WO2008135574A1 - Procede de production de poudre d'oxyde de zinc et poudre ainsi obtenue - Google Patents

Procede de production de poudre d'oxyde de zinc et poudre ainsi obtenue Download PDF

Info

Publication number
WO2008135574A1
WO2008135574A1 PCT/EP2008/055547 EP2008055547W WO2008135574A1 WO 2008135574 A1 WO2008135574 A1 WO 2008135574A1 EP 2008055547 W EP2008055547 W EP 2008055547W WO 2008135574 A1 WO2008135574 A1 WO 2008135574A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
zinc
process according
particles
pulp
Prior art date
Application number
PCT/EP2008/055547
Other languages
English (en)
Inventor
Kevin Clais
Duncan Turner
Philippe Leblanc
Antoine Masse
Original Assignee
Zincox Resources Plc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zincox Resources Plc filed Critical Zincox Resources Plc
Priority to EP08750094A priority Critical patent/EP2144852A1/fr
Priority to CA002686448A priority patent/CA2686448A1/fr
Priority to US12/451,316 priority patent/US7939037B2/en
Publication of WO2008135574A1 publication Critical patent/WO2008135574A1/fr
Priority to MA32373A priority patent/MA31394B1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/34Obtaining zinc oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a process for producing zinc oxide powder.
  • Zinc oxide is a consumer product frequently used in the ceramics, industrial rubber and tire industries, in the chemical and pharmaceutical fields and in the production of food supplements.
  • the most frequently used process for producing zinc oxide is the so-called “French” or “indirect” process in which the oxide is produced from metallic zinc by evaporation thereof in a crucible or column. to distil, then by oxidation of the fumes.
  • d50 average size
  • These particles develop a specific surface, calculated according to the BET method, relatively low, of the order of 3 to 10 nrvVg.
  • hydrometallurgical processes are known (see, for example, WJ Wendt, Ammonia, Ammonium Carbonate Leaching of Low Grade Zinc Ores, in Engineering and Mining Journal, 1953, Vol 154, p.84-90, WO-98/36102, US 2,147,379. ). These processes consist in drying and / or calcining a zinc hydroxide or zinc carbonate obtained by precipitation of solutions of zinc salts (chloride, sulfate, hydrosulfite, ammonia complexes, etc.). These processes are typically used to recover by-products from the chemical industry or to process zinc ore. Depending on different parameters, the zinc oxides produced in this way have relatively different properties, and often they are marketed as zinc concentrates.
  • the specific surfaces are very variable, from 3 to 80 nrvVg, with average particle sizes that are difficult to handle and can be up to more than 100 ⁇ m.
  • the zinc oxides produced have undesirable chloride and sulphate contents. The application of these materials is therefore possible only sporadically or in certain niche sectors.
  • the object of the present invention is to treat large quantities of starting zinc oxide resulting from a hydrometallurgical treatment as mentioned above without modifying the nodular crystalline structure thereof and so as to achieve reproducible particle sizes. and likely to be applicable in applications in the rubber and tire industry. Furthermore, it There is a need for a flexible process for achieving uniform but adjustable specific surfaces.
  • This problem is solved according to the invention, by a process for producing zinc oxide powder comprising calcination of zinc carbonate, which may be basic, or zinc hydroxide, with production of a starting zinc oxide under particle shape of nodular structure,
  • particles of nodular structure particles having a shape whose dimensions are substantially constant in the 3 planes of space (without preferential dimension).
  • particles of almost spherical structure are sometimes also used to designate the type of structure mentioned above.
  • the starting zinc oxide is derived from a hydrometallurgical treatment of a zinc-based raw material.
  • the invention starting from unrefined starting materials, it is possible to directly manufacture ZnO nodular structure with characteristics identical to those obtained by the method "French” (or indirect), the main is the size of the particles.
  • the calcination temperature it is possible to act on the value of the specific surface as required. The specific surface obtained after cooling is maintained throughout the production.
  • the method according to the invention makes it possible to obtain a zinc oxide whose particles have a nodular structure and an average particle size suitable for, for example, a use in the rubber industry (which is the industry to which the ZnO is mainly intended) whereas before, the reference in the rubber industry was zinc oxide from the French process.
  • the zinc oxide resulting from a hydrometallurgical treatment was, until the arrival of the invention, a marginal specification unusable for the majority of formulations.
  • the particles have an average size (d50) of between 0.5 and 3 ⁇ m.
  • the process comprises a washing with water of the separated solid phase, with dissolution in water of soluble sulphates and chlorides present, the dry powder of zinc oxide having a content in sulphates ⁇ 60 ppm and a chloride content ⁇ 10 ppm.
  • a high specific surface area for example about 40 m 2 / g
  • zinc carbonate for example basic, or zinc hydroxide will be calcined at a temperature of about 300 ° C. and cooled.
  • the calcination temperature of the process according to the invention will be between 750 and 1200 ° C., preferably between 800 and 1000 ° C. to obtain a zinc oxide of nodular structure that meets the standards of the rubber industry (BET ⁇ 5 to 15 m 2 / g).
  • the starting zinc oxide is prepared by calcining a zinc hydroxide or carbonate precipitated in a zinc salt solution. Flash calcination makes it possible to obtain a specific surface / controlled particle size pair, these particles having a nodular structure.
  • the grinding method, solid / liquid separation and drying according to the invention also offers the advantage of not modifying the BET specific surface area obtained during the calcination. During calcination, insoluble sulphates are modified into water-soluble forms.
  • the crystals have a nodular form.
  • the zinc oxide is advantageously derived from a hydrometallurgical treatment of a raw material containing zinc.
  • this starting zinc oxide is suspended in pure water or added with a organic dispersant compatible with ZnO (in particular an organotitanate or an organozirconate, for example from the Kenrich KR series), so as to have a solids content of between 10 and 60% by weight.
  • ZnO in particular an organotitanate or an organozirconate, for example from the Kenrich KR series
  • the mill is advantageously of the horizontal microbead type.
  • the suspension is set in motion by rotating mechanical parts that allow the balls to collide and shear the material to grind.
  • a grinder of this type one can consider for example the mills METSO Detrimill or Hosokawa Alpine Hydromill.
  • the diameter of the grinding balls is chosen as a function of the fineness of the particles to be achieved. Grinding advantageously takes place at temperatures below 70 ° C.
  • the grinding step is then followed by separation between a liquid phase and a solid phase containing zinc oxide.
  • This filtration advantageously takes place on any type of filter for generating a filter cake.
  • the filter cake can then be washed with water, which makes it possible to obtain a high purity of ZnO with sulphate and chloride contents of less than 60 ppm and 10 ppm, respectively.
  • To separate the solid phase from the liquid phase use will preferably be made of a filter press. During drying, care must be taken to prevent reagglomeration of the particles so as to maintain the size of the crushed primary particles. For example, a deagglomerator flash dryer may be used for this purpose.
  • the dryer is provided with, for example, a rotor and blades rotating at high speed to strike the agglomerated ZnO particles during filtration.
  • a rotor and blades rotating at high speed to strike the agglomerated ZnO particles during filtration.
  • the residence time in the dryer will preferably be less than 5 seconds, at temperatures of 150 to 700 ° C., advantageously from 300 to 450 ° C.
  • a dry powder of ZnO is thus obtained having particles of crystalline nodular structure whose specific surface has not been substantially modified.
  • the size of the particles is advantageously as follows: 0.005 ⁇ m ⁇ d20 ⁇ 10 ⁇ m
  • the particles advantageously have a d20 of between 0.2 and 2.5 ⁇ m, a d50 of between 0.5 and 3 ⁇ m and a d80 of between 1 and 10 ⁇ m.
  • the particles obtained have a size distribution similar to that obtained for the ZnO particles from the French process.
  • the process according to the invention further comprises pelletizing or coating, for example using an organic or inorganic substance to improve the properties of the zinc oxide thus formed.
  • pelletizing or coating for example using an organic or inorganic substance to improve the properties of the zinc oxide thus formed.
  • the process according to the invention further comprises pelletizing or coating, for example using an organic or inorganic substance to improve the properties of the zinc oxide thus formed.
  • pelletizing or coating for example using an organic or inorganic substance to improve the properties of the zinc oxide thus formed.
  • the process according to the invention further comprises pelletizing or coating, for example using an organic or inorganic substance to improve the properties of the zinc oxide thus formed.
  • the process according to the invention further comprises pelletizing or coating, for example using an organic or inorganic substance to improve the properties of the zinc oxide thus formed.
  • the precipitation is carried out continuously in a series of 4 pressurized reactors, the water vapor being injected against the current of the solution.
  • the residence time used is 60 minutes, and the steam flow rate is adjusted so as to evaporate 90% of the ammonia.
  • the pulp obtained contains 180 g / l of solids, mainly basic zinc carbonate.
  • the compositions of the liquid and the solid obtained are given in the following table.
  • the presence of sulfates in the solid indicates that there has been precipitation of compounds, such as gypsum (CaSO 4 .2H 2 O), magnesium sulfate or basic zinc sulfate (BZS), or even three sets . These compounds are insoluble in water.
  • Table 2 Characterization of the pulp resulting from the precipitation stage
  • the crystals of BZC have a nodular beginning and a mean particle size (d50) of the order of 34 microns (see Figure 1, a micrograph of the precipitate).
  • the pulp obtained after precipitation is thickened by decantation to 500 g / l of solids and then rediluted with an aqueous solution containing 45 g / l of sodium carbonate. The dilution is made so as to obtain a pulp containing 250 g / l of solids.
  • the addition of sodium carbonate makes it possible to redissolve part of the BZS and chlorides co-precipitated with BZC so that the sulphate content in the solids after this operation is 300 ppm and that in chlorides falls below the limit. 100 ppm.
  • the filter cakes are then calcined as such at 950 ° C. in a flash dryer-calciner assembly.
  • the solid obtained is a zinc oxide having the following characteristics:
  • the zinc oxide particles have a nodular shape and already contain some microcrystals (see micrograph of Figure 2).
  • the zinc oxide is then plumped into water so as to obtain a pulp with 40% solids.
  • the solids and liquids have the following respective compositions:
  • the pulp is milled in a Metso vertical ball mill of the Detrimill type.
  • the mill is filled to 50% by volume of ceramic balls having a diameter of 2 mm. After 5 minutes of grinding, the product has the following particle size distribution:
  • the pulp is filtered in a membrane filter press, and the cakes are washed with water using 3 m 3 / t solids. This washing allows the removal of 90% of chlorides and sulphates which have been rendered soluble by calcination. After pressing at 15 bar, the zinc oxide cake has a humidity of 25% and contains 50 ppm of sulphates and ⁇ 10 ppm of chlorides.
  • the sample used for this example comes from the dehydration / calcination of a zinc hydroxide resulting from the precipitation of a solution of zinc hydrosulfite by neutralization.
  • the zinc oxide After calcination at 350 ° C., the zinc oxide has the following characteristics:
  • the sample is then plumped into water to obtain a 40% solids pulp, and the pulp is then milled in a Hosokawa Alpine horizontal hydromill ball mill.
  • the mill is filled to 85% by volume of ceramic balls having a diameter ranging from 0.7 to 1.2 mm. After 5 minutes of grinding, the product has the following particle size distribution: Table 8:
  • the pulp After milling, the pulp is filtered in a filter press and then dried by means of an Ultrarotor transported and stirred bed dryer manufactured by Jaeckering. Granulometric analysis of the dried product showed no reagglomeration of the product. Its BET surface area is 40 m 2 / g.
  • the ZnO sample used for this example is derived from the treatment as described in Example 1. Its characteristics are as follows:
  • the sample was plumped in water with an organic dispersant (Kenrich type KR TTS) to obtain a 40% solids pulp and then ground in a Netzsch horizontal Zeta-type ball mill.
  • the mill was filled to 85% by volume of zirconium beads having a diameter ranging from 0.3 to 0.5 mm. After 30 minutes of grinding, the product had a mean particle diameter (d50) of 60 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Cosmetics (AREA)

Abstract

Procédé de production de poudre d'oxyde de zinc hydrometallurgique aux caractéristiques équivalente à celui issu d'un procédé français, comprenant une formation d'une pulpe aqueuse à partir d'un oxyde de zinc de départ présentant des particules de structure nodulaire, un broyage par voie humide de cette pulpe aqueuse, une séparation dans cette pulpe broyée entre une phase liquide et une phase solide contenant l'oxyde de zinc, et un séchage de ladite phase solide, couplé à une désagglomération mécanique des particules en cours de séchage, avec obtention d'une poudre sèche d'oxyde de zinc à particules de structure nodulaire présentant une distribution granulométrique où les particules ont une taille moyenne (d50) comprise entre 0,02 et 20 μm.

Description

"Procédé de production de poudre d'oxyde de zinc et poudre ainsi obtenue"
La présente invention est relative à un procédé de production de poudre d'oxyde de zinc.
L'oxyde de zinc est un produit de consommation utilisé fréquemment dans les industries de la céramique, du caoutchouc industriel et des pneus, dans les domaines chimiques et pharmaceutiques et dans la réalisation de compléments alimentaires. Le procédé le plus fréquemment utilisé pour produire de l'oxyde de zinc est le procédé dit « français » ou « indirect » au cours duquel l'oxyde est produit à partir de zinc métallique, par évaporation de celui-ci en creuset ou en colonne à distiller, puis par oxydation des fumées. En fonction de la pureté du zinc de départ, on peut obtenir un oxyde de zinc plus ou moins pur, sous forme de particules fines ayant une structure nodulaire et une taille moyenne (d50) comprise entre 0,5 et 5 μm. Ces particules développent une surface spécifique, calculée selon la méthode BET, relativement basse, de l'ordre de 3 à 10 nrvVg.
On peut aussi produire de l'oxyde de zinc par le procédé dit « américain » ou « direct ». Ce procédé produit aussi l'oxyde à partir d'une volatilisation de zinc, suivie d'une oxydation des fumées. Toutefois, ce procédé permet de traiter des matières premières autres que du zinc métallique préalablement raffiné, et cela par adjonction d'un composé réducteur dans l'alimentation du four utilisé. Les oxydes obtenus ont une taille de particule et une surface spécifique sensiblement semblables à celles obtenues par le procédé « français ». Ces particules ont toutefois une structure aciculaire qui les rend impropres à une utilisation dans plusieurs domaines, en particulier dans l'industrie des pneus et des caoutchoucs. La pureté chimique de la poudre obtenue est également peu élevée, étant donné la diversité de la nature des matières premières traitées.
On connaît enfin les procédés hydrométallurgiques (voir par exemple W. J. Wendt, Ammonia, Ammonium Carbonate Leaching of Low Grade Zinc Ores, in Engineering and Mining Journal, 1953, Vol. 154, p.84-90 ; WO-98/36102, US 2,147,379). Ces procédés consistent à sécher et/ou calciner un hydroxyde de zinc ou carbonate de zinc obtenu par précipitation de solutions de sels de zinc (chlorure, sulfate, hydrosulfite, complexes ammoniaques, etc.). Ces procédés sont généralement employés pour valoriser des sous-produits de l'industrie chimique ou pour traiter du minerai de zinc. En fonction de différents paramètres, les oxydes de zinc produits de cette manière ont des propriétés relativement différentes, et souvent ils sont commercialisés comme concentrés de zinc. Les surfaces spécifiques sont très variables, de 3 à 80 nrvVg, avec des tailles moyennes de particule difficilement gérables et pouvant aller jusqu'à plus de 100 μm. Malgré toutes les étapes de purification conçues jusqu'à présent, les oxydes de zinc produits ont des teneurs en chlorures et en sulfates indésirables. L'application de ces matières n'est donc possible que de manière sporadique ou dans certains secteurs niches.
La présente invention a pour but de traiter de grandes quantités d'oxyde de zinc de départ issu d'un traitement hydrométallurgique tel que mentionné ci-dessus sans modifier la structure cristalline nodulaire de celui-ci et de manière à atteindre des tailles de particule reproductibles et susceptibles d'être applicables dans des applications de l'industrie du caoutchouc et des pneus. En outre, il existe un besoin pour un procédé flexible permettant d'atteindre des surfaces spécifiques uniformes mais ajustables.
On résout ce problème suivant l'invention, par un procédé de production de poudre d'oxyde de zinc comprenant - une calcination de carbonate de zinc, éventuellement basique, ou un hydroxyde de zinc, avec production d'un oxyde de zinc de départ sous forme de particules de structure nodulaire,
- un refroidissement lent dudit oxyde de zinc de départ à l'air,
- une formation d'une pulpe aqueuse à partir dudit oxyde de zinc de départ refroidi,
- un broyage en continu par voie humide de cette pulpe aqueuse à l'aide de microbilles mises en mouvement dans la pulpe à broyer de manière à s'entrechoquer et à cisailler celle-ci de manière à obtenir un oxyde de zinc à particules de structure nodulaire présentant une distribution granulométrique où les particules ont une taille moyenne
(d50) comprise entre 0,02 et 20 μm et une taille maximale de 30 μm,
- une séparation dans cette pulpe broyée entre une phase liquide et une phase solide contenant l'oxyde de zinc, et
- un séchage de ladite phase solide, couplé à une désagglomération mécanique des particules en cours de séchage, avec obtention d'une poudre sèche d'oxyde de zinc à particules de structure nodulaire présentant ladite distribution granulométrique.
Par les termes "particules de structure nodulaire", on entend des particules ayant une forme dont les dimensions sont sensiblement constantes dans les 3 plans de l'espace (sans dimension préférentielle). Les termes "particules de structure presque sphérique" sont parfois également utilisés pour désigner le type de structure susdit.
Comme mentionné précédemment, suivant l'invention, l'oxyde de zinc de départ est issu d'un traitement hydrométallurgique d'une matière première à base de zinc. Par le procédé suivant l'invention, en partant de matières de départ non raffinées, on parvient à fabriquer directement du ZnO de structure nodulaire aux caractéristiques identiques à celles obtenues par le procédé « français » (ou indirect), dont la principale est la taille des particules. En outre, en faisant varier la température de calcination, on peut agir sur la valeur de la surface spécifique selon les besoins. La surface spécifique obtenue après refroidissement est maintenue tout au long de la production.
Dès lors, comme cela ressort clairement de ce qui précède, le procédé suivant l'invention permet d'obtenir un oxyde de zinc dont les particules présentent une structure nodulaire et une taille moyenne de particules appropriées pour, par exemple, un usage dans l'industrie du caoutchouc (ce qui est l'industrie à laquelle le ZnO est majoritairement destiné) alors qu'auparavant, la référence dans l'industrie du caoutchouc était l'oxyde de zinc issu du procédé français. L'oxyde de zinc issu d'un traitement hydrométallurgique était, jusqu'à l'arrivée de l'invention, une spécification marginale inutilisable pour la majorité des formulations.
Avantageusement, dans la poudre sèche obtenue, les particules ont une taille moyenne (d50) comprise entre 0,5 et 3 μm.
Le procédé suivant l'invention permet ainsi d'atteindre à partir d'un oxyde de zinc dont les particules sont de taille grossière ou variable, des tailles de particules extrêmement fines permettant des applications de la poudre obtenue dans le domaine de l'industrie du caoutchouc et des pneus, tout en maintenant une structure cristalline acceptable pour ces applications. Suivant une forme de réalisation avantageuse de l'invention, le procédé comprend un lavage à l'eau de la phase solide séparée, avec dissolution dans l'eau des sulfates et chlorures solubles présents, la poudre sèche d'oxyde de zinc présentant une teneur en sulfates < 60 ppm et une teneur en chlorures < 10 ppm. Lorsque l'on souhaite une surface spécifique élevée (par exemple d'environ 40 m2/g), le carbonate de zinc, par exemple basique, ou l'hydroxyde de zinc sera calciné à une température d'environ 3000C et refroidi lentement à l'air. Si la surface spécifique doit être de l'ordre de 5 à 15 m2/g, alors, la température de calcination du procédé selon l'invention sera comprise entre 750 et 12000C, de préférence entre 800 et 1000°C pour obtenir un oxyde de zinc de structure nodulaire qui rencontre les standards de l'industrie du caoutchouc (BET ≈ 5 à 15 m2/g). Avantageusement, suivant l'invention, l'oxyde de zinc de départ est préparé par calcination d'un hydroxyde ou carbonate de zinc précipité dans une solution saline de zinc. Une calcination flash permet d'obtenir un couple surface spécifique/taille de particules contrôlé, ces particules ayant une structure nodulaire. Le procédé de broyage, séparation solide/liquide et séchage suivant l'invention offre en outre l'avantage de ne pas modifier la surface spécifique BET obtenue lors de la calcination. Pendant la calcination, des sulfates insolubles sont modifiés sous des formes solubles dans l'eau.
D'autres modes de réalisation du procédé suivant l'invention sont indiqués dans les revendications annexées.
Comme oxyde de zinc de départ, on peut par exemple prévoir un ZnO présentant les tailles de particule suivantes :
0,5 μm < d20 < 50 μm
1 μm < d50 < 100 μm 2 μm < d80 < 200 μm
Les cristaux ont une forme nodulaire. L'oxyde de zinc est avantageusement issu d'un traitement hydrométallurgique d'une matière première contenant du zinc.
Dans un broyeur par voie humide, cet oxyde de zinc de départ est mis en suspension dans de l'eau pure ou additionnée d'un dispersant organique compatible avec ZnO (notamment un organotitanate ou un organozirconate, par exemple de la série KR de la firme Kenrich), de manière à présenter une teneur en matières solides comprise entre 10 et 60 % en poids. Le broyeur est avantageusement du type horizontal à microbilles. Dans celui-ci, la suspension est mise en mouvement par des pièces mécaniques rotatives qui permettent aux billes de s'entrechoquer et de cisailler la matière à broyer. Comme broyeur de ce type, on peut envisager par exemple les broyeurs METSO Detrimill ou Hosokawa Alpine Hydromill. Le diamètre des billes de broyage est choisi en fonction de la finesse des particules à atteindre. Le broyage a lieu avantageusement à des températures inférieures à 700C.
L'étape de broyage est alors suivie d'une séparation entre une phase liquide et une phase solide contenant l'oxyde de zinc. Cette filtration a avantageusement lieu sur tout type de filtre permettant de générer un gâteau de filtration. On peut ensuite laver à l'eau le gâteau de filtration ce qui permet d'obtenir une haute pureté du ZnO avec des teneurs en sulfates et chlorures inférieures à 60 ppm et respectivement 10 ppm. Pour séparer la phase solide de la phase liquide, on fera usage de préférence d'un filtre-presse. Pendant le séchage, il faut veiller à empêcher une réagglomération des particules de façon à conserver la taille des particules primaires broyées. On peut par exemple utiliser pour cela un sécheur flash désagglomérateur. En plus de fournir de l'air chaud, le sécheur est muni par exemple d'un rotor et de pales tournant à grande vitesse afin de frapper les particules de ZnO agglomérées durant la filtration. On peut utiliser dans ce but par exemple un sécheur de type Ultrarotor fabriqué par la firme Jaeckering ou de type spin flash fabriqué par la firme Anhydro. Le temps de résidence dans le sécheur sera de préférence inférieur à 5 secondes, à des températures de 150 à 7000C, avantageusement de 300 à 450°C. On obtient ainsi une poudre sèche de ZnO présentant des particules de structure cristalline nodulaire dont la surface spécifique n'a pas été sensiblement modifiée. La taille des particules est avantageusement la suivante : 0,005 μm < d20 < 10 μm
0,02 μm < d50 < 20 μm
0,1 μm < d80 < 25 μm, avec une taille de particules maximale de 30 μm
Les particules présentent avantageusement un d20 compris entre 0,2 et 2,5 μm, un d50 compris entre 0,5 et 3 μm, un d80 compris entre 1 et 10 μm. De cette façon, les particules obtenues présentent une distribution de taille similaire à celle obtenues pour les particules de ZnO issues du procédé français.
Dans une forme de réalisation préférentielle, le procédé suivant l'invention comprend en outre une pelletisation ou un enrobage, par exemple à l'aide d'une substance organique ou minérale pour améliorer les propriétés de l'oxyde de zinc ainsi formé. Par exemple, en formant des granules (pellets) à l'aide d'un granulateur, on améliore la fluidité du ZnO alors qu'en enrobant le ZnO d'acide propionique ou du propionate, on améliore l'incorporabilité du ZnO dans le caoutchouc, par exemple par une pulvérisation d'acide propionique ou de propionate pendant l'étape de séchage ou de granulation.
L'invention va être décrite de manière plus détaillée, à l'aide d'exemples non limitatifs. Exemple 1
Une solution ammoniacale contenant du zinc en solution, qui a été obtenue lors d'un traitement hydrométallurgique de ZnO impur issu de diverses provenances et dont la composition est donnée au tableau 1 , est mise à l'ébullition par injection de vapeur d'eau. Il en résulte une évaporation d'une vapeur contenant de l'eau, de l'ammoniac et du dioxyde de carbone, ainsi que la précipitation d'un carbonate de zinc basique (BZC)
Tableau 1 : Composition de la solution ammoniacale avant précipitation
Elément Grade
Zn g/ι 135
NH3 g/ι 120
CO2 g/ι 85
SO4 g/i 4
Cl mg/l 250
Ca mg/l 190
Mg mg/l 430
Pb mg/l 1 ,9
Cu mg/l 0,5
Cd mg/l 0,5
Fe mg/l 3,1
Mn mg/l 0,5
La précipitation est réalisée en continu dans une série de 4 réacteurs pressurisés, la vapeur d'eau étant injectée à contre-courant de la solution. Le temps de séjour utilisé est de 60 minutes, et le débit de vapeur est ajusté de manière à évaporer 90% de l'ammoniaque.
La pulpe obtenue contient 180 g/l de matières solides, principalement du carbonate de zinc basique. Les compositions du liquide et du solide obtenus sont données au tableau suivant. La présence de sulfates dans le solide indique qu'il y a eu précipitation de composés, tels que le gypse (CaSO4.2H2O), le sulfate de magnésium ou encore le sulfate basique de zinc (BZS), voire des trois ensembles. Ces composés sont insolubles dans l'eau. Tableau 2 : Caractérisation de la pulpe issue < de l'étape de précipitation
Elément Liquide BZC
Zn g/l ou % 6 58,5
NH3 g/l ou % 12 -
CO2 g/l ou % 25 25,4
Cl mg/l ou ppm 165 125
SO4 mg/l ou ppm 2,9 2.500
Ca mg/l ou ppm - 900
Mg mg/l ou ppm - 2.000
Pb mg/l ou ppm - <5
Cu mg/l ou ppm - <2
Cd mg/l ou ppm - <2
Fe mg/l ou ppm - <5
Mn mg/l ou ppm - <5
LOI (1000e C)* % - 26,5
* Pertes au feu à 10000C pendant 2 h.
Les cristaux de BZC présentent un début de forme nodulaire et une taille de particule moyenne (d50) de l'ordre de 34 μm (voir sur la figure 1 , une micrographie du précipité).
La pulpe obtenue après précipitation est épaissie par décantation jusque 500 g/l de solides, puis rediluée avec une solution aqueuse contenant 45 g/l de carbonate de sodium. La dilution est faite de manière à obtenir une pulpe contenant 250 g/l de solides. L'ajout de carbonate de sodium permet de redissoudre une partie du BZS et des chlorures co-précipités avec le BZC de sorte que la teneur en sulfates dans les solides après cette opération est de 300 ppm et celle en chlorures tombe en dessous de la limite de 100 ppm.
La pulpe diluée est ensuite filtrée dans un filtre-presse à membrane, et les gâteaux lavés à l'eau. Lors d'un lavage avec 2 m3 d'eau par tonne de solide sec, l'efficacité du lavage des sels solubles est de 65 %. Après pressage à 15 bars, le gâteau de filtration a les caractéristiques suivantes : Tableau 3 : Caractéristiques du BZC après filtration
Figure imgf000012_0001
Les gâteaux de filtration sont alors calcinés tels quels à 9500C dans un ensemble sécheur-calcinateur flash. Le solide obtenu est un oxyde de zinc ayant les caractéristiques suivantes :
Tableau 4 : Caractéristiques de l'oxyde de zinc
Figure imgf000012_0002
Les particules d'oxyde de zinc ont une forme nodulaire et contiennent déjà quelques micro-cristaux (voir micrographie de la figure 2).
L'oxyde de zinc est ensuite repulpé dans de l'eau de façon à obtenir une pulpe à 40 % de matières solides. Après pulpage, les solides et liquides ont les compositions respectives suivantes :
Tableau 5 : Caractérisation de la pulpe d'oxyde de zinc avant broyage
Figure imgf000013_0001
La pulpe est broyée dans un broyeur à billes vertical Metso de type Detrimill. Le broyeur est rempli à 50 % en volume de billes en céramique ayant un diamètre de 2 mm. Après 5 minutes de broyage, le produit a la distribution granulométrique suivante :
Tableau 6 : Analyse granulométrique de l'oxyde de zinc broyé
Figure imgf000013_0002
Après broyage, la pulpe est filtrée dans un filtre-presse à membrane, et les gâteaux sont lavés avec de l'eau en utilisant 3 m3/t de solides. Ce lavage permet l'élimination de 90 % des chlorures et des sulfates qui ont été rendus solubles par la calcination. Après pressage à 15 bars, le gâteau d'oxyde de zinc a une humidité de 25 % et contient 50 ppm de sulfates et <10 ppm de chlorures.
Les gâteaux sont ensuite séchés au moyen d'un sécheur à lit transporté de type Ultrarotor fabriqué par Jaeckering. L'analyse granulométrique du produit séché n'a montré aucune ré-agglomération du produit. Sa surface spécifique BET est de 6,2 nrvVg. Les microcristaux de forme nodulaire sont illustrés sur la microphotographie de la figure 3.
Exemple 2
L'échantillon utilisé pour cet exemple provient de la déshydratation/calcination d'un hydroxyde de zinc issu de la précipitation d'une solution d'hydrosulfite de zinc par neutralisation.
Après calcination à 3500C, l'oxyde de zinc a les caractéristiques suivantes :
Tableau 7 : d20 μm 2 ,8 d50 μm 9 d80 μm 17
Surface spécifique BET m2/g 38 ,6
L'échantillon est ensuite repulpé dans de l'eau de façon à obtenir une pulpe à 40 % de solides, puis la pulpe est broyée dans un broyeur à billes horizontal Hosokawa Alpine de type hydromill. Le broyeur est rempli à 85 % en volume de billes en céramique ayant un diamètre allant de 0,7 à 1 ,2 mm. Après 5 minutes de broyage, le produit a la distribution granulométrique suivante : Tableau 8 :
Figure imgf000015_0001
Après broyage, la pulpe est filtrée dans un filtre-presse, puis séchée au moyen d'un sécheur à lit transporté et agité de type Ultrarotor fabriqué par Jaeckering. L'analyse granulométrique du produit séché n'a montré aucune réagglomération du produit. Sa surface spécifique BET est de 40 m2/g.
Exemple 3
L'échantillon de ZnO utilisé pour cet exemple est issu du traitement tel que décrit à l'exemple 1. Ses caractéristiques sont les suivantes :
Tableau 9 :
Figure imgf000016_0001
L'échantillon a été repulpé dans de l'eau additionnée d'un dispersant organique (Kenrich type KR TTS) de façon à obtenir une pulpe à 40 % de solides, puis a été broyé dans un broyeur à billes horizontal Netzsch de type Zêta. Le broyeur était rempli à 85 % en volume de billes en zirconium ayant un diamètre allant de 0,3 à 0,5 mm. Après 30 minutes de broyage, le produit avait un diamètre de particule moyen (d50) de 60 nm.
Il doit être entendu que la présente invention n'est en aucune façon limitée aux modes de réalisation décrits ci-dessus et que bien des modifications peuvent y être apportées, sans sortir du cadre des revendications annexées.

Claims

REVENDICATIONS
1 Procédé de production de poudre d'oxyde de zinc, comprenant :
- une calcination de carbonate de zinc, éventuellement basique ou d'hydroxyde de zinc, avec production d'un oxyde de zinc de départ sous forme de particules de structure nodulaire,
- un refroidissement lent à l'air de l'oxyde de zinc de départ
- une formation d'une pulpe aqueuse à partir dudit oxyde de zinc de départ refroidi, - un broyage en continu par voie humide de cette pulpe aqueuse à l'aide de microbilles mises en mouvement dans la pulpe à broyer de manière à s'entrechoquer et à cisailler celle-ci de manière à obtenir un oxyde de zinc à particules de structure nodulaire présentant une distribution granulométrique où les particules ont une taille moyenne (d50) comprise entre 0,02 et 20 μm et une taille maximale de 30 μm,
- une séparation de cette pulpe broyée entre une phase liquide et une phase solide contenant l'oxyde de zinc, et
- un séchage de ladite phase solide, couplé à une désagglomération mécanique des particules en cours de séchage, avec obtention d'une poudre sèche d'oxyde de zinc à particules de structure nodulaire présentant ladite distribution granulométrique.
2. Procédé suivant la revendication 1 , caractérisé en ce que, dans la poudre sèche obtenue, les particules ont une taille moyenne (d50) comprise entre 0,5 et 3 μm.
3. Procédé suivant l'une ou l'autre des revendications 1 et
2, caractérisé en ce que l'oxyde de zinc de départ présente une surface spécifique prédéterminée et en ce que la poudre sèche d'oxyde de zinc obtenue a une surface spécifique sensiblement inchangée.
4. Procédé suivant l'une des revendications 1 à 3, caractérisé en ce que la pulpe aqueuse d'oxyde de zinc susdite présente une concentration en matière solide comprise entre 10 et 60 % en poids.
5. Procédé suivant l'une quelconque des revendications 1 à 4, caractérisé en ce que le broyage comprend une addition d'un dispersant à la pulpe.
6. Procédé suivant l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite séparation a lieu par filtration avec formation d'un gâteau de filtration, à titre de phase solide susdite.
7. Procédé suivant la revendication 6, caractérisé en ce que la filtration a lieu dans un filtre-presse.
8. Procédé suivant l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend un lavage à l'eau de la phase solide séparée, avec dissolution dans l'eau de sulfates et de chlorures solubles présents, la poudre sèche d'oxyde de zinc présentant une teneur en sulfates < 60 ppm et une teneur en chlorures < 10 ppm.
9. Procédé suivant l'une quelconque des revendications 1 à 8, caractérisé en ce que, pendant le séchage, la phase solide séparée est soumise à l'action d'un courant d'air chaud présentant une température de 150 à 7000C et simultanément à l'impact d'éléments entraînés en rotation par un rotor.
10. Procédé suivant la revendication 9, caractérisé en ce que le séchage dure moins de 5 secondes.
11. Procédé suivant l'une quelconque des revendications 1 à 10, caractérisé en ce que l'oxyde de zinc de départ est préparé par calcination d'un hydroxyde ou carbonate de zinc précipité dans une solution saline de zinc.
12. Procédé selon l'une quelconque des revendications 1 à 11 , dans laquelle la calcination est réalisée à une température comprise entre 3000C et 1200°C, avantageusement de 800 à 10000C.
13. Procédé suivant l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comprend en outre
- une extraction de zinc à partir d'une matière première contenant de l'oxyde de zinc impur à l'aide d'une solution aqueuse d'ammoniac et de carbonate d'ammonium de façon à produire une liqueur de lixiviation contenant du zinc en solution, et
- une précipitation de carbonate de zinc basique dans ladite liqueur de lixiviation, ce carbonate de zinc basique précipité étant, après séparation liquide/solide, amené à subir la calcination susdite.
14. Procédé suivant la revendication 13, caractérisé en ce qu'il comprend en outre, avant la séparation liquide/solide, une dilution de la liqueur de lixiviation, dans laquelle se trouve le carbonate de zinc basique précipité, par une solution aqueuse de carbonate de sodium, avec dissolution de sulfates et de chlorures coprécipités.
15. Procédé suivant l'une des revendications 13 et 14, caractérisé en ce qu'il comprend une préparation de ladite matière première contenant de l'oxyde de zinc impur par traitement de minerai de zinc ou de matériaux industriels contenant du zinc.
16. Procédé suivant la revendication 15, caractérisé en ce que ladite préparation comprend un lavage de poussières d'aciérie riches en Zn, un grillage de concentré de sulfure de zinc ou une récupération d'oxyde de zinc de fumage.
PCT/EP2008/055547 2007-05-07 2008-05-06 Procede de production de poudre d'oxyde de zinc et poudre ainsi obtenue WO2008135574A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08750094A EP2144852A1 (fr) 2007-05-07 2008-05-06 Procede de production de poudre d'oxyde de zinc et poudre ainsi obtenue
CA002686448A CA2686448A1 (fr) 2007-05-07 2008-05-06 Procede de production de poudre d'oxyde de zinc et poudre ainsi obtenue
US12/451,316 US7939037B2 (en) 2007-05-07 2008-05-06 Method of producing zinc oxide powder
MA32373A MA31394B1 (fr) 2007-05-07 2009-11-26 Procede de production de poudre d'oxyde de zinc et poudre ainsi obtenue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07107624 2007-05-07
EP07107624.4 2007-05-07

Publications (1)

Publication Number Publication Date
WO2008135574A1 true WO2008135574A1 (fr) 2008-11-13

Family

ID=38565581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/055547 WO2008135574A1 (fr) 2007-05-07 2008-05-06 Procede de production de poudre d'oxyde de zinc et poudre ainsi obtenue

Country Status (6)

Country Link
US (1) US7939037B2 (fr)
EP (1) EP2144852A1 (fr)
CA (1) CA2686448A1 (fr)
MA (1) MA31394B1 (fr)
PE (1) PE20090080A1 (fr)
WO (1) WO2008135574A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2456240C1 (ru) * 2011-04-05 2012-07-20 Государственное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" Способ получения оксида цинка
EP2351709B1 (fr) * 2008-10-28 2017-06-14 Sakai Chemical Industry Co., Ltd. Particules d oxyde de zinc, leur procédé de fabrication, charge libérant de la chaleur, composition de résine, graisse libérant de la chaleur et composition de revêtement libérant de la chaleur
RU2696125C1 (ru) * 2019-03-18 2019-07-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" Способ приготовления оксида цинка
CN116060214A (zh) * 2022-12-21 2023-05-05 昆明理工大学 一种高钙硅质氧化锌矿的多金属耦合活化浮选方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2617683A4 (fr) * 2010-09-13 2015-12-02 Sakai Chemical Industry Co Particules d'oxyde de zinc et produit cosmétique
US20150367327A1 (en) * 2013-02-14 2015-12-24 Metallic Waste Solutions Pty Ltd Catalytic Zinc Oxide
BE1021762B1 (fr) * 2013-12-18 2016-01-15 Societe Industrielle Liegeoise Des Oxydes Sa Composition d'additif de vulcanisation
CN105129839A (zh) * 2015-08-22 2015-12-09 湖南华信稀贵科技有限公司 一种以高氟氯次氧化锌为原料生产微米级氧化锌的方法
WO2019088130A1 (fr) * 2017-10-31 2019-05-09 住友大阪セメント株式会社 Poudre d'oxyde de zinc ainsi que procédé de fabrication de celui-ci, dispersion liquide, et cosmétique
CN109022798B (zh) * 2018-08-27 2020-04-21 浙江特力再生资源有限公司 从废弃含锌防腐涂料中回收制备碱式碳酸锌的方法
CN110184468A (zh) * 2019-07-08 2019-08-30 云南驰宏资源综合利用有限公司 一种从次氧化锌中回收铜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2147379A (en) * 1937-08-26 1939-02-14 Superior Zinc Corp Method for producing high grade zinc oxide
DE2042963A1 (en) * 1970-08-29 1972-03-02 Vertriebsgemeinschaft fur Harzer Zinkoxyde Werner & Heubach KG, 3394 Lan gelsheim Purifn of zinc oxide - to remove organic and water-sol contamination by suspension in water washing and drying
WO1998036102A1 (fr) * 1997-02-17 1998-08-20 Buka Technologies Pty. Ltd. Raffinage de minerais contenant du sulfure de zinc

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1944158A (en) * 1930-12-23 1934-01-23 Superior Zinc Corp Method for producing zinc oxide
US4071357A (en) * 1976-09-23 1978-01-31 Hazen Research, Inc. Process for recovering zinc from steel-making flue dust
US5759503A (en) * 1992-01-15 1998-06-02 Metals Recycling Technologies Corp. Method for the further purification of zinc oxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2147379A (en) * 1937-08-26 1939-02-14 Superior Zinc Corp Method for producing high grade zinc oxide
DE2042963A1 (en) * 1970-08-29 1972-03-02 Vertriebsgemeinschaft fur Harzer Zinkoxyde Werner & Heubach KG, 3394 Lan gelsheim Purifn of zinc oxide - to remove organic and water-sol contamination by suspension in water washing and drying
WO1998036102A1 (fr) * 1997-02-17 1998-08-20 Buka Technologies Pty. Ltd. Raffinage de minerais contenant du sulfure de zinc

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2351709B1 (fr) * 2008-10-28 2017-06-14 Sakai Chemical Industry Co., Ltd. Particules d oxyde de zinc, leur procédé de fabrication, charge libérant de la chaleur, composition de résine, graisse libérant de la chaleur et composition de revêtement libérant de la chaleur
RU2456240C1 (ru) * 2011-04-05 2012-07-20 Государственное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" Способ получения оксида цинка
RU2696125C1 (ru) * 2019-03-18 2019-07-31 Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет" Способ приготовления оксида цинка
CN116060214A (zh) * 2022-12-21 2023-05-05 昆明理工大学 一种高钙硅质氧化锌矿的多金属耦合活化浮选方法
CN116060214B (zh) * 2022-12-21 2023-07-21 昆明理工大学 一种高钙硅质氧化锌矿的多金属耦合活化浮选方法

Also Published As

Publication number Publication date
PE20090080A1 (es) 2009-02-27
MA31394B1 (fr) 2010-05-03
US7939037B2 (en) 2011-05-10
EP2144852A1 (fr) 2010-01-20
US20100086455A1 (en) 2010-04-08
CA2686448A1 (fr) 2008-11-13

Similar Documents

Publication Publication Date Title
EP2144852A1 (fr) Procede de production de poudre d&#39;oxyde de zinc et poudre ainsi obtenue
EP2771280B1 (fr) Procede de traitement de roches phosphatees
EP3167087B1 (fr) Extraction de produits présents dans des minéraux contenant du titane
FR2597092A1 (fr) Procede de preparation de poudres ceramiques d&#39;oxyde metallique
WO2019193510A1 (fr) Procédé d&#39;obtention d&#39;oxyde de vanadium à partir d&#39;un laitier de gazéifieur
TW202111132A (zh) 鈦濃縮物之製造方法
JP2010089988A (ja) 酸化ニッケル微粉末及びその製造方法
RU2515154C1 (ru) Способ получения пентаоксида ванадия из ванадийсодержащего шлака.
EP3464185B1 (fr) Procédé de préparation de nanomagnétite
JPH06234525A (ja) 二酸化チタンの製造法
KR101101755B1 (ko) 폐초경합금 슬러지의 재생 방법
KR101773622B1 (ko) 대략 구상인 탄산바륨 및 대략 구상인 탄산바륨의 제조 방법
KR101538746B1 (ko) 전기로 더스트에 포함되어있는 산화아연으로부터 염화아연을 제조,회수하는 방법
JP4061902B2 (ja) 多孔質炭酸カリウムの製造方法
KR20080099819A (ko) 나노크기 입자의 실리카 제조방법
WO2005063399A1 (fr) Utilisation d&#39;acide adipique a titre d&#39;agent de mouturage dans le broyage a sec de materiaux mineraux
WO2016051098A1 (fr) Procédé industriel de traitement d&#39;un produit contenant de l&#39;amiante et ses applications
FR2905609A1 (fr) Procede de preparation de ferates (vi).
US1895580A (en) Treatment of bauxite, alunite, and like aluminous material
JP4191038B2 (ja) 炭酸カルシウム富化産業副産物から細かく分割された炭酸カルシウムを生成するためのプロセス
JP7396340B2 (ja) 亜鉛の分離方法、亜鉛材料の製造方法および鉄材料の製造方法
CN111978869B (zh) 光学玻璃及液晶显示玻璃用铈基抛光粉的制备方法
RU2487836C1 (ru) Способ получения диоксида титана
JP2008260681A (ja) 炭酸カルシウム富化産業副産物から細かく分割された炭酸カルシウムを生成するためのプロセス
FR2668764A1 (fr) Production d&#39;un oxyde de zirconium ou d&#39;hafnium de haute qualite.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08750094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2686448

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12451316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008750094

Country of ref document: EP