WO2008138233A1 - Circuit de démodulation, faisceaux hertziens numériques et procédé de démodulation - Google Patents

Circuit de démodulation, faisceaux hertziens numériques et procédé de démodulation Download PDF

Info

Publication number
WO2008138233A1
WO2008138233A1 PCT/CN2008/070020 CN2008070020W WO2008138233A1 WO 2008138233 A1 WO2008138233 A1 WO 2008138233A1 CN 2008070020 W CN2008070020 W CN 2008070020W WO 2008138233 A1 WO2008138233 A1 WO 2008138233A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
signal
demodulation
unit
pulse
Prior art date
Application number
PCT/CN2008/070020
Other languages
English (en)
French (fr)
Inventor
Guixue Zhao
Tianxiang Wang
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08700046.9A priority Critical patent/EP2051388B1/en
Priority to ES08700046T priority patent/ES2432576T3/es
Publication of WO2008138233A1 publication Critical patent/WO2008138233A1/zh
Priority to US12/416,390 priority patent/US20090185640A1/en
Priority to US13/270,108 priority patent/US8170148B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/069Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection by detecting edges or zero crossings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/156Demodulator circuits; Receiver circuits with demodulation using temporal properties of the received signal, e.g. detecting pulse width
    • H04L27/1563Demodulator circuits; Receiver circuits with demodulation using temporal properties of the received signal, e.g. detecting pulse width using transition or level detection

Definitions

  • the present invention relates to the field of digital microwave communication technologies, and in particular, to a demodulation circuit, a digital microwave system, and a demodulation method.
  • the Keying, FSK) demodulation circuit is a unit for demodulating a received signal in a receiving circuit of a digital microwave system, and is usually disposed in an indoor unit of a digital microwave system, and the indoor unit is usually connected to an outdoor unit through an intermediate frequency cable.
  • the modulation of the control signal is relatively simple; on the side receiving the control signal, demodulating the modulated control signal is relatively complicated.
  • the reason is mainly because the coupling of the DC power supply easily introduces broadband switching noise, and these noises are difficult to be completely filtered by the filter of the receiving side device, and it is easy to form a plurality of interference pulses after passing through the detecting circuit. At this time, if the threshold value of the decision circuit is set to be low, or the signal amplitude is small, the error is likely to occur.
  • FIG. 1 and Figure 2 respectively, a circuit block diagram of an ASK or FSK demodulation device.
  • the ASK or FSK demodulation device commonly used in the industry is composed of a bandpass filter 4, an envelope detection circuit 5, a low-pass filter circuit 6, and a sampling decision circuit 7, which are sequentially connected, and the sampling decision circuit 7 inputs a timing pulse 2 for sampling.
  • the difference is: ASK demodulation circuit only inputs signal 1 of one frequency, and FSK signal 3 modulation has two frequencies (usually the two frequencies are not too far apart), FSK demodulation circuit needs to separately Signals of different frequencies are filtered. Therefore, the FSK demodulation circuit has loops for demodulating signals of two different frequencies.
  • the low-frequency ASK signal 1 is often transmitted with the DC power supply, and the power supply generally has a wide-spectrum switching noise.
  • the band-pass filter 4 does not completely filter the switching noise. These switching noises are susceptible to pulse interference after passing through the envelope detection circuit 5.
  • the threshold setting of the sampling decision circuit 7 is small, the output data is easily error-coded, and when the small signal is to be taken into consideration, the setting of the gate P ⁇ cannot be too large, and the anti-pulse interference capability of the demodulation circuit is caused in this case. Not strong.
  • the FSK demodulation circuit shown in Figure 2 is similar to the ASK demodulation circuit shown in Figure 1. The difference is: Since the FSK modulation signal 3 has two frequencies, the FSK demodulation circuit must be used for two different frequencies. The signal is subjected to band pass filtering, envelope detection, low pass filtering and sampling decision. Therefore, the FSK demodulation circuit shown in Fig. 2 has the same disadvantages as the ASK demodulation circuit shown in Fig. 1. In addition, since the two frequencies in the FSK modulation signal are relatively close, the design of the filter is correspondingly difficult.
  • ASK demodulation circuit or an FSK demodulation circuit
  • FSK demodulation circuit they are only suitable for ASK demodulation or FSK demodulation, respectively.
  • users of digital microwave systems it is possible for users of digital microwave systems to purchase different indoor units or outdoor units from different equipment manufacturers. If the indoor unit uses the ASK signal and the outdoor unit uses the FSK signal, the user or equipment manufacturer of the digital microwave system needs to modify the demodulation circuit of the indoor unit or the outdoor unit to adapt the two. Under the current state of the art, once the modulation mode of the device is to be changed, it is inconvenient to change the corresponding hardware circuit design.
  • One aspect of the present invention is to provide a demodulation circuit that enables a demodulation circuit of a digital microwave system to be compatible with demodulation of ASK and FSK signals.
  • Another aspect of the present invention is to provide a digital microwave system that is compatible with indoor units and/or outdoor units for demodulating ASK and FSK signals, so that ASK or FSK can be conveniently and arbitrarily used, whether indoor or outdoor.
  • Digital microwave device communication for signal demodulation is provided.
  • a second circuit configured to increase a gain of a signal filtered by the first circuit bandpass
  • a third circuit configured to extract a pulse signal from a signal output by the second circuit;
  • a fourth circuit configured to count the pulse signals extracted by the third circuit, perform data determination on the basis of counting, and output digital demodulation data.
  • the first circuit is used to filter out the noise in the ASK signal or the FSK signal;
  • the second circuit is used to increase the gain of the ASK signal or the FSK signal after passing through the first circuit;
  • the fourth circuit is for counting the extracted pulse signal, performing data decision on the basis of counting, and outputting digital demodulation data .
  • the demodulation circuit is compatible with demodulation of the ASK signal and the FSK signal, and the same circuit can be adapted to demodulation of different signals, when the above demodulation circuit is set in an indoor unit of the digital microwave system or After the outdoor unit, it is not necessary to change the hardware circuit due to the difference between the indoor unit and the outdoor unit modulation signal, and the above demodulation circuit is conveniently used for demodulation of the ASK signal or the FSK signal.
  • the digital microwave system provided by the embodiment of the present invention includes: an indoor unit, an outdoor unit, and an intermediate frequency cable connecting the indoor unit and the outdoor unit, and the demodulation circuit in the indoor unit and/or the outdoor unit includes: a first circuit, configured to input The signal is bandpass filtered;
  • a second circuit configured to increase a gain of the signal filtered by the first circuit
  • a third circuit configured to extract a pulse signal from a signal output by the second circuit
  • a fourth circuit configured to count the pulse signals extracted by the third circuit, perform data decision on the basis of the counting, and output demodulated data.
  • the first circuit is used to filter the noise in the ASK signal or the FSK signal; the second circuit is used to increase the gain of the ASK signal or the FSK signal after passing through the first circuit.
  • the third circuit is used to extract the pulse in the ASK signal or the FSK signal according to a preset threshold voltage; the fourth circuit is used to count the extracted pulse signal, and perform data on the counted ⁇ 5 output Decision, output digital demodulation data.
  • the above digital microwave system with compatible ASK signal and FSK signal demodulation can flexibly and conveniently set the demodulation circuit therein to demodulate the ASK signal or the FSK signal without modulating the signal by the indoor unit and the outdoor unit.
  • Differently changing the hardware circuit of the demodulator it is convenient to use the above demodulation circuit for demodulation of the ASK signal or the FSK signal.
  • the demodulation method provided by the embodiment of the present invention includes: performing band pass filtering on the input ASK or FSK signal; improving the gain of the bandpass filtered ASK or FSK signal; extracting the pulse signal from the ASK or FSK signal after increasing the gain And counting the extracted pulse signals; filtering out the pulse signals whose count values are outside the set value range, and outputting the data.
  • the purpose of band-pass filtering the input ASK or FSK signal is to filter the noise in the ASK signal or the FSK signal;
  • the ASK signal after the band-pass filter circuit can be used by the amplifier circuit amplifier or
  • the FSK signal is amplified to increase the gain of the signal;
  • the pulse signal can be extracted from the ASK or FSK signal of the improved gain according to a preset threshold voltage; after the extracted pulse signal is counted, the filtering is lower than the corresponding threshold The pulse of the value, and the demodulated data carried by the ASK signal or the FSK signal is output.
  • the demodulation part in the indoor unit or the outdoor unit of the digital microwave system of this embodiment can be made compatible with the demodulation of the ASK signal and the FSK signal, and can be flexibly configured.
  • 1 is a circuit diagram of a conventional ASK demodulation device.
  • FIG. 2 is a circuit diagram of a conventional FSK demodulation device.
  • FIG. 3 is a schematic diagram of the principle of a demodulation circuit according to a first embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the principle of a demodulation circuit according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of the principle of a demodulation circuit according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a demodulation process according to a fourth embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a demodulation process according to a fifth embodiment of the present invention.
  • FIG. 3 there is shown a schematic diagram of a demodulation circuit compatible with ASK and FSK signals according to the first embodiment of the present invention.
  • the circuit is constituted by a first circuit 34, a second circuit 8, a third circuit 9, and a fourth circuit 30 which are sequentially connected; wherein the fourth circuit 30 is constituted by the first unit 11 and the second unit 12 which are sequentially connected.
  • the first circuit 34 may be a band pass filter, which functions to filter the input ASK or FSK signal, and filter out other signals that may be carried therein; the signal passing through the first circuit 34 is followed by
  • the signal amplitude is amplified by a second circuit 8 having a gain of 10-35 dB.
  • Second circuit 8 can be an amplifier, which is used to amplify the signal, depending on the intensity of the signal itself after bandpass filtering. If the signal strength is low, the gain value should be larger, for example 30dB. 35dB; If the signal strength is high, the gain value should be made smaller, for example, 10dB, 15dB; in general, the gain value is set at 20dB.
  • the gain value can be set in the range of less than 10 dB or more than 35 dB, depending on the actual system gain situation, and it is clear to those skilled in the art how to set the gain of the amplification under what circumstances. of.
  • the amplified signal is restored to a pulse train in the third circuit 9 by a preset threshold voltage 13; in the present embodiment, the third circuit 9 is implemented by a comparison circuit, an input of the comparison circuit It is the aforementioned signal amplified by the second circuit 8, and the other input is the threshold voltage 13; in other embodiments, the pulse signal may be extracted by means other than the comparison circuit, for example: using a Zener diode Pulse signal extraction can also be achieved.
  • the pulse train extracted by the third circuit 9 is sent to a fourth circuit 30 which is sequentially connected by the first unit 11 and the second unit 12, performs digital filtering and pulse demodulation, and finally recovers the communication data.
  • the function of the first unit 11 is to count and count the effective pulses in the gain signal, and the second unit 12 determines the counting result output by the first unit 11 according to the specific signal modulation mode, and outputs the demodulated data.
  • the specific signal modulation mode of the second unit 12 for the signal can be previously set in the second unit 12.
  • the third unit 10, the first unit 11 and the second unit 12 may be integrated to form an overall hardware circuit or chip, or may be disposed in a specific demodulation device in a separate form. in. Regardless of the specific circuit or device form, those skilled in the art can select according to the specific product design needs based on their technical knowledge.
  • FIG. 5 this is a schematic diagram of another embodiment of a demodulation circuit compatible with ASK and FSK signals of the present invention.
  • the first circuit 34, the second circuit 8, the third circuit 9, and the fourth circuit 30 are the same as FIG. 3 or
  • the embodiment shown in Fig. 4 is substantially the same except that a fifth circuit 13 shared by the third unit 10 and the first unit 11 is added to the fourth circuit 30, and the fifth circuit 13 substantially provides a Reference clock signal.
  • the first unit 11 and the third unit 10 may each have a clock signal required for their respective operations, but in order to simplify the structure of the entire fourth circuit 40, all working units requiring a reference clock may share a reference clock;
  • the lowest frequency of the clock signal provided by the fifth circuit 13 should satisfy the need for the reference clock frequency of the component requiring the highest reference clock frequency.
  • those skilled in the art can also set the fifth circuit 13 at the fourth circuit 30.
  • the signal connection relationship between the fifth circuit 13 and the first unit 11 and the third unit 10 is the same as described above.
  • a component may be disposed in or outside the foregoing fourth circuit 30 for recording the identifier for determining the demodulation mode.
  • the component can be a status switch, or a register or a memory.
  • the component can be used to store an identification information, which can be "on” or “off” of the circuit, or "0" of the digital logic.
  • State information such as "or” 1" is used to instruct the second unit 12 to demodulate the signal output from the first unit 11 according to what modulation scheme, and output the demodulated data.
  • the second unit 12 first accesses the component, detects the state information stored by the component, to determine which modulation rule is used to signal the signal. judgment.
  • the signal output by the first unit 11 is demodulated according to the modulation rule of the FSK signal, that is, when the signal is FSK, in general, "0" Flat is indicated as a pulse of the first frequency, the "1" level is represented as a pulse of the second frequency, and the second unit 12 is counted by being within a predetermined time (the predetermined time should be selected in the pulse width range of the FSK signal)
  • the value determines whether the original data is "0" or "1" to recover the correct data. In this way, the second Unit 12 can retain data within acceptable fluctuation ranges, filtering out signals outside the range, and filtering out interference.
  • the demodulation portion of the indoor unit or the outdoor unit in the existing digital microwave system can be replaced with the aforementioned demodulation circuit, thereby constituting a new digital microwave system.
  • the new digital microwave system if the demodulation unit of the indoor unit or the outdoor unit adopts the aforementioned demodulation circuit, the outdoor unit or the indoor unit adopts the ASK or FSK mode modulation signal, and the indoor unit or the outdoor unit only needs to be the first
  • the demodulation mode of the two units 12 is set accordingly, so that the demodulation mode of the indoor unit or the outdoor unit can be matched with the modulation mode of the outdoor unit or the indoor unit.
  • the hardware circuitry of the entire system does not need to be changed.
  • the entire digital microwave system flexible and has a strong digital anti-interference capability. If the aforementioned demodulation circuit is used in both the indoor unit and the outdoor unit of the aforementioned digital microwave system, the entire digital microwave system has better flexibility and stronger digital anti-interference ability.
  • FIG. 6 is a flow chart of an embodiment of a demodulation processing method compatible with ASK and FSK signals of the present invention.
  • the following specifically includes the following processing operations:
  • Step 601 Perform bandpass filtering on the input ASK or FSK signal to eliminate other signals that may be carried in the ASK or FSK signal, including some high frequency clutter or noise caused by the power source;
  • Step 603 extracting a pulse signal from the ASK or FSK signal for increasing gain
  • Step 604 detecting the extracted pulse signal to filter out a small sporadic pulse with a pulse width relative to the ASK or FSK signal, eliminating glitch caused by interference in the signal, and obtaining the detected result based on the detection Effective pulses are counted;
  • Step 605 Determine, according to a modulation rule of the signal, the counted data, to filter out the pulse signal whose value is outside the set value range, and finally output the obtained data.
  • step 705 Before the operation of determining the counted data, that is, step 705, it is detected whether the set demodulation mode is In the ASK mode, a component for determining the demodulation mode may be accessed first.
  • the component may be a state switch or a register or a memory.
  • the component may be used to store an identification information, which may be a circuit. Status information such as "on” or “off”, or "0""1" of digital logic, the status information is used to indicate which modulation mode the signal output by the pulse counting circuit will be demodulated, and the output solution Adjusted data.
  • step 706 is performed, that is, according to the modulation rule of the ASK signal, the signal of the pulse count output is demodulated, that is, when the signal is ASK, generally "0" is charged.
  • the flat performance is no pulse, and the "1" level is expressed as a continuous pulse.
  • the original data can be judged by the count value within a predetermined time (the predetermined time should be selected in the pulse width range of the ASK signal). "0” is still “1” to recover the correct data.
  • Such a decision can preserve the data within the acceptable fluctuation range and filter out the signals outside the range to filter out the interference.
  • step 707 is executed, that is, according to the modulation rule of the FSK signal, the signal output by the pulse counting is demodulated, that is, when the signal is FSK, generally "0" is charged.
  • the level is expressed as the pulse of the first frequency
  • the "1" level is expressed as the pulse of the second frequency.
  • the amplified gain value can be set in the range of 10-35 dB.
  • a larger gain value can be used, for example: 30dB or 35dB.
  • a smaller gain value can be used, for example: 10dB or 15dB; In general, the gain value is set at 20dB.
  • the processing flow of the above specific embodiment can be compatible with demodulation of ASK or FSK signals, and the hardware device using the process can be a complete demodulation circuit compatible with ASK or FSK signal demodulation, or can be set in digital microwave. Demodulation component of an indoor unit or an outdoor unit in the system. Therefore, under the premise of satisfying the filtering of the ASK and FSK signals, the ASK or FSK signal is demodulated, which makes the setting of the signal demodulation part of the digital microwave system simple and flexible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

解调电路、 数字微波系统和解调方法 本申请要求于 2007 年 5 月 16 日提交中国专利局、 申请号为 200710099306.7、 发明名称为"解调电路、 数字微波系统和解调方法"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及数字微波通信技术领域,具体涉及一种解调电路、数字微波系 统和解调方法。
背景技术
幅移键控(Amplitude shift keying, ASK )和频移键控 ( Frequency Shift
Keying, FSK )解调电路是数字微波系统接收电路中用于对接收信号进行解调 的单元,通常设置在数字微波系统的室内单元中,该室内单元通常通过一根中 频电缆和室外单元连接。
前述中频电缆用于传输中频信号、低频控制信号和电源; 其中, 低频控制 信号用于实现前述室内单元和室外单元之间的通信,一般采用 ASK或者 FSK调 制技术进行调制和解调。
在发射前述控制信号的一侧, 实现对所述的控制信号的调制相对简单; 而 在接收前述控制信号的一侧, 对经过调制的控制信号进行解调, 则相对复杂。 究其原因, 主要是因为直流电源的耦合容易引入宽频的开关噪声, 而这些噪声 很难完全被接收侧设备的滤波器滤除 ,很容易在通过检波电路后形成若干干扰 脉冲。 此时, 如果判决电路的门限值恰好设置得偏低, 或者信号幅度较小, 就 很容易出现误码。
参见图 1和图 2, 分别是 ASK或者 FSK解调装置的电路原理框图。 业界常用 的 ASK或者 FSK解调装置由依次连接的带通滤波器 4、 包络检波电路 5、 低通滤 波电路 6和抽样判决电路 7构成,抽样判决电路 7输入用于抽样的定时脉冲 2。所 不同的是: ASK解调电路只输入一种频率的信号 1 , 而 FSK信号 3调制有两种频 率(通常这两种频率不会相隔太远) , FSK解调电路则需要分别对这两种不同 频率的信号进行滤波, 因此, FSK解调电路中具有分别对两种不同频率的信号 进行解调的回路。 由于微波通信中, 低频的 ASK信号 1常和直流电源一起传递, 电源中一般 带有宽频谱的开关噪声; 图 1所示的电路中, 带通滤波器 4并不能将该开关噪声 完全滤除, 这些开关噪声在经过包络检波电路 5后, 容易形成脉冲干扰。 当抽 样判决电路 7的门限设置较小时, 输出的数据容易带有误码, 而要兼顾小信号 时,该门 P艮设置又不能太大,这种情况下导致解调电路的抗脉冲干扰能力不强。
图 2所示 FSK解调电路与图 1所示 ASK解调电路的原理差不多; 不同的是: 由于 FSK调制信号 3中具有两种频率的信号 , FSK解调电路要分别对两种不同 频率的信号进行带通滤波、 包络检波、 低通滤波和抽样判决。 因此, 图 2所示 FSK解调电路具有与图 1所示 ASK解调电路相同的缺点; 此外, 由于 FSK调制 信号中的两个频率较为接近, 相应地使滤波器的设计比较困难。
另夕卜,无论是 ASK解调电路还是 FSK解调电路, 它们分别只适用于 ASK 解调或 FSK解调。 数字微波系统的使用者有可能分别从不同的设备制造商处 购置不同的室内单元或室外单元。 如果室内单元采用 ASK信号, 而室外单元 采用 FSK信号 , 则数字微波系统的使用者或者设备制造商就需要对室内单元 或者室外单元的解调电路进行相应的改造,使两者相互适应。在现有技术状况 下, 一旦要改变设备的调制方式, 就要更改相应的硬件电路设计, 很不方便。
发明内容
本发明的一个方面是提供一种解调电路,使得数字微波系统的解调电路能 够兼容 ASK和 FSK信号的解调。
本发明的另一个方面是提供一种数字微波系统,其可兼容 ASK和 FSK信 号解调的室内单元和 /或室外单元, 使得无论是室内单元还是室外单元都可以 方便地和任意使用 ASK或 FSK信号解调的数字微波设备通信。
本发明的再一个方面是提供一种解调方法, 可以兼容对 ASK信号和 FSK 信号的解调。
本发明实施例提供的解调电路包括:
第一电路, 用于对输入的信号进行带通滤波;
第二电路, 用于提高经所述第一电路带通滤波后的信号的增益;
第三电路, 用于从所述第二电路输出的信号中提取脉冲信号; 第四电路, 用于对所述第三电路提取的脉冲信号进行计数, 并在计数的基 础上进行数据判决, 输出数字解调数据。
在上述的解调电路中, 第一电路用于将 ASK信号或 FSK信号中的杂波滤 除; 第二电路用于提高经过第一电路后的 ASK信号或 FSK信号的增益; 第三 电路则用于根据一预设的门限电压 ,将 ASK信号或 FSK信号中的脉冲提取出 来; 第四电路用于对提取的脉冲信号进行计数, 并在计数的基础上进行数据判 决, 输出数字解调数据。
基于本发明上述的实施例,该解调电路兼容了 ASK信号和 FSK信号的解 调, 同一电路可以适应于不同信号的解调, 当上述的解调电路被设置在数字微 波系统的室内单元或者室外单元后,无需因室内单元和室外单元调制信号的不 同而改变硬件电路, 而方便地使上述的解调电路用于 ASK信号或者 FSK信号 的解调。
本发明实施例提供的数字微波系统包括: 室内单元、 室外单元以及连接室 内单元和室外单元的中频电缆, 室内单元和 /或室外单元中的解调电路包括: 第一电路, 用于对输入的信号进行带通滤波;
第二电路, 用于提高经所述第一电路滤波后的信号的增益;
第三电路, 用于从所述第二电路输出的信号中提取脉冲信号;
第四电路, 用于对所述第三电路提取的脉冲信号进行计数, 并在计数的基 础上进行数据判决, 输出解调数据。
在上述室内单元或者室外单元的解调电路中, 第一电路用于将 ASK信号 或 FSK信号中的杂波滤除; 第二电路用于提高经过第一电路后的 ASK信号或 FSK信号的增益;第三电路则用于根据一预设的门限电压 ,将 ASK信号或 FSK 信号中的脉冲提取出来; 第四电路用于对提取的脉冲信号进行计数, 并在计数 的^ 5出上进行数据判决, 输出数字解调数据。
上述带有兼容 ASK信号和 FSK信号解调的数字微波系统, 可以灵活、 方 便地将其中的解调电路设置为解调 ASK信号或 FSK信号的方式, 而无需因室 内单元和室外单元调制信号的不同而改变解调器的硬件电路,很方便地就能使 上述的解调电路用于 ASK信号或者 FSK信号的解调。 本发明实施例提供的解调方法包括:对输入的 ASK或 FSK信号进行带通 滤波; 提高经带通滤波后的 ASK或 FSK信号的增益; 从提高增益后的 ASK 或 FSK信号中提取脉冲信号; 对所述提取的脉冲信号进行计数;滤除计数值在 设定值范围以外的脉冲信号后输出数据。
在上述的技术方案中,对输入的 ASK或 FSK信号进行带通滤波的目的是 将 ASK信号或 FSK信号中的杂波滤除; 可以采用放大电路放大器对经过带通 滤波电路后的 ASK信号或 FSK信号进行放大以提高信号的增益; 可以根据一 预设的门限电压, 从提高增益的 ASK或 FSK信号中提取脉冲信号; 对所述提 取的脉冲信号进行计数后, 滤除低于相应门限值的脉冲, 而输出 ASK信号或 者 FSK信号所承载的解调数据。
利用本发明实施例的技术方案,可以使得采用该实施例数字微波系统室内 单元或室外单元中的解调部分兼容 ASK信号和 FSK信号的解调 ,并可以灵活 配置。
下面通过具体的实施例 , 对本发明的内容做进一步的详细描述。
附图说明
图 1为现有 ASK解调装置的电路示意图。
图 2为现有 FSK解调装置的电路示意图。
图 3为本发明第一实施例的解调电路原理示意图。
图 4为本发明第二实施例的解调电路原理示意图。
图 5为本发明第三实施例的解调电路原理示意图。
图 6为本发明第四实施例的解调流程示意图。
图 7为本发明第五实施例的解调流程示意图。
具体实施方式
参见图 3 , 是本发明第一实施例的能够兼容 ASK和 FSK信号的解调电路的 示意图。 该电路由依次连接的第一电路 34、 第二电路 8、 第三电路 9和第四电路 30构成; 其中, 第四电路 30由依次连接的第一单元 11和第二单元 12构成。
在本实施例中, 第一电路 34可以是一个带通滤波器, 它的作用是对输入的 ASK或 FSK信号进行滤波, 将其中可能携带的其他信号滤除; 经过第一电路 34 的信号接着通过由一具有 10-35dB增益的第二电路 8将信号幅度放大。第二电路 8可以是一个放大器, 其在对信号进行放大时, 具体采用多大的增益值, 取决 于经过带通滤波后信号本身的强度,如果该信号强度较低, 则应当使增益值大 一些, 例如 30dB、 35dB; 如果该信号强度较高, 则应当使增益值小一些, 例 如 10dB、 15dB; 一般情况下, 该增益值被设置在 20dB较为适中。 事实上, 可 以根据具体的信号强度, 甚至将增益值设在小于 10dB或大于 35dB的范围, 这 取决于实际的系统增益情况,所属领域技术人员对在何种情况下如何设置放大 的增益是清楚的。
被放大的信号在第三电路 9中 , 通过预先设定的门限电压 13将其恢复成脉 冲串; 在本实施例中, 第三电路 9采用了一个比较电路来实现, 该比较电路的 一个输入是前述经过第二电路 8被放大后的信号,另一个输入则是门限电压 13; 在其他的实施例中,也可以采用不同于比较电路的方式来提取脉冲信号,例如: 利用一个稳压二极管也可以实现脉冲信号的提取。
经过第三电路 9提取的脉冲串被送到一个由第一单元 11和第二单元 12依次 连接构成的第四电路 30, 进行数字滤波和脉冲解调, 最后恢复出通信数据。 第 一单元 11的作用是将提高增益信号中的有效脉冲进行计数统计,而第二单元 12 则根据具体的信号调制方式来对第一单元 11输出的计数结果进行判决,输出解 调后的数据。在这里, 第二单元 12对信号的具体的信号调制方式可以事先设置 在第二单元 12之中。
参见图 4,在上述实施例的电路中,还可以在第三电路 9和第二单元 11之间 串接一第三单元 10,该第三单元 10的作用是:根据一个频率远高于信号频率的 参考时钟信号, 对经过第三电路 9所提取的脉冲信号进行检测, 将脉宽小于信 号所需宽度的毛刺脉冲滤除, 即: 将零星散落的脉冲(通常为干扰)滤除, 只 输出有效的脉冲信号到第一单元 11。
在具体的电路实现上,可以将第三单元 10、第一单元 11和第二单元 12集成 在一起,形成一个整体的硬件电路或者芯片,也可以采用分离的形态设置在具 体的解调装置之中。无论采用何种具体的电路或者器件形态, 所属领域技术人 员基于其具备的技术知识都可以根据具体的产品设计需要进行选择。
参见图 5 , 这是本发明另一个兼容 ASK和 FSK信号的解调电路实施例的示 意图。 其中, 第一电路 34、 第二电路 8、 第三电路 9和第四电路 30与前述图 3或 图 4所示实施例大致相同, 所不同的是在第四电路 30中还增加了一个由第三单 元 10和第一单元 11所共用的第五电路 13,该第五电路 13实质上提供一个参考时 钟信号。通常, 第一单元 11和第三单元 10可以各自具有各自工作所需的时钟信 号, 但是, 为了使整个第四电路 40结构简化, 可以使所有需要参考时钟的工作 单元共用一个参考时钟; 当然,该第五电路 13提供的时钟信号的最低频率应当 满足需要参考时钟频率最高的部件对参考时钟频率的需求。依前所述,所属领 域技术人员也可以将第五电路 13设置在第四电路 30之夕卜。但该第五电路 13与第 一单元 11和第三单元 10之间的信号连接关系与前述的相同。
另外, 需要进一步说明的是: 与前述实施例还有一个不同点在于, 可以在 前述的第四电路 30中或者其外设置一个部件(图中未示), 用于记录确定解调 方式的标识信息,该部件可以是一个状态开关,也可以是一个寄存器或存储器, 总之, 可以利用该部件保存一个标识信息, 该标识信息可以是电路的"开"或 "关", 或者数字逻辑的" 0 "或" 1"等状态信息, 该状态信息用于指示第二单元 12 将按照什么样的调制方式对第一单元 11输出的信号进行解调 ,输出解调后的数 据。 有了这个用于确定解调方式的部件, 当需要对到来的信号进行解调时, 第 二单元 12首先访问该部件,检测该部件存储的状态信息, 以确定按照哪种调制 规则对信号进行判决。
如果该设定的标识信息表示对 ASK信号进行解调 ,则依照 ASK信号的调制 规则,对第一单元 11输出的信号进行解调, 即当信号为 ASK时,一般情况下" 0" 电平表现为没有脉冲, "1"电平表现为连续脉冲, 第二单元 12通过在一定预定 的时间(该预定时间应当在 ASK信号的脉冲宽度范围中选取)内的计数值判断 出原始数据是 "0,,还是 "1"从而恢复出正确的数据。 这样, 第二单元 12就可以将 可接受波动范围内的数据保留下来,将该范围以外的信号滤除, 达到滤除干扰 的作用。
如果该设定的标识信息表示对 FSK信号进行解调 , 则依照 FSK信号的调制 规则, 对第一单元 11输出的信号进行解调, 即当信号为 FSK时, 一般情况下, "0"电平表示为第一频率的脉冲, "1"电平表示为第二频率的脉冲, 第二单元 12 通过在一定预定的时间 (该预定时间应当在 FSK信号的脉冲宽度范围中选取 ) 内的计数值判断出原始数据是" 0"还是 "1"从而恢复出正确的数据。 这样, 第二 单元 12就可以将可接受波动范围内的数据保留下来, 将该范围以外的信号滤 除, 起到滤除干扰的作用。
采用上述两个实施例的解调电路, 可以根据配置来选择对 ASK信号或者 FSK信号进行解调, 方便灵活, 使得采用该种解调电路的系统可扩展性很强。
在上述实施例的^ 5出上,可以将现有数字微波系统中室内单元或者室外单 元中解调部分替换为前述的解调电路,从而构成新的数字微波系统。在新的数 字微波系统中 , 如果室内单元或者室外单元的解调单元采用前述的解调电路, 则无论室外单元或者室内单元采用 ASK还是 FSK方式调制信号,在室内单元或 者室外单元只需要将第二单元 12的解调方式进行相应地设置,就可以使得室内 单元或者室外单元的解调方式与室外单元或者室内单元的调制方式相匹配。整 个系统的硬件电路均无需改变。这样就使得整个数字微波系统设置灵活, 并且 具有较强的数字抗干扰能力。如果在前述数字微波系统的室内单元和室外单元 同时采用前述的解调电路,则整个数字微波系统具有更好的灵活性和更强的数 字抗干扰能力。
参见图 6, 这是本发明一个兼容 ASK和 FSK信号的解调处理方法实施例的 流程示意图。 在该实施例中, 具体包括如下的处理操作:
步骤 601,对输入的 ASK或 FSK信号进行带通滤波,以消除 ASK或 FSK 信号中可能携带的其他信号, 包括一些由电源带来的高频杂波或者噪声;
步骤 602, 对经过带通滤波后的 ASK或 FSK信号进行放大, 以提高信号 的增益;
步骤 603 , 从提高增益的 ASK或 FSK信号中提取脉冲信号;
步骤 604, 对提取的脉冲信号进行检测, 以滤除脉宽相对于 ASK或 FSK 信号而言较小的零星脉冲, 消除信号中因干扰带来的毛刺,在此基础上对经过 检测而获得的有效脉冲进行计数;
步骤 605, 根据信号的调制规则, 对经过计数的数据进行判决, 以滤除计 数值在设定值范围以外的脉冲信号, 最后将得到的数据输出。
参见图 7, 这是对上述的实施例的一个修改后的技术方案, 其中步骤 701 至步骤 704与上述实施例中的步骤 601至步骤 604相同。 主要的修改是: 在对经 过计数的数据进行判决的操作之前, 即步骤 705, 检测设置的解调方式是否为 ASK方式,可以先访问一个用于确定解调方式的部件,该部件可以是一个状态 开关, 也可以是一个寄存器或存储器, 总之, 可以利用该部件保存一个标识信 息,该标识信息可以是电路的"开"或"关",或者数字逻辑的" 0""1"等状态信息, 该状态信息用于指示判决时将按照什么样的调制方式对脉冲计数电路输出的 信号进行解调, 输出解调后的数据。
对于标识信息表示对 ASK信号进行解调的情况, 则执行步骤 706, 即依照 ASK信号的调制规则, 对脉冲计数输出的信号进行解调, 即当信号为 ASK时, 一般情况下" 0"电平表现为没有脉冲, "1"电平表现为连续脉冲, 判决时, 可以 通过在一定预定的时间 (该预定时间应当在 ASK信号的脉冲宽度范围中选取 ) 内的计数值判断出原始数据是 "0"还是 "1"从而恢复出正确的数据。 这样的判决 就可以将可接受波动范围内的数据保留下来,将范围以外的信号滤除, 达到滤 除干扰的作用。
对于标识信息表示对 FSK信号进行解调的情况, 则执行步骤 707, 即依照 FSK信号的调制规则, 对脉冲计数输出的信号进行解调, 即当信号为 FSK时, 一般情况下" 0"电平表示为第一频率的脉冲, "1"电平表示为第二频率的脉冲, 判决时, 通过在一定预定的时间(该预定时间应当在 FSK信号的脉冲宽度范围 中选取) 内的计数值判断出原始数据是" 0"还是" 1 "从而恢复出正确的数据。 这 样的判决就可以将可接受波动范围内的数据保留下来, 将范围以外的信号滤 除, 也达到滤除干扰的作用。
另夕卜,为了使经过带通滤波后的 ASK或 FSK信号的增益适合后续的脉冲提 取, 在前述的两个实施例的流程中, 都可以将放大的增益值设定在 10-35dB的 范围内;对于带通滤波后增益较小的信号,可以采用较大的增益值,例如: 30dB 或者 35dB, 反之, 对于带通滤波后增益较大的信号, 可以采用较小的增益值, 例如: 10dB或者 15dB; —般情况下, 该增益值被设置在 20dB较为适中。
在上述的流程中, 还可以在脉冲提取之后, 进行脉冲计数之前, 增加一个 脉冲检测的步骤,该步骤的作用是:根据一个频率远高于信号频率的参考时钟 信号,对经过提取的脉冲信号进行检测,将脉宽小于信号所需宽度的毛刺脉冲 滤除, 即: 将零星散落的脉冲(通常为干扰)滤除, 只输出有效的脉冲信号进 行脉冲计数。 采用上述具体实施例的处理流程, 可以兼容 ASK或 FSK信号的解调, 利用 该流程的硬件设备可以是一个完整的、 兼容 ASK或 FSK信号解调的解调电路 , 也可以是设置在数字微波系统中室内单元或者室外单元的解调部件。由此可以 在满足对 ASK和 FSK信号滤波的前提下, 兼容 ASK或 FSK信号解调, 使得数字 微波系统信号解调部分的设置简单、 灵活。
需要说明的是,本领域普通技术人员可以理解: 实现上述实施例方法中的 全部或部分步骤可以通过程序指令相关的硬件来完成;前述的程序可以存储于 计算机可读取存储介质中; 该程序在执行时, 包括上述方法的步骤; 所述的存 储介质, 如: ROM/RAM、 磁碟、 光盘等。
以上所述, 仅为本发明的若干实施例, 但本发明的范围并不局限于此, 任 何熟悉该技术的人在本发明所揭露的技术启示下,可轻易想到的变化或替换内 容都应涵盖在本发明的范围之内。

Claims

权 利 要 求
1、 一种解调电路, 其特征在于, 包括:
第一电路, 用于对输入的信号进行带通滤波;
第二电路, 用于提高经所述第一电路带通滤波后的信号的增益; 第三电路, 用于从所述第二电路输出的信号中提取脉冲信号;
第四电路,用于对所述第三电路提取的脉冲信号进行计数, 并在计数的基 础上进行数据判决, 输出数字解调数据。
2、根据权利要求 1所述的解调电路, 其特征在于, 所述的第四电路包括: 第一单元, 用于对所述提取的脉冲信号进行计数;
第二单元, 与所述第一单元相连,用于滤除计数值在设定值范围以外的数 据后输出解调数据。
3、 根据权利要求 1所述的解调电路, 其特征在于: 所述的第三电路由一 比较器构成; 所述比较器的一个输入端连接所述第二电路的输出, 另一输入端 连接一门限电平。
4、 根据权利要求 1或 2或 3所述的解调电路, 其特征在于: 在所述第三 电路和第四电路之间还串接有第三单元,用于对所述第三电路提取的脉冲信号 进行检测 , 滤除脉宽小于信号所需宽度的毛刺脉冲。
5、 根据权利要求 4所述的解调电路, 其特征在于: 还包括第五电路, 用 于为所述第一单元和 /或第三单元提供参考时钟。
6、 根据权利要求 1或 2或 3所述的解调电路, 其特征在于: 所述第二单 元还连接一部件, 用于记录或者存储确定解调方式的标识信息。
7、 根据权利要求 4所述的解调电路, 其特征在于: 所述第二单元还连接 一部件, 用于记录或者存储确定解调方式的标识信息。
8、 根据权利要求 1至 3任一项所述的解调电路, 其特征在于: 所述第二 电路的增益范围是 10-35dB。
9、 一种数字微波系统, 包括室内单元、 室外单元以及连接室内单元和室 外单元的中频电缆, 所述室外单元和 /或室内单元包括解调电路, 其特征在于: 所述的解调电路包括:
第一电路, 用于对输入的信号进行带通滤波; 第二电路, 用于提高经所述第一电路带通滤波后的信号的增益; 第三电路, 用于从所述第二电路输出的信号中提取脉冲信号;
第四电路,用于对所述第三电路提取的脉冲信号进行计数, 并在计数的基 础上进行数据判决, 输出数字解调数据。
10、根据权利要求 9所述的数字微波系统, 其特征在于: 所述的第四电路 包括:
第一单元, 用于对所述提取的脉冲信号进行计数;
第二单元, 与所述第一单元相连,用于滤除计数值在设定值范围以外的数 据后输出解调数据。
11、根据权利要求 9所述的数字微波系统, 其特征在于: 所述的第三电路 由一比较器构成; 所述比较器的一个输入端连接所述第二电路的输出, 另一输 入端连接一门限电平。
12、根据权利要求 9或 10或 11所述的数字微波系统, 其特征在于: 在所 述第三电路和第四电路之间还串接有第三单元,用于对所述第三电路提取的脉 冲信号进行检测, 滤除脉宽小于信号所需宽度的毛刺脉冲。
13、 根据权利要求 12所述的数字微波系统, 其特征在于: 还包括第五电 路, 用于为所述第一单元和 /或第三单元提供参考时钟。
14、根据权利要求 9或 10或 11所述的数字微波系统, 其特征在于: 所述 第二单元还连接一部件, 用于记录或者存储确定解调方式的标识信息。
15、 根据权利要求 12所述的数字微波系统, 其特征在于: 所述第二单元 还连接一部件, 用于记录或者存储确定解调方式的标识信息。
16、 根据权利要求 9至 11任一项所述的数字微波系统, 其特征在于: 所 述第二电路的增益范围是 10-35dB。
17、 一种解调方法, 其特征在于, 包括:
对输入的信号进行带通滤波;
提高经带通滤波后的信号的增益;
从提高增益后的信号中提取脉冲信号;
对所述提取的脉冲信号进行计数;
滤除计数值在设定值范围以外的脉冲信号后输出。
18、 根据权利要求 17所述的解调方法, 其特征在于, 所述从提高增益后 的信号中提取脉冲信号的过程包括:将所述提高增益后的信号与预定门限电平 进行比较, 滤除低于所述门限电平的脉冲信号。
19、 根据权利要求 17所述的解调方法, 其特征在于: 所述滤除计数值在 设定值范围以外的脉冲信号的过程包括:
如果所述输入的信号为 ASK信号,则按照 ASK信号的解调方式滤除计数 值在设定值范围以外的脉冲信号;
如果所述输入的信号为 FSK信号, 则按照 FSK信号的解调方式滤除计数 值在设定值范围以外的脉冲信号。
20、根据权利要求 17至 19任一项所述的解调方法, 其特征在于, 在对所 述提取的脉冲信号进行计数之前,对所述提取的脉冲信号进行检测, 滤除脉宽 小于信号所需宽度的毛刺脉冲。
21、根据权利要求 17至 19任一项所述的解调方法, 其特征在于, 所述提 高经带通滤波后的信号的增益包括:
通过对所述经带通滤波后的信号进行放大, 使所述信号的增益提高
10-35dB。
PCT/CN2008/070020 2007-05-16 2008-01-04 Circuit de démodulation, faisceaux hertziens numériques et procédé de démodulation WO2008138233A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08700046.9A EP2051388B1 (en) 2007-05-16 2008-01-04 Demodulation circuit, digital microwave system and demodulation method
ES08700046T ES2432576T3 (es) 2007-05-16 2008-01-04 Circuito de demodulación, sistema de microondas digital y método de demodulación
US12/416,390 US20090185640A1 (en) 2007-05-16 2009-04-01 Demodulation circuit, digital microwave system and demodulation method
US13/270,108 US8170148B2 (en) 2007-05-16 2011-10-10 Demodulation circuit, digital microwave system and demodulation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100993067A CN101309069B (zh) 2007-05-16 2007-05-16 解调电路、数字微波系统和解调方法
CN200710099306.7 2007-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/416,390 Continuation US20090185640A1 (en) 2007-05-16 2009-04-01 Demodulation circuit, digital microwave system and demodulation method

Publications (1)

Publication Number Publication Date
WO2008138233A1 true WO2008138233A1 (fr) 2008-11-20

Family

ID=40001689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/070020 WO2008138233A1 (fr) 2007-05-16 2008-01-04 Circuit de démodulation, faisceaux hertziens numériques et procédé de démodulation

Country Status (5)

Country Link
US (2) US20090185640A1 (zh)
EP (1) EP2051388B1 (zh)
CN (1) CN101309069B (zh)
ES (1) ES2432576T3 (zh)
WO (1) WO2008138233A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789921B (zh) * 2009-01-23 2013-03-06 中芯国际集成电路制造(上海)有限公司 幅移键控解调装置和方法
CN101907866B (zh) * 2010-08-06 2011-11-09 北京交大资产经营有限公司 故障安全系统的故障诊断方法
CN103944608B (zh) * 2013-01-22 2016-08-24 浙江大华技术股份有限公司 模拟信号提取装置、方波信号提取装置及信号分离系统
CN104702545B (zh) * 2013-12-05 2018-06-19 上海华虹集成电路有限责任公司 typeA有源天线应用从模式载波解调自动控制电路
CN105897639B (zh) * 2014-12-09 2020-06-16 恩智浦美国有限公司 Fsk解调器
CN104897602A (zh) * 2015-06-23 2015-09-09 中国航空工业集团公司西安飞机设计研究所 一种灭火剂浓度测试传感器信号解调电路
CN106209708A (zh) * 2016-07-05 2016-12-07 江门市甜的电器有限公司 一种射频接收机的信号处理方法及其装置、接收机和系统
CN106532969B (zh) * 2016-11-03 2018-06-12 无锡华润矽科微电子有限公司 无线充电设备中实现fsk信号高效解调的电路结构
CN106411341B (zh) * 2016-11-17 2018-11-20 合肥晟泰克汽车电子股份有限公司 车用自适应接收解调装置及其控制方法
CN106761711B (zh) * 2016-12-26 2024-02-02 中石化江汉石油工程有限公司 一种井下仪器多功能通讯控制系统
CN108427039A (zh) * 2018-05-07 2018-08-21 哈尔滨工程大学 基于比例门限的脉冲振幅调制信号脉冲宽度测量方法
CN109167573B (zh) * 2018-08-27 2022-02-08 四川中微芯成科技有限公司 一种解调电路
US10797921B2 (en) * 2019-02-12 2020-10-06 Texas Instruments Incorporated Threshold computation circuit for S-FSK receiver, integrated circuit, and method associated therewith
CN114513167B (zh) * 2022-04-20 2022-07-08 灵矽微电子(深圳)有限责任公司 通信模块及电池管理系统
US20240014779A1 (en) * 2022-07-07 2024-01-11 Molex Technologies Gmbh Demodulator circuits for amplitude shift keying (ask) communication demodulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232376A1 (en) * 2004-04-20 2005-10-20 Fiean Liem System/method for receiving ASK and FSK signals using a single RF receiver
JP2006060340A (ja) * 2004-08-18 2006-03-02 Hitachi Kokusai Electric Inc 装置間通信システム
US20060138231A1 (en) 2004-12-28 2006-06-29 David Elberbaum Method and apparatus for recording and utilizing unknown signals of remote control devices
JP2006205838A (ja) * 2005-01-26 2006-08-10 Auto Network Gijutsu Kenkyusho:Kk 車載受信機
CN1953438A (zh) * 2006-10-26 2007-04-25 西安电子科技大学 二进制移频键控填充式数字解调方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4166979A (en) * 1976-05-10 1979-09-04 Schlumberger Technology Corporation System and method for extracting timing information from a modulated carrier
US4227225A (en) * 1977-05-12 1980-10-07 Matsushita Electric Industrial Co., Ltd. Magnetic head assembly
US4435821A (en) * 1981-03-24 1984-03-06 Nippon Electric Co., Ltd. Receiver in a frequency hopping communication system
EP0845751B1 (en) * 1996-12-02 2004-01-02 Texas Instruments Deutschland Gmbh A transponder system
US6434194B1 (en) * 1997-11-05 2002-08-13 Wherenet Corp Combined OOK-FSK/PPM modulation and communication protocol scheme providing low cost, low power consumption short range radio link
FR2816147A1 (fr) * 2000-10-26 2002-05-03 St Microelectronics Sa Modulateur/demodulateur universel
DE10130331A1 (de) 2001-06-22 2003-04-17 Bsh Bosch Siemens Hausgeraete Halter für Zubehörteile eines Staubsaugers
US6566940B2 (en) * 2001-10-23 2003-05-20 Broadcom, Corp Method and apparatus for frequency shift-keying demodulation and applications thereof
US6970681B2 (en) * 2001-11-14 2005-11-29 Broadcom, Corp. Integrated multimode radio and components thereof
US7154974B2 (en) * 2002-02-12 2006-12-26 Broadcom Corporation Data recovery system and applications thereof in radio receivers
US20050063491A1 (en) * 2003-09-19 2005-03-24 Siemens Vdo Automotive Corporation Radio frequency signal discrimination method and system
US7026935B2 (en) * 2003-11-10 2006-04-11 Impinj, Inc. Method and apparatus to configure an RFID system to be adaptable to a plurality of environmental conditions
CN1794594A (zh) 2005-12-31 2006-06-28 清华大学 全球数字广播用二步双正交零中频结构接收机的前端电路
JP4674190B2 (ja) * 2006-07-13 2011-04-20 Okiセミコンダクタ株式会社 マルチモード受信回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050232376A1 (en) * 2004-04-20 2005-10-20 Fiean Liem System/method for receiving ASK and FSK signals using a single RF receiver
JP2006060340A (ja) * 2004-08-18 2006-03-02 Hitachi Kokusai Electric Inc 装置間通信システム
US20060138231A1 (en) 2004-12-28 2006-06-29 David Elberbaum Method and apparatus for recording and utilizing unknown signals of remote control devices
JP2006205838A (ja) * 2005-01-26 2006-08-10 Auto Network Gijutsu Kenkyusho:Kk 車載受信機
CN1953438A (zh) * 2006-10-26 2007-04-25 西安电子科技大学 二进制移频键控填充式数字解调方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2051388A4 *

Also Published As

Publication number Publication date
ES2432576T3 (es) 2013-12-04
CN101309069B (zh) 2010-06-23
US20120027129A1 (en) 2012-02-02
CN101309069A (zh) 2008-11-19
US20090185640A1 (en) 2009-07-23
US8170148B2 (en) 2012-05-01
EP2051388A4 (en) 2010-03-17
EP2051388A1 (en) 2009-04-22
EP2051388B1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2008138233A1 (fr) Circuit de démodulation, faisceaux hertziens numériques et procédé de démodulation
US6434194B1 (en) Combined OOK-FSK/PPM modulation and communication protocol scheme providing low cost, low power consumption short range radio link
US20080252367A1 (en) Demodulator with Multiple Operating Modes for Amplitude Shift Keyed Signals
CN103139116B (zh) 自适应均衡器
US10972150B2 (en) Low-cost software-defined RFID interrogator with active transmit leakage cancellation
US20150103961A1 (en) Digital frequency band detector for clock and data recovery
JP4054716B2 (ja) 可変ゲインアンプ及びam変調信号受信回路及び検波回路
US11177988B2 (en) Receiver circuits with blocker attenuating mixer
JP2007184689A (ja) 補正回路
JP2006087119A (ja) 検波回路
JPS6291025A (ja) 受信機
CN109714283A (zh) 一种ask调幅信号解调电路及解调方法
JP2006060849A (ja) Am変調信号受信回路
JP2004166228A (ja) ヘテロダイン受信機及び入力信号の処理方法
EP0066624B1 (en) Tone detector circuit
JP3304153B2 (ja) データ波形整形回路
CA2248918A1 (en) Audio frequency recovery -- dc restorer circuit after demodulation for cordless phone applications
JP2904260B2 (ja) デジタル復調器における受信レベル検出回路
JP2679324B2 (ja) データ受信用フィルタ回路
CN101997554A (zh) 声音信号处理装置、fm接收装置及声音数据的处理方法
JP2559495Y2 (ja) タイミング抽出回路
JP2867535B2 (ja) スケルチ信号発生回路
TW200820639A (en) Filter of adjustable frequency response, receiver, and method thereof
CN203151650U (zh) 数字电视接收机及数字电视
JP2897688B2 (ja) 識別信号伝送方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08700046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008700046

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE