, 34, 36). Chaque volet comportant une partie centrale (38) encadrée par deux ailes latérales coopérant chacune avec une extension articulaire par l'intermédiaire d'une portion terminale qui possède une facette d'articulation. Les deux facettes d'articulation de chaque volet totalisant une surface inférieure à 5% de la surface extérieure totale du volet.

Description

VALVE CARDIAQUE PROTHETIQUE MECANIQUE
La présente invention concerne une valve cardiaque prothétique mécanique.
De nos jours, environ 300 000 malades dans le monde bénéficient chaque année d'une prothèse valvulaire en remplacement d'une ou de plusieurs de leurs valves cardiaques détériorées soit par une maladie infectieuse soit par un processus dégénératif lié au vieillissement.
On distingue deux grandes familles de valves cardiaques prothétiques :
- les prothèses valvulaires d'origine biologique appelées bioprothèses, qui sont prélevées sur l'animal puis traitées chimiquement ou construites à partir de tissus biologiques sur le modèle d'une valve naturelle ;
- les prothèses valvulaires mécaniques qui sont des dispositifs sans rapport avec la forme d'une valve naturelle et fabriqués avec des matériaux artificiels résistant à l'usure et biologiquement compatibles.
Du fait de leur configuration anatomique et de leur mode de fonctionnement physiologique, les bioprothèses offrent des performances biologiques qui sont les mêmes que celles d'une valve cardiaque naturelle car elles respectent la structure naturelle de l'écoulement du sang à travers les cavités cardiaques et l'aorte.
Cette particularité des bioprothèses permet aux malades de faire l'économie d'un traitement anticoagulant toute leur vie durant, ce qui élimine le risque d'accidents hémorragiques consécutifs à la prise prolongée de ces médicaments et donc procure à ces malades une qualité de vie supérieure.
Ainsi, le patient peut oublier qu'il porte une valve cardiaque artificielle. En outre, il convient de noter que les bioprothèses n'entraînent pas de nuisance acoustique, ce qui contribue également à faire oublier au patient qu'il est porteur d'une valve cardiaque artificielle. Ces bioprothèses ont toutefois une durée de vie limitée en raison de leur calcification inéluctable avec le temps, ce qui impose un remplacement après une durée d'une dizaine d'années en moyenne. Une fois amorcée, cette calcification s'accélère et détruit la valve avec, pour conséquence, la dégradation progressive de la fonction valvulaire et ses répercussions sur le muscle cardiaque. Cette calcification survient plus rapidement chez les sujets jeunes que chez les sujets âgés, ce qui limite le champ d'application des bioprothèses aux sujets de plus de 65 ans ou aux sujets dont l'espérance de vie est inférieure à la durée de vie de la bioprothèse. On notera que l'espérance de vie en France à 65 ans est de 17,7 années pour les hommes et de 21 ,7 années pour les femmes et que le remplacement d'une valve cardiaque déficiente est un acte de chirurgie lourde qui s'accompagne, au-delà de 75 ans, d'un taux de mortalité élevé. À ce risque s'ajoute, à cet âge, l'inconfort d'une opération chirurgicale majeure. Contrairement aux bioprothèses, les dispositifs valvulaires artificiels de type mécanique ne sont pas dégradables et ont une durée de vie dépassant la durée de la vie humaine. En revanche, du fait de leur géométrie très éloignée du modèle naturel et de leur mode de fonctionnement non physiologique, ces valves mécaniques génèrent à chaque battement cardiaque des perturbations sur l'écoulement du sang sous forme de turbulences, de zones de recirculation, de tourbillons, de cisaillement des cellules sanguines et de ralentissement ou de stase du flux sur les parties du dispositif mécanique qui sont mal balayées par le flux sanguin, notamment les zones articulaires.
Ces perturbations de l'écoulement augmentent le temps de contact des cellules sanguines et l'intensité des réactions des protéines actives sur les matériaux prothétiques constituant ces dispositifs. Or, tout matériau étranger en contact avec le sang stimule par lui-même les processus de coagulation. Il résulte ainsi de l'interaction entre les perturbations de l'écoulement et les matériaux non biologiques : - l'adhésion sur la surface de ces matériaux de protéines actives et de plaquettes sanguines,
- l'activation de la coagulation, et - la formation sur ces surfaces de caillots organisés.
Ce phénomène biologique puissant est celui-là même qui gouverne le processus physiologique de cicatrisation de la paroi interne des vaisseaux. Il empêche les fuites du sang en dehors du système circulatoire. Il est donc indispensable au maintien de la vie et difficile à contrecarrer.
Cependant, les dépôts de coagulation peuvent non seulement entraver la fonction mécanique de la valve sur la circulation sanguine, ce qui met la vie des patients en danger, mais aussi migrer dans la circulation
(embolies), le plus souvent dans la circulation cérébrale, et entraîner des troubles neurologiques souvent accompagnés de séquelles invalidantes.
À ces phénomènes de coagulation s'ajoute le traumatisme, répété à chaque cycle cardiaque sur les globules rouges, qui raccourcit leur durée de vie
(hémolyse) et entraîne une réaction inflammatoire chronique de l'organisme tout entier. Cette réaction tend elle-même à augmenter la coagulabilité du sang, ce qui accroît la probabilité d'accidents de coagulation.
Ainsi, la thrombose génère la thrombose et crée une maladie chronique qui s'auto-entretient.
Pour remédier à cet inconvénient, tout malade porteur d'un dispositif valvulaire artificiel mécanique doit être protégé toute sa vie durant par un traitement anticoagulant avec le risque inhérent, soit d'accidents hémorragiques en cas de surdosage, soit d'accidents thromboemboliques en cas de sous- dosage.
Depuis le début des années soixantes, plusieurs générations de valves cardiaques mécaniques ont été successivement conçues pour réduire les perturbations que ces dispositifs génèrent sur l'écoulement, de façon à diminuer les risques de coagulation : d'abord, prothèses valvulaires constituées par une bilie flottante dans une cage (STARR-EDWARD), puis, dans le début des années 70, prothèses de deuxième génération constituées par un disque basculant (BJORK-SHILEY) et, dix ans plus tard, prothèses de troisième génération à deux volets et ouverture latérale de type ST-JUDE MEDICAL.
Cette troisième génération est aujourd'hui la plus utilisée et reprise sous des formes différentes par plusieurs fabricants. Malgré ces améliorations, les valves de troisième génération restent traumatiques sur le sang et ne peuvent toujours pas fonctionner sur l'homme sans médicaments anticoagulants. En revanche, grâce à une expérience clinique de plus de 40 ans, le traitement anticoagulant est aujourd'hui bien codifié.
Les malades porteurs d'une valve mécanique en position aortique doivent maintenir leur coagulabilité sanguine (mesurée par une méthode biologique normalisée connue sous le terme "INR" pour "International
Normalized Ratio") à un niveau au moins deux fois et demie supérieur à la valeur physiologique (INR 2,5).
Les malades porteurs d'une valve mécanique en position mitrale doivent maintenir leur coagulabilité sanguine à un taux au moins trois fois et demie supérieur à la valeur physiologique (INR 3,5).
Cette différence de "nocivité" des prothèses mécaniques entre Ia position aortique et la position mitrale est due au fait que la vitesse du sang est plus basse à travers l'orifice mitral qu'à travers l'orifice aortique. La durée de remplissage du cœur à travers la valve mitrale (typiquement de l'ordre de 450 millisecondes à 70 cycles par minutes) est en effet plus longue que la durée de l'éjection du sang à travers l'aorte (typiquement de l'ordre de 300 millisecondes). Le temps de contact du sang avec la valve prothétique en position mitrale est donc plus long, ce qui permet aux processus de coagulation d'aboutir à leur terme.
De plus, les valves mitrales étant de plus grandes dimensions, les surfaces de matériaux étrangers exposées aux dépôts biologiques sont plus étendues. Il est ainsi établi que le risque de complications thromboemboliques sur les malades porteurs de valves cardiaques mécaniques est deux fois plus élevé en position mitrale qu'en position aortique.
Sur les grandes séries de malades porteurs de valves cardiaques mécaniques, le taux moyen d'accidents de coagulation admis par la pratique médicale courante est statistiquement inférieur à 3 % par an et par malade, et le taux d'accidents hémorragiques est inférieur à 4% par an et par malade. Ces données de l'état de l'art servent de référence aux cliniciens pour l'évaluation du potentiel thrombogénique d'une nouvelle valve cardiaque mécanique pendant les essais probatoires sur l'homme et sont déterminantes pour l'obtention des autorisations de sa mise sur le marché. Un taux de complications thromboemboliques ou d'hémorragies supérieur à 3-4 % entraînera le rejet du produit par la communauté médicale et le refus des agréments.
Pour autant que la protection anticoagulante soit correctement assurée, des millions de malades porteurs de valves cardiaques mécaniques dans le monde peuvent néanmoins vivre aujourd'hui dans des conditions acceptables. Ces malades qui étaient autrefois condamnés à mourir dans des délais courts peuvent, de nos jours, vivre de longues années. Toutefois leur espérance de vie, du fait du risque thromboembolique et hémorragique, reste notablement inférieure à celle des sujets de même âge non porteurs d'une valve cardiaque.
Le besoin impératif d'une protection anticoagulante pour tous les malades porteurs de valves cardiaques mécaniques se manifeste de façon particulièrement dramatique dans les pays où les structures médicales ne permettent pas un suivi satisfaisant du traitement anticoagulant. Dans ces pays, les maladies valvulaires sévissent à l'état endémique et touchent plus volontiers les sujets jeunes, les femmes et la position mitrale. Par exemple, plusieurs millions d'enfants de moins de 15 ans nécessitent en Inde un remplacement valvulaire prothétique. Ces sujets jeunes sont de mauvais candidats pour les valves de type biologique en raison des problèmes de calcification évoqués plus haut. Les valves cardiaques mécaniques sont donc plus volontiers employées mais s'accompagnent d'un taux de dysfonction par coagulation très supérieur à celui qui est observé dans les pays développés et ce risque majeur restreint leur utilisation. La thrombogénicité des valves cardiaques mécaniques représente dans ces pays un problème de santé publique et illustre le besoin de produits plus performants dont l'utilisation serait moins contraignante.
Il convient de noter que, même si le traitement anticoagulant est correctement suivi, le taux de complications reste préoccupant même dans les pays où les structures médicales sont adéquates. En effet, statistiquement, sur une période de 10 ans, un porteur de valve cardiaque mécanique sur deux aura subi une complication grave nécessitant son hospitalisation, soit du fait d'un accident de coagulation, soit du fait d'un accident hémorragique. Les concepteurs de valves cardiaques mécaniques cherchent donc à améliorer les performances hydrodynamiques et le mode de fonctionnement de ces dispositifs pour réduire les perturbations qu'ils induisent sur l'écoulement du sang et, de ce fait, éliminer, ou au moins réduire les doses de médicaments anticoagulants nécessaires à la prévention de ces complications. On connaît, d'après le brevet US 6 395 024, une valve cardiaque prothétique mécanique qui comporte une bague pourvue d'une surface périphérique intérieure centrée autour d'un axe et trois volets disposés à proximité de la surface périphérique intérieure de la bague. Ces trois volets sont adaptés à effectuer un mouvement de pivotement entre, d'une part, une position fermée empêchant le sang de s'écouler au travers de la valve et, d'autre part, une position ouverte dans laquelle l'écoulement de sang traverse la valve suivant une direction axiale.
La bague comporte, d'une part, un bord, appelé bord aval, reliant la surface périphérique intérieure à une surface périphérique extérieure et qui est placé du côté aval de l'écoulement et, d'autre part, trois créneaux ou protubérances qui s'étendent à partir de ce bord vers l'aval, suivant la direction axiale.
Chaque volet comporte une partie centrale pourvue de deux ailes latérales qui coopèrent chacune avec des moyens de guidage en rotation du volet respectivement aménagés sur les surfaces intérieures de deux créneaux consécutifs. L'espace dans lequel chaque aile latérale de volet pivote est appelé espace de pivotement.
En outre, deux fenêtres sont pratiquées de façon symétrique dans chacun des créneaux. Chaque fenêtre permet un rinçage satisfaisant de la face externe des ailes latérales des volets par l'écoulement rétrograde. Ainsi, lorsque la valve est implantée en position mitrale, cette face externe peut être balayée par l'écoulement du sang qui circule du ventricule vers l'aorte. Grâce à cette disposition, tout risque de dépôt biologique à cet endroit est donc éliminé. De même, lorsque la valve est implantée en position aortique, le reflux du sang à travers ces fenêtres dans les sinus aortiques lorsque la valve est fermée peut assurer un rinçage de la face externe des ailes latérales, empêchant qu'un volume de sang puisse être retenu captif dans les espaces de pivotement du volet. Pour parfaire cette protection contre la stagnation du sang dans les espaces de pivotement, un agencement supplémentaire a été aménagé : le bord inférieur des fenêtres décrites ci-dessus forme avec le bord d'attaque des ailes latérales des volets, lorsque ceux-ci sont en position ouverte, une deuxième ouverture ayant une forme de pertuis triangulaire. Cette deuxième ouverture (dénommée "cleft" en terminologie anglo-saxonne) est "dynamique" car la surface de l'orifice ainsi constitué augmente progressivement lorsque le volet passe de la position fermée à la position ouverte. Elle permet le passage direct vers l'extérieur des volets du sang véhiculé par l'écoulement antérograde et assure un balayage supplémentaire du bord d'attaque et de la face externe des ailes des volets.
Cependant, le Demandeur s'est aperçu à partir d'implantations effectuées sur l'animal que l'effet de cet agencement supplémentaire sur l'écoulement du sang n'était pas le même en position mitrale et en position aortique. En effet, l'agencement susvisé s'est révélé efficace sur un grand nombre d'animaux implantés avec la valve en position mitrale et laissés pendant de nombreux mois sans protection anticoagulante, tandis qu'il en a été autrement des animaux sur lesquels la même valve a été implantée en position aortique. En position mitrale, le sang sous faible pression peut s'écouler à travers les deuxièmes ouvertures ("clefts") de l'intérieur de la valve vers l'extérieur dans les espaces de pivotement des volets, pendant le remplissage ventriculaire, et effectuer un rinçage des espaces critiques de pivotement.
Cependant, la pression sanguine générée par le cœur, au cours de l'éjection ventriculaire, à travers la valve implantée en position aortique est dix fois supérieure à la pression sanguine qui s'exerce à travers la valve implantée en position mitrale.
Or, dans la mesure où les valves aortiques sont plus petites que les valves mitrales et où les "clefts" sont donc beaucoup plus étroits, l'effet de rinçage en position aortique crée, à chaque pulsation cardiaque, des "jets" latéraux puissants qui dépassent l'objectif de rinçage recherché et atteignent les valeurs traumatiques pour les cellules sanguines.
Le seuil traumatique reconnu par l'état de l'art en la matière se situe autour d'une force de 150 dynes/cm2 pour les plaquettes du sang et de 1000 dynes/cm2 pour les globules rouges. Au-delà de ces valeurs, les éléments du sang sont cisaillés, les plaquettes sanguines libèrent leurs agents coagulants, ce qui peut provoquer des complications de coagulation.
Ainsi, les "clefts" qui sont efficaces en position mitrale pour prévenir le ralentissement du sang dans les espaces de pivotement sont donc inutiles et potentiellement dangereux en position aortique. L'expérience clinique a montré que les zones d'articulation d'une valve cardiaque mécanique constituent les zones les plus exposées aux phénomènes de coagulation.
Malheureusement, comme une valve cardiaque assure à chaque battement du cœur une fonction vitale sur la circulation du sang, les spécifications imposées par les impératifs de sécurité fonctionnelle sont prioritaires sur les problèmes de coagulation.
Ainsi, le mécanisme d'articulation des volets impose une géométrie peu favorable à une bonne structure du flux sanguin dans les espaces de pivotement. Il génère des cisaillements et des micro turbulences à proximité immédiate de surfaces relativement mal balayées par le courant sanguin.
L'amplitude de ce phénomène est liée au nombre de zones d'articulation de la valve. Elle est donc plus grande pour une valve cardiaque à trois volets qui comporte six espaces de pivotement que pour une valve cardiaque à deux volets qui n'en comporte que quatre.
De ce fait, les avantages de la valve cardiaque mécanique à trois volets en ce qui concerne la résistance aux complications de coagulation se trouvent grandement diminués si des dispositifs spécifiques ne sont pas mis en place.
Les malades qui ont besoin d'une valve cardiaque prothétique souhaitent n'être opérés qu'une seule fois et rester à l'abri des complications de coagulation qui peuvent survenir lorsque des corps étrangers sont présents dans le système circulatoire.
Malheureusement, pour éviter la formation de dépôts de coagulation, les malades sont obligés de prendre des médicaments anticoagulants durant toute leur vie, ce qui est contraignant et susceptible d'induire des complications hémorragiques du fait de la prise prolongée de tels médicaments. La présente invention vise à remédier à au moins un des inconvénients de l'art antérieur en proposant une valve cardiaque prothétique mécanique, caractérisée en ce qu'elle comprend :
- un support annulaire comportant une surface périphérique interne centrée autour d'un axe longitudinal X, - au moins deux volets mobiles qui sont agencés de façon articulée sur la surface périphérique interne du support de manière à pouvoir effectuer chacun un mouvement de rotation autour d'un axe de rotation de volet perpendiculaire à l'axe longitudinal, pour passer d'une position ouverte de la valve, dans laquelle les volets ouverts délimitent entre eux un orifice principal centré sur l'axe longitudinal et à travers lequel le sang s'écoule axialement, à une position fermée de la valve, dans laquelle les volets fermés empêchent le sang de refluer à travers l'orifice principal, le support annulaire comportant un bord placé du côté aval de l'écoulement antérograde, appelé bord aval, et plusieurs extensions articulaires qui s'étendent axialement à partir du bord aval et dont le nombre correspond à celui des volets, chaque volet comportant une partie centrale encadrée de façon symétrique par deux ailes latérales qui sont inclinées par rapport à cette partie centrale, ces deux ailes coopérant respectivement, pour permettre la rotation du volet, avec les surfaces internes de deux extensions articulaires par l'intermédiaire d'une portion dite terminale de chaque aile, chaque portion terminale possédant une surface extérieure, appelée facette d'articulation, qui vient en appui, lorsque le volet est ouvert, contre une portion de la surface interne de l'extension articulaire correspondante, appelée facette d'extension, les deux facettes d'articulation de chaque volet totalisant à elles deux une surface sensiblement inférieure à 5 % de la surface extérieure totale du volet.
En réduisant de façon drastique la surface extérieure de chaque aile latérale des volets en contact, en position ouverte, avec l'extension articulaire correspondante du support, on diminue considérablement la surface extérieure des volets qui n'est pas en contact direct avec l'écoulement de sang dans cette position.
De cette façon, que la valve soit implantée en position mitrale ou en positon aortique, la surface extérieure des volets est mieux balayée par l'écoulement de sang qu'auparavant, notamment, au droit des ailes latérales des volets.
La réduction considérable de la surface d'appui des volets en position ouverte supprime la nécessité d'aménager, au niveau des extensions articulaires, des ouvertures de rinçage, comme décrit dans le document de l'art antérieur précité, US 6 395 024.
Les échancrures pratiquées dans les extensions articulaires sur chacun de leurs côtés, voire à leur sommet, ont permis d'enlever une quantité significative de matériau réactif vis-à-vis du flux sanguin, ce qui améliore la résistance de la valve aux dépôts de coagulation selon l'invention et, plus généralement, ses performances fluidiques.
La diminution de la surface d'appui des volets n'est pas préjudiciable au fonctionnement de la valve dans la mesure où le Demandeur a remarqué qu'un large appui du volet sur le support de la valve à son ouverture n'était pas nécessaire, contrairement à ce qui se passe à la fermeture, où les forces hydrodynamiques exercées sur les butées d'appui ont une ampleur beaucoup plus grande. En effet, en position ouverte l'effort exercé par l'écoulement sur le volet et donc sur la portion de la surface interne des extensions articulaires est minime.
Par ailleurs, l'invention permet de réduire considérablement le risque de blocage des volets à l'ouverture, qui pourrait survenir par interposition d'un dépôt de coagulation entre les surfaces extérieures des parties latérales des volets et les surfaces intérieures en regard des extensions articulaires correspondantes.
Si une telle interposition survenait, l'angle d'ouverture du ou des volets concernés serait réduit, ce qui aurait pour conséquence de créer une perturbation de l'écoulement susceptible de conduire à l'aggravation du phénomène et finalement à l'immobilisation du ou des volets en position fermée.
Outre la possibilité de thrombose articulaire entravant le fonctionnement du volet, cette interposition par des dépôts de coagulation peut également être la source d'embolies dans la circulation sanguine périphérique.
L'invention permet ainsi d'éliminer ou, à tout le moins, de réduire de façon drastique la prise de médicaments anticoagulants.
Sur les volets d'une valve cardiaque de l'art antérieur précité (tels que représentés sur les figures 6 et 8), la zone de jonction entre chaque aile latérale et la partie centrale du volet possède un faible rayon de courbure qui procure à cette zone la forme générale d'une arête.
Le Demandeur a pu constater, grâce à l'analyse de la microstructure de l'écoulement de sang à cet endroit, lorsque les volets sont en position ouverte, la présence en aval de la zone de jonction, à proximité des espaces de pivotement, d'un micro-courant tourbillonnaire qui se reproduit à chaque cycle.
Or, la turbulence du sang et l'augmentation à cet endroit du temps de résidence des globules rouges et des plaquettes favorise la formation et l'accrochage de caillots sanguins sur les surfaces immobiles avoisinantes. Afin de supprimer cette perturbation locale de l'écoulement, il est prévu que chaque aile latérale de chacun des volets soit reliée à la partie centrale du volet par une zone de jonction dont la surface extérieure est convexe et qui, sur au moins une partie de sa longueur incluant la partie de la zone située vers l'aval de l'écoulement antérograde (bord de fuite), possède un rayon de courbure suffisamment grand pour éviter la formation d'écoulements tourbillonnaires au voisinage de cette surface. Grâce à cet agencement, on réduit les distorsions localisées de l'écoulement au voisinage des espaces de pivotement des volets, l'écoulement suivant alors la surface extérieure des volets sans s'en détacher.
Par ailleurs, l'augmentation du rayon de courbure a pour conséquence de garder la partie du volet concernée par cette modification du rayon de courbure dans une zone d'écoulement soumise à un gradient de vitesses sensiblement proche de celui auquel est soumis le reste du volet, atténuant là encore davantage les distorsions de l'écoulement dans cette zone critique. La partie du volet concernée par cette disposition particulière est, par exemple, celle située à partir d'une distance d'environ 20 % du bord d'attaque du volet.
Un tel rayon de courbure dépend des dimensions du volet et est déterminé par l'homme du métier pour chaque taille de valve, de façon obtenir l'effet recherché.
Avec la configuration précitée, l'angle formé entre chaque aile latérale et la partie centrale de la face externe du volet se trouve augmenté par rapport à celui des volets de l'art antérieur.
Selon une caractéristique, le rayon de courbure de la zone de jonction située du côté aval de l'écoulement est d'au moins 2 mm pour une valve destinée à être implantée en position aortique et d'au moins 3 mm pour une valve destinée à être implantée en position mitrale.
Selon une autre caractéristique, chaque aile latérale de chacun des volets est reliée à la partie centrale du volet par une zone de jonction dont la surface extérieure est convexe et a la forme générale d'une portion de cône dont le sommet est situé vers l'amont de l'écoulement antérograde. Selon cet agencement, le rayon de courbure entre chaque aile latérale et la partie centrale du volet n'est pas modifié de façon substantielle à proximité immédiate du bord d'attaque du volet mais il est d'autant plus modifié que l'on se rapproche du bord de fuite du volet (bord du volet situé du côté aval de l'écoulement).
Ainsi, une telle modification du rayon de courbure du volet dans la zone de jonction ne modifie pas le contour du bord d'attaque du volet, ni donc ses appuis sur la surface intérieure du support annulaire lors de la rotation du volet, de sa position ouverte à sa position fermée.
Selon une caractéristique, chaque aile latérale de chacun des volets est raccordée à la partie centrale du volet par une zone de jonction dont la surface extérieure est convexe et a la forme générale d'une portion de cylindre. Selon une caractéristique, l'axe de rotation de chaque volet est virtuel, situé à l'extérieur du volet, entre ce dernier et le support annulaire, et s'étend suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
Selon une caractéristique, dans un plan perpendiculaire à l'axe longitudinal X de la valve, l'axe de rotation de volet est situé à une distance de l'axe longitudinal X qui est supérieure à 75 % du rayon du support annulaire.
Selon une caractéristique, chacune des facettes d'articulation d'un volet et la facette d'extension correspondante de l'extension articulaire concernée du support annulaire définissent entre elles, lorsque le volet est en position fermée, un espace de pivotement du volet, cet espace disparaissant lorsque la facette d'articulation du volet vient, en position ouverte, en appui contre la facette d'extension correspondante.
Selon une caractéristique, le volume de l'espace de pivotement est inférieur à 2/10Oe du volume déplacé par le volet lors de son passage de la position fermée à la position ouverte.
Selon une caractéristique, la surface extérieure de la partie centrale du volet a une forme générale sensiblement convexe suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
Selon une caractéristique, la partie centrale de chaque volet comporte une surface intérieure tournée vers l'orifice principal de la valve et qui a une forme générale sensiblement concave suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée. Selon une caractéristique, lorsque la valve est en position ouverte, l'orifice principal délimité par les surfaces intérieures des volets présente, en projection dans un plan perpendiculaire à l'axe longitudinal du support annulaire, une section de passage offerte à l'écoulement qui est égale au moins à 75 % de la surface interne délimitée par le support annulaire dans ce même plan.
Selon une caractéristique, lorsque la valve est en position ouverte, chaque volet définit, entre sa surface extérieure et la portion de surface périphérique interne du support annulaire qui sépare les deux extensions articulaires avec lesquelles le volet coopère, un orifice secondaire.
Selon une caractéristique, chaque orifice secondaire a une forme générale de croissant de lune.
Selon une caractéristique, la dimension de l'orifice secondaire, prise suivant une direction radiale, en projection dans un plan perpendiculaire à l'axe longitudinal du support annulaire, est inférieure à 20 % du rayon interne du support annulaire.
Selon une caractéristique, chaque orifice secondaire présente, dans un plan perpendiculaire à l'axe longitudinal du support annulaire, une section de passage offerte à l'écoulement qui est inférieure à 7 % de la surface interne délimitée par le support annulaire dans ce même plan.
Selon une caractéristique, les extensions articulaires sont dépourvues chacune de toute ouverture traversante.
Selon une caractéristique, le support annulaire comporte sur sa surface périphérique interne, à proximité du bord aval et pour chaque volet, deux butées provoquant le pivotement immédiat du volet dans sa position ouverte lorsque la pression du sang s'exerce sur la face interne de ce volet.
Selon une caractéristique, le support annulaire comporte sur sa surface périphérique interne, pour chaque volet, deux moyens de soutien du volet en position fermée, lesdits moyens de soutien de chaque volet étant agencés entre les deux extensions articulaires avec lesquelles coopèrent respectivement les ailes latérales du volet. Selon une caractéristique, en projection dans un plan perpendiculaire à l'axe longitudinal du support annulaire, chaque butée est espacée angulairement du moyen de soutien le plus proche d'une distance correspondant sensiblement à au moins la moitié de la largeur dudit moyen de soutien, la largeur étant mesurée, dans le plan considéré, suivant une direction tangentielle par rapport au support annulaire.
Selon une caractéristique, pour chaque volet, les butées sont agencées entre les moyens de soutien du volet.
Selon une caractéristique, chaque volet comporte à sa périphérie, d'une part, un bord d'attaque qui est disposé du côté amont de l'écoulement antérograde de sang et coopère avec la surface interne du support annulaire en position fermée du volet et, d'autre part, un bord de fuite disposé du côté aval de l'écoulement antérograde.
Selon une caractéristique, chaque moyen de soutien de volet coopère avec une zone de contact du bord d'attaque du volet suivant un contact surfacique et non pas linéaire lors de la fermeture dudit volet.
Selon une caractéristique, chaque moyen de soutien de volet présente une surface d'extrémité supérieure dont une portion située du côté opposé à l'extension articulaire la plus proche possède un rayon de courbure suffisamment grand pour coopérer avec la zone de contact rectiligne transversale du bord d'attaque du volet suivant un contact surfacique et non pas linéaire.
Selon une caractéristique, le bord de fuite de chaque volet a une forme sensiblement triangulaire et, en position fermée de la valve, les bords de fuite des trois volets coopèrent les uns avec les autres pour former un trièdre dont la pointe est dirigée vers l'aval.
Selon une caractéristique, chaque volet présente, dans sa partie centrale, au niveau du bord de fuite, une zone alignée suivant l'axe de symétrie du volet et qui est sensiblement en forme de spatule de ski à son extrémité libre aval, l'extrémité sensiblement spatulée du volet formant une pointe qui s'écarte du prolongement de la surface intérieure dudit volet d'un angle sensiblement compris entre 2 et 4°. Selon une caractéristique, les trois extrémités sensiblement spatulées des volets restent distantes l'une de l'autre, en position fermée de la valve, d'au moins 50 microns et ménagent entre elles un interstice central en forme d'étoile à trois branches. Selon une caractéristique, chacune des trois branches s'étend sur une distance correspondant au moins au tiers de la longueur totale du bord de fuite des volets.
Selon une caractéristique, chaque volet, d'une part, en position fermée, forme avec un plan perpendiculaire à l'axe longitudinal (X) du support annulaire un angle de fermeture compris entre 30° et 50° et, d'autre part, en position ouverte, est sensiblement parallèle à la direction de l'écoulement.
Selon une caractéristique, l'angle de fermeture est compris entre 40° et 50° pour les valves destinées à être implantées en position mitrale.
Selon une caractéristique, chaque volet présente sur sa surface extérieure une ou plusieurs zones pourvues de rainures qui favorisent l'orientation de l'écoulement sanguin vers les ailes latérales du volet.
Selon une caractéristique, le support annulaire comporte sur sa surface périphérique extérieure, pour les valves destinées à être implantées en position aortique, une nervure périphérique pour la fixation d'un anneau de suture, la nervure étant configurée de manière à ce que sa forme générale reproduise le profil d'une courbe sensiblement sinusoïdale ayant un sommet agencé au droit de chaque extension articulaire et un creux entre deux extensions articulaires consécutives.
Selon un autre aspect, l'invention a également pour objet un volet mobile destiné à être monté sur un support annulaire d'une valve cardiaque prothétique mécanique, comportant à sa périphérie, d'une part, un bord d'attaque qui est destiné à être disposé du côté amont de l'écoulement sanguin antérograde et, d'autre part, un bord de fuite qui est destiné à être disposé du côté aval de cet écoulement, le volet comprenant une partie centrale encadrée de façon symétrique par deux ailes latérales qui sont inclinées par rapport à cette partie centrale, chaque aile latérale étant reliée à la partie centrale par une zone de jonction dont la surface extérieure est convexe et qui, sur au moins une partie de sa longueur incluant le bord de fuite, possède un rayon de courbure suffisamment grand pour éviter le décollement du flux et la formation d'écoulements tourbillonnaires au voisinage de cette surface de jonction.
Selon une caractéristique, le rayon de courbure de la zone de jonction au droit du bord de fuite est d'au moins 2 mm pour une valve destinée à être implantée en position aortique et d'au moins 3 mm pour une valve destinée à être implantée en position mitrale.
Selon une caractéristique, la surface extérieure de la zone de jonction a la forme générale d'une portion de cône dont le sommet est situé du côté opposé au bord de fuite du volet.
Selon une caractéristique, la surface extérieure de la zone de jonction a la forme générale d'une portion de cylindre.
Selon une caractéristique, le volet comporte une surface extérieure et une surface intérieure opposées l'une de l'autre et reliant chacune le bord d'attaque au bord de fuite.
Selon une caractéristique, la surface extérieure de la partie centrale du volet a une forme générale sensiblement convexe suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
Selon une caractéristique, la surface intérieure de la partie centrale du volet a une forme générale sensiblement concave suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
Selon une caractéristique, le volet présente sur sa surface extérieure une ou plusieurs zones pourvues de rainures qui favorisent l'orientation de l'écoulement sanguin vers les ailes latérales. Selon une caractéristique, le volet présente, dans sa partie centrale, au niveau du bord de fuite, une zone alignée suivant l'axe de symétrie du volet et qui est sensiblement en forme de spatule de ski à son extrémité libre, l'extrémité sensiblement spatulée du volet formant une pointe qui s'écarte du prolongement de la surface intérieure dudit volet d'un angle sensiblement compris entre 2 et 4°.
Selon une caractéristique, le volet est rigide. Selon une caractéristique, le volet est réalisé à partir d'un matériau biocompatible et est réalisé au choix en carbone monolithique, en graphite avec un revêtement de carbone pyrolitique ou dans un polymère de synthèse doté de propriétés de résistance à l'usure comparables à celles du carbone pyrolitique. D'autres caractéristiques et avantages apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif et faite en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue schématique en perspective d'une valve selon l'invention avec les volets disposés en position ouverte ; - la figure 2 est une vue schématique en perspective de la valve de la figure 1 avec les volets en position fermée ; la figure 3 est une vue schématique partielle montrant la coopération d'un volet en position ouverte avec une extension articulaire selon l'invention et respectivement selon l'art antérieur (en pointillés), vus de l'extérieur de la valve ;
- la figure 4a est une vue schématique partielle en perspective de l'intérieur de la valve, montrant l'agencement d'un volet en position ouverte logé entre deux extensions articulaires du support ; - la figure 4b est une vue schématique partielle agrandie d'un moyen de soutien coopérant avec le bord d'attaque d'un volet ;
- les figures 5 et 7 sont des vues schématiques de face et en perspective de la surface extérieure d'un volet selon l'invention ;
- les figures 6 et 8 sont des vues schématiques de face et en perspective de la surface extérieure d'un volet selon l'art antérieur ;
- la figure 9 est une vue d'un volet selon l'invention en section transversale dans un plan contenant l'axe de symétrie Z ;
- la figure 10 est une vue schématique de dessus d'une valve selon l'invention avec les volets en position fermée ; - la figure 11 est une vue schématique partielle montrant l'agencement des ailes latérales de deux volets en position ouverte par rapport à une extension articulaire 32 de la valve ;
- la figure 12 est une vue schématique de dessus d'une valve selon l'invention avec les volets en position ouverte ;
- les figures 13 et 14 sont des vues schématiques partielles prises dans le plan de la partie centrale d'un volet selon l'invention, respectivement du bord d'attaque et du bord de fuite d'une des zones de jonction dudit volet ; - la figure 15 est une vue schématique en coupe d'une section longitudinale d'un volet selon l'invention ;
- la figure 16 est une vue schématique partielle agrandie d'un espace de pivotement d'une valve selon l'invention ;
- la figure 17 est une vue schématique partielle montrant l'inclinaison d'un volet en position fermée d'une valve selon l'invention ;
- la figure 18 est une représentation schématique de l'écoulement de sang sur la surface extérieure d'un volet selon l'invention en l'absence de rainures ; - la figure 19 est une vue schématique représentant l'écoulement de sang sur la surface extérieure d'un volet selon l'invention en présence de rainures ;
- la figure 20 est une vue schématique partielle d'une forme possible de rainures selon l'invention ; Comme représenté sur les figures 1 à 4b et désigné par la référence générale notée 10, une valve cardiaque prothétique mécanique selon l'invention comporte un support annulaire en forme de bague 12 qui définit à l'intérieur de celui-ci un passage interne 14 pour l'écoulement cyclique du sang sous l'action des contractions cardiaques. L'écoulement traversant la valve 10 en position ouverte de celle-ci est qualifié de courant antérograde et son sens d'écoulement est indiqué par la flèche A sur la figure 1. Par opposition, le courant circulant en sens inverse lors de la fermeture de la valve est qualifié de courant rétrograde.
Le passage interne central 14 pour l'écoulement de sang est délimité par la surface périphérique intérieure 16 du support annulaire 12 et qui va servir de support à trois volets mobiles 18, 20, 22 qui seront décrits ultérieurement.
Comme représenté sur les figures 1 et 2, la valve cardiaque 10 est centrée autour d'un axe longitudinal X et présente une symétrie de révolution autour de cet axe.
Le support annulaire 12 comporte également une surface périphérique extérieure 24 présentant une nervure périphérique 26 destinée à recevoir un anneau de suture non représenté, par exemple, en textile et qui permet au chirurgien de fixer de façon connue la valve aux tissus cardiaques par des points de suture.
Sur la figure 1 la valve est représentée en position ouverte dans laquelle les volets 18, 20 et 22 sont en position dite relevée ou ouverte, l'écoulement de sang traversant la valve dans le sens antérograde, tandis que sur la figure 2, la valve est représentée en position fermée avec les volets en position dite abaissée ou fermée.
On notera que la valve peut comporter, sans que cela n'affecte le principe de l'invention, seulement deux volets et, dans ce cas, le support annulaire 12 est de forme elliptique et les volets de forme ovale, ou plus de trois volets.
A cet égard, une valve conçue pour être implantée en position mitrale a, par exemple, deux volets de forme ovale mais elle peut également comporter trois volets d'une autre forme.
Le support annulaire 12 comporte un bord amont ou bord d'attaque 28 reliant la surface périphérique intérieure 16 à la surface périphérique extérieure 24 et qui est placé du côté amont de l'écoulement antérograde.
Le support annulaire comporte également un bord aval ou bord de fuite 30 qui est placé du côté aval de l'écoulement antérograde et qui relie lui aussi la surface périphérique intérieure 16 à la surface périphérique extérieure 24 du support annulaire. Le support 12 comporte également trois extensions ou protubérances articulaires 32, 34, 36 qui s'étendent à partir du bord aval 30 vers l'aval, parallèlement à la direction d'axe longitudinal X, et qui forment ainsi des créneaux s'étendant axialement par rapport au bord périphérique 30 et dont la base est sensiblement de même largeur (dimension perpendiculaire à l'axe X) que le sommet.
Ces extensions logent les zones d'articulation avec lesquelles les volets mobiles coopèrent pour passer de la position ouverte à la position fermée et inversement. On notera d'ailleurs que la largeur des extensions articulaires à leur sommet est sensiblement égale à la largeur des zones articulaires.
Ces extensions articulaires 32, 34, 36, en nombre égal à celui des volets, sont en effet de dimensions réduites par rapport aux créneaux équipant des valves cardiaques de l'art antérieur, comme représenté de façon schématique sur la vue partielle de la figure 3, où l'on a volontairement superposé une extension articulaire en pointillés notée 2 d'une valve cardiaque de l'art antérieur à l'extension articulaire 34 de la valve 10 selon l'invention.
Pour passer de l'ancienne configuration de l'extension articulaire 2 à la nouvelle configuration de l'extension 34, la surface de l'extension articulaire 2 en projection dans le plan de la figure 3 a été réduite d'au moins 50 %.
Comme représenté sur les figures 1 à 4b, les extensions articulaires de la valve 10 selon l'invention ne comportent aucune ouverture traversante, contrairement aux extensions articulaires des valves de l'art antérieur et notamment celles exposées dans le brevet US 6 395 024. Le fait que les extensions articulaires soient dépourvues d'ouverture traversante améliore le comportement de la valve selon l'invention vis-à-vis de l'écoulement, lorsque celle-ci est implantée en position aortique.
En effet, dans une telle position, la valve exposée dans le brevet US
6 395 024 présente six petites ouvertures réparties deux par deux symétriquement sur chacune des extensions articulaires et dont la fonction est de permettre le nettoyage du bord d'attaque des volets lorsque ceux-ci sont en position ouverte (relevée). Etant donné qu'en position aortique le régime de l'écoulement sanguin est un régime de hautes pressions, il se produit un phénomène de cisaillement de l'écoulement sanguin à travers ces petites ouvertures. Ceci aboutit à la création de six jets latéraux à vitesses élevées contre la paroi aortique et il en résulte une activation du phénomène de la coagulation.
La conséquence directe de l'enchaînement de ces événements est la formation locale d'un caillot limitant progressivement le débattement des volets, risquant ainsi d'entraîner un dysfonctionnement de la valve et une insuffisance circulatoire pouvant conduire au décès du patient. L'absence d'ouverture traversante dans les extensions articulaires permet d'éviter ce risque.
La description qui va suivre du volet 18 représenté sur les figures 1 , 4a, 4b, 5 et 7 est identique pour tous les autres volets équipant la valve 10 selon l'invention. Le volet 18 comporte une partie centrale 38 à laquelle sont raccordées deux ailes latérales 40, 42 encadrant cette dernière de façon symétrique et qui sont inclinées par rapport à elle (figures 1 et 7).
Le volet 18 est symétrique par rapport à un plan passant par l'axe Z (axe de symétrie) et qui est perpendiculaire au plan de la figure 5. Le volet 18 comporte un bord d'attaque 44 qui, en position ouverte du volet, telle que représentée sur les figures 1 , 4a et 4b, est placé du côté amont de l'écoulement antérograde (flèche A) et, en position fermée, coopère avec la surface périphérique intérieure 16 du support annulaire 12 avec des moyens spécifiques aménagés sur cette surface, comme on le verra ultérieurement.
Ce bord d'attaque 44 présente une forme convexe dont la courbure orientée vers le bas (figures 4a, 4b, 5 et 7) est adaptée à coopérer avec la surface intérieure 16 de la valve.
Par ailleurs, le volet 18 comporte, sur le côté du volet opposé au côté où est situé le bord d'attaque, un bord de fuite 46 qui est disposé du côté aval de l'écoulement antérograde. Comme représenté sur les figures 1 , 4a, 5 et 7, le bord de fuite 46 comprend deux portions symétriques 46a et 46b qui s'étendent respectivement depuis les ailes latérales 40 et 42 jusqu'à une zone d'extrémité aval 48 où elles se rejoignent pour former une pointe. Cette pointe 48 est alignée suivant l'axe de symétrie Z du volet.
Les portions 46a et 46b confèrent ainsi au bord de fuite 46 une forme sensiblement triangulaire de V renversé dont la pointe coïncide avec la zone d'extrémité 48.
En position fermée de la valve (figures 2 et 10), les bords de fuite des trois volets coopèrent les uns avec les autres pour former un trièdre dont la pointe est dirigée vers l'aval.
La zone d'extrémité 48 qui est visible sur la figure 7 montrant la surface extérieure 45 du volet 18 est, par exemple, relevée par rapport à la surface extérieure du volet de manière à adopter la forme sensiblement "spatulée" d'une extrémité d'une spatule de ski.
On notera à cet égard que cette surface extérieure a, par exemple, une forme générale plane suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
Plus particulièrement, comme représenté sur la figure 9, l'extrémité sensiblement spatulée 48 du volet forme une pointe qui s'écarte du prolongement de la surface intérieure 47 du volet d'un angle qui est sensiblement compris entre 2° et 4°.
Ainsi, lorsque le volet est placé dans l'écoulement, l'extrémité spatulée 48 du volet n'est pas parallèle à l'écoulement alors que le corps du volet est sensiblement parallèle à la direction de l'écoulement.
La présence de l'extrémité libre relevée 48 de chaque volet renforce le mécanisme hydrodynamique de fermeture anticipée du volet accompagnant la décélération de l'écoulement antérograde et qui est dû à l'établissement progressif pendant cette phase d'un subtil gradient transitoire positif de pression entre les surfaces externe et interne du volet.
La figure 10 illustre, en vue de dessus, les volets 18, 20, 22 de la valve 10 en position fermée, dans laquelle les extrémités spatulées 48 sont écartées l'une de l'autre d'une distance au moins égale à 50 microns. Un interstice central 49 en forme d'étoile à trois branches est ainsi ménagé entre les bords de fuite respectifs de ces volets.
Cet interstice empêche tout risque de cavitation à la fermeture des volets et évite la génération de bruit à la fermeture en éliminant le contact entre les bords de fuite des volets au niveau de leurs zones d'extrémité 48.
En outre, si un peu d'usure du bord d'attaque des volets apparaît à long terme au niveau de leur surface de contact avec la surface intérieure du support annulaire, les volets s'abaisseront sensiblement au dessous de l'angle de fermeture nominal mais un interstice sera malgré tout toujours présent pour éviter le contact entre les zones d'extrémité 48 des bords de fuite des volets.
On notera que chacune des branches s'étend sur une distance correspondant au moins au tiers de la longueur totale du bord de fuite des volets. Comme représenté sur les figures 1 , 2 et 4a, 4b, le volet 18, comme tous les autres volets, et notamment le volet 20 sur les figures 1 à 3, coopère avec la surface périphérique intérieure 16 du support annulaire 12 et, plus spécifiquement, avec des moyens de guidage en rotation du volet, ainsi qu'avec des moyens d'appui qui sont aménagés radialement à la surface périphérique intérieure de la valve.
Ainsi articulés sur la surface périphérique interne 16, les volets sont aptes à effectuer un mouvement de rotation entre leur position ouverte de la figure 1 et leur position fermée de la figure 2.
Les moyens de guidage en rotation du volet comprennent deux évidements profilés 50 et 52 aménagés dans l'épaisseur des deux extensions articulaires respectives 32 et 36 et qui forment des pistes ou arcs de guidage et de retenue des ailes latérales du volet. Plus particulièrement, ces pistes ou arcs coopèrent avec des parties du bord de fuite 46 du volet qui sont situées au niveau d'une portion dite terminale des ailes latérales 40, 42 (figures 3, 4a et 11).
Les arcs de guidage (figure 11 ) agencés symétriquement sur la surface périphérique interne de chaque extension articulaire sont décrits de façon plus détaillée dans le brevet français 2 642 960 auquel on pourra se reporter.
La valve 10 comporte également plusieurs moyens d'appui différents de chaque volet qui sont aménagés sur la surface périphérique intérieure 16 du support 12.
En particulier, deux premiers moyens d'appui ou de soutien inférieurs 60, 62 du volet 18 (figures 4a et 4b) présentent une forme hydrodynamique profilée dont la section transversale augmente dans le sens d'écoulement du flux antérograde La forme profilée se termine par une surface d'extrémité supérieure 60a, 62a en forme d'arceau asymétrique dont la pente est plus inclinée du côté opposé aux extensions articulaires comme le montre la figure 4b pour le moyen de soutien 62.
La surface d'extrémité supérieure 62a coopère avec une zone de contact 44a du bord d'attaque 44 afin d'établir un contact surfacique entre eux lors de la fermeture du volet, lorsque ladite zone de contact se déplace en direction de la base d'insertion du moyen de soutien qui est localisée sur la surface périphérique interne 16 de la valve.
Ce contact surfacique permet de distribuer l'usure due au contact des deux éléments (bord d'attaque du volet et moyen de soutien) sur une surface au lieu d'avoir un contact suivant une ligne de contact, comme ce serait le cas avec le profil symétrique du moyen de soutien 61 représenté en pointillés sur la figure 4b. La répartition des forces est donc mieux répartie grâce au profil asymétrique de la tête (extrémité supérieure) du moyen de soutien 62 et, plus particulièrement, grâce à la portion 62a1 de la tête de ce dernier qui possède un rayon de courbure suffisamment grand pour obtenir un contact surfacique avec la zone de contact rectiligne 44a du bord d'attaque. La portion 62a1 présente une forme sensiblement plane, par exemple, réalisée sous la forme d'un méplat, conférant ainsi à la surface d'extrémité supérieure 62a un profil convexe du côté de l'extension articulaire la plus proche et sensiblement plat du côté opposé.
En position fermée le volet 18 repose ensuite par son bord d'attaque 44 (figure 4a) sur les surfaces d'extrémité supérieure 60a, 62a des moyens de soutien et, plus particulièrement, sur les portions aplanies de ces surfaces. De façon identique, deux premiers moyens d'appui inférieurs distincts du même type que celui décrit ci-dessus sont également prévus sur la valve pour chaque autre volet : les moyens d'appui 63, 65 pour le volet 20 et les moyens d'appui 67, 69 pour le volet 22, comme représenté sur la figure 12.
La valve comporte également des seconds moyens d'appui ou de soutien inférieurs agencés sensiblement dans la partie médiane et inférieure de chaque extension articulaire (figures 4a, 11 et 12) et qui se présentent sous la forme d'un élément 64, 66, 68 en forme de proue de navire pointée vers le haut, profilée dans la direction de l'écoulement antérograde. Chacun des éléments profilés 64, 66, 68 des extensions articulaires respectives 32, 36 et 34 comporte des bords latéraux suffisamment espacés (environ d'une distance égale à l'épaisseur des volets) pour servir d'appui aux bords latéraux des volets en position fermée. Par ailleurs, des moyens d'appui dits supérieurs du volet 18, notés
70, 71 pour le volet 18 (respectivement 72, 74 et 76, 78 pour les volets 20 et 22), sont agencés au niveau du bord aval 30 du support annulaire de façon décalée axialement suivant l'axe longitudinal X par rapport aux premiers moyens d'appui inférieurs (figures 4a et 11 ). En outre, comme représenté sur les figures 11 et 12, les premiers moyens d'appui inférieurs 60 et 63 et les moyens d'appui supérieurs respectifs 70 et 72 de ces volets sont décalés radialement les uns par rapport aux autres afin d'éviter que les moyens d'appui supérieurs soient placés dans le sillage des premiers moyens d'appui inférieurs. Ceci permet ainsi d'éviter la création, entre ces moyens d'appui inférieurs et supérieurs, de micro-perturbations de l'écoulement qui seraient favorables à l'activation des plaquettes du sang.
Cet agencement assure également que les surfaces du volet et du support situées entre les premiers moyens d'appui inférieurs et les moyens d'appui supérieurs sont suffisamment balayées par l'écoulement au cours du cycle cardiaque. Notamment, la surface d'extrémité supérieure de chaque premier moyen de soutien inférieur est bien exposée au courant rétrograde pendant la fermeture du volet. Les moyens d'appui supérieurs 70 et 71 du volet 18 agencés entre les deux extensions articulaires 32, 36 (figure 4a) avec lesquelles coopèrent respectivement les ailes latérales de ce volet jouent le rôle de butées supérieures lors du mouvement d'ouverture du volet. Ces butées provoquent ainsi le pivotement du volet autour de son axe de rotation qui sera décrit ultérieurement, lorsque la pression de l'écoulement de sang s'exerce sur la surface interne de ce volet.
Plus particulièrement, les butées supérieures 70 et 71 entrent en contact avec la surface externe du volet dans sa partie amont dès les premières millisecondes d'ouverture de la valve.
En effet, lorsque la pression sanguine s'exerce sur la surface intérieure du volet fermé et le soulève de quelques dixièmes de millimètre (ceci est rendu possible par le jeu aménagé entre la partie inférieure des butées et la surface supérieure extérieure du volet quand celui-ci repose sur les surfaces d'extrémité 60a, 62a des premiers moyens d'appui inférieurs), le contact du volet avec ces butées provoque le pivotement symétrique de ses deux ailes latérales autour de l'axe de rotation et le relèvement du volet. En raison de ce pivotement quasi instantané, la surface extérieure du volet s'écarte des butées, ménageant ainsi entre ces butées et cette surface du volet un large passage pour le flux sanguin.
On notera par ailleurs qu'en position ouverte les volets ne reposent pas sur les moyens d'appui inférieurs, ceux-ci ne servant de support que lors de la fermeture des volets.
De plus, en positionnant les moyens d'appui supérieurs 70 et 71 entre les premiers moyens d'appui inférieurs 60 et 62, on augmente sensiblement le volume des moyens d'appui supérieurs, rendant ainsi plus grande la surface d'impact entre ces derniers et la surface extérieure du volet à proximité de son bord d'attaque. De ce fait, on réduit la concentration de contraintes mécaniques au niveau du point de contact, ce qui évite à long terme les altérations possibles de l'état de surface local du volet.
Il convient toutefois de ne pas trop éloigner les moyens d'appui supérieurs des premiers moyens d'appui inférieurs pour conserver l'effet d'ouverture synchrone et symétrique des deux ailes latérales du volet et ne pas augmenter le volume des moyens d'appui supérieurs dans une proportion qui risquerait d'induire une perturbation inutile sur l'écoulement sanguin.
Pour ces raisons, dans l'exemple de réalisation décrit ici, il est prévu de décaler radialement ou angulairement (en projection dans un plan perpendiculaire à l'axe X) chaque moyen d'appui supérieur 70, 71 de son premier moyen d'appui inférieur le plus proche 60, 62 d'une distance qui correspond sensiblement à au moins une fois la dimension (largeur) du premier moyen d'appui inférieur qui est mesurée radialement. Par exemple, pour une valve cardiaque de diamètre extérieur égal à
29 mm, la dimension ou largeur radiale du moyen d'appui inférieur est d'environ 1 ,5 mm, et le moyen d'appui supérieur est donc espacé radialement d'au moins 1 ,5 mm du sillage du premier moyen d'appui inférieur correspondant.
Le moyen d'appui supérieur (butée) est de préférence plus large dans sa partie amont et plus effilé dans sa partie aval puisque seule la partie amont rentre en contact avec la surface extérieure du volet à son ouverture et qu'il importe de réduire localement la concentration de contraintes lors de l'impact.
Comme représenté sur la figure 4a, le bord d'attaque 44 du volet 18 est agencé entre les premiers moyens d'appui inférieurs 60, 62 et les moyens d'appui supérieurs 70, 71.
On notera que les moyens de guidage en rotation de chaque volet définissent un axe de rotation (représenté en traits mixtes sur les figures 5 et 7) qui s'étend dans une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée. L'axe de rotation est situé à une distance de l'axe longitudinal X de la valve (dans un plan perpendiculaire à cet axe) qui est supérieure à 75 % du rayon du support annulaire 12 d'un volet, et ce, tout en permettant l'écoulement sanguin entre la surface extérieure du volet et la surface périphérique intérieure 16 du support annulaire. Par ailleurs, chaque axe de rotation est virtuel car il est situé entièrement à l'extérieur du volet correspondant, entre ce dernier et le support annulaire. L'axe est donc très excentré par rapport au centre de gravité du volet. Ainsi, la résultante des forces de frottement agissant sur Ie volet exerce par rapport à l'axe virtuel un mouvement suffisant pour amorcer la fermeture du volet lors de la décélération de l'écoulement sanguin. Ceci favorise le mouvement de fermeture et le rend beaucoup moins violent qu'avec certaines valves de l'art antérieur dont les volets se ferment brutalement, occasionnant à la fois du bruit et un traumatisme pour les cellules sanguines circulantes.
Cette disposition excentrée des axes de rotation des volets permet de disposer les volets, en position d'ouverture de la valve, sensiblement parallèlement à l'axe de l'écoulement sanguin, voire même dans un plan dépassant sensiblement l'angle de 90° par rapport au plan perpendiculaire à l'axe X, car les seules forces de frottement sont suffisantes pour amorcer leur fermeture.
Comme déjà relevé plus haut, la présence de l'extrémité relevée en forme de spatule de ski de la zone d'extrémité 48 de chaque volet contribue à favoriser la fermeture précoce des volets lors de la décélération de l'écoulement en utilisant les forces naturelles de l'écoulement.
En outre, en éloignant les moyens d'appui supérieurs 70, 71 des premiers moyens d'appui inférieurs 60, 62 du volet 18, les moyens d'appui supérieurs s'éloignent de l'axe de rotation du volet et augmentent ainsi l'effet de levier recherché lorsque le bord supérieur du volet se soulève du fait de la pression exercée sur sa surface intérieure en début de phase d'ouverture du cycle cardiaque.
Une très faible force hydrodynamique appliquée sur la surface interne du volet fermé provoque alors de façon quasi-immédiate le basculement symétrique du volet autour de son axe de rotation.
Comme déjà décrit plus haut en référence à la figure 4a, les extensions articulaires agencées sur le bord aval du support annulaire 12 sont de dimensions considérablement réduites par rapport aux extensions articulaires des valves à trois volets de l'art antérieur. De ce fait, lorsque les volets sont relevés (valve en position ouverte comme sur les figures 1 , 3, 4a, 11 et 12) la surface extérieure de chaque aile latérale de chacun des volets qui est disposée en appui contre une partie latérale d'une extension articulaire correspondante est considérablement réduite par rapport à l'art antérieur. En effet, comme représenté sur les figures 3 et 11 , seule une fraction de la surface extérieure de chaque aile latérale est en contact avec une partie de l'extension articulaire, alors que, selon l'art antérieur, la quasi-totalité de ia surface extérieure de chaque aile latérale du volet 20 est agencée contre une partie beaucoup plus large de l'extension articulaire correspondante 2 (en pointillés).
Ainsi, pour l'aile latérale 42 du volet 20 de la figure 3, seule la surface extérieure de la portion terminale 42a, appelée facette d'articulation, de cette aile latérale 42 est en vis-à-vis et en appui contre une portion de la surface interne de l'extension articulaire 34, appelée facette d'extension.
Sur la figure 11 , on a représenté en traits interrompus les facettes d'articulation 42a et 40a des ailes latérales 42 et 40 des volets respectifs 18 et 20 en contact avec les facettes d'extension respectives 50a et 52a de l'extension articulaire 32.
On voit ainsi que la fraction de la surface extérieure de chaque aile latérale qui serait masquée par l'extension articulaire 2 de la valve selon l'art antérieur n'est plus, avec l'invention, en vis-à-vis d'une surface matérielle, ce qui réduit considérablement le risque d'interposition d'un dépôt biologique entre cette fraction de surface extérieure et la surface interne latérale de l'extension articulaire. L'échancrure pratiquée dans chaque extension articulaire permet donc à une plus grande surface des ailes latérales de chaque volet d'être nettoyée par l'écoulement sanguin au cours du cycle cardiaque.
L'élimination de surfaces non biologiques en contact l'une avec l'autre dans l'espace de pivotement des volets élimine par conséquent ou, à tout le moins, réduit les risques de dépôt biologique de coagulation dans cette zone.
L'invention permet ainsi d'éliminer en pratique un risque vital de dysfonctionnement valvulaire entraînant une insuffisance circulatoire aigϋe. II convient de noter que la somme des fractions des surfaces extérieures des deux ailes latérales de chaque volet, c'est-à-dire des facettes d'articulation 40a et 42a, qui sont agencées, en position ouverte du volet, contre les facettes d'extension respectives 52a et 50a de l'extension articulaire correspondante, correspond à une surface sensiblement inférieure à 5 % à la surface extérieure totale du volet.
Théoriquement, il n'y a pas de limite inférieure pour la surface des deux facettes d'articulation, dans la mesure où l'on souhaite qu'elle soit aussi faible que possible tout en assurant un guidage en rotation efficace du volet.
Cependant, en pratique, une limite inférieure de 1 % est réalisable et la surface des deux facettes d'extension est ainsi, par exemple, égale à 1 ,4 % de la surface extérieure totale du volet. On notera que pour réduire la surface en vis-à-vis des deux facettes d'articulation la largeur de la base de chaque extension articulaire peut être réduite par rapport à la largeur de son sommet, de façon à ce que l'extension visible sur la figure 3 ressemble plus à une forme de champignon qu'a celle d'un créneau. Les flancs latéraux de l'extension seront ainsi concaves au lieu d'être sensiblement rectilignes comme sur la figure 3.
A titre de comparaison, la somme des fractions des surfaces extérieures des ailes latérales d'un volet de la valve de l'art antérieur décrite dans le brevet US 6 395 024 et qui sont en contact avec une partie de la surface interne de deux extensions articulaires correspondantes est au moins égale à 15 % de la surface extérieure totale du volet.
On comprend ainsi l'amélioration apportée par cet agencement de la présente invention aux valves de l'art antérieur et l'impact que cela peut avoir sur le traitement anticoagulant préventif à mettre en œuvre pour éviter les risques d'interposition de matériels biologiques.
On notera que cet impact est d'autant plus élevé pour les valves à trois volets puisque celles-ci comportent six espaces de pivotement comparés à quatre pour les valves à deux volets.
Les figures 6 et 8 illustrent un volet 100 d'une valve cardiaque prothétique mécanique à trois volets selon l'art antérieur, respectivement en vue de dessus et en perspective. Sur cette figure, le volet 100 comporte deux ailes latérales 102 et
104 qui sont raccordées respectivement à une partie centrale 106 par l'intermédiaire de zones de jonction 108, 110 formant chacune une zone convexe de très faible rayon de courbure. Cette zone de raccord s'apparente ainsi pour l'écoulement à une « arête » sur la surface extérieure du volet.
L'angle que forme chaque aile latérale avec la partie centrale du volet est constant.
Le Demandeur s'est aperçu que cette « arête » sur la surface extérieure du volet génère, dans l'écoulement, une singularité sous la forme d'une petite zone de re-circulation en aval, re-circulation qui se situe à proximité immédiate des facettes d'articulation et d'extension. Cette singularité augmente à cet endroit l'énergie cinétique des cellules sanguines et notamment des plaquettes, augmente leur temps de résidence sur les surfaces environnantes et augmente par conséquent le risque de formation de dépôts de coagulation. En éliminant, comme on vient de le voir lors de la description faite en référence aux figures 3, 4a, 11 et 12, une grande partie de la surface latérale des extensions articulaires qui est adjacente à cette zone de recirculation, on réduit le risque de formation de dépôts biologiques de coagulation sur les facettes d'articulation et d'extension qui définissent entre elles les espaces de pivotement de la valve.
Néanmoins, les phénomènes évoqués ci-dessus de perturbation de l'écoulement sanguin persistent en raison de la présence des zones de jonction 108, 110 de chaque volet.
Pour éviter cela, il est prévu dans la configuration de la valve selon l'invention que les ailes latérales 40, 42 de chaque volet, par exemple du volet 18 représenté sur les figures 5 et 7, forment chacune avec la partie centrale 38 à laquelle elles sont reliées une zone de jonction 80, 82 de surface extérieure convexe, dont le rayon de courbure est suffisamment grand pour éviter la formation d'écoulements tourbillonnaires au voisinage de cette surface. Plus particulièrement, si l'on considère la longueur de cette zone de jonction qui s'étend du bord d'attaque au bord de fuite (parallèlement à l'axe Z), ce rayon de courbure doit être suffisamment grand sur au moins une partie de sa longueur incluant le bord de fuite 46 du volet. Ainsi, le rayon de courbure à proximité du bord d'attaque 44 peut adopter une faible valeur et, sur une partie de la longueur de cette zone de jonction qui inclut le bord de fuite 46, une valeur plus élevée qui permet d'éviter à l'écoulement de se détacher de la surface extérieure du volet et de générer des perturbations locales.
Une faible valeur du rayon de courbure à proximité du bord d'attaque permet d'avoir recours à des moyens de soutien inférieurs de taille réduite et qui font donc peu d'obstruction à l'écoulement.
Cependant, la valeur du rayon de courbure augmente suivant la direction de l'écoulement antérograde le long du volet, c'est-à-dire en se dirigeant vers le bord de fuite de ce dernier.
Une forme de réalisation conforme à cet enseignement est, par exemple, illustrée sur les figures 5 et 7, où la surface extérieure convexe de la zone de jonction 80, 82 adopte la forme générale d'une portion de cône dont le sommet est situé vers l'amont de l'écoulement antérograde, c'est-à-dire du côté du bord d'attaque 44 du volet, et l'ouverture du cône est située au niveau du bord de fuite. Il convient de noter que le sommet du cône peut être placé plus ou moins près du bord d'attaque selon la forme souhaitée. Ainsi, le rayon de courbure augmente, par exemple, progressivement du bord d'attaque, ou à proximité de celui-ci, vers le bord de fuite. Les figures 13 et 14 illustrent respectivement les vues schématiques prises dans le plan du volet, du bord d'attaque 44 et du bord de fuite 46.
On notera que la surface intérieure de la zone de jonction 80, 82 a également la forme générale d'une portion de cône. La valeur du rayon de courbure au bord d'attaque pour les valves implantées en position aortique est comprise entre 1 et 2 mm et est, par exemple, égale à 1 ,15 mm pour une valve de diamètre extérieur 19 mm et à 1 ,5 mm pour une valve de diamètre extérieur 31 mm.
La valeur du rayon de courbure au bord de fuite est d'au moins 2 mm, plus particulièrement, comprise entre 2 et 4 mm et est, par exemple, égale à 2,5 mm pour un diamètre de 19 mm et à 3,3 mm pour un diamètre de 31 mm. Les valeurs correspondantes respectives des rayons de courbure sur la surface intérieure du volet sont de 0,5 et 0,6 mm pour le bord d'attaque et 1 ,5 et 1 ,8 mm pour le bord de fuite.
Pour les valves implantées en position mitrale, les valeurs de rayons de courbure au bord d'attaque sont comprises entre 1 et 2 mm et sont, par exemple, égales à 1 ,32 mm pour une valve de diamètre extérieur 25 mm et à
1 ,5 mm pour une valve de diamètre extérieur 33 mm. Elles sont d'au moins 2 mm au bord de fuite, plus particulièrement, comprises entre 2 et 4 mm et sont, par exemple, de 2,9 mm pour un diamètre de 25 mm et de 3,3 mm pour un diamètre de 33 mm.
Les valeurs correspondantes respectives des rayons de courbure sur la surface intérieure du volet sont de 0,52 et 0,6 mm pour le bord d'attaque et de 1 ,6 et 1 ,8 mm pour le bord de fuite.
On notera que si l'on augmente, au niveau du bord d'attaque, le rayon de courbure entre la partie centrale et l'aile latérale du volet, l'étendue de la surface de contact entre la surface d'extrémité supérieure du premier moyen de soutien inférieur et le bord d'attaque du volet, durant le mouvement de fermeture, augmente sensiblement, ce qui répartit encore mieux l'usure. La zone initiale de contact en début de fermeture se trouve alors sensiblement déplacée vers la pointe du premier moyen de soutien plutôt que vers sa base d'insertion.
Toutefois, un compromis doit être trouvé sur la valeur du rayon de courbure au niveau du bord d'attaque afin que les moyens de soutien inférieurs conservent une taille raisonnable vis-à-vis de l'écoulement. A titre d'exemple, la valeur de l'angle au sommet du cône (mesurée au niveau du bord d'attaque) est de 50°, plus ou moins 5°.
Pour réduire davantage les singularités hydrodynamiques générées par les volets dans l'écoulement, on confère à la surface externe 45 de la partie centrale du volet 18 une forme, par exemple, sensiblement convexe suivant une direction prise en se déplaçant de l'aile latérale 40 à l'aile latérale opposée 42 (figure 15) au lieu d'une forme générale plane. Cette forme convexe ne concerne toutefois que la zone du volet proche du bord d'attaque, entre l'axe de rotation du volet et le bord d'attaque, la zone du volet située en aval de l'axe de rotation étant, quant à elle, plutôt concave. Ainsi, la course du bord d'attaque sur les premiers moyens de soutien inférieurs sera sensiblement plus courte, augmentant de ce fait la résistance à l'usure de la valve. Selon une autre forme de réalisation (non représentée), la surface extérieure convexe de la zone de jonction entre la partie centrale du volet et chaque aile latérale adopte la forme générale d'une portion cylindrique et le rayon de courbure est donc constant.
Lorsque de tels volets équipent des valves implantées en position aortique, le rayon de courbure sur la surface extérieure des volets est d'au moins 2 mm, plus particulièrement compris entre 2 et 4mm et, par exemple, égal à 2,5 mm pour une valve de diamètre extérieur égal à 19 mm. Il est compris en 2 et 4 mm et, par exemple, égal à 3,3 mm pour une valve de diamètre extérieur égal à 33 mm pour les valves implantées en position mitrale. L'agencement de la zone de jonction en forme de portion de cylindre peut être utile dans certaines applications lorsque le rayon de courbure au voisinage du bord d'attaque du volet ne doit pas être le plus petit possible.
On notera que, quelle que soit la forme générale de la zone de jonction, afin d'éviter la formation d'écoulements tourbillonnaires au voisinage des zones d'articulation des volets (zones où les ailes latérales des volets coopèrent avec les extensions articulaires), la valeur minimale du rayon de courbure au niveau du bord de fuite est de 2 mm pour les valves destinées à être implantées en position aortique et de 3 mm pour les valves destinées à la position mitrale. Lorsque les volets sont en position fermée (figures 2, 10, 16 et 17), chacune des facettes d'articulation de chaque volet (par exemple, la facette 40a sur la figure 16) et la facette d'extension correspondante (par exemple, la facette 52a sur la figure 16) de l'extension articulaire concernée (extension 32 sur la figure 16) définissent entre elles un espace libre 120, appelé espace de pivotement du volet et qui présente une forme géométrique tridimensionnelle se prêtant mal à une représentation figurative. Cette forme est définie de façon théorique par le volume développé par le déplacement, dans l'espace, de la facette d'articulation 40a du volet au cours du mouvement d'ouverture/fermeture de ce volet.
Lorsque le volet est ouvert (figures 1 , 3, 4a et 12), la facette d'articulation 40a est en contact avec la facette d'extension correspondante 52a et l'espace de pivotement 120 a disparu.
On notera que le volume de l'espace de pivotement est inférieur à
2/100θ du volume total déplacé par un volet lors de son passage de la position fermée à la position ouverte, volume qui est bien inférieur au volume de l'espace de pivotement d'un volet de l'art antérieur doté de l'extension articulaire 2 de la figure 3.
La valve comporte ainsi six espaces de pivotement 120 en position fermée (figures 2, 10 et 15).
Lorsque les zones de jonction 80, 82 des volets ont la forme d'une portion de cône ou d'un tronc de cône, on constate que la partie aval de ces zones (située du côté du bord de fuite 46) est abaissée par rapport à la partie de ces zones située en amont, c'est-à-dire du côté du bord d'attaque 44 (figures
12 et 14).
Ainsi, en position fermée des volets, la zone d'accolement entre les bords de fuite des volets est abaissée, par comparaison avec l'art antérieur, par rapport à un plan perpendiculaire à l'axe longitudinal X, tel que le plan contenant le bord d'attaque 28 du support annulaire 12 (figure 17).
L'angle A, appelé angle de fermeture et représenté sur la figure 17, est donc réduit grâce à l'invention. Pour des valves destinées à être implantées en position aortique et en position mitrale, cet angle est compris entre 30 et 50° et une valeur d'angle de 35° convient particulièrement pour la position aortique. Pour les valves destinées à être implantées en position mitrale, un angle allant jusqu'à 50° peut se révéler avantageux. On notera toutefois qu'un angle de fermeture de 35° peut être adopté pour toutes les tailles de valves aortiques et mitrales.
Par ailleurs, du fait de l'abaissement des bords de fuite des volets par rapport à l'horizontale en position fermée du volet (figure 17), lorsque ce dernier est en appui sur les moyens de soutien inférieurs, l'espace de pivotement 120 (figure 16) devient plus évasé et plus accessible au rinçage rétrograde par le courant sanguin que dans les valves de l'art antérieur où cet espace est encaissé entre des parois moins évasées qui gênent davantage l'accès pour l'écoulement.
Ainsi, le risque que des dépôts de coagulation se forment et grossissent dans cet espace de pivotement est réduit grâce à l'agencement de l'invention.
Il convient de noter que les espaces de pivotement de la valve à trois volets rigides constituent des espaces critiques pour la résistance de la valve aux phénomènes de coagulation. L'agencement spécifique de cet espace selon l'invention a pour but de réduire le plus possible toute stase sur les parois adjacentes (volets et extensions articulaires), toute singularité dans la microstructure de l'écoulement à cet endroit et toute surface étrangère inutile à son voisinage immédiat.
Comme représenté plus particulièrement sur la figure 15 et déjà exposé ci-dessus, la surface extérieure 45 de la partie centrale 38 de chaque volet est de forme, par exemple, sensiblement convexe, ce qui augmente la surface centrale des volets exposée à l'écoulement antérograde lorsque la valve est en position ouverte. Conjuguée avec l'agencement de la zone de jonction à rayon de courbure augmenté entre la partie centrale et les ailes latérales des volets, cette convexité a pour but de répartir uniformément l'écoulement sur toute la surface extérieure des volets et notamment sur les facettes latérales dédiées au pivotement. Ceci est contraire à ce qui est réalisé par l'art antérieur décrit dans le brevet US 6 395 024 où la forme de la surface extérieure du volet tend à éloigner l'écoulement des ailes latérales en le dirigeant plus volontiers vers le centre du volet.
Ainsi, cette configuration permet de réduire les risques d'interposition biologique en cas d'implantation non exactement orthogonale par rapport à l'axe du flux, positionnement qui n'est pas rare en pratique du fait des modifications pathologiques locales que rencontrent souvent les chirurgiens lors de l'implantation d'une prothèse valvulaire. Sur la figure 12 illustrant la valve selon l'invention en position ouverte, on constate que le passage interne 14 offert à l'écoulement est divisé en un orifice principal 14a et trois orifices secondaires 14b, 14c et 14d.
L'orifice principal est délimité par les surfaces intérieures des volets. La surface intérieure 47 de la partie centrale des volets a, de préférence dans sa partie amont, une forme générale concave suivant une direction prise en se déplaçant d'une aile latérale 40 à l'aile latérale opposée 42 (figure 15), ce qui positionne la partie amont de chaque volet incluant le bord d'attaque dans une zone de l'écoulement sanguin antérograde où les vitesses sont sensiblement plus lentes que vers le centre de la valve.
La partie amont est celle située entre le bord d'attaque et l'axe de rotation du volet.
Ainsi, l'écoulement antérograde rencontrant le bord d'attaque des volets est moins sujet à des perturbations qu'avec des volets dont la surface intérieure est de forme convexe dans le plan de la figure 15.
On notera que l'orifice principal est ainsi sensiblement élargi par rapport à l'art antérieur et la section de passage offerte à l'écoulement par cet orifice dans un plan perpendiculaire à l'axe X, notamment dans la partie de l'orifice définie par la partie amont des volets, est au moins égale à 75% de la surface interne délimitée par le support 12.
Chaque orifice secondaire 14b, 14c, 14d est, quant à lui, défini par l'espace offert à l'écoulement entre la surface extérieure d'un des trois volets et la portion de surface périphérique interne du support 12 qui sépare les extensions articulaires avec lesquelles le volet concerné coopère. Lorsque la surface extérieure des volets a une forme générale sensiblement convexe, les orifices secondaires ont chacun une forme générale de croissant de lune.
Ces orifices secondaires constituent des orifices de rinçage des surfaces extérieures des volets et notamment de leurs ailes latérales. On notera que la plus grande section de passage offerte à l'écoulement par chaque orifice secondaire 14b-d dans un plan perpendiculaire à l'axe X, est inférieure à 7% de la surface interne délimitée par le support 12. Par ailleurs, la dimension de chaque orifice secondaire prise suivant une direction radiale passant par le centre du support 12, dans un plan perpendiculaire à l'axe X, est inférieure à 20% du rayon interne du support.
La figure 18 illustre la structure de l'écoulement sur la surface extérieure plane, voire concave 45 d'un volet en position ouverte.
C'est également le cas lorsque la surface extérieure du volet a la forme illustrée sur la figure 15 au voisinage du bord d'attaque, puis plutôt concave vers l'aval.
On constate que, de manière générale, l'écoulement converge vers la partie centrale du volet, ce qui favorise le nettoyage de cette partie au détriment des ailes latérales.
Dans la mesure où, comme évoqué précédemment, les parties de la valve situées près des espaces de pivotement de celle-ci constituent des zones critiques qui doivent être particulièrement bien nettoyées par l'écoulement, le Demandeur a modifié la structure de la surface extérieure des volets pour favoriser l'orientation de l'écoulement sanguin vers les ailes latérales des volets tel qu'illustré sur la figure 19.
La surface extérieure modifiée 145 est ainsi pourvue d'une pluralité de rainures 147 représentées à titre d'exemple à la figure 20 avec une section transversale en V et qui sont orientées de manière à canaliser le flux sanguin de façon contrôlée.
Les rainures peuvent être orientées différemment selon les zones de la surface extérieure du volet où elles sont agencées : les rainures agencées près du centre du volet sont orientées axialement suivant l'axe de symétrie Z du volet, tandis que les rainures agencées à proximité des ailes latérales 40, 42 ont une orientation axiale qui forme avec l'axe Z un angle, par exemple, compris entre 5° et 7.
Cet angle peut être de plus en plus prononcé au fur et à mesure que les rainures sont proches des ailes. Un tel agencement répartit l'écoulement sur une plus grande surface du volet et favorise ainsi le nettoyage des ailes latérales. On notera que d'autres formes possibles de sections transversales des rainures sont envisageables : formes arrondies en U, formes rectangulaires, formes trapézoïdales, ailettes en forme de L ...
Ces rainures ont une hauteur h qui correspond sensiblement à l'épaisseur de la couche limite de l'écoulement sanguin sur le volet et qui est, par exemple, de l'ordre de 0,01 mm. De façon générale, l'épaisseur de la couche limite peut être obtenue à partir des dimensions d'un volet, en appliquant un facteur d'échelle de 1/ (nombre de Reynolds) 1A
On notera que l'espacement s (largeur de rainure) sur la figure 20 peut être augmenté si nécessaire.
Afin de réduire le risque de contamination des rainures, un espacement minimum s de 5 mm est efficace.
On notera également que la distance séparant deux rainures consécutives est ajustée en fonction des risques de contamination des rainures. Par ailleurs, les rainures aménagées sur tout ou partie de la surface extérieure des volets contribuent à épaissir et à stabiliser la couche limite de l'écoulement, réduisant ainsi le frottement turbulent et la traînée de frottement résultante générés par la rencontre de l'écoulement et de la surface extérieure des volets. Ces rainures sont obtenues de façon connue, par exemple, par moulage lorsque les volets sont réalisés en polymères biocompatibles, ou par un dépôt de diamant isotrope sur quelques microns d'épaisseur si les volets sont fabriqués à partir d'un autre matériau, ou encore par micro-usinage.
Il convient de noter que la surface intérieure des volets peut également être rainurée pour favoriser une répartition différente de l'écoulement.
La nervure périphérique 26 prévue pour la fixation d'un anneau de suture (non représenté) est par exemple configurée de façon spécifique afin que sa forme générale, que l'on aperçoit sur les figures 1 à 3, reproduise le profil d'une courbe sensiblement sinusoïdale.
Ainsi, les sommets de la courbe sinusoïdale (la courbure de ces sommets a été volontairement exagérée pour une plus grande visibilité) sont respectivement agencés au droit de chacune des extensions articulaires 32, 34, 36 (sommet 26a au droit de l'extension 34) du support et les creux sont respectivement agencés entre deux extensions articulaires consécutives : le creux 26b est agencé entre les extensions 34 et 36, tandis que le creux 26c est agencé entre les extensions 32 et 34.
D'une certaine manière, on peut dire que le profil de la nervure 26 suit de façon générale le contour du bord de fuite 30 du support 12.
Pour fabriquer la valve à volets rigides selon l'invention, différents matériaux peuvent être utilisés. Pour le support annulaire, on choisit, par exemple, un métal biocompatible tel que le titane ou le stellite.
On peut également utiliser du carbone massif, voire un revêtement de carbone sur du graphite.
Les volets quant à eux peuvent être réalisés à partir d'un matériau biocompatible, par exemple du carbone monolithique, ou en graphite avec un revêtement de carbone pyrolytique.
Les volets peuvent aussi être réalisés dans un polymère de synthèse biocompatible et qui présente des propriétés de résistance à l'usure comparables à celles du carbone pyrolytique. Ainsi, un matériau tel que le "Peek" (acronyme pour
"Polyetheretherkétone") possède une faible densité de l'ordre de 1 ,2 et convient particulièrement pour fabriquer les volets.
Ce matériau est renforcé en carbone afin d'augmenter la résistance à l'usure des volets. Un tel matériau est fourni, par exemple, par la société Ensinger
GmbH & Co., D-93413 Allemagne. Un tel matériau adapté à un usage médical est également disponible auprès de la société britannique Invibio Ltd.
On notera que la valve selon l'invention peut être réalisée en titane pour le support annulaire 12 et en "peek" pour les volets, ce qui procure un couple de matériaux parfaitement adapté aux frottements et usures rencontrés sur ce type de valves. Par ailleurs, on peut également utiliser le "Peek" comme matériau pour fabriquer les volets et le carbone pyrolitique pour le support, voire le carbone pyrolitique pour les volets et le support.
Un tel choix de matériaux peut d'ailleurs être retenu pour d'autres types de valves cardiaques à volets rigides indépendants de l'invention.

Claims

REVENDICATIONS
1. Valve cardiaque prothétique mécanique, caractérisée en ce qu'elle comprend :
- un support annulaire (12) comportant une surface périphérique (16) interne centrée autour d'un axe longitudinal (X),
- au moins deux volets mobiles (18, 20, 22) qui sont agencés de façon articulée sur la surface périphérique interne du support de manière à pouvoir effectuer chacun un mouvement de rotation autour d'un axe de rotation de volet perpendiculaire à l'axe longitudinal (X), pour passer d'une position ouverte de la valve, dans laquelle les volets ouverts délimitent entre eux un orifice principal (14a) centré sur l'axe longitudinal et à travers lequel le sang s'écoule axialement, à une position fermée de la valve, dans laquelle les volets fermés empêchent le sang de refluer à travers l'orifice principal, le support annulaire (12) comportant un bord (30) placé du côté aval de l'écoulement antérograde, appelé bord aval, et plusieurs extensions articulaires (32, 34, 36) qui s'étendent axialement à partir du bord aval et dont le nombre correspond à celui des volets, chaque volet comportant une partie centrale (38) encadrée de façon symétrique par deux ailes latérales (40, 42) qui sont inclinées par rapport à cette partie centrale, ces deux ailes coopérant respectivement, pour permettre la rotation du volet, avec les surfaces internes de deux extensions articulaires par l'intermédiaire d'une portion dite terminale (40a, 42a) de chaque aile, chaque portion terminale possédant une surface extérieure, appelée facette d'articulation, qui vient en appui, lorsque le volet est ouvert, contre une portion de la surface interne de l'extension articulaire correspondante, appelée facette d'extension, les deux facettes d'articulation de chaque volet totalisant à elles deux une surface sensiblement inférieure à 5 % de la surface extérieure totale du volet.
2. Valve selon la revendication 1 , caractérisée en ce que chaque aile latérale (40, 42) de chacun des volets est reliée à la partie centrale (38) du volet par une zone de jonction (80, 82) dont la surface extérieure est convexe et qui, sur au moins une partie de sa longueur incluant la partie de la zone située vers l'aval de l'écoulement antérograde, possède un rayon de courbure suffisamment grand pour éviter la formation d'écoulements tourbillonnaires au voisinage de cette surface de jonction.
3. Valve selon la revendication 2, caractérisée en ce que le rayon de courbure de la partie de la zone de jonction située du côté aval de l'écoulement est d'au moins 2 mm pour une valve destinée à être implantée en position aortique et d'au moins 3 mm pour une valve destinée à être implantée en position mitrale.
4. Valve selon l'une des revendications 1 à 3, caractérisée en ce que chaque aile latérale (40, 42) de chacun des volets est reliée à la partie centrale (38) du volet par une zone de jonction (80, 82) dont la surface extérieure est convexe et a la forme générale d'une portion de cône dont le sommet est situé vers l'amont de l'écoulement antérograde.
5. Valve selon l'une des revendications 1 à 3, caractérisée en ce que chaque aile latérale de chacun des volets est reliée à la partie centrale du volet par une zone de jonction dont la surface extérieure est convexe et a la forme générale d'une portion de cylindre.
6. Valve selon l'une des revendications 1 à 5, caractérisée en ce que l'axe de rotation de chaque volet est virtuel, situé à l'extérieur du volet, entre ce dernier et le support annulaire (12), et s'étend suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
7. Valve selon la revendication 6, caractérisée en ce que, dans un plan perpendiculaire à l'axe longitudinal X de la valve, l'axe de rotation de volet est situé à une distance de l'axe longitudinal X qui est supérieure à 75 % du rayon du support annulaire.
8. Valve selon l'une des revendications 1 à 7, caractérisée en ce que chacune des facettes d'articulation (40a, 42a) d'un volet et la facette d'extension correspondante (52a, 50a) de l'extension articulaire concernée définissent entre elles, lorsque le volet est en position fermée, un espace (120) dit de pivotement du volet, cet espace disparaissant lorsque la facette d'articulation du volet vient, en position ouverte, en appui contre la facette d'extension correspondante.
9. Valve selon la revendication 8, caractérisée en ce que le volume de l'espace de pivotement (120) est inférieur à 2/10Oe du volume déplacé par le volet lors de son passage de la position fermée à la position ouverte.
10. Valve selon l'une des revendications 1 à 9, caractérisée en ce que la surface extérieure (45) de la partie centrale (38) du volet a une forme générale sensiblement convexe suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
11. Valve selon l'une des revendications 1 à 10, caractérisée en ce que Ia partie centrale (38) de chaque volet comporte une surface intérieure (47) tournée vers l'orifice principal (14a) de la valve et qui a une forme générale sensiblement concave suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
12. Valve selon l'une des revendications 1 à 11 , caractérisée en ce que, lorsque la valve est en position ouverte, l'orifice principal (14a) délimité par les surfaces intérieures des volets présente, en projection dans un plan perpendiculaire à l'axe longitudinal du support annulaire, une section de passage offerte à l'écoulement qui est égale au moins à 75 % de la surface interne délimitée par le support annulaire dans ce même plan.
13. Valve selon l'une des revendications 1 à 12, caractérisée en ce que, lorsque la valve est en position ouverte, chaque volet définit, entre sa surface extérieure (45) et la portion de surface périphérique interne (16) du support annulaire (12) qui sépare les deux extensions articulaires avec lesquelles le volet coopère, un orifice secondaire.
14. Valve selon la revendication 13, caractérisée en ce que chaque orifice secondaire (14b, 14c, 14d) a une forme générale de croissant de lune.
15. Valve selon la revendication 13 ou 14, caractérisée en ce que la dimension de l'orifice secondaire, prise suivant une direction radiale, en projection dans un plan perpendiculaire à l'axe longitudinal du support annulaire, est inférieure à 20 % du rayon interne du support annulaire.
16. Valve selon l'une des revendications 13 à 15, caractérisée en ce que chaque orifice secondaire (14b, 14c, 14d) présente, dans un plan perpendiculaire à l'axe longitudinal du support annulaire, une section de passage offerte à l'écoulement qui est inférieure à 7 % de la surface interne délimitée par le support annulaire dans ce même plan.
17. Valve selon l'une des revendications 1 à 16, caractérisée en ce que les extensions articulaires (32, 34, 36) sont dépourvues chacune de toute ouverture traversante.
18. Valve selon l'une des revendications 1 à 17, caractérisée en ce que le support annulaire (12) comporte sur sa surface périphérique interne (16), à proximité du bord aval (30) et pour chaque volet (18), deux butées (70, 71) provoquant le pivotement du volet dans sa position ouverte lorsque la pression de l'écoulement de sang s'exerce sur la face interne de ce volet.
19. Valve selon l'une des revendications 1 à 18, caractérisée en ce que le support annulaire comporte sur sa surface périphérique interne (16), pour chaque volet (18), deux moyens de soutien (60, 62) du volet en position fermée, lesdits moyens de soutien de chaque volet étant agencés entre les deux extensions articulaires (32, 36) avec lesquelles coopèrent respectivement les ailes latérales (42, 40) du volet.
20. Valve selon les revendications 18 et 19, caractérisée en ce que, en projection dans un plan perpendiculaire à l'axe longitudinal (X) du support annulaire, chaque butée (70, 71) est espacée angulairement du moyen de soutien (70, 71) le plus proche d'une distance correspondant sensiblement à au moins la moitié de la largeur dudit moyen de soutien, la largeur étant mesurée, dans le plan considéré, suivant une direction tangentielle par rapport au support annulaire.
21. Valve selon la revendication 20, caractérisée en ce que, pour chaque volet (18), les butées (70, 71) sont agencées entre les moyens de soutien (60, 62) du volet.
22. Valve selon l'une des revendications 1 à 21 , caractérisée en ce que chaque volet comporte à sa périphérie, d'une part, un bord d'attaque (44) qui est disposé du côté amont de l'écoulement antérograde de sang et coopère avec la surface interne (16) du support annulaire en position fermée du volet et, d'autre part, un bord de fuite (46) disposé du côté aval de l'écoulement antérograde.
23. Valve selon les revendications 19 et 22, caractérisée en ce que chaque moyen de soutien de volet coopère avec une zone de contact du bord d'attaque du volet suivant un contact surfacique lors de la fermeture dudit volet.
24. Valve selon la revendication 23, caractérisée en ce que chaque moyen de soutien (60, 62) de volet présente une surface d'extrémité supérieure dont une portion située du côté opposé à l'extension articulaire la plus proche possède un rayon de courbure suffisamment grand pour coopérer avec la zone de contact rectiligne transversale du bord d'attaque du volet suivant un contact surfacique.
25. Valve selon l'une des revendications 22 à 24, caractérisée en ce que le bord de fuite (46) de chaque volet a une forme sensiblement triangulaire et, en position fermée de la valve, les bords de fuite des trois volets coopèrent les uns avec les autres pour former un trièdre dont la pointe est dirigée vers l'aval.
26. Valve selon l'une des revendications 1 à 25, caractérisée en ce que chaque volet présente, dans sa partie centrale, au niveau du bord de fuite, une zone alignée suivant l'axe de symétrie du volet et qui est sensiblement en forme de spatule de ski à son extrémité libre aval, l'extrémité sensiblement spatulée (48) du volet formant une pointe qui s'écarte du prolongement de la surface intérieure dudit volet d'un angle sensiblement compris entre 2 et 4°.
27. Valve selon la revendication 26, caractérisée en ce que les trois extrémités sensiblement spatulées des volets restent distantes l'une de l'autre, en position fermée de la valve, d'au moins 50 microns et ménagent entre elles un interstice central (49) en forme d'étoile à trois branches.
28. Valve selon la revendication 27 et l'une des revendications 22 à 26, caractérisée en ce que chacune des trois branches s'étend sur une distance correspondant au moins au tiers de la longueur totale du bord de fuite des volets.
29. Valve selon l'une des revendications 1 à 28, caractérisée en ce que chaque volet, d'une part, en position fermée, forme avec un plan perpendiculaire à l'axe longitudinal (X) du support annulaire un angle de fermeture compris entre 30° et 50° et, d'autre part, en position ouverte, est sensiblement parallèle à la direction de l'écoulement.
30. Valve selon la revendication 29, caractérisée en ce que l'angle de fermeture est compris entre 40° et 50° pour les valves destinées à être implantées en position mitrale.
31. Valve selon l'une des revendications 1 à 30, caractérisée en ce que chaque volet présente sur sa surface extérieure (145) une ou plusieurs zones pourvues de rainures (147) qui favorisent l'orientation de l'écoulement sanguin vers les ailes latérales du volet.
32. Valve selon l'une des revendications 1 à 31, caractérisée en ce que le support annulaire comporte sur sa surface périphérique extérieure, pour les valves destinées à être implantées en position aortique, une nervure périphérique (36) pour la fixation d'un anneau de suture, la nervure étant configurée de manière à ce que sa forme générale reproduise le profil d'une courbe sensiblement sinusoïdale ayant un sommet (26a) agencé au droit de chaque extension articulaire et un creux (26b, 26c) entre deux extensions articulaires consécutives.
33. Volet mobile destiné à être monté sur un support annulaire d'une valve cardiaque prothétique mécanique, comportant à sa périphérie, d'une part, un bord d'attaque (44) qui est destiné à être disposé du côté amont de l'écoulement sanguin antérograde et, d'autre part, un bord de fuite (46) qui est destiné à être disposé du côté aval de cet écoulement, le voiet comprenant une partie centrale (38) encadrée de façon symétrique par deux ailes latérales (40, 42) qui sont inclinées par rapport à cette partie centrale, chaque aile latérale étant reliée à la partie centrale par une zone de jonction (80, 82) dont la surface extérieure est convexe et qui, sur au moins une partie de sa longueur incluant le bord de fuite (46), possède un rayon de courbure suffisamment grand pour éviter la formation d'écoulements tourbillonnaires au voisinage de cette surface.
34. Volet selon la revendication 33, caractérisé en ce que le rayon de courbure de la zone de jonction au droit du bord de fuite est d'au moins 2 mm pour une valve destinée à être implantée en position aortique et d'au moins 3 mm pour une valve destinée à être implantée en position mitrale.
35. Volet selon la revendication 33 ou 34, caractérisé en ce que la surface extérieure de la zone de jonction (80, 82) a la forme générale d'une portion de cône dont le sommet est situé du côté opposé au bord de fuite du volet.
36. Volet selon la revendication 33 ou 34, caractérisé en ce que la surface extérieure de la zone de jonction a la forme générale d'une portion de cylindre.
37. Volet selon l'une des revendications 33 à 36, caractérisé en ce qu'il comporte une surface extérieure et une surface intérieure opposées l'une de l'autre et reliant chacune le bord d'attaque (44) au bord de fuite (46).
38. Volet selon la revendication 37, caractérisé en ce que la surface extérieure (45) de la partie centrale (38) du volet a une forme générale sensiblement convexe suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
39. Volet selon la revendication 37 ou 38, caractérisé en ce que la surface intérieure (47) de la partie centrale du volet a une forme générale sensiblement concave suivant une direction prise en se déplaçant d'une aile latérale du volet à l'aile latérale opposée.
40. Volet selon l'une des revendications 37 à 39, caractérisé en ce qu'il présente sur sa surface extérieure (145) une ou plusieurs zones pourvues de rainures (147) qui favorisent l'orientation de l'écoulement sanguin vers les ailes latérales.
41. Volet selon l'une des revendications 33 à 40, caractérisé en ce qu'il présente, dans sa partie centrale, au niveau du bord de fuite, une zone alignée suivant l'axe de symétrie du volet et qui est sensiblement en forme de spatule de ski à son extrémité libre, l'extrémité sensiblement spatulée (48) du volet formant une pointe qui s'écarte du prolongement de la surface intérieure dudit volet d'un angle sensiblement compris entre 2 et 4°.
42. Volet selon l'une des revendications 33 à 41 , caractérisé en ce qu'il est rigide.
43. Volet selon l'une des revendications 33 à 42, caractérisé en ce qu'il est réalisé à partir d'un matériau biocompatibie et est réalisé au choix en carbone monolithique, en graphite avec un revêtement de carbone pyrolytique ou dans un polymère de synthèse doté de propriétés de résistance à l'usure comparables à celles du carbone pyrolytique.
PCT/FR2008/000621 2007-05-02 2008-04-30 Valve cardiaque prothétique mécanique WO2008152224A2 (fr)

Priority Applications (13)

Application Number Priority Date Filing Date Title
BRPI0810224A BRPI0810224B8 (pt) 2007-05-02 2008-04-30 válvula cardíaca protética mecânica
CN200880023156.4A CN101754729B (zh) 2007-05-02 2008-04-30 机械假体心脏瓣膜
AU2008263806A AU2008263806B2 (en) 2007-05-02 2008-04-30 Mechanical prosthetic heart valve
KR1020097025103A KR101496274B1 (ko) 2007-05-02 2008-04-30 기계식 인공 심장 판막
MX2009011839A MX2009011839A (es) 2007-05-02 2008-04-30 Valvula cardiaca protesica mecanica.
EP08805533.0A EP2142143B1 (fr) 2007-05-02 2008-04-30 Valve cardiaque prothétique mécanique
JP2010504794A JP5322013B2 (ja) 2007-05-02 2008-04-30 人工心臓弁
CA2685802A CA2685802C (fr) 2007-05-02 2008-04-30 Valve cardiaque prothetique mecanique
US12/598,516 US10182907B2 (en) 2007-05-02 2008-04-30 Mechanical prosthetic heart valve
NZ581537A NZ581537A (en) 2007-05-02 2008-04-30 Mechanical prosthetic heart valve with flaps contoured for reduced turbulence
RU2009144546/14A RU2475212C2 (ru) 2007-05-02 2008-04-30 Механический протез клапана сердца
IL201881A IL201881A (en) 2007-05-02 2009-11-02 Mechanical valves heart valve
IL222517A IL222517A (en) 2007-05-02 2012-10-18 Mechanical valves heart valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0703164A FR2915678B1 (fr) 2007-05-02 2007-05-02 Valve cardiaque prothetique mecanique
FR0703164 2007-05-02

Publications (2)

Publication Number Publication Date
WO2008152224A2 true WO2008152224A2 (fr) 2008-12-18
WO2008152224A3 WO2008152224A3 (fr) 2009-03-12

Family

ID=38951753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/000621 WO2008152224A2 (fr) 2007-05-02 2008-04-30 Valve cardiaque prothétique mécanique

Country Status (15)

Country Link
US (1) US10182907B2 (fr)
EP (4) EP2142143B1 (fr)
JP (1) JP5322013B2 (fr)
KR (1) KR101496274B1 (fr)
CN (1) CN101754729B (fr)
AU (1) AU2008263806B2 (fr)
BR (1) BRPI0810224B8 (fr)
CA (1) CA2685802C (fr)
FR (1) FR2915678B1 (fr)
IL (2) IL201881A (fr)
MX (1) MX2009011839A (fr)
NZ (1) NZ581537A (fr)
RU (1) RU2475212C2 (fr)
WO (1) WO2008152224A2 (fr)
ZA (1) ZA200907938B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144673A1 (fr) 2020-01-14 2021-07-22 Novostia Sa Valve cardiaque prothétique mécanique
WO2021144672A1 (fr) 2020-01-14 2021-07-22 Novostia Sa Valvule cardiaque prothétique mécanique
WO2021144674A1 (fr) 2020-01-14 2021-07-22 Novostia Sa Valvule cardiaque prothétique mécanique

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060173490A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
JP6010545B2 (ja) 2010-12-23 2016-10-19 トゥエルヴ, インコーポレイテッド 僧帽弁の修復および置換のためのシステム
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
AU2012272855C1 (en) 2011-06-21 2018-04-05 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
AU2012290221B2 (en) * 2011-07-29 2017-02-23 Carnegie Mellon University Artificial valved conduits for cardiac reconstructive procedures and methods for their production
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
CN107028685B (zh) 2011-10-19 2019-11-15 托尔福公司 人工心脏瓣膜装置、人工二尖瓣和相关系统及方法
AU2012325809B2 (en) 2011-10-19 2016-01-21 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
EP4049625A1 (fr) * 2011-12-09 2022-08-31 Edwards Lifesciences Corporation Valvule cardiaque prothétique ayant des supports de commissures améliorés
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US9232995B2 (en) * 2013-01-08 2016-01-12 Medtronic, Inc. Valve prosthesis and method for delivery
ES2603394T3 (es) * 2012-10-30 2017-02-27 Pierfrancesco VEROUX Dispositivo endoluminal venoso mejorado para el tratamiento de defectos de las venas
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US9968443B2 (en) * 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
AU2014268631B2 (en) 2013-05-20 2019-08-01 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US9421094B2 (en) 2013-10-23 2016-08-23 Caisson Interventional, LLC Methods and systems for heart valve therapy
CN107072783B (zh) * 2014-05-09 2021-03-19 福达斯公司 替代心脏瓣膜及其使用和制造方法
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
EP3182929B1 (fr) 2014-08-18 2023-08-09 Edwards Lifesciences Corporation Cadre avec manchon de suture intégré pour valves prothétiques
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9855141B2 (en) 2014-12-18 2018-01-02 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
EP3232989B1 (fr) * 2014-12-18 2020-05-06 W. L. Gore & Associates, Inc. Valvules prothétiques à lames valvulaires accouplées mécaniquement
EP3261583B1 (fr) * 2015-02-24 2019-02-13 Rijksuniversiteit Groningen Prothèse de valve cardiaque mécanique pour le ventricule droit
EP3337428A1 (fr) 2015-08-21 2018-06-27 Twelve Inc. Dispositifs de valves cardiaques implantables, dispositifs de réparation de valves mitrales et systèmes et procédés associés
US10478288B2 (en) 2015-09-30 2019-11-19 Clover Life Sciences Inc. Trileaflet mechanical prosthetic heart valve
WO2017117388A1 (fr) 2015-12-30 2017-07-06 Caisson Interventional, LLC Systèmes et méthodes pour thérapie de valvule cardiaque
WO2017127939A1 (fr) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Valvule prothétique permettant d'éviter une obstruction empêchant l'écoulement
US10265172B2 (en) 2016-04-29 2019-04-23 Medtronic Vascular, Inc. Prosthetic heart valve devices with tethered anchors and associated systems and methods
WO2018071417A1 (fr) 2016-10-10 2018-04-19 Peca Labs, Inc. Ensemble valve et endoprothèse transcathéter
CN113893064A (zh) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 用于快速收回经导管心脏瓣膜递送系统的方法和系统
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
US20180256329A1 (en) * 2017-03-07 2018-09-13 4C Medical Technologies, Inc. Systems, methods and devices for prosthetic heart valve with single valve leaflet
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
EP3672530A4 (fr) 2017-08-25 2021-04-14 Neovasc Tiara Inc. Prothèse de valvule mitrale transcathéter à déploiement séquentiel
WO2019055577A1 (fr) 2017-09-12 2019-03-21 W. L. Gore & Associates, Inc. Fixation de cadre de feuillet pour valves prothétiques
EP3687451B1 (fr) 2017-09-27 2023-12-13 Edwards Lifesciences Corporation Valvule prothétique à cadre extensible
AU2018342223B2 (en) 2017-09-27 2021-04-01 Edwards Lifesciences Corporation Prosthetic valves with mechanically coupled leaflets
EP3694445A1 (fr) 2017-10-13 2020-08-19 W. L. Gore & Associates, Inc. Valvule prothétique télescopique et système de pose
CN114831777A (zh) 2017-10-31 2022-08-02 W.L.戈尔及同仁股份有限公司 假体心脏瓣膜
CN111295158A (zh) 2017-10-31 2020-06-16 W.L.戈尔及同仁股份有限公司 医用瓣膜和促进组织向内生长的瓣叶
CA3178262A1 (fr) 2017-10-31 2019-05-09 W. L. Gore & Associates, Inc. Systemes de deploiement par transcatheter et procedes associes
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
CN108030572B (zh) * 2017-11-29 2019-07-19 天津大学 一种瓣膜式防返流胆道支架
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
US11737872B2 (en) 2018-11-08 2023-08-29 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
JP7438236B2 (ja) 2019-04-01 2024-02-26 ニオバスク ティアラ インコーポレイテッド 制御可能に展開可能な補綴弁
EP3952792A4 (fr) 2019-04-10 2023-01-04 Neovasc Tiara Inc. Valvule prothétique à circulation sanguine naturelle
US11779742B2 (en) 2019-05-20 2023-10-10 Neovasc Tiara Inc. Introducer with hemostasis mechanism
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
CN114081676A (zh) * 2021-11-18 2022-02-25 山东大学 一种心脏瓣膜模拟装置、制造模具及工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522886A (en) 1994-07-29 1996-06-04 Milo; Simcha Heart valve prostheses
US6059826A (en) 1997-05-13 2000-05-09 Medical Carbon Research Institute, Llc Trileaflet heart valve
US6395024B1 (en) 1997-05-20 2002-05-28 Triflo Medical, Inc. Mechanical heart valve
US20040249451A1 (en) 2003-06-06 2004-12-09 Po-Chien Lu Tri-leaflet mechanical heart valve

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328592A (en) * 1979-08-07 1982-05-11 Hemex, Inc. Heart valve prosthesis
FR2642960B1 (fr) 1989-02-15 1994-02-25 Dassault Breguet Aviation Valve cardiaque prothetique
JP3032600B2 (ja) 1991-02-21 2000-04-17 株式会社リコー 光情報記録媒体
US5192309A (en) * 1991-03-25 1993-03-09 Onx, Inc. Prosthetic heart valve
WO1992021305A1 (fr) * 1991-06-06 1992-12-10 Medtronic, Inc. Prothese de valvule cardiaque a deux valves a courbure composite
RU2093109C1 (ru) * 1995-01-27 1997-10-20 Акционерное общество открытого типа "Кирово-Чепецкий химический комбинат им.Б.П.Константинова" Протез клапана сердца
RU2104676C1 (ru) * 1995-04-12 1998-02-20 Научно-производственное предприятие "Акционерное общество МедИнж" Протез клапана сердца
US5545216A (en) 1995-05-16 1996-08-13 Medical Carbon Research Institute, Llc Prosthetic heart valve
US5772694A (en) 1995-05-16 1998-06-30 Medical Carbon Research Institute L.L.C. Prosthetic heart valve with improved blood flow
CA2218621C (fr) 1995-05-16 2006-10-24 Medical Carbon Research Institute, L.L.C. Valvule cardiaque prothetique
US5641324A (en) 1995-05-16 1997-06-24 Medical Carbon Research Institute, Llc Prosthetic heart valve
RU2113191C1 (ru) 1996-02-14 1998-06-20 Александр Петрович Мельников Протез клапана сердца
US5861029A (en) 1996-02-14 1999-01-19 Evdokimov; Sergey V. Heart valve prosthesis
US5628791A (en) 1996-05-09 1997-05-13 Medical Carbon Research Institute, Llc Prosthetic trileaflet heart valve
DE19624951A1 (de) 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prothetische Herzklappe
CA2257205C (fr) 1996-06-24 2005-11-22 Adiam Medizintechnik Gmbh & Co. Kg Valvule cardiaque prothetique
US5814099A (en) 1996-08-12 1998-09-29 Bicer; Demetrio Central opening curved bileaflet heart valve prosthesis
US6764509B2 (en) 1996-09-06 2004-07-20 Carbomedics Inc. Prosthetic heart valve with surface modification
US6702851B1 (en) 1996-09-06 2004-03-09 Joseph A. Chinn Prosthetic heart valve with surface modification
US6068657A (en) * 1997-05-20 2000-05-30 Lapeyre; Didier Mechanical valve prosthesis with optimized closing mode
US5919226A (en) 1997-07-22 1999-07-06 Medtronic, Inc. Mechanical heart valve prosthesis
TW329667U (en) * 1997-08-04 1998-04-11 Nat Science Council Trifoliate artificial heart valve
US5908451A (en) 1997-11-25 1999-06-01 Cardiotech International Corporation Prosthetic heart valve
JP4080690B2 (ja) 1997-12-05 2008-04-23 セント ジュード メディカル インコーポレイテッド 二葉弁式人工心臓弁
US6096075A (en) 1998-01-22 2000-08-01 Medical Carbon Research Institute, Llc Prosthetic heart valve
RU2157674C1 (ru) 1999-07-27 2000-10-20 Иофис Наум Абрамович Искусственный клапан сердца
RU2146906C1 (ru) 1998-12-28 2000-03-27 Иофис Наум Абрамович Протез клапана сердца
WO2000038595A1 (fr) 1998-12-28 2000-07-06 Alexandr Vasilievich Samkov Prothese de valvule du coeur
US6051022A (en) 1998-12-30 2000-04-18 St. Jude Medical, Inc. Bileaflet valve having non-parallel pivot axes
US6395025B1 (en) 1998-12-31 2002-05-28 St. Jude Medical, Inc. Mechanical heart valve prosthesis
US6200340B1 (en) 1999-04-01 2001-03-13 Sulzer Carbomedics Inc. Tilting disk heart valve having cavitation reducing contact geometry
US6139575A (en) 1999-04-02 2000-10-31 Medtronic, Inc. Hybrid mechanical heart valve prosthesis
WO2001034068A1 (fr) 1999-11-10 2001-05-17 Impsa International Incorporated Prothese valvulaire cardiaque
CA2407200C (fr) 2000-05-03 2007-01-23 Shlomo Gabbay Procede et systeme permettant d'obtenir une prothese de valvule cardiaque biologiquement recouverte
CA2412063C (fr) 2000-05-03 2006-10-17 Shlomo Gabbay Prothese de valvule cardiaque biomecanique et methode de fabrication
US6610088B1 (en) 2000-05-03 2003-08-26 Shlomo Gabbay Biologically covered heart valve prosthesis
WO2002024119A1 (fr) 2000-09-21 2002-03-28 St. Jude Medical, Inc. Protheses a valves comportant des valves polymeres renforcees
US6596024B2 (en) 2000-12-21 2003-07-22 Carbomedics Inc. Polymeric heart valve fabricated from polyurethane/polysiliconeurethane blends
GB2371988B (en) 2001-02-08 2002-12-24 Tayside Flow Technologies Ltd Valve
US20030069635A1 (en) 2001-05-29 2003-04-10 Cartledge Richard G. Prosthetic heart valve
US6951573B1 (en) 2001-12-22 2005-10-04 Dilling Emery W Prosthetic aortic valve
US20030135270A1 (en) 2002-01-17 2003-07-17 Breznock Eugene M. Polyurethane sufrace buttressed cardiac valve suture ring
AU2003268220B8 (en) 2002-08-28 2010-01-21 Hlt, Inc. Method and device for treating diseased valve
US20040122515A1 (en) 2002-11-21 2004-06-24 Xi Chu Prosthetic valves and methods of manufacturing
US20050021134A1 (en) 2003-06-30 2005-01-27 Opie John C. Method of rendering a mechanical heart valve non-thrombogenic with an electrical device
DE10340265A1 (de) 2003-08-29 2005-04-07 Sievers, Hans-Hinrich, Prof. Dr.med. Prothese zum Ersatz der Aorten- und/oder Mitralklappe des Herzens
US20050075725A1 (en) * 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
JP4494421B2 (ja) 2004-01-22 2010-06-30 アドヴァンスト サージカル デザイン アンド マニュファクチャー リミテッド 心臓弁
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
US7247167B2 (en) 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
CN102028565B (zh) 2005-07-13 2012-07-18 爱德华兹生命科学公司 具有带周线的缝合环的修复性二尖瓣心脏瓣膜
US7776084B2 (en) 2005-07-13 2010-08-17 Edwards Lifesciences Corporation Prosthetic mitral heart valve having a contoured sewing ring
WO2007016097A2 (fr) 2005-07-27 2007-02-08 Georgia Tech Research Corporation Valvule veineuse prothétique implantable
US20070038295A1 (en) 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
RU2302220C1 (ru) 2005-12-23 2007-07-10 Александр Петрович Мельников Протез клапана сердца
RU2325874C2 (ru) 2006-04-04 2008-06-10 Александр Васильевич Самков Протез клапана сердца
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US20140074228A1 (en) 2012-09-04 2014-03-13 Justin Negri Prosthetic heart valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5522886A (en) 1994-07-29 1996-06-04 Milo; Simcha Heart valve prostheses
US6059826A (en) 1997-05-13 2000-05-09 Medical Carbon Research Institute, Llc Trileaflet heart valve
US6395024B1 (en) 1997-05-20 2002-05-28 Triflo Medical, Inc. Mechanical heart valve
US20040249451A1 (en) 2003-06-06 2004-12-09 Po-Chien Lu Tri-leaflet mechanical heart valve

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021144673A1 (fr) 2020-01-14 2021-07-22 Novostia Sa Valve cardiaque prothétique mécanique
WO2021144672A1 (fr) 2020-01-14 2021-07-22 Novostia Sa Valvule cardiaque prothétique mécanique
WO2021144674A1 (fr) 2020-01-14 2021-07-22 Novostia Sa Valvule cardiaque prothétique mécanique
US11607312B2 (en) 2020-01-14 2023-03-21 Novostia Sa Mechanical prosthetic heart valve
US11751992B2 (en) 2020-01-14 2023-09-12 Novostia Sa Mechanical prosthetic heart valve
US11826247B2 (en) 2020-01-14 2023-11-28 Novostia Sa Mechanical prosthetic heart valve

Also Published As

Publication number Publication date
FR2915678A1 (fr) 2008-11-07
EP2292186B1 (fr) 2016-08-10
IL222517A (en) 2015-06-30
BRPI0810224B8 (pt) 2021-06-22
US10182907B2 (en) 2019-01-22
BRPI0810224B1 (pt) 2019-10-08
EP2626041A1 (fr) 2013-08-14
WO2008152224A3 (fr) 2009-03-12
EP2626040A1 (fr) 2013-08-14
BRPI0810224A8 (pt) 2019-01-15
EP2142143B1 (fr) 2014-11-12
KR101496274B1 (ko) 2015-03-04
CN101754729A (zh) 2010-06-23
JP2010525846A (ja) 2010-07-29
RU2009144546A (ru) 2011-06-10
US20100131056A1 (en) 2010-05-27
IL201881A0 (en) 2010-06-16
IL201881A (en) 2013-08-29
EP2626041B1 (fr) 2016-04-06
JP5322013B2 (ja) 2013-10-23
EP2292186A1 (fr) 2011-03-09
CA2685802C (fr) 2015-08-18
MX2009011839A (es) 2010-03-26
NZ581537A (en) 2012-10-26
KR20100043033A (ko) 2010-04-27
ZA200907938B (en) 2010-07-28
AU2008263806A1 (en) 2008-12-18
EP2142143A2 (fr) 2010-01-13
AU2008263806B2 (en) 2013-01-31
FR2915678B1 (fr) 2010-04-16
BRPI0810224A2 (pt) 2014-10-29
EP2626040B1 (fr) 2016-06-08
RU2475212C2 (ru) 2013-02-20
CN101754729B (zh) 2014-04-02
CA2685802A1 (fr) 2008-12-18

Similar Documents

Publication Publication Date Title
EP2292186B1 (fr) Valve cardiaque prothétique mécanique
EP0220097B1 (fr) Valve cardiaque prothétique
AU733842B2 (en) Trileaflet heart valve
US5628791A (en) Prosthetic trileaflet heart valve
EP0465383B1 (fr) Valve cardiaque artificielle
EP0383676A1 (fr) Valve cardiaque prothétique
EP0079844B1 (fr) Prothèse valvulaire cardiaque
CH717037A1 (fr) Valve cardiaque prothétique mécanique.
CH717036A1 (fr) Valve cardiaque prothétique mécanique.
WO2011055079A1 (fr) Filtre pour veine cave et kits le renfermant
AU2013200056B2 (en) Mechanical prosthetic heart valve
WO2009092907A2 (fr) Prothese de disques intervertebraux
CH717035A1 (fr) Valve cardiaque prothétique mécanique.
JPH1156882A (ja) 人工心臓弁装置
FR2758079A1 (fr) Implant intra-corneen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880023156.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805533

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008805533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010504794

Country of ref document: JP

Ref document number: 2685802

Country of ref document: CA

Ref document number: MX/A/2009/011839

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12598516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3882/KOLNP/2009

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008263806

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 581537

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 20097025103

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009144546

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2008263806

Country of ref document: AU

Date of ref document: 20080430

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0810224

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20091030