WO2008132452A2 - Transition metal/zeolite scr catalysts - Google Patents
Transition metal/zeolite scr catalysts Download PDFInfo
- Publication number
- WO2008132452A2 WO2008132452A2 PCT/GB2008/001451 GB2008001451W WO2008132452A2 WO 2008132452 A2 WO2008132452 A2 WO 2008132452A2 GB 2008001451 W GB2008001451 W GB 2008001451W WO 2008132452 A2 WO2008132452 A2 WO 2008132452A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zeolite
- catalyst
- transition metal
- zeolites
- small pore
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
- B01D53/565—Nitrogen oxides by treating the gases with solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9431—Processes characterised by a specific device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9445—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
- B01D53/945—Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/005—Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/061—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/076—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/50—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
- B01J29/52—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing iron group metals, noble metals or copper
- B01J29/56—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/83—Aluminophosphates [APO compounds]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/82—Phosphates
- B01J29/84—Aluminophosphates containing other elements, e.g. metals, boron
- B01J29/85—Silicoaluminophosphates [SAPO compounds]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/36—Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C01B39/38—Type ZSM-5
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/54—Phosphates, e.g. APO or SAPO compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2062—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2065—Cerium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20738—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/30—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/502—Beta zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/504—ZSM 5 zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J2029/062—Mixtures of different aluminosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/183—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/30—After treatment, characterised by the means used
- B01J2229/36—Steaming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/87—Gallosilicates; Aluminogallosilicates; Galloborosilicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/10—Capture or disposal of greenhouse gases of nitrous oxide (N2O)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a method of converting nitrogen oxides in a gas, such as an exhaust gas of a vehicular lean-burn internal combustion engine, to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a transition metal-containing zeolite catalyst.
- SCR Selective catalytic reduction
- nitrogenous compounds such as ammonia or urea
- SCR technology was first used in thermal power plants in Japan in the late 1970s, and has seen widespread application in Europe since the mid-1980s.
- SCR systems were introduced for gas turbines in the 1990s and have been used more recently in coal-fired powerplants.
- SCR applications include plant and refinery heaters and boilers in the chemical processing industry, furnaces, coke ovens, municipal waste plants and incinerators.
- NO x reduction systems based on SCR technology are being developed for a number of vehicular (mobile) applications in Europe, Japan, and the USA, e.g. for treating diesel exhaust gas.
- reaction (1) Several chemical reactions occur in an NH 3 SCR system, all of which represent desirable reactions that reduce NO x to nitrogen. The dominant reaction is represented by reaction (1).
- reaction (2) Competing, non-selective reactions with oxygen can produce secondary emissions or may unproductively consume ammonia.
- One such non-selective reaction is the complete oxidation of ammonia, shown in reaction (2).
- reaction (3) may lead to undesirable products such as N 2 O, as represented by reaction (3).
- Aluminosilicate zeolites are used as catalysts for SCR of NO x with NH 3 .
- One application is to control NO x emissions from vehicular diesel engines, with the reductant obtainable from an ammonia precursor such as urea or by injecting aramor ⁇ aper se.
- transition metals are incorporated into the aluminosilicate zeolites.
- the most commonly tested transition metal zeolites are Cu/ZSM-5, Cu/Beta, Fe/ZSM-5 and Fe/Beta because they have a relatively wide temperature activity window. In general, Cu-based zeolite catalysts show better low temperature NO x reduction activity than Fe-based zeolite catalysts.
- ZSM-5 and Beta zeolites have a number of drawbacks. They are susceptible to dealumination during high temperature hydrothe ⁇ al ageing resulting in a loss of acidity, especially with Cu/Beta and Cu/ZSM-5 catalysts. Both Beta- and ZSM-5-based catalysts are also affected by hydrocarbons which become adsorbed on the catalysts at relatively low temperatures and ar,e oxidised as the temperature of the catalytic system is raised generating a significant exotherm, which can thermally damage the catalyst. This problem is particularly acute in vehicular diesel applications where significant quantities of hydrocarbon can be adsorbed on the catalyst during cold-start; and Beta and ZSM-5 zeolites are also prone to coking by hydrocarbons.
- Cu-based zeolite catalysts are less thermally durable, and produce higher levels OfN 2 O than Fe-based zeolite catalysts. However, they have a desirable advantage in that they slip less ammonia in. use compared with a corresponding Fe-zeolite catalyst.
- aluminophosphate zeolites that contain transition metals demonstrate enhanced catalytic activity and superior thermal stability than aluminosilicate zeolite catalysts for SCR OfNO x with hydrocarbons (also known as lean NO x catalysis or "DeNOx catalysts" (e.g. Ishihara et ah, Journal of Catalysis, 169 (1997) 93)).
- DeNOx catalysts also known as lean NO x catalysis or "DeNOx catalysts” (e.g. Ishihara et ah, Journal of Catalysis, 169 (1997) 93).
- 2006/064805 discloses an electrical processing technology for treating diesel engine exhaust gas which utilizes corona discharge.
- a combination of a device for adding a NO x reducer (hydrocarbon or fuel) and a Cu-SAPO-34 NO x reducing catalyst can be disposed downstream of the electrical processing apparatus.
- NO x reducer hydrocarbon or fuel
- Cu-SAPO-34 NO x reducing catalyst can be disposed downstream of the electrical processing apparatus.
- WO 00/72965 discloses iron (Fe) exchanged zeolites for the selective catalytic reduction of nitrogen monoxide by ammonia for controlling NO x emissions from fossil-fuel power plants and engines.
- the Fe-exchanged, and optionally Fe-rare earth-exchanged, e.g. Fe-Ce-exchanged, zeolites suggested include: ZSM-5, mordenite, SAPO, clinoptilolite, chabazite, ZK-4 and ZK-5. No specific SAPO zeolites are identified and no experiment using SAPO zeolites is disclosed.
- WO '965 teaches that the disclosure has application to zeolites with a range of pore sizes, i.e.
- US patent no. 4,735,927 discloses an extruded-type NH 3 -SCR catalyst with stability to sulfur poisoning comprising a high surface area titania in the form of anatase and a natural or synthetic zeolite.
- the zeolite must be either in the acid form or thermally convertible to the acid form in the catalytic product.
- suitable zeolites include mordenite, natural clinoptilolite, erionite, heulandite, ferrierite, natural faujasite or its synthetic counterpart zeolite Y, chabazite and gmelinite.
- a preferred zeolite is natural clinoptilolite, which may be mixed with another acid stable zeolite such as chabazite.
- the catalyst may optionally include small amounts (at least 0.1% by elemental weight) of a promoter in the form of precursors of vanadium oxide, copper oxide, molybdenum oxide or combinations thereof (0.2 wt% Cu and up to 1.6 wt% V are exemplified).
- a promoter in the form of precursors of vanadium oxide, copper oxide, molybdenum oxide or combinations thereof (0.2 wt% Cu and up to 1.6 wt% V are exemplified).
- Extruded-type catalysts are generally less durable, have lower chemical strength, require more catalyst material to achieve the same activity and are more complicated to manufacture than catalyst coatings applied to inert monolith substrates.
- US patent no. 5,417,949 also discloses an extruded-type NH 3 -SCR catalyst comprising a zeolite having a constraint index of up to 12 and a titania binder. Intentionally, no transition metal promoter is present.
- Constraint Index is a test to determine shape-selective catalytic behaviour in zeolites. It compares the reaction rates for the cracking of n-hexane and its isomer 3-methylpentane under competitive conditions (see VJ. Frillette et al., J Catal. 67 (1991) 218)).
- US patent no. 5,589,147 discloses an ammonia SCR catalyst comprising a molecular sieve and a metal, which catalyst can be coated on a substrate monolith.
- the molecular sieve ⁇ useful in the invention is not limited to any particular molecular sieve material and, in general, includes all metallosilicates, metallophosphates, silicoaluminophosphates and layered and pillared layered materials.
- the metal is typically selected from at least one of the metals of Groups of the Periodic Table IIIA, IB, IIB, VA, VIA, VILA, VIIIA and combinations thereof.
- Examples of these metals include at least one of copper, zinc, vanadium, chromium, manganese, cobalt, iron, nickel, rhodium, palladium, platinum, molybdenum, tungsten, cerium and mixtures thereof.
- intermediate pore size zeolites are preferred because they provide constrained access to and egress from the intracrystalline free space: "The intermediate pore size zeolites...have an effective pore size such as to freely sorb normal hexane...if the only pore windows in a crystal are formed by 8- membered rings of oxygen atoms, then access to molecules of larger cross-section than normal hexane is excluded and the zeolite is not an intermediate pore size material.” Only extruded Fe- ZSM-5 is exemplified.
- WO 2004/002611 discloses an NH 3 -SCR catalyst comprising a ceria-doped aluminosilicate zeolite.
- US 6,514,470 discloses a process for catalytically reducing NO x in an exhaust gas stream containing nitrogen oxides and a reductant material.
- the catalyst comprises an aluminium- silicate material and a metal in an amount of up to about 0.1 weight percent based on'the total weight of catalyst. All of the examples use ferrierite.
- US patent no. 4,961,917 discloses an NH 3 -SCR catalyst comprising a zeolite having a silica-to-alumina ratio of at least about 10, and a pore structure which is interconnected in all three crystallographic dimensions by pores having an average kinetic pore diameter of at least about 7 Angstroms and a Cu or Fe promoter.
- the catalysts are said to have high activity, reduced NH 3 oxidation and reduced sulphur poisoning.
- Zeolite Beta and zeolite Y are two zeolites that meet the required definition.
- US patent no. 3,895,094 discloses an NH 3 -SCR process using zeolite catalysts of at least 6 Angstrom intercrystalline.pore size. No mention is made of exchanging the zeolites with transition metals.
- Angstrom pore size zeolites of Na or H form Angstrom pore size zeolites of Na or H form.
- WO 02/41991 discloses metal promoted zeolite Beta for NH 3 -SCR, wherein the zeolite is pre-treated so as to provide it with improved hydrothermal stability.
- the invention provides a method of converting nitrogen oxides in a gas to nitrogen by contacting the nitrogen oxides with a nitrogenous reducing agent in the presence of a zeolite catalyst containing at least one transition metal, wherein the zeolite is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe 5 Co, Ce, Ni, Cu 5 Zn, Ga, Mo, Ru, Rh, Pd 5 Ag 5 In, Sn 5 Re 5 Ir and Pt.
- zeolite catalyst containing at least one transition metal herein we mean a zeolite structure to which has been added by ion exchange, impregnation or isomorphous substitution etc. one or more metals.
- Transition metal-containing zeolite catalyst and “zeolite catalyst containing at least one transition metal” and similar terms are used interchangeably herein.
- zeolites by their Framework Type Codes we intend to include the "Type Material” and any and all isotypic framework materials.
- the "Type Material” is the species first used to establish the framework type).
- Table 1 lists a range of illustrative zeolite zeotype framework materials for use in the present invention.
- chabazite is to the zeolite material per se (in this example the naturally occurring type material chabazite) and not to any other material designated by the Framework Type Code to which the individual zeolite may belong, e.g. some other isotypic framework material.
- zeolite type materials such as naturally occurring (i.e. mineral) chabazite
- isotypes within the same Framework Type Code is not merely arbitrary, but reflects differences in the properties between the materials, which may in turn lead to differences in activity in the method of the present invention.
- chabazite naturally occurring (i.e. mineral) chabazite
- isotypes within the same Framework Type Code is not merely arbitrary, but reflects differences in the properties between the materials, which may in turn lead to differences in activity in the method of the present invention.
- the naturally occurring chabazite has a lower silica-to-alumina ratio than aluminosilicate isotypes such as SSZ-13, the naturally occurring chabazite has lower acidity than aluminosilicate isotypes such as SSZ-13 and the activity of the material in the method of the present invention is relatively low (see the comparison of Cu/naturally occurring chabazite with Cu/SAPO-34 in Example 13).
- the zeolite catalysts for use in the present invention can be coated on a suitable substrate monolith or can be formed as extruded-type catalysts, but are preferably used in a catalyst coating.
- a suitable substrate monolith can be formed as extruded-type catalysts, but are preferably used in a catalyst coating.
- the prior art does mention a few small pore zeolites containing at least one transition metal for converting nitrogen oxides in a gas to nitrogen with a nitrogenous reducing agent
- the prior art suggests using large, medium and small pore zeolites containing at least one transition metal, without distinction. Accordingly, we seek to exclude any specific small pore zeolites containing at least one transition metal that have been mentioned only in this context.
- the zeolite catalyst is not one of Co, Ga, Mn, In or Zn or any combination of two or more thereof/epistilbite (see US patent no. 6,514,470).
- the transition metal-containing small pore zeolite is not Cu/chabazite, Mo/chabazite, Cu-Mo/chabazite, Cu/erionite, Mo/erionite or Cu-Mo/erionite (see US patent no. 4,735,927).
- the transition metal-containing small pore zeolite is not Ce/erionite (see WO 2004/002611).
- the transition metal-containing small pore zeolite is not Fe/chabazite, Fe/ZK-5, Fe/ZK-4, Fe-rare-earth/chabazite, Fe-rare-earth/ZK-5 or Fe-rare- earth/ZK-4 (see WO 00/72965).
- WO 00/72965 discloses the use of Ce/SAPO zeolites and Ce-rare-earth/SAPO zeolites in general, it does not disclose any particular small pore SAPO zeolites with application in the present invention, such as SAPO- 17, SAPO- 18, SAPO-34, SAPO-35, SAPO-39, SAPO-43 and SAPO-56.
- the transition metal-containing small pore zeolite is not Fe/chabazite, (see Long et al. Journal of Catalysis 207 (2002) 274-285). Whilst, for the reasons given hereinabove, we do not believe that US patent no.
- the zeolite catalyst is not any one of copper, zinc, chromium, manganese, cobalt, iron, nickel, rhodium, palladium, platinum, molybdenum, cerium or mixtures thereof/any one of aluminosilicate chabazite, aluminosilicate erionite, aluminosilicate ZSM-34 and SAPO-34.
- the transition metal-containing zeolite catalyst is not LTA or Fe/CHA.
- chabazite is a small pore zeolite according to the definition adopted herein and that the Long et al. paper mentioned above reports that Fe/chabazite has the poorest activity of any of the catalysts tested. Without wishing to be bound by any theory, we believe that the poor performance of the Fe/chabazite in this study is due to two principal reasons. Firstly, natural chabazite can contain basic metal cations including potassium, sodium, strontium and calcium. To obtain an active material the basic metal cations need to be exchanged for e.g. iron cations because basic metals are a known poison of zeolite acid sites.
- iron ions can form metal complexes (coordination compounds) with suitable ligands in the ionic exchange medium.
- coordination compounds metal complexes
- suitable ligands in the ionic exchange medium.
- Long et al. use an aqueous FeCl 2 solution for ion exchange. Since the zeolite pores are relatively small, it is possible that a bulky co-ordination compound may not be able to gain access to the active sites located in the pores.
- Suitable substituent metals include one or more of, without limitation, As, B, Be, Co, Fe, Ga, Ge, Li, Mg, Mn, Zn and Zr.
- the small pore zeolites for use in the present invention can be selected from the group consisting of aluminosilicate zeolites, metal-substituted aluminosilicate zeolites and aluminophosphate zeolites.
- Aluminophosphate zeolites with application in the present invention include aluminophosphate (AlPO) zeolites, metal substituted zeolites (MeAh 0 O) zeolites, silico- aluminophosphate (SAPO) zeolites and metal substituted silico-aluminophosphate (MeAPSO) zeolites.
- AlPO aluminophosphate
- MeAh 0 O metal substituted zeolites
- SAPO silico- aluminophosphate
- MeAPSO metal substituted silico-aluminophosphate
- the invention extends to catalyst coatings and extruded-type substrate monoliths comprising both transition metal-containing small pore zeolites according to the invention and non-small pore zeolites (whether metallised or not) such as medium-, large- and meso-pore zeolites (whether containing transition metal(s) or not) because such a combination also obtains the advantages of using small pore zeolites per se.
- the catalyst coatings and extruded-type substrate monoliths for use in the invention can comprise combinations of two or more transition metal-containing small pore zeolites.
- each small pore zeolite in such a combination can contain one or more transition metals, each being • selected from the group defined hereinabove, e.g. a first small pore zeolite can contain both Cu and Fe and a second small pore zeolite in combination with the first small pore zeolite can contain Ce.
- transition metal-containing small pore zeolites are advantageous catalysts for SCR ofNO x with NH 3 .
- transition metal-containing small pore zeolite catalysts demonstrate significantly improved NO x reduction activity, especially at low temperatures. They also exhibit high selectivity to N 2 (e.g. low N 2 O formation) and good hydrothermal stability.
- small pore zeolites containing at least one transition metal. are more resistant to hydrocarbon inhibition than larger pore zeolites, e.g.
- a medium pore zeolite such as ZSM-5
- a large pore zeolite a zeolite having a maximum ring size of 12
- Beta a medium pore zeolite
- Small pore aluminophosphate zeolites for use in the present invention include SAPO-17, SAPO-18, SAPO-34, SAPO-35, SAPO-39, SAPO-43 and SAPO-56.
- the small pore zeolite is selected from the group of Framework Type Codes consisting of: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON, NSI, OWE, PAU, PHI, RHO, RTH, SAT, SAV, SIV, THO, TSC, UEI, UFI, VNI, YUG and ZON.
- Framework Type Codes consisting of: ACO, AEI, AEN, AFN, AFT, AFX, ANA, APC, APD, ATT, CDO, CHA, DDR, DFT, EAB, EDI, EPI, ERI, GIS, GOO, IHW, ITE, ITW, LEV, KFI, MER, MON,
- Zeolites with application in the present invention can include those that have been treated to improve hydrothermal stability.
- Illustrative methods of improving hydrothermal stability include: ' (i) Dealumination by: steaming and acid extraction using an acid or complexing agent e.g. (EDTA - ethylenediaminetetracetic acid); treatment with acid and/or complexing agent; treatment with a gaseous stream of SiCl 4 (replaces Al in the zeolite framework with Si);
- small pore zeolites may minimise the detrimental effect of hydrocarbons by means of a molecular sieving effect, whereby the small pore zeolite allows NO and NH 3 to diffuse to the active sites inside the pores but that the diffusion of hydrocarbon molecules is restricted.
- the kinetic diameter of both NO (3.16A) and NH 3 (2.6A) is smaller than those of the typical hydrocarbons (C 3 H 6 ⁇ 4.5A, H-C 8 H 18 -4.30A and C 7 H 8 ⁇ 6.0A) present in, for example, diesel engine exhaust.
- the small pore zeolite catalysts for use in the present invention have a pore size in at least one dimension of less than 4.3 A.
- Illustrative examples of suitable small pore zeolites are set out in Table 1.
- Small pore zeolites with particular application for treating NO x in exhaust gases of lean- burn internal combustion engines, e.g. vehicular exhaust gases are set out in Table 2.
- Table 2 Preferred small pore zeolites for use in treating exhaust gases of lean-burn internal combustion engines.
- Small pore aluminosilicate zeolites for use in the present invention can have a silica-to- alumina ratio (SAR) of from 2 to 300, optionally 4 to 200 and preferably 8 to 150. It will be appreciated that higher SAR ratios are preferred to improve thermal stability but this may negatively affect transition metal exchange. Therefore, in selecting preferred materials consideration can be given to SAR so that a balance may be struck between these two properties.
- SAR silica-to- alumina ratio
- the gas containing the nitrogen oxides can. contact the zeolite catalyst at a gas hourly space velocity of from 5,000 hr "1 to 500,000 hr '1 , optionally from 10,000 hr "1 to 200,000 hr "1 .
- the small pore zeolites for use in the present invention do not include aluminophosphate zeolites as defined herein.
- the small pore zeolites (as defined herein) for use in the present invention are restricted to aluminophosphate zeolites (as defined herein).
- small pore zeolites for use in the present invention are aluminosilicate zeolites and metal substituted aluminosilicate zeolites (and not aluminophosphate zeolites as defined herein).
- Small pore zeolites for use in the invention can have three-dimensional dimensionality, i.e. a pore structure which is interconnected in all three crystallographic dimensions, or two- dimensional dimensionality, hi one embodiment, the small pore zeolites for use in the present invention consist of zeolites having three-dimensional dimensionality. In another embodiment, the small pore zeolites for use in the present invention consist of zeolites having two- dimensional dimensionality.
- the at least one transition metal is selected from the group consisting of Cr, Ce, Mn, Fe, Co, Ni and Cu. In a preferred embodiment, the at least one transition metal is selected from the group consisting of Cu, Fe and Ce. In a particular embodiment, the at least one transition metal consists of Cu. In another particular embodiment, the at least one transition metal consists of Fe. In a further particular embodiment, the at least one transition metal is Cu and/or Fe.
- the total of the at least one transition metal that can be included in the at least one transition metal-containing zeolite can be from 0.01 to 20 wt%, based on the total weight of the zeolite catalyst containing at least one transition metal. In one embodiment, the total of the at least one transition metal that can be included can be from 0.1 tol 0wt%. In a particular embodiment, the total of the at least one transition metal that can be included is from 0.5 to 5wt%.
- a preferred transition metal-containing two dimensional small pore zeolite for use in the present invention consists of Cu/LEV, such as Cu/Nu-3, whereas a preferred transition metal- containing three dimensional small pore zeolite/aluminophosphate zeolite for use in the present invention consists of Cu/CHA, such as Cu/SAPO-34 or Cu/SSZ-13.
- Fe-containing zeolite catalysts are preferred, such as Fe-CHA, e.g. Fe/SAPO-34 or Fe/SSZ-13.
- the at least one transition metal can be included in the zeolite by any feasible method. For example, it can be added after the zeolite has been synthesised, e.g. by incipient wetness or exchange process; or the at least one metal can be added during zeolite synthesis.
- the zeolite catalyst for use in the present invention can be coated, e.g. as a washcoat component, on a suitable monolith substrate, such as a metal or ceramic flow through monolith substrate or a filtering substrate, such as a wall-flow filter or sintered metal or partial filter (such as is disclosed in WO 01/80978 or EP 1057519, the latter document describing a substrate comprising convoluted flow paths that at least slows the passage of soot therethrough).
- a suitable monolith substrate such as a metal or ceramic flow through monolith substrate or a filtering substrate, such as a wall-flow filter or sintered metal or partial filter (such as is disclosed in WO 01/80978 or EP 1057519, the latter document describing a substrate comprising convoluted flow paths that at least slows the passage of soot therethrough).
- the zeolites for use in the present invention can be synthesized directly onto the substrate.
- the zeolite catalysts according to the invention can be formed into an extruded-type flow through catalyst.
- washcoat compositions containing the zeolites for use in the present invention for coating onto the monolith substrate for manufacturing extruded type substrate monoliths can comprise a binder selected from the group consisting of alumina, silica, (non zeolite) silica-alumina, naturally occurring clays, TiO 2 , ZrO 2 , and SnO 2 .
- the nitrogen oxides are reduced with the reducing agent at a temperature of at least 100°C. In another embodiment, the nitrogen oxides are reduced with the reducing agent at a temperature from about 150°C to 750°C.
- the latter embodiment is particularly useful for treating exhaust gases from heavy and light duty diesel engines, particularly engines comprising exhaust systems comprising (optionally catalysed) diesel particulate filters which are regenerated actively, e.g. by injecting hydrocarbon into the exhaust system upstream of the filter, wherein the zeolite catalyst for use in the present invention is located downstream of the filter.
- the temperature range is from 175 to 550°C. hi another embodiment, the temperature range is from 175 to 400°C.
- the nitrogen oxides reduction is carried out in the presence of oxygen. In an alternative embodiment, the nitrogen oxides reduction is carried out in the absence of oxygen.
- Zeolites for use in the present application include natural and synthetic zeolites, preferably synthetic zeolites because the zeolites can have a more uniform: silica-to-alumina ratio (SAR), crystallite, size, crystallite morphology, and the absence of impurities (e.g. alkaline earth metals).
- SAR silica-to-alumina ratio
- crystallite size, crystallite morphology, and the absence of impurities (e.g. alkaline earth metals).
- the source of nitrogenous reductant can be ammor ⁇ aper se, hydrazine or any suitable ammonia precursor, such as urea ammonium carbonate, ammonium carbamate, ammonium hydrogen carbonate or ammonium formate.
- the method can be performed on a gas derived from a combustion process, such as from an internal combustion engine (whether mobile or stationary), a gas turbine and coal or oil fired power plants.
- a gas derived from a combustion process such as from an internal combustion engine (whether mobile or stationary), a gas turbine and coal or oil fired power plants.
- the method may also be used to treat gas from industrial processes such as refining, from refinery heaters and boilers, furnaces, the chemical processing industry, coke ovens, municipal waste plants and incinerators, coffee roasting plants etc.
- the method is used for treating exhaust gas from a vehicular lean burn internal combustion engine, such as a diesel engine, a lean-burn gasoline engine or an engine powered by liquid petroleum gas or natural gas.
- a vehicular lean burn internal combustion engine such as a diesel engine, a lean-burn gasoline engine or an engine powered by liquid petroleum gas or natural gas.
- the invention provides an exhaust system for a vehicular lean burn internal combustion engine, which system comprising a conduit for carrying a flowing exhaust gas, a source of nitrogenous reductant, a zeolite catalyst containing at least one transition metal ⁇ disposed in a flow path of the exhaust gas and means for metering nitrogenous reductant into a flowing exhaust gas upstream of the zeolite catalyst, wherein the zeolite catalyst is a small pore zeolite containing a maximum ring size of eight tetrahedral atoms, wherein the at least one transition metal is selected from the group consisting of Cr, Mn, Fe 3 Co, Ce, Ni, Cu, Zn, Ga, Mo, Ru, Rh, Pd, Ag, In, Sn, Re, Ir and Pt.
- the small pore transition metal-containing zeolites for use in the exhaust system aspect of the present invention include any for use in the method according to the invention as described hereinabove.
- the zeolite catalyst is coated on a flow-through monolith substrate (i.e. a honeycomb monolithic catalyst support structure with many small, parallel channels running axially through the entire part) or filter monolith substrate such as a wall-flow filter etc., as described hereinabove.
- a flow-through monolith substrate i.e. a honeycomb monolithic catalyst support structure with many small, parallel channels running axially through the entire part
- filter monolith substrate such as a wall-flow filter etc., as described hereinabove.
- the zeolite catalyst is formed into an extruded-type catalyst.
- the system can include means, when in use, for controlling the metering means so that nitrogenous reductant is metered into the flowing exhaust gas only when it is determined that the zeolite catalyst is capable of catalysing NO x reduction at or above a desired efficiency, such as at above 100°C, above 15O 0 C or above 175°C.
- the determination by the control means can be assisted by one or more suitable sensor inputs indicative of a condition of the engine selected from the group consisting of: exhaust gas temperature, catalyst bed temperature, accelerator position, mass flow of exhaust gas in the system, manifold vacuum, ignition timing, engine speed, lambda value of the exhaust gas, the quantity of fuel injected in the engine, the position of the exhaust gas recirculation (EGR) valve and thereby the amount of EGR and boost pressure.
- suitable sensor inputs indicative of a condition of the engine selected from the group consisting of: exhaust gas temperature, catalyst bed temperature, accelerator position, mass flow of exhaust gas in the system, manifold vacuum, ignition timing, engine speed, lambda value of the exhaust gas, the quantity of fuel injected in the engine, the position of the exhaust gas recirculation (EGR) valve and thereby the amount of EGR and boost pressure.
- metering is controlled in response to the quantity of nitrogen oxides in the exhaust gas determined either directly (using a suitable NO x sensor) or indirectly, such as using pre-correlated look-up tables or maps - stored in the control means - correlating any one or more of the abovementioned inputs indicative of a condition of the engine with predicted NO x content of the exhaust gas.
- the control means can comprise a pre-programmed processor such as an electronic control unit (ECU).
- the metering of the nitrogenous reductant can be arranged such that 60% to 200% of theoretical ammonia is present in exhaust gas entering the SCR catalyst calculated at 1 :1 NH 3 /NO and 4:3 NH 3 /NO 2;
- an oxidation catalyst for oxidising nitrogen monoxide in the exhaust gas to nitrogen dioxide can be located upstream of a point of metering the nitrogenous reductant into the exhaust gas.
- the oxidation catalyst is adapted to yield a gas stream entering the SCR zeolite catalyst having a ratio of NO to NO 2 of from about 4:1 to about 1 :3 by volume, e.g. at an exhaust gas temperature at oxidation catalyst inlet of 250°C to 45O 0 C.
- the oxidation catalyst can include at least one platinum group metal (or some combination of these), such as platinum, palladium, or rhodium, coated on a flow-through monolith substrate.
- the at least one platinum group metal is platinum, palladium or a combination of both platinum and palladium.
- the platinum group metal can be supported on a high surface area washcoat component such as alumina, a zeolite such as an aluminosilicate zeolite, silica, non-zeolite silica alumina, ceria, zirconia, titania or a mixed or composite oxide containing both ceria and zirconia.
- a suitable filter substrate is located between the oxidation catalyst and the zeolite catalyst.
- Filter substrates can be selected from any of those mentioned above, e.g. wall flow filters.
- the filter is catalysed, e.g. with an oxidation catalyst of the kind discussed above, preferably the point of metering nitrogenous reductant is located between the filter and the zeolite catalyst.
- the means for metering nitrogenous reductant can be located between the oxidation catalyst and the filter. It will be appreciated that this arrangement is disclosed in WO 99/39809.
- the zeolite catalyst for use in the present invention is coated on a filter located downstream of the oxidation catalyst.
- the filter includes the zeolite catalyst for use in the present invention
- the point of metering the nitrogenous reductant is preferably located between the oxidation catalyst and the filter.
- control means meters nitrogenous reductant into the flowing exhaust gas . only when the exhaust gas temperature is at least 100°C, for example only when the exhaust gas temperature is from 150°C to 75O 0 C.
- a vehicular lean-burn engine comprising an exhaust system according to the present invention.
- the vehicular lean burn internal combustion engine can be a diesel engine, a lean-burn gasoline engine or an engine powered by liquid petroleum gas or natural gas.
- Figure 1 is a graph showing NO x conversion (at a gas hourly space velocity of 30,000 hr " l ) comparing transition metal-containing aluminosilicate catalysts with a transition metal- containing aluminophosphate/small pore zeolite catalyst after relatively moderate lean hydrothermal ageing performed on a laboratory reactor;
- Figure 2 is a graph showing N 2 O formation in the test shown in Figure 1;
- Figure 3 is a graph showing NO x conversion (at a gas hourly space velocity of 100,000 hr '1 ) comparing Cu/Beta zeolite and Cu/SAPO-34 catalysts with a transition metal-containing aluminophosphate/small pore zeolite catalyst after relatively moderate lean hydrothermal ageing performed on a laboratory reactor;
- Figure 4 is a graph showing NO x conversion (at a gas hourly space velocity of 30,000 hr " l ) comparing transition metal-containing aluminosilicate catalysts with a transition metal- containing aluminophosphate/small pore zeolite catalyst after relatively severe lean hydrothermal ageing performed on a laboratory reactor;
- Figure 5 is a graph showing NO x conversion for fresh Cu/Zeolite catalysts;
- Figure 6 is a graph showing NO x conversion for aged Cu/Zeolite catalysts
- Figure 7 is a graph showing N 2 O formation for fresh Cu/Zeolite catalysts of Figure 5;
- Figure 8 is a graph showing N 2 O formation for aged Cu/Zeolite catalysts of Figure 6;
- Figure 9 is a graph showing the effect of adding HC species to Cu/zeolite catalysts during NH 3 SCR at 300°C; . ⁇
- Figure 10 is a graph showing hydrocarbon breakthrough following addition of hydrocarbon species to Cu/zeolite catalysts during NH 3 SCR at 30O 0 C;
- Figure 11 is a graph showing the adsorption profiles of n-octane at 150 0 C flowing through the Cu zeolite catalysts;
- Figure 12 is a graph of the temperature programmed desorption (TPD) of HC species to Cu/zeolite catalysts after HC adsorption at 150 0 C;
- Figure 13 is a graph similar to Figure 6 comparing NO x conversion activity for aged Cu/Sigma-1, Cu-SAPO-34, Cu/SSZ-13 and Cu/Beta;
- Figure 14 is a graph similar to Figure 8 comparing N 2 O formation for the aged Cu/zeolite catalysts of Figure 13;
- Figure 15 is a graph similar to Figure 13 comparing NO x conversion activity for aged Cu/ZSM-34, Cu/SAPO-34, Cu/SSZ-13 and Cu/Beta catalysts;
- Figure 16 is a graph comparing the NO x conversion activity of fresh and aged Cu-SAPO-
- Figure 17 is a graph comparing the NO x conversion activity of fresh samples of Cu/SAPO-34 with a Cu/naturally occurring chabazite type material
- Figure 18 is a bar chart comparing the NO x conversion activity of fresh Cu/SAPO-34 with that of two fresh Cu/naturally occurring chabazite type materials at two temperature data points;
- Figure 19 is a bar chart comparing the NO x conversion activity of aged Cu/Beta, Cu/SAPO-34, Fe/SAPO-34 and Fe/SSZ-13 catalysts at two temperature data points;
- Figure 20 is a bar chart comparing the hydrocarbon inhibition effect of introducing n- octane into a feed gas for fresh Fe/Beta and Fe/SSZ-13 catalysts;
- Figure 21 is a graph showing hydrocarbon breakthrough following the introduction of n- octane in the experiment of Figure 20;
- Figure 22 is a bar chart comparing the effect on NO x conversion activity for a fresh
- Figure 23 is a schematic diagram of an embodiment of an exhaust system according to the present invention.
- FIG 23 is a schematic diagram of an embodiment of an exhaust system according to the present invention, wherein diesel engine 12 comprises an exhaust system 10 according to the present invention comprising an exhaust line 14 for conveying an exhaust gas from the engine to atmosphere via tailpipe 15.
- an exhaust line 14 for conveying an exhaust gas from the engine to atmosphere via tailpipe 15.
- a platinum or platinum/palladium NO oxidation catalyst 16 coated on a ceramic flow-through substrate monolith.
- a ceramic wall- flow filter 18 Located downstream of oxidation catalyst 16 in the exhaust system is a ceramic wall- flow filter 18.
- An iron/small pore zeolite SCR catalyst 20 also coated on a ceramic flow-through substrate monolith is disposed downstream of the wall-flow filter 18.
- An NH 3 oxidation cleanup or slip catalyst 21 is coated on a downstream end of the SCR catalyst monolith substrate.
- the NH 3 slip catalyst can be coated on a separate substrate located downstream of the SCR catalyst.
- Means (injector 22) is provided for introducing nitrogenous reductant fluid (urea 26) from reservoir 24 into exhaust gas carried in the exhaust line 14. Injector 22 is controlled using valve 28, which valve is in turn controlled by electronic control unit 30 (valve control represented by dotted line).
- Electronic control unit 30 receives closed loop feedback control input from a NO x sensor 32 located downstream of the SCR catalyst-
- the oxidation catalyst 16 passively oxidises NO to NO 2 , particulate matter is trapped on filter 18 and is combusted in NO 2.
- NO x emitted from the filter is reduced on the SCR catalyst 20 in the presence of ammonia derived from urea injected via injector 22. It is also understood that mixtures of NO and NO 2 in the total NO x content of the exhaust gas entering the SCR catalyst (about 1 :1) are desirable for NO x reduction on a SCR catalyst as they are more readily reduced to N 2 .
- the NH 3 slip catalyst 21 oxidises NH 3 that would otherwise be exhausted to atmosphere. A similar arrangement is described in WO 99/39809.
- Example 1 Method of making fresh 5wt% Fe/BetaBeta or SAPO-34 or 3wt% SSZ-13 zeolite catalyst
- Beta zeolite, SAPO-34 or SSZ-13 was NH 4 + ion exchanged in a solution of NH 4 NO 3 , then filtered. The resulting material was added to an aqueous solution of Fe(NOs) 3 with stirring. The slurry was filtered, then washed and dried. The procedure can be repeated to achieve a desired metal loading. The final product was calcined.
- SAPO-34, SSZ-13, Sigma-1, ZSM-34, Nu-3, ZSM-5 and Beta zeolites were NH 4 + ion exchanged in a solution of NH 4 NO 3 , then filtered. The resulting materials were added to an aqueous solution of Cu(NO 3 ) 2 with stirring. The slurry was filtered, then washed and dried. The procedure can be repeated to achieve a desired metal loading. The final product was calcined.
- Example 4 Severe Lean Hydrothermal Ageing
- the catalysts obtained by means of Examples 1 and 2 were severely lean hydrothermally ⁇ 5 aged at 900°C for 1 hour in 4.5% H 2 O/air mixture.
- the catalysts obtained by means of Examples 1 and 2 were severely lean hydrothermally 10 aged at 900°C for a period of 3 hours in 4.5% H 2 O/air mixture.
- Example 8 Results for experiments shown in Figures 1 to 4 inclusive
- Figure 1 compares the NO x reduction efficiencies of a Cu/SAPO-34 catalyst against a series of aluminosilicate zeolite supported transition metal catalysts (Cu/ZSM-5, Cu/Beta and Fe/Beta) after a mild aging.
- Cu/SAPO-34 has improved low temperature activity for SCR OfNO x with NH 3 .
- Figure 2 compares the N 2 O formation over the catalysts. It is clear that the Cu/SAPO-34 catalyst produced lower levels OfN 2 O compared to the other two Cu-containing catalysts.
- the Fe- containing catalyst also exhibits low N 2 O formation, but as shown in Figure 1 , the Fe catalyst is less active at lower temperatures.
- Figure 3 compares the NO x reduction efficiencies of a Cu/SAPO-34 catalyst against a Cu/Beta catalyst tested at a higher gas hourly space velocity.
- the Cu/SAPO-34 catalyst is significantly more active than the Cu-Beta catalyst at low reaction temperatures.
- Figure 4 shows the NO x reduction efficiencies of a Cu/SAPO-34 catalyst and a series of aluminosilicate zeolite supported transition metal catalysts (Cu/ZSM-5, Cu/Beta, and Fe/Beta) after severe lean hydrothermal aging.
- Cu/SAPO-34 catalyst has superior hydrothermal stability.
- N 2 O formation measured for the fresh and aged catalysts is shown in Figures 7 and 8, respectively.
- Figure 9 compares the effect of HC on Cu/zeolite catalysts where SAPO-34 and Nu-3 are used as examples of small pore zeolite materials.
- ZSM-5 and Beta zeolite are used as examples of a medium and large pore zeolite, respectively.
- Samples were exposed to different HC species (propene, n-octane and toluene) during NH 3 SCR reaction at 300°C.
- Figure 10 shows the corresponding HC breakthrough following HC addition.
- Figure 11 shows the adsorption profiles of n-octane at 150°C flowing through different
- Cu/SSZ-13, Cu/SAPO-34, Cu/Sigma-1 and Cu/Beta prepared according to Example 2 were aged in the manner described in Example 4 and tested according to Example 6.
- the results are shown in Figure 13, from which it can be seen that the NO x conversion activity of each of the severely lean hydrothermally aged Cu/SSZ-13, Cu/SAPO-34 and Cu/Sigma-1 samples is significantly better than that of the corresponding large-pore zeolite, Cu/Beta.
- Figure 14 it can be seen that Cu/Beta generates significantly more N 2 O than the Cu/small-pore zeolite catalysts.
- Cu/ZSM-34, Cu/SAPO-34, Cu/SSZ-13 and Cu/Beta prepared according to Example 2 were aged in the manner described in Example 3 and tested according to Example 6. The results are shown in Figure 15, from which it can be seen that the NO x conversion activity of each of the lean hydrothermally aged Cu/SSZ-13, Cu/SAPO-34 and Cu/ZSM-34 samples is significantly better than that of the corresponding large-pore zeolite, Cu/Beta.
- Cu/SAPO-34 and a Cu/naturally occurring chabazite type material having a SAR of about 4 were prepared according to Example 2 and the fresh materials were tested according to Example 6. The results are shown in Figure 17, from which it can be seen that the NO x conversion activity of the naturally occurring Cu/chabazite is significantly lower than Cu/SAPO- 34.
- Figure 18 is a bar chart comparing the NO x conversion activity of two fresh Cu/naturally occurring chabazite type materials prepared according to Example 2 at two temperature data points (200 0 C and 30O 0 C) 3 a first chabazite material having a SAR of about 4 and a second chabazite material of SAR about 7.
- Cu/SAPO-34 and Cu/Beta were prepared according to Example 2.
- Fe/SAPO-34 and Fe/SSZ-13 were prepared according to Example 1. The samples were aged according to
- Example 4 and the aged samples were tested according to Example 6.
- the NO x activity at the 350 0 C and 450°C data points is shown in Figure 19, from which it can be seen that the Cu/SAPO-34, Fe/SAPO-34 and Fe/SSZ-13 samples exhibit comparable or better performance than the Cu/Beta reference.
- Fe/SSZ-13 and Fe/Beta prepared according to Example 1 were tested fresh as described in Example 7, wherein n-octane (to replicate the effects of unburned diesel fuel in a,exhaust gas) was introduced at 8 minutes into the test.
- the results shown in Figure 20 compare the NOx conversion activity at 8 minutes into the test* but before n-octane was introduced into the feed gas (HC-) and 8 minutes after n-octane was introduced into the feed gas (HC+). It can be seen that the Fe/Beta activity dramatically reduces following n-octane introduction compared with Fe/SSZ-13. We believe that this effect results from coking of the catalyst.
- Fe/SSZ-13 prepared according to Example 1 was tested fresh, i.e. without ageing, in the manner described in Example 6. The test was then repeated using identical conditions, except in that the 350ppm NO was replaced with a mixture of 175ppm NO and 175ppm NO 2 , i.e. 350ppm total NO x . The results from both tests are shown in Figure 22, from which the significant improvement obtainable from increasing the NO 2 content OfNO x in the feed gas to 1 : 1 can be seen.
- the NOrNO 2 ratio can be adjusted by oxidising NO in an exhaust gas, e.g. of a diesel engine, using a suitable oxidation catalyst located upstream of the NH 3 -SCR catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
Claims
Priority Applications (35)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2685009A CA2685009C (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| DK08762186.8T DK2150328T5 (en) | 2007-04-26 | 2008-04-24 | SCR method and system with Cu / SAPO-34 zeolite catalyst |
| BRPI0810133-7A BRPI0810133B1 (en) | 2007-04-26 | 2008-04-24 | METHOD FOR CONVERTING NITROGEN OXIDES FROM A GAS TO NITROGEN, EXHAUST SYSTEM FOR A VEHICLE LOW-BURNING INTERNAL COMBUSTION ENGINE, AND APPARATUS |
| KR1020157010306A KR20150052335A (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| EP17189358.9A EP3278863B1 (en) | 2007-04-26 | 2008-04-24 | Transition metal/aei-zeolite scr catalyst |
| EP08762186.8A EP2150328B1 (en) | 2007-04-26 | 2008-04-24 | SCR METHOD AND SYSTEM USING Cu/SAPO-34 ZEOLITE CATALYST |
| JP2010504833A JP5777339B2 (en) | 2007-04-26 | 2008-04-24 | Transition metal / zeolite SCR catalyst |
| EP19206118.2A EP3626329B1 (en) | 2007-04-26 | 2008-04-24 | Exhaust system comprising copper/zsm-34 zeolite scr catalyst and method of converting nitrogen oxides |
| RU2009143682/05A RU2506989C2 (en) | 2007-04-26 | 2008-04-24 | Scr catalysts: transition metal/zeolite |
| MX2009011443A MX2009011443A (en) | 2007-04-26 | 2008-04-24 | CATALYZERS OF SELECTION CATALITIC REDUCTION OF TRANSITION METAL / ZEOLITE. |
| EP12177604.1A EP2517773B2 (en) | 2007-04-26 | 2008-04-24 | Copper/LEV-zeolite SCR catalyst |
| EP12177690.0A EP2517776B2 (en) | 2007-04-26 | 2008-04-24 | Transition metal/kfi-zeolite scr catalyst |
| EP12177705.6A EP2517778B2 (en) | 2007-04-26 | 2008-04-24 | Transition metal/aei-zeolite scr catalyst |
| KR1020167033642A KR101965943B1 (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| KR1020187011116A KR20180043406A (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| MX2014005893A MX377321B (en) | 2007-04-26 | 2008-04-24 | TRANSITION METAL/ZEOLITE SELECTIVE CATALYTIC REDUCTION CATALYSTS. |
| EP21204033.1A EP3981502B8 (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| US12/597,707 US20100290963A1 (en) | 2007-04-26 | 2008-04-24 | Transition metal / zeolite scr catalysts |
| KR1020197000095A KR102089480B1 (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| EP25161380.8A EP4578532A2 (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| EP17200920.1A EP3300791B1 (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
| CN2008800217622A CN101730575B (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite SCR catalyst |
| US13/164,150 US8603432B2 (en) | 2007-04-26 | 2011-06-20 | Transition metal/zeolite SCR catalysts |
| US13/567,705 US8906820B2 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite SCR catalysts |
| US13/567,698 US20120301379A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
| US13/567,692 US20120301378A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
| US13/567,703 US20120301380A1 (en) | 2007-04-26 | 2012-08-06 | Transition metal/zeolite scr catalysts |
| US14/552,161 US20150078968A1 (en) | 2007-04-26 | 2014-11-24 | Transition metal/zeolite scr catalysts |
| US14/587,709 US20150118115A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
| US14/587,793 US20150110682A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
| US14/587,653 US20150118121A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
| US14/587,613 US20150118114A1 (en) | 2007-04-26 | 2014-12-31 | Transition metal/zeolite scr catalysts |
| US15/252,376 US20160367939A1 (en) | 2007-04-26 | 2016-08-31 | Transition metal/zeolite scr catalysts |
| US15/991,565 US11478748B2 (en) | 2007-04-26 | 2018-05-29 | Transition metal/zeolite SCR catalysts |
| US17/931,415 US12064727B2 (en) | 2007-04-26 | 2022-09-12 | Transition metal/zeolite SCR catalysts |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GBPCT/GB2007/050216 | 2007-04-26 | ||
| GBPCT/GB2007/050216 | 2007-04-26 |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| GBPCT/GB2007/050216 Continuation | 2007-04-26 | 2007-04-26 |
Related Child Applications (4)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US10/597,707 A-371-Of-International US8277223B2 (en) | 2004-02-10 | 2005-01-31 | External defibrillator training apparatus and method |
| US12/597,707 A-371-Of-International US20100290963A1 (en) | 2007-04-26 | 2008-04-24 | Transition metal / zeolite scr catalysts |
| US98759311A Continuation | 2007-04-26 | 2011-01-10 | |
| US13/164,150 Continuation US8603432B2 (en) | 2007-04-26 | 2011-06-20 | Transition metal/zeolite SCR catalysts |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2008132452A2 true WO2008132452A2 (en) | 2008-11-06 |
| WO2008132452A3 WO2008132452A3 (en) | 2009-02-26 |
Family
ID=38814668
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2008/001451 Ceased WO2008132452A2 (en) | 2007-04-26 | 2008-04-24 | Transition metal/zeolite scr catalysts |
Country Status (14)
| Country | Link |
|---|---|
| US (14) | US20100290963A1 (en) |
| EP (13) | EP2517775B1 (en) |
| JP (5) | JP5777339B2 (en) |
| KR (4) | KR101589760B1 (en) |
| CN (3) | CN102974391A (en) |
| BR (1) | BRPI0810133B1 (en) |
| CA (2) | CA2685009C (en) |
| DK (7) | DK2517776T3 (en) |
| ES (1) | ES3031820T3 (en) |
| MX (2) | MX377321B (en) |
| MY (1) | MY180938A (en) |
| PL (1) | PL3981502T3 (en) |
| RU (1) | RU2506989C2 (en) |
| WO (1) | WO2008132452A2 (en) |
Cited By (147)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009099937A1 (en) * | 2008-01-31 | 2009-08-13 | Basf Catalysts Llc | Catalysts, systems and methods utilizing non-zeolitic metal-containing molecular sieves having the cha crystal structure |
| US7601662B2 (en) | 2007-02-27 | 2009-10-13 | Basf Catalysts Llc | Copper CHA zeolite catalysts |
| WO2009135588A1 (en) * | 2008-05-07 | 2009-11-12 | Umicore Ag & Co. Kg | Method for decreasing nitrogen oxides in hydrocarbon-containing exhaust gases using an scr catalyst based on a molecular sieve |
| WO2009141324A1 (en) * | 2008-05-21 | 2009-11-26 | Basf Se | Process for the direct synthesis of cu containing zeolites having cha structure |
| WO2010043891A1 (en) | 2008-10-15 | 2010-04-22 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
| WO2010097638A1 (en) | 2009-02-26 | 2010-09-02 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
| WO2010121257A1 (en) | 2009-04-17 | 2010-10-21 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| EP2269733A1 (en) | 2009-06-08 | 2011-01-05 | Basf Se | Process for the direct synthesis of cu containing silicoaluminophosphate (cu-sapo-34) |
| US20110011067A1 (en) * | 2009-07-14 | 2011-01-20 | Gm Global Technology Operations, Inc. | Ash Filter, Exhaust Gas Treatment System Incorporating the Same and Method of Using the Same |
| DE102010027883A1 (en) | 2009-04-17 | 2011-03-31 | Johnson Matthey Public Ltd., Co. | Process for using a catalyst with copper and a small pore molecular sieve in a chemical process |
| JP2011067814A (en) * | 2009-08-27 | 2011-04-07 | Tosoh Corp | Highly heat-resistant aqueous scr catalyst and manufacturing method thereof |
| WO2011045252A1 (en) | 2009-10-14 | 2011-04-21 | Basf Se | Copper containing levyne molecular sieve for selective reduction of nox |
| EP2325143A2 (en) | 2009-11-24 | 2011-05-25 | Basf Se | Process for the preparation of zeolites having B-CHA structure |
| WO2011064666A2 (en) | 2009-11-30 | 2011-06-03 | Johnson Matthey Public Limited Company | Catalysts for treating transient nox emissions |
| WO2011064186A1 (en) | 2009-11-24 | 2011-06-03 | Basf Se | Process for the preparation of zeolites having cha structure |
| WO2011073390A2 (en) | 2009-12-18 | 2011-06-23 | Basf Corporation | Process for preparation of copper containing molecular sieves with the cha structure, catalysts, systems and methods |
| WO2011073398A2 (en) | 2009-12-18 | 2011-06-23 | Basf Corporation | Process of direct copper exchange into na+-form of chabazite molecular sieve, and catalysts, systems and methods |
| JP2011125846A (en) * | 2009-11-19 | 2011-06-30 | Ibiden Co Ltd | Honeycomb structure and apparatus for cleaning exhaust gas |
| WO2011077168A1 (en) | 2009-12-24 | 2011-06-30 | Johnson Matthey Plc | Exhaust system for a vehicular positive ignition internal combustion engine |
| JP2011125852A (en) * | 2009-11-19 | 2011-06-30 | Ibiden Co Ltd | Honeycomb structure and exhaust gas cleaning apparatus |
| WO2011092521A1 (en) * | 2010-02-01 | 2011-08-04 | Johnson Matthey Plc | Extruded scr filter |
| DE102010007626A1 (en) | 2010-02-11 | 2011-08-11 | Süd-Chemie AG, 80333 | Copper-containing zeolite of the KFI type and use in SCR catalysis |
| US7998423B2 (en) | 2007-02-27 | 2011-08-16 | Basf Corporation | SCR on low thermal mass filter substrates |
| WO2011110919A1 (en) | 2010-03-08 | 2011-09-15 | Johnson Matthey Public Limited Company | Improvements in control of emissions |
| WO2011073123A3 (en) * | 2009-12-18 | 2011-10-20 | Basf Se | Ferrous zeolite, method for producing ferrous zeolites, and method for catalytically reducing nitrous oxides |
| EP2377613A3 (en) * | 2009-12-18 | 2011-11-02 | JGC Catalysts and Chemicals Ltd. | Metal-supported crystalline silica aluminophosphate catalyst and process for producing the same |
| WO2011151711A1 (en) | 2010-06-02 | 2011-12-08 | Johnson Matthey Public Limited Company | Diesel particulate filter |
| US20110305614A1 (en) * | 2010-04-08 | 2011-12-15 | Basf Corporation | Cu-CHA/Fe-MFI Mixed Zeolite Catalyst And Process For The Treatment Of NOx In Gas Streams |
| US20120014867A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx |
| WO2012007873A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| US20120014866A1 (en) * | 2010-07-15 | 2012-01-19 | Ivor Bull | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx |
| US20120014865A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx |
| WO2012007874A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| US20120020875A1 (en) * | 2009-01-22 | 2012-01-26 | Mitsubishi Plastics, Inc. | Catalyst for reducing nitrogen oxides and method for producing the same |
| KR20120008521A (en) * | 2009-04-03 | 2012-01-30 | 바스프 코포레이션 | Emission Treatment System by Ammonia Generation and Scr Catalyst |
| US20120039759A1 (en) * | 2010-08-13 | 2012-02-16 | Ut-Battelle, Llc | Zeolite-based scr catalysts and their use in diesel engine emission treatment |
| EP2463028A1 (en) | 2010-12-11 | 2012-06-13 | Umicore Ag & Co. Kg | Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic removal of nitrogen oxides |
| DE102011089371A1 (en) | 2010-12-21 | 2012-06-21 | Johnson Matthey Plc | Oxidation catalyst for a lean-burn internal combustion engine |
| WO2012090922A1 (en) | 2010-12-27 | 2012-07-05 | 三菱樹脂株式会社 | Catalyst for nitrogen oxide removal |
| DE102012203461A1 (en) | 2011-03-04 | 2012-09-06 | Johnson Matthey Public Ltd. Co. | CATALYST AND METHOD OF MANUFACTURE |
| CN102671691A (en) * | 2012-05-28 | 2012-09-19 | 四川君和环保工程有限公司 | Low-temperature SCR (Selective Catalytic Reduction) denitrification catalyst, as well as preparation method and application thereof |
| US20120251422A1 (en) * | 2011-04-04 | 2012-10-04 | Pq Corporation | Fe-SAPO-34 CATALYST AND METHODS OF MAKING AND USING THE SAME |
| WO2012158239A1 (en) | 2011-02-28 | 2012-11-22 | Johnson Matthey Public Limited Company | High-temperature scr catalyst |
| JP2013506787A (en) * | 2009-10-02 | 2013-02-28 | ビー・エイ・エス・エフ、コーポレーション | Catalyst used for four-cycle diesel and method of using the same |
| WO2013030584A1 (en) | 2011-08-31 | 2013-03-07 | Johnson Matthey Public Limited Company | Method and system using a filter for treating exhaust gas having particulate matter |
| US20130089483A1 (en) * | 2011-10-05 | 2013-04-11 | Basf Se | Cu-CHA/Fe-BEA Mixed Zeolite Catalyst And Process For The Treatment Of NOx In Gas Streams |
| DE102012218254A1 (en) | 2011-10-06 | 2013-04-11 | Johnson Matthey Japan Godo Kaisha | Oxidation catalyst for a treatment of exhaust gas of an internal combustion engine |
| WO2013050964A1 (en) * | 2011-10-05 | 2013-04-11 | Basf Se | Cu-CHA/Fe-BEA MIXED ZEOLITE CATALYST AND PROCESS FOR THE TREATMENT OF NOX IN GAS STREAMS |
| WO2013088128A1 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn internal combustion engine including scr catalyst |
| WO2013088133A1 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Catalysed substrate monolith |
| WO2013088129A2 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Substrate monolith comprising scr catalyst |
| WO2013088132A1 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst |
| WO2013114172A1 (en) * | 2012-01-31 | 2013-08-08 | Johnson Matthey Public Limited Company | Catalyst blends |
| WO2013126619A1 (en) * | 2012-02-24 | 2013-08-29 | Ut-Battelle, Llc | Hydrothermally stable, low-temperature nox reduction nh3-scr catalyst |
| WO2013159828A1 (en) | 2012-04-27 | 2013-10-31 | Haldor Topsøe A/S | Process for the direct synthesis of cu-sapo-34 |
| US8603432B2 (en) | 2007-04-26 | 2013-12-10 | Paul Joseph Andersen | Transition metal/zeolite SCR catalysts |
| US8617502B2 (en) | 2011-02-07 | 2013-12-31 | Cristal Usa Inc. | Ce containing, V-free mobile denox catalyst |
| RU2506999C2 (en) * | 2009-09-05 | 2014-02-20 | Джонсон Мэтти Каталистс (Джермани) Гмбх | Method of obtaining scr-active zeolite catalyst and scr-active zeolite catalyst |
| EP2555853A4 (en) * | 2010-03-11 | 2014-04-16 | Johnson Matthey Plc | OFFSETTED MOLECULAR SIEVE SUPPORTS FOR SELECTIVE CATALYTIC REDUCTION OF NOx &xA; |
| DE102013223839A1 (en) | 2012-11-21 | 2014-05-22 | Johnson Matthey Public Limited Company | Catalyzed soot filter for treating the exhaust gas of a compression ignition engine |
| WO2014141200A1 (en) * | 2013-03-15 | 2014-09-18 | Johnson Matthey Public Limited Company | Catalyst for treating exhaust gas |
| DE102013005749A1 (en) | 2013-04-05 | 2014-10-09 | Umicore Ag & Co. Kg | CuCHA material for SCR catalysis |
| DE102014105736A1 (en) | 2013-04-24 | 2014-10-30 | Johnson Matthey Public Limited Company | A spark-ignition engine and exhaust system comprising a catalyzed zoned filter substrate |
| DE102014106944A1 (en) | 2013-05-17 | 2014-11-20 | Johnson Matthey Public Limited Company | Oxidation catalyst for a compression ignition engine |
| EP2555866A4 (en) * | 2010-04-08 | 2014-12-10 | Basf Se | CU-CHA / FE-MFI MIXED ZEOLITE CATALYST AND METHOD FOR THE SUCCESS OF NOX PROCESSING IN GAS STREAMS |
| WO2014199945A1 (en) | 2013-06-14 | 2014-12-18 | 東ソー株式会社 | Lev-type zeolite and production method therefor |
| WO2015018815A1 (en) * | 2013-08-09 | 2015-02-12 | Basf Se | Process for the oxygen free conversion of methane to ethylene on zeolite catalysts |
| US8956992B2 (en) | 2011-10-27 | 2015-02-17 | GM Global Technology Operations LLC | SCR catalysts preparation methods |
| US8992869B2 (en) | 2012-12-20 | 2015-03-31 | Caterpillar Inc. | Ammonia oxidation catalyst system |
| CN104520548A (en) * | 2012-04-27 | 2015-04-15 | 赫多特普索化工设备公司 | Method and system for purifying exhaust gases from internal combustion engines |
| DE102014117672A1 (en) | 2013-12-02 | 2015-06-03 | Johnson Matthey Public Limited Company | WALL CURRENT FILTER CONTAINING A CATALYTIC WASHCOAT |
| WO2015084834A1 (en) * | 2013-12-02 | 2015-06-11 | Johnson Matthey Public Limited Company | Synthesis of aei zeolite |
| GB2522977A (en) * | 2013-12-06 | 2015-08-12 | Johnson Matthey Plc | Passive NOx adsorber |
| US20150231617A1 (en) * | 2014-02-19 | 2015-08-20 | Ford Global Technologies, Llc | Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING |
| US20150231620A1 (en) * | 2014-02-19 | 2015-08-20 | Ford Global Technologies, Llc | IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING |
| US9138731B2 (en) | 2011-08-03 | 2015-09-22 | Johnson Matthey Public Limited Company | Extruded honeycomb catalyst |
| US20150290632A1 (en) * | 2014-04-09 | 2015-10-15 | Ford Global Technologies, Llc | IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION |
| EP2593212B1 (en) * | 2010-07-15 | 2015-12-16 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| GB2527398A (en) * | 2014-03-27 | 2015-12-23 | Johnson Matthey Plc | SCR method for reducing oxides of nitrogen and method for producing a catalyst for such method |
| EP2985068A1 (en) | 2014-08-13 | 2016-02-17 | Umicore AG & Co. KG | Catalyst system for the reduction of nitrogen oxides |
| US9327239B2 (en) | 2013-04-05 | 2016-05-03 | Johnson Matthey Public Limited Company | Filter substrate comprising three-way catalyst |
| RU2584748C2 (en) * | 2010-09-13 | 2016-05-20 | Умикоре Аг Унд Ко. Кг | Catalyst for removing nitrogen oxides from exhaust gases of diesel engines |
| US9352279B2 (en) | 2012-04-24 | 2016-05-31 | Johnson Matthey Public Limited Company | Filter substrate comprising three-way catalyst |
| US9403157B2 (en) | 2013-04-29 | 2016-08-02 | Ford Global Technologies, Llc | Three-way catalyst comprising mixture of nickel and copper |
| DE102016102527A1 (en) | 2015-02-16 | 2016-08-18 | Johnson Matthey Public Limited Company | Catalyst with stable nitrogen monoxide (NO) oxidation performance |
| GB2538877A (en) * | 2014-12-08 | 2016-11-30 | Johnson Matthey Plc | Passive NOx adsorber |
| DE102016111766A1 (en) | 2015-06-28 | 2016-12-29 | Johnson Matthey Public Limited Company | CATALYTIC WALL CURRENT FILTER WITH A MEMBRANE |
| RU2608616C2 (en) * | 2011-10-24 | 2017-01-23 | Хальдор Топсеэ А/С | Catalyst composition and method for use in selective catalytic reduction of nitrogen oxides |
| US9630146B2 (en) | 2013-06-03 | 2017-04-25 | Ford Global Technologies, Llc | Particulate filter containing a nickel-copper catalyst |
| US9802182B2 (en) | 2013-03-13 | 2017-10-31 | Basf Corporation | Stabilized metal-exchanged SAPO material |
| US20170333883A1 (en) * | 2014-10-30 | 2017-11-23 | Basf Corporation | Mixed metal large crystal molecular sieve catalyst compositions, catalytic articles, systems and methods |
| WO2017207969A1 (en) * | 2016-05-31 | 2017-12-07 | Johnson Matthey Public Limited Company | Method and exhaust system for treating nox in exhaust gas from stationary emission sources |
| EP3281698A1 (en) | 2016-08-11 | 2018-02-14 | Umicore AG & Co. KG | Scr active material |
| WO2018029329A1 (en) | 2016-08-11 | 2018-02-15 | Umicore Ag & Co. Kg | Scr-active material having enhanced thermal stability |
| WO2018054929A1 (en) | 2016-09-20 | 2018-03-29 | Umicore Ag & Co. Kg | Diesel particle filter |
| WO2018069199A1 (en) | 2016-10-10 | 2018-04-19 | Umicore Ag & Co. Kg | Catalytic converter arrangement |
| WO2018081682A1 (en) * | 2016-10-31 | 2018-05-03 | Johnson Matthey Public Limited Company | Lta catalysts having extra-framework iron and/or manganese for treating exhaust gas |
| WO2018078559A1 (en) | 2016-10-28 | 2018-05-03 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter with partial surface coating |
| WO2018100368A1 (en) * | 2016-12-01 | 2018-06-07 | Johnson Matthey Public Limited Company | METHOD OF EXTENDING THE USEFUL LIFE OF AN AGED SCR CATALYST BED IN AN EXHAUST SYSTEM OF A STATIONARY SOURCE OF NOx |
| US10001053B2 (en) | 2008-06-27 | 2018-06-19 | Umicore Ag & Co. Kg | Method and device for the purification of diesel exhaust gases |
| EP2352912B1 (en) | 2008-11-03 | 2018-07-04 | BASF Corporation | Integrated scr and amox catalyst systems |
| EP3357558A1 (en) | 2017-02-03 | 2018-08-08 | Umicore Ag & Co. Kg | Catalyst for cleaning diesel engine exhaust gases |
| DE102018204690A1 (en) | 2017-03-31 | 2018-10-04 | Johnson Matthey Catalysts (Germany) Gmbh | Selective catalytic reduction catalyst |
| DE102018204802A1 (en) | 2017-03-31 | 2018-10-04 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Catalyst composition for selective catalytic reduction |
| US10092897B2 (en) * | 2016-04-20 | 2018-10-09 | Ford Global Technologies, Llc | Catalyst trap |
| US10105691B2 (en) | 2016-03-31 | 2018-10-23 | Ford Global Technologies, Llc | Multiple zeolite hydrocarbon traps |
| CN109250729A (en) * | 2017-07-12 | 2019-01-22 | 中国科学院大连化学物理研究所 | The molecular sieve and application of Cu-SAPO-34 Zeolite synthesis method and synthesis |
| EP3450015A1 (en) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Palladium-zeolite-based passive nitrogen oxide adsorber catalyst for exhaust gas treatment |
| EP3449999A1 (en) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Passive nitric oxide adsorber |
| EP3450016A1 (en) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Palladium-zeolite-based passive nitrogen oxide adsorber catalyst for exhaust gas treatment |
| DE102018121503A1 (en) | 2017-09-05 | 2019-03-07 | Umicore Ag & Co. Kg | Exhaust gas purification with NO oxidation catalyst and SCR-active particle filter |
| WO2019042884A1 (en) | 2017-08-31 | 2019-03-07 | Umicore Ag & Co. Kg | USE OF A PALLADIUM PLATINUM ZEOLITE-BASED CATALYST AS A PASSIVE STAIN OXIDE ADSORBER FOR EMISSION CONTROL |
| WO2019042883A1 (en) | 2017-08-31 | 2019-03-07 | Umicore Ag & Co. Kg | PALLADIUM ZEOLITE BASED PASSIVE STAINOXIDE ADSORBER CATALYST FOR EXHAUST PURIFICATION |
| US10226762B1 (en) * | 2011-06-17 | 2019-03-12 | Johnson Matthey Public Limited Company | Alumina binders for SCR catalysts |
| WO2019077111A1 (en) | 2017-10-20 | 2019-04-25 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber catalyst |
| WO2019134958A1 (en) | 2018-01-05 | 2019-07-11 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
| DE102018100834A1 (en) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Process for producing an SCR catalyst |
| DE102018100833A1 (en) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Process for producing an SCR catalyst |
| WO2019145198A1 (en) | 2018-01-23 | 2019-08-01 | Umicore Ag & Co. Kg | Scr catalyst and exhaust gas cleaning system |
| EP3411145A4 (en) * | 2016-02-03 | 2019-10-02 | BASF Corporation | CHABAZITE CATALYST FOR EXCHANGE OF COPPER AND IRON |
| US10456746B2 (en) | 2018-02-12 | 2019-10-29 | GM Global Technology Operations LLC | Selective catalytic reduction filter for reducing nitrous oxide formation and methods of using the same |
| RU2704617C2 (en) * | 2012-10-19 | 2019-10-30 | Басф Корпорейшн | 8-ring molecular sieve with small pores as high-temperature scr catalyst |
| EP3613503A1 (en) | 2018-08-22 | 2020-02-26 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
| EP3616792A1 (en) | 2018-08-28 | 2020-03-04 | Umicore Ag & Co. Kg | Nitrogen oxide storage catalyst |
| US10583424B2 (en) | 2008-11-06 | 2020-03-10 | Basf Corporation | Chabazite zeolite catalysts having low silica to alumina ratios |
| WO2020089043A1 (en) | 2018-11-02 | 2020-05-07 | Basf Corporation | Exhaust treatment system for a lean burn engine |
| WO2020099253A1 (en) | 2018-11-16 | 2020-05-22 | Umicore Ag & Co. Kg | Low temperature nitrogen oxide adsorber |
| WO2020109810A1 (en) | 2018-11-30 | 2020-06-04 | Johnson Matthey Public Limited Company | Enhanced introduction of extra-frame work metal into aluminosilicate zeolites |
| WO2020144195A1 (en) | 2019-01-08 | 2020-07-16 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber having oxidation-catalytically active function |
| WO2020148186A1 (en) | 2019-01-14 | 2020-07-23 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Iron-loaded small pore aluminosilicate cha zeolites and method of making metal loaded small pore aluminosilicate cha zeolites |
| EP3695902A1 (en) | 2019-02-18 | 2020-08-19 | Umicore Ag & Co. Kg | Catalyst for reducing nitrogen oxides |
| EP3753625A1 (en) | 2013-04-24 | 2020-12-23 | Johnson Matthey Public Limited Company | Filter substrate comprising zone-coated catalyst washcoat |
| EP3791955A1 (en) | 2019-09-10 | 2021-03-17 | Umicore Ag & Co. Kg | Scr-catalytic material containing copper-zeolite and copper/alumina, exhaust gas treatment process with said material and method for producing said material |
| EP3812034A1 (en) | 2019-10-24 | 2021-04-28 | Dinex A/S | Durable copper-scr catalyst |
| US11014077B2 (en) | 2016-05-03 | 2021-05-25 | Umicore Ag & Co. Kg | Active SCR catalyst |
| EP3824988A1 (en) | 2019-11-20 | 2021-05-26 | UMICORE AG & Co. KG | Catalyst for reducing nitrogen oxides |
| EP3307434B1 (en) | 2015-04-09 | 2021-06-09 | PQ Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox |
| EP3885040A1 (en) | 2020-03-24 | 2021-09-29 | UMICORE AG & Co. KG | Ammonia oxidation catalyst |
| EP3978100A1 (en) | 2020-09-30 | 2022-04-06 | UMICORE AG & Co. KG | Bismuth-containing zoned diesel oxidation catalyst |
| WO2022069465A1 (en) | 2020-09-30 | 2022-04-07 | Umicore Ag & Co. Kg | Bismut containing dieseloxidation catalyst |
| WO2022079141A1 (en) | 2020-10-14 | 2022-04-21 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
| RU2771714C2 (en) * | 2013-03-15 | 2022-05-11 | Джонсон Мэтти Паблик Лимитед Компани | Catalyst for exhaust gas processing |
| EP4063003A1 (en) | 2021-03-23 | 2022-09-28 | UMICORE AG & Co. KG | Filter for the aftertreatment of exhaust gases of internal combustion engines |
| WO2023067134A1 (en) | 2021-10-22 | 2023-04-27 | Johnson Matthey Catalysts (Germany) Gmbh | Method and catalyst article |
| DE102022130469A1 (en) | 2022-11-17 | 2024-05-23 | Umicore Ag & Co. Kg | Method and device for producing a substrate for an exhaust gas aftertreatment device |
| DE102023117464A1 (en) | 2023-07-03 | 2025-01-09 | Umicore Ag & Co. Kg | Method and device for producing a substrate for an exhaust gas aftertreatment device |
| WO2025104217A1 (en) | 2023-11-17 | 2025-05-22 | Umicore Ag & Co. Kg | Catalytic particulate filter |
Families Citing this family (137)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5549839B2 (en) * | 2008-08-19 | 2014-07-16 | 東ソー株式会社 | High heat-resistant β-type zeolite and SCR catalyst using the same |
| WO2011042990A1 (en) * | 2009-10-09 | 2011-04-14 | イビデン株式会社 | Honeycomb filter |
| WO2011061839A1 (en) * | 2009-11-19 | 2011-05-26 | イビデン株式会社 | Honeycomb structure and exhaust gas purification apparatus |
| WO2011061841A1 (en) * | 2009-11-19 | 2011-05-26 | イビデン株式会社 | Honeycomb structure and exhaust gas purification apparatus |
| CN102666430B (en) * | 2009-11-19 | 2015-04-29 | 揖斐电株式会社 | Honeycomb structure and exhaust gas purification apparatus |
| JP5573453B2 (en) * | 2010-07-21 | 2014-08-20 | 三菱樹脂株式会社 | Nitrogen oxide purification catalyst and method for producing the same |
| JP5756714B2 (en) * | 2010-09-02 | 2015-07-29 | イビデン株式会社 | Silicoaluminophosphate, honeycomb structure and exhaust gas purification device |
| BR112013008621A2 (en) * | 2010-10-12 | 2016-06-21 | Basf Se | use of a zeolite catalyst, and process to reduce the nitrogen oxide content in a gas |
| US8568677B2 (en) | 2010-10-12 | 2013-10-29 | Basf Se | P/S-TM-comprising zeolites for decomposition of N2O |
| CN102451749A (en) * | 2010-10-27 | 2012-05-16 | 中国科学院大连化学物理研究所 | Catalyst for preparing olefin by converting methanol and preparation and application thereof |
| WO2012075400A1 (en) * | 2010-12-02 | 2012-06-07 | Johnson Matthey Public Limited Company | Zeolite catalyst containing metal |
| EP2465606A1 (en) * | 2010-12-16 | 2012-06-20 | Umicore Ag & Co. Kg | Zeolith-based catalytic converter with improved catalytic activity for reducing nitrogen oxides |
| US9074530B2 (en) * | 2011-01-13 | 2015-07-07 | General Electric Company | Stoichiometric exhaust gas recirculation and related combustion control |
| EP2680965A2 (en) | 2011-03-03 | 2014-01-08 | Umicore AG & Co. KG | Catalytically active material and catalytic converter for the selective catalytic reduction of nitrogen oxides |
| EP2495032A1 (en) * | 2011-03-03 | 2012-09-05 | Umicore Ag & Co. Kg | SCR catalyst with improved hydrocarbon resistance |
| JP2012215166A (en) * | 2011-03-29 | 2012-11-08 | Ibiden Co Ltd | Exhaust emission control system and method |
| US8101146B2 (en) * | 2011-04-08 | 2012-01-24 | Johnson Matthey Public Limited Company | Catalysts for the reduction of ammonia emission from rich-burn exhaust |
| WO2012166833A1 (en) | 2011-05-31 | 2012-12-06 | Johnson Matthey Public Limited Company | Dual function catalytic filter |
| US9174849B2 (en) * | 2011-08-25 | 2015-11-03 | Basf Corporation | Molecular sieve precursors and synthesis of molecular sieves |
| GB2493987B (en) * | 2011-08-26 | 2014-03-19 | Jc Bamford Excavators Ltd | An engine system |
| JP6196981B2 (en) * | 2011-12-01 | 2017-09-13 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Exhaust gas treatment catalyst |
| CN108249454A (en) * | 2011-12-02 | 2018-07-06 | Pq公司 | Stabilized microporous crystalline material, method for its preparation and use for selective catalytic reduction of NOx |
| US9981256B2 (en) | 2011-12-02 | 2018-05-29 | Pq Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of NOx |
| US9101877B2 (en) * | 2012-02-13 | 2015-08-11 | Siemens Energy, Inc. | Selective catalytic reduction system and process for control of NOx emissions in a sulfur-containing gas stream |
| JP6163715B2 (en) * | 2012-03-30 | 2017-07-19 | 三菱ケミカル株式会社 | Zeolite membrane composite |
| RU2634899C2 (en) * | 2012-04-11 | 2017-11-08 | Джонсон Мэтти Паблик Лимитед Компани | Zeolite catalysts containing metals |
| BR112015002829B1 (en) * | 2012-08-17 | 2020-03-31 | Johnson Matthey Public Limited Company | CATALYST COMPOSITION, SYSTEM AND METHOD FOR TREATING EXHAUST GAS, COATING AND CATALYTIC ARTICLE |
| CN105828935A (en) | 2012-08-24 | 2016-08-03 | 克里斯特尔美国有限公司 | Catalyst support material, catalyst, its preparation method and use |
| DE102012018629A1 (en) * | 2012-09-21 | 2014-03-27 | Clariant International Ltd. | Process for purifying exhaust gas and regenerating an oxidation catalyst |
| CN104797337B (en) * | 2012-09-28 | 2018-04-20 | 太平洋工业发展公司 | It is used as the alumina silicate zeolite-type material and its manufacture method of catalyst in selective catalytic reduction |
| RU2509599C1 (en) * | 2012-10-01 | 2014-03-20 | Федеральное государственное унитарное предприятие "Государственный научный центр "Научно-исследовательский институт органических полупродуктов и красителей" (ФГУП "ГНЦ "НИОПИК") | Method of removing nitrogen oxides from air |
| EP2905075B1 (en) * | 2012-10-03 | 2019-04-03 | Ibiden Co., Ltd. | Honeycomb structure |
| DE112013005070B4 (en) * | 2012-10-18 | 2023-10-12 | Johnson Matthey Public Limited Company | SYSTEM FOR TREATING EXHAUST GASES FROM AN ENGINE CONTAINING NOx |
| WO2014062944A1 (en) * | 2012-10-19 | 2014-04-24 | Basf Corporation | Mixed metal 8-ring small pore molecular sieve catalyst compositions, catalytic articles, systems and methods |
| EP2908944B1 (en) * | 2012-10-19 | 2025-03-19 | BASF Mobile Emissions Catalysts LLC | 8-ring small pore molecular sieve with promoter to improve low temperature performance |
| CN105050710B (en) | 2013-03-14 | 2018-05-18 | 庄信万丰股份有限公司 | As for handling the aluminosilicate of the catalyst of exhaust gas or silicoaluminophosphamolecular molecular sieve/manganese octahedron molecular screen |
| MX2015011155A (en) | 2013-03-14 | 2015-11-09 | Basf Corp | Selective catalytic reduction catalyst systems. |
| EP2980050B1 (en) * | 2013-03-29 | 2019-10-23 | NGK Insulators, Ltd. | Aluminophosphate-metal oxide bonded body and production method for same |
| RU2660737C2 (en) * | 2013-05-31 | 2018-07-09 | Джонсон Мэтти Паблик Лимитед Компани | Catalysed filter for treating exhaust gas |
| RU2629762C2 (en) * | 2013-05-31 | 2017-09-01 | Джонсон Мэтти Паблик Лимитед Компани | Catalytic filter for exhaust gas processing |
| CN105555403B (en) * | 2013-07-30 | 2019-01-22 | 庄信万丰股份有限公司 | Ammonia Escape Catalyst |
| JP6245895B2 (en) * | 2013-08-27 | 2017-12-13 | イビデン株式会社 | Honeycomb catalyst and exhaust gas purification device |
| JP6204751B2 (en) * | 2013-08-27 | 2017-09-27 | イビデン株式会社 | Honeycomb catalyst and exhaust gas purification device |
| JP6121542B2 (en) | 2013-08-30 | 2017-04-26 | 大塚化学株式会社 | Exhaust gas purification filter and exhaust gas purification device |
| US9782761B2 (en) | 2013-10-03 | 2017-10-10 | Ford Global Technologies, Llc | Selective catalytic reduction catalyst |
| RU2764725C2 (en) | 2013-10-31 | 2022-01-19 | Джонсон Мэтти Паблик Лимитед Компани | Synthesis of an aei-type zeolite |
| US9283548B2 (en) * | 2013-11-19 | 2016-03-15 | Toyota Motor Engineering & Manufacturing North America, Inc. | Ceria-supported metal catalysts for the selective reduction of NOx |
| KR20160127108A (en) * | 2014-02-28 | 2016-11-02 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Scr catalysts having improved low temperature performance, and methods of making and using the same |
| US9561469B2 (en) | 2014-03-24 | 2017-02-07 | Johnson Matthey Public Limited Company | Catalyst for treating exhaust gas |
| JP6894704B2 (en) * | 2014-03-24 | 2021-06-30 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Methods and systems for exhaust gas treatment |
| JP6204238B2 (en) * | 2014-03-26 | 2017-09-27 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
| EP3124435A4 (en) * | 2014-03-26 | 2017-11-22 | Mitsubishi Chemical Corporation | Method for producing transition metal-containing zeolite, transition metal-containing zeolite obtained by said method, and exhaust gas purifying catalyst using said zeolite |
| DE102014205760A1 (en) * | 2014-03-27 | 2015-10-01 | Johnson Matthey Public Limited Company | Process for producing a catalyst and catalyst |
| JP6126141B2 (en) * | 2014-05-30 | 2017-05-10 | トヨタ自動車株式会社 | Method for producing exhaust gas purification catalyst |
| US10850265B2 (en) | 2014-06-18 | 2020-12-01 | Basf Corporation | Molecular sieve catalyst compositions, catalytic composites, systems, and methods |
| US9764313B2 (en) | 2014-06-18 | 2017-09-19 | Basf Corporation | Molecular sieve catalyst compositions, catalyst composites, systems, and methods |
| US9889437B2 (en) | 2015-04-15 | 2018-02-13 | Basf Corporation | Isomorphously substituted catalyst |
| ES2554648B1 (en) | 2014-06-20 | 2016-09-08 | Consejo Superior De Investigaciones Científicas (Csic) | ITQ-55 material, preparation and use procedure |
| KR20170038927A (en) * | 2014-08-07 | 2017-04-07 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Zoned catalyst for treating exhaust gas |
| CN106714939B (en) * | 2014-08-15 | 2019-12-03 | 庄信万丰股份有限公司 | Zoned catalyst for treating exhaust gas |
| CN104226361B (en) * | 2014-09-01 | 2017-06-20 | 清华大学苏州汽车研究院(吴江) | Iron-based SCR catalyst and preparation method thereof |
| CN107107043A (en) * | 2014-10-07 | 2017-08-29 | 庄信万丰股份有限公司 | Molecular sieve catalyst for handling waste gas |
| CN104475152B (en) * | 2014-10-09 | 2017-12-22 | 南开大学 | Catalyst and its application for the reduction of nitrogen oxides hydrogen selective catalysis |
| US10807082B2 (en) * | 2014-10-13 | 2020-10-20 | Johnson Matthey Public Limited Company | Zeolite catalyst containing metals |
| JP7249099B2 (en) * | 2014-11-19 | 2023-03-30 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | SCR and PNA combination for cold emission control |
| JP2018505120A (en) | 2015-01-29 | 2018-02-22 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Direct incorporation of iron complexes into SAPO-34 (CHA) type materials |
| CN107206330B (en) * | 2015-01-30 | 2021-04-16 | 日本碍子株式会社 | Separation membrane structure and method for reducing nitrogen concentration |
| GB2540832B (en) * | 2015-02-20 | 2019-04-17 | Johnson Matthey Plc | Bi-metal molecular sieve catalysts |
| KR20240051329A (en) | 2015-02-27 | 2024-04-19 | 바스프 코포레이션 | Exhaust gas treatment system |
| CN104801335A (en) * | 2015-04-11 | 2015-07-29 | 桂林理工大学 | Zr-Ce-Mn/ZSM-5 composite oxide catalyst for low-temperature NH3 reduction of NOx and preparation method thereof |
| JP6292159B2 (en) * | 2015-04-13 | 2018-03-14 | トヨタ自動車株式会社 | Exhaust gas purification catalyst |
| ES2586770B1 (en) | 2015-04-16 | 2017-08-14 | Consejo Superior De Investigaciones Científicas (Csic) | DIRECT SYNTHESIS METHOD OF CU-SILICOALUMINATE MATERIAL WITH AEI ZEOLITHIC STRUCTURE, AND ITS CATALYTIC APPLICATIONS |
| CN107849962B (en) * | 2015-05-19 | 2020-10-30 | 巴斯夫公司 | Catalytic soot filter for passivation selective catalytic reduction and preparation method thereof |
| EP3356019A1 (en) | 2015-09-29 | 2018-08-08 | Johnson Matthey Public Limited Company | Catalytic filter having a soot catalyst and an scr catalyst |
| US10710059B2 (en) * | 2015-12-22 | 2020-07-14 | Basf Corporation | Process for preparing iron(III)-exchanged zeolite composition |
| JP6779498B2 (en) * | 2016-01-22 | 2020-11-04 | 国立大学法人広島大学 | Zeolites containing tin and methods for producing them |
| CN109071245B (en) * | 2016-02-01 | 2022-03-04 | 优美科股份公司及两合公司 | Process for the direct synthesis of iron-containing AEI-zeolite catalysts |
| US20190060885A1 (en) * | 2016-04-13 | 2019-02-28 | Umicore Ag & Co. Kg | Particle filter having scr-active coating |
| WO2017195107A2 (en) | 2016-05-11 | 2017-11-16 | Basf Corporation | Catalyst composition comprising magnetic material adapted for inductive heating |
| GB201608643D0 (en) * | 2016-05-17 | 2016-06-29 | Thermo Fisher Scient Bremen | Elemental analysis system and method |
| US10744496B2 (en) * | 2016-07-22 | 2020-08-18 | Johnson Matthey Public Limited Company | Catalyst binders for filter substrates |
| KR101846914B1 (en) * | 2016-10-21 | 2018-04-09 | 현대자동차 주식회사 | Catalyst and manufacturing method of catalyst |
| EP3323785A1 (en) | 2016-11-18 | 2018-05-23 | Umicore AG & Co. KG | Crystalline zeolites with eri/cha intergrowth framework type |
| WO2018099964A1 (en) * | 2016-11-30 | 2018-06-07 | Basf Se | Process for the conversion of monoethanolamine to ethylenediamine employing a copper-modified zeolite of the mor framework structure |
| KR101879695B1 (en) * | 2016-12-02 | 2018-07-18 | 희성촉매 주식회사 | Zeolite structures with specific Cu2+ (α)/ Cu2+ (β) ratio in NO DRIFTS spectrum, a method for preparing zeolite structures, and a catalyst composition comprising the zeolite structures |
| CN107497482A (en) * | 2016-12-29 | 2017-12-22 | 廊坊市北辰创业树脂材料有限公司 | A kind of preparation and application of new type low temperature composite catalyst |
| CN106799234B (en) * | 2016-12-30 | 2019-07-05 | 包头稀土研究院 | A kind of automobile-used rare-earth base SCR catalyst of diesel oil and preparation method |
| GB2562160B (en) | 2017-03-20 | 2021-06-23 | Johnson Matthey Plc | Catalytic wall-flow filter with an ammonia slip catalyst |
| US11179707B2 (en) | 2017-03-31 | 2021-11-23 | Johnson Matthey Catalysts (Germany) Gmbh | Composite material |
| GB2560990A (en) * | 2017-03-31 | 2018-10-03 | Johnson Matthey Catalysts Germany Gmbh | Composite material |
| CN110730858A (en) * | 2017-04-04 | 2020-01-24 | 巴斯夫公司 | Integrated Emission Control System |
| CN108855079B (en) * | 2017-05-11 | 2020-07-07 | 中国石油化工股份有限公司 | Flue gas denitration catalyst, preparation method thereof and denitration process |
| CN107138174A (en) * | 2017-06-23 | 2017-09-08 | 华娜 | A kind of denitrating catalyst and preparation method thereof |
| JP7164591B2 (en) | 2017-07-11 | 2022-11-01 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | Catalyst and method of use thereof in NOx and N20 conversion |
| KR102578657B1 (en) * | 2017-07-11 | 2023-09-15 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | Catalysts and methods of using them |
| CN109422276B (en) * | 2017-08-30 | 2022-10-18 | 中国科学院大连化学物理研究所 | Transition metal doped molecular sieve and preparation method and application thereof |
| JP6964479B2 (en) | 2017-10-03 | 2021-11-10 | エヌ・イーケムキャット株式会社 | Rare earth element skeleton-substituted zeolite and its production method, NOx adsorbent using them, selective reduction catalyst and automobile exhaust gas catalyst |
| CN107649175B (en) * | 2017-10-23 | 2020-11-03 | 上海歌通实业有限公司 | Preparation method of Ga-Ge-doped MnOx-SAPO molecular sieve catalyst |
| CN109794284B (en) * | 2017-11-17 | 2020-06-09 | 中国科学院大连化学物理研究所 | A kind of molecular sieve material enriched with metal on the surface, its preparation method and application |
| JP7158141B2 (en) | 2017-11-27 | 2022-10-21 | エヌ・イーケムキャット株式会社 | Slurry composition for catalyst, method for producing the same, method for producing catalyst using the same, and method for producing Cu-containing zeolite |
| CN109833905A (en) | 2017-11-29 | 2019-06-04 | 中国科学院大连化学物理研究所 | Molecular sieve catalyst and its preparation method and application |
| WO2019116268A1 (en) * | 2017-12-13 | 2019-06-20 | Johnson Matthey Public Limited Company | Improved nh3 abatement with greater selectivity to n2 |
| CN108187655A (en) * | 2017-12-27 | 2018-06-22 | 龙岩紫荆创新研究院 | A kind of SCR catalyst for denitrating flue gas, preparation method and applications system |
| EP3727685A4 (en) | 2018-01-03 | 2021-08-25 | BASF Corporation | SURFACE-TREATED SILICONE ALUMINOPHOSPHATE MOLECULAR SCREEN |
| JP2019142753A (en) * | 2018-02-22 | 2019-08-29 | いすゞ自動車株式会社 | SSZ-13 and method for producing SSZ-13 |
| JP7091768B2 (en) * | 2018-03-27 | 2022-06-28 | 三菱ケミカル株式会社 | Zeolite powder |
| CN111954577A (en) * | 2018-04-11 | 2020-11-17 | 巴斯夫公司 | SCR catalyst containing mixed zeolites |
| KR101963082B1 (en) | 2018-05-15 | 2019-03-27 | 경북대학교 산학협력단 | Organic thermoelectric material including organic weak base and organic thermoelectric element thereof |
| US10850264B2 (en) * | 2018-05-18 | 2020-12-01 | Umicore Ag & Co. Kg | Hydrocarbon trap catalyst |
| FR3081340B1 (en) * | 2018-05-24 | 2020-06-26 | IFP Energies Nouvelles | CATALYST COMPRISING A MIXTURE OF AN AFX STRUCTURAL TYPE ZEOLITE AND A BEA STRUCTURAL TYPE ZEOLITE AND AT LEAST ONE TRANSITIONAL METAL FOR THE SELECTIVE NOX REDUCTION |
| CN120037969A (en) * | 2018-08-31 | 2025-05-27 | 庄信万丰股份有限公司 | Bimetallic Cu/Mn catalysts for selective catalytic reduction |
| CN109433256A (en) * | 2018-11-06 | 2019-03-08 | 广东工业大学 | A kind of Cu/Mn-SSZ-39 catalyst and its preparation method and application |
| WO2020116020A1 (en) | 2018-12-06 | 2020-06-11 | エヌ・イーケムキャット株式会社 | Exhaust gas purging device |
| CN109794286B (en) * | 2019-01-16 | 2021-12-28 | 山东国瓷功能材料股份有限公司 | CHA/AEI composite denitration catalyst and preparation method and application thereof |
| US10703986B1 (en) | 2019-01-30 | 2020-07-07 | Exxonmobil Research And Engineering Company | Selective oxidation using encapsulated catalytic metal |
| JP7194431B2 (en) * | 2019-05-15 | 2022-12-22 | 株式会社 Acr | Catalysts, catalyst products and methods for producing catalysts |
| CN110026182A (en) * | 2019-05-20 | 2019-07-19 | 中国人民大学 | Low-temperature denitration catalyst and its preparation and application in high sulfur resistive |
| CN110292944B (en) * | 2019-07-31 | 2022-11-08 | 北京工业大学 | SCR denitration catalyst with ultra-wide temperature window and preparation method thereof |
| KR20210029943A (en) | 2019-09-09 | 2021-03-17 | 현대자동차주식회사 | High-performance zeolites for reducing nitrogen oxide and a manufacturing method thereof and a catalyst using the same |
| JP7510430B2 (en) | 2019-10-03 | 2024-07-03 | エヌ・イーケムキャット株式会社 | Exhaust gas purification equipment |
| JP7367203B2 (en) * | 2019-10-16 | 2023-10-23 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Combined zone-coated dual-use ammonia (AMOX) and nitric oxide oxidation catalyst |
| EP4048875A4 (en) * | 2019-10-21 | 2023-10-25 | BASF Corporation | LOW TEMPERATURE NOX ADSORBER WITH IMPROVED REGENERATION EFFICIENCY |
| CN111013648A (en) * | 2019-12-14 | 2020-04-17 | 中触媒新材料股份有限公司 | Symbiotic composite molecular sieve with CHA/KFI structure, preparation method thereof and SCR application thereof |
| CN111437875B (en) * | 2020-03-24 | 2023-10-27 | 武汉科技大学 | Cerium-iron molecular sieve based catalyst with wide temperature range and preparation method thereof |
| US12048919B2 (en) * | 2020-03-31 | 2024-07-30 | Massachusetts Institute Of Technology | Catalytic compositions for the oxidation of substrates |
| CN112169830B (en) * | 2020-10-16 | 2022-11-08 | 万华化学集团股份有限公司 | Preparation method of basic metal oxide @ ZSM-5 catalyst, catalyst prepared by preparation method and application of catalyst |
| KR20220060316A (en) | 2020-11-04 | 2022-05-11 | 현대자동차주식회사 | NOx STORAGE CATALYST AND METHOD FOR PREPARING THE SAME |
| KR20220069375A (en) * | 2020-11-20 | 2022-05-27 | 현대자동차주식회사 | Zeolite catalyst for hydrocarbon oxidation and method for preparing the same |
| CN112691700A (en) * | 2020-12-28 | 2021-04-23 | 廊坊市北辰创业树脂材料股份有限公司 | Preparation method and application of small-pore Cu-ZK-5 molecular sieve catalyst |
| CN112973777B (en) * | 2021-02-23 | 2022-10-21 | 浙江浙能技术研究院有限公司 | Low Ir-loaded catalyst for efficiently decomposing nitrous oxide and preparation method thereof |
| KR102758432B1 (en) | 2021-11-19 | 2025-01-21 | 한국세라믹기술원 | DeNOx CATALYST LOADED WITH CRYSTALLINE ZEOLITES AND METHOD FOR PREPARATION OF THE SAME |
| CN114505079B (en) * | 2022-04-20 | 2022-06-24 | 山东万达环保科技有限公司 | Preparation method of low-temperature manganese-based SCR denitration catalyst and application of low-temperature manganese-based SCR denitration catalyst in flue gas denitration |
| CN114713243B (en) * | 2022-04-29 | 2024-05-31 | 辽宁科隆精细化工股份有限公司 | Low-temperature high-efficiency high-sulfur-resistance long-time stable SCR denitration catalyst and preparation method thereof |
| KR102660953B1 (en) * | 2022-06-30 | 2024-04-25 | 서울대학교산학협력단 | Ion exchanged zeolite catalyst for exhaust gas treatment of lng power plant |
| KR102839426B1 (en) | 2022-11-01 | 2025-07-28 | 주식회사 에코앤드림 | Cu-CHA Zeolite Catalyst |
| JP7691037B1 (en) | 2024-01-16 | 2025-06-11 | 東ソー株式会社 | Iron-containing small pore zeolite |
| EP4653085A1 (en) | 2024-05-24 | 2025-11-26 | Treibacher Industrie AG | Catalyst composition useful for selective catalytic reduction |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3895094A (en) | 1974-01-28 | 1975-07-15 | Gulf Oil Corp | Process for selective reduction of oxides of nitrogen |
| US4220632A (en) | 1974-09-10 | 1980-09-02 | The United States Of America As Represented By The United States Department Of Energy | Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia |
| US4961917A (en) | 1989-04-20 | 1990-10-09 | Engelhard Corporation | Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts |
| US5589147A (en) | 1994-07-07 | 1996-12-31 | Mobil Oil Corporation | Catalytic system for the reducton of nitrogen oxides |
| WO1999039809A1 (en) | 1998-02-06 | 1999-08-12 | Johnson Matthey Public Limited Company | SYSTEM FOR NOx REDUCTION IN EXHAUST GASES |
| US5958818A (en) | 1997-04-14 | 1999-09-28 | Bulldog Technologies U.S.A., Inc. | Alkaline phosphate-activated clay/zeolite catalysts |
| EP1057519A1 (en) | 1999-05-18 | 2000-12-06 | Kemira Metalkat Oy | Purification system for diesel engine exhaust gases |
| WO2000072965A1 (en) | 1999-05-27 | 2000-12-07 | The Regents Of The University Of Michigan | Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making |
| WO2001080978A1 (en) | 2000-04-25 | 2001-11-01 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method for removing soot particles from an exhaust gas and corresponding collecting element |
| WO2002041991A2 (en) | 2000-11-15 | 2002-05-30 | Engelhard Corporation | HYDROTHERMALLY STABLE METAL PROMOTED ZEOLITE BETA FOR NOx REDUCTION |
| US6514470B1 (en) | 1999-10-28 | 2003-02-04 | The Regents Of The University Of California | Catalysts for lean burn engine exhaust abatement |
| WO2004002611A1 (en) | 2002-06-28 | 2004-01-08 | Johnson Matthey Public Limited Company | Doped ceria-containing zeolite-based nh3 scr catalyst |
| DE102004013164A1 (en) | 2004-03-17 | 2005-10-13 | Adam Opel Ag | Catalyst for improving the efficiency of NOx reduction in motor vehicles |
| WO2006064805A1 (en) | 2004-12-17 | 2006-06-22 | Munekatsu Furugen | Electric treating method for exhaust gas of diesel engine and its device |
| DE102005010221A1 (en) | 2005-03-05 | 2006-09-07 | S&B Industrial Minerals Gmbh | Process for the preparation of a catalytically active mineral based on a framework silicate |
| WO2008106519A1 (en) | 2007-02-27 | 2008-09-04 | Basf Catalysts Llc | Copper cha zeolite catalysts |
| WO2008118434A1 (en) | 2007-03-26 | 2008-10-02 | Pq Corporation | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
Family Cites Families (188)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US798813A (en) † | 1904-06-13 | 1905-09-05 | Samuel James Macfarren | Steering-gear for automobiles. |
| US3459676A (en) † | 1966-06-14 | 1969-08-05 | Mobil Oil Corp | Synthetic zeolite and method for preparing the same |
| JPS51147470A (en) * | 1975-06-12 | 1976-12-17 | Toa Nenryo Kogyo Kk | A process for catalytic reduction of nitrogen oxides |
| US4086186A (en) * | 1976-11-04 | 1978-04-25 | Mobil Oil Corporation | Crystalline zeolite ZSM-34 and method of preparing the same |
| US4187199A (en) * | 1977-02-25 | 1980-02-05 | Chevron Research Company | Hydrocarbon conversion catalyst |
| US4210521A (en) * | 1977-05-04 | 1980-07-01 | Mobil Oil Corporation | Catalytic upgrading of refractory hydrocarbon stocks |
| US4297328A (en) * | 1979-09-28 | 1981-10-27 | Union Carbide Corporation | Three-way catalytic process for gaseous streams |
| US4471150A (en) * | 1981-12-30 | 1984-09-11 | Mobil Oil Corporation | Catalysts for light olefin production |
| DE3279929D1 (en) * | 1982-06-16 | 1989-10-12 | Boeing Co | Autopilot flight director system |
| US4544538A (en) | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
| US4440871A (en) * | 1982-07-26 | 1984-04-03 | Union Carbide Corporation | Crystalline silicoaluminophosphates |
| EP0115031A1 (en) * | 1982-12-23 | 1984-08-08 | Union Carbide Corporation | Ferrosilicate molecular sieve composition |
| US4567029A (en) * | 1983-07-15 | 1986-01-28 | Union Carbide Corporation | Crystalline metal aluminophosphates |
| US4735927A (en) | 1985-10-22 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
| EP0233642A3 (en) * | 1986-02-18 | 1989-09-06 | W.R. Grace & Co.-Conn. | Process for hydrogenation of organic compounds |
| US4735930A (en) * | 1986-02-18 | 1988-04-05 | Norton Company | Catalyst for the reduction of oxides of nitrogen |
| US4798813A (en) | 1986-07-04 | 1989-01-17 | Babcock-Hitachi Kabushiki Kaisha | Catalyst for removing nitrogen oxide and process for producing the catalyst |
| JPH0611381B2 (en) * | 1986-10-17 | 1994-02-16 | 株式会社豊田中央研究所 | Exhaust gas purification method |
| US4912776A (en) | 1987-03-23 | 1990-03-27 | W. R. Grace & Co.-Conn. | Process for removal of NOx from fluid streams |
| JPS63294950A (en) * | 1987-05-27 | 1988-12-01 | Cataler Kogyo Kk | Catalyst for reducing nitrogen oxide |
| DE3723072A1 (en) * | 1987-07-11 | 1989-01-19 | Basf Ag | METHOD FOR REMOVING NITROGEN OXIDES FROM EXHAUST GASES |
| US4861743A (en) * | 1987-11-25 | 1989-08-29 | Uop | Process for the production of molecular sieves |
| US4874590A (en) * | 1988-04-07 | 1989-10-17 | Uop | Catalytic reduction of nitrogen oxides |
| US4867954A (en) * | 1988-04-07 | 1989-09-19 | Uop | Catalytic reduction of nitrogen oxides |
| JP2732614B2 (en) * | 1988-10-18 | 1998-03-30 | バブコツク日立株式会社 | Exhaust gas purification catalyst and exhaust gas purification method |
| FR2645141B1 (en) | 1989-03-31 | 1992-05-29 | Elf France | PROCESS FOR THE SYNTHESIS OF PRECURSORS OF MOLECULAR SIEVES OF THE SILICOALUMINOPHOSPHATE TYPE, PRECURSORS OBTAINED AND THEIR APPLICATION FOR OBTAINING SAID MOLECULAR SIEVES |
| US5024981A (en) † | 1989-04-20 | 1991-06-18 | Engelhard Corporation | Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same |
| JP2533371B2 (en) | 1989-05-01 | 1996-09-11 | 株式会社豊田中央研究所 | Exhaust gas purification catalyst |
| US5477014A (en) | 1989-07-28 | 1995-12-19 | Uop | Muffler device for internal combustion engines |
| JPH07106300B2 (en) * | 1989-12-08 | 1995-11-15 | 財団法人産業創造研究所 | Method for removing nitrogen oxides in combustion exhaust gas |
| US6063723A (en) * | 1990-03-02 | 2000-05-16 | Chevron U.S.A. Inc. | Sulfur tolerant zeolite catalyst |
| US5277145A (en) | 1990-07-10 | 1994-01-11 | C. C. Omega Chemical, Inc. | Transom for a boat |
| EP0494388B1 (en) | 1991-01-08 | 1995-12-06 | Agency Of Industrial Science And Technology | Process for removing nitrogen oxides from exhaust gases |
| JP2645614B2 (en) * | 1991-01-08 | 1997-08-25 | 財団法人石油産業活性化センター | Purification method of exhaust gas containing nitrogen oxides |
| GB9101456D0 (en) | 1991-01-23 | 1991-03-06 | Exxon Chemical Patents Inc | Process for producing substantially binder-free zeolite |
| US5233117A (en) * | 1991-02-28 | 1993-08-03 | Uop | Methanol conversion processes using syocatalysts |
| US5348643A (en) * | 1991-03-12 | 1994-09-20 | Mobil Oil Corp. | Catalytic conversion with improved catalyst |
| JPH0557194A (en) | 1991-07-06 | 1993-03-09 | Toyota Motor Corp | Production of catalyst for purifying exhaust gas |
| JP2887984B2 (en) | 1991-09-20 | 1999-05-10 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
| US5171553A (en) * | 1991-11-08 | 1992-12-15 | Air Products And Chemicals, Inc. | Catalytic decomposition of N2 O |
| JP3303341B2 (en) | 1992-07-30 | 2002-07-22 | 三菱化学株式会社 | Method for producing beta zeolite |
| US5316753A (en) * | 1992-10-09 | 1994-05-31 | Chevron Research And Technology Company | Zeolite SSZ-35 |
| CA2146244A1 (en) | 1992-11-19 | 1994-05-26 | Patrick Lee Burk | Method and apparatus for treating an engine exhaust gas stream |
| US6248684B1 (en) | 1992-11-19 | 2001-06-19 | Englehard Corporation | Zeolite-containing oxidation catalyst and method of use |
| KR950704598A (en) | 1992-11-19 | 1995-11-20 | 스티븐 아이. 밀러 | Method and Apparatus for Treating an Engine Exhaust Gas Stream |
| US5346612A (en) * | 1993-02-19 | 1994-09-13 | Amoco Corporation | Distillate hydrogenation utilizing a catalyst comprising platinum, palladium, and a beta zeolite support |
| JPH06320006A (en) * | 1993-05-10 | 1994-11-22 | Sekiyu Sangyo Kasseika Center | Catalyst for catalytic reduction of nox |
| DE69427932T2 (en) | 1993-05-10 | 2002-04-04 | Cosmo Oil Co. Ltd., Tokio/Tokyo | Catalyst for the catalytic reduction of nitrogen oxides |
| US5417949A (en) | 1993-08-25 | 1995-05-23 | Mobil Oil Corporation | NOx abatement process |
| HU221142B1 (en) | 1993-11-09 | 2002-08-28 | Union Carbide Chem Plastic | Process for removing mercaptans from gas streams and absorption solvents for use in an acid gas scrubbing process |
| KR960000008A (en) | 1994-06-13 | 1996-01-25 | 전상정 | How to prepare seedling mat |
| US5520895A (en) * | 1994-07-07 | 1996-05-28 | Mobil Oil Corporation | Method for the reduction of nitrogen oxides using iron impregnated zeolites |
| AU687582B2 (en) * | 1994-07-07 | 1998-02-26 | Mobil Oil Corporation | Catalytic system for the reduction of nitrogen oxides |
| US5482692A (en) * | 1994-07-07 | 1996-01-09 | Mobil Oil Corporation | Selective catalytic reduction of nitrogen oxides using a ferrocene impregnated zeolite catalyst |
| JPH0824656A (en) * | 1994-07-22 | 1996-01-30 | Mazda Motor Corp | Catalyst for purifying exhaust gas |
| US6080377A (en) * | 1995-04-27 | 2000-06-27 | Engelhard Corporation | Method of abating NOx and a catalytic material therefor |
| JP3375790B2 (en) | 1995-06-23 | 2003-02-10 | 日本碍子株式会社 | Exhaust gas purification system and exhaust gas purification method |
| US6471924B1 (en) * | 1995-07-12 | 2002-10-29 | Engelhard Corporation | Method and apparatus for NOx abatement in lean gaseous streams |
| US6133185A (en) | 1995-11-09 | 2000-10-17 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
| JPH10180041A (en) | 1996-12-20 | 1998-07-07 | Ngk Insulators Ltd | Catalyst for purification of exhaust gas and exhaust gas purifying system |
| US5925800A (en) * | 1996-12-31 | 1999-07-20 | Exxon Chemical Patents Inc. | Conversion of oxygenates to hydrocarbons with monolith supported non-zeolitic molecular sieve catalysts |
| US5897846A (en) | 1997-01-27 | 1999-04-27 | Asec Manufacturing | Catalytic converter having a catalyst with noble metal on molecular sieve crystal surface and method of treating diesel engine exhaust gas with same |
| DE19723950A1 (en) * | 1997-06-06 | 1998-12-10 | Basf Ag | Process for the oxidation of an organic compound having at least one C-C double bond |
| US6004527A (en) * | 1997-09-29 | 1999-12-21 | Abb Lummus Global Inc. | Method for making molecular sieves and novel molecular sieve compositions |
| JPH11114413A (en) | 1997-10-09 | 1999-04-27 | Ngk Insulators Ltd | Adsorbent for cleaning exhaust gas |
| US6162415A (en) | 1997-10-14 | 2000-12-19 | Exxon Chemical Patents Inc. | Synthesis of SAPO-44 |
| CN1290193A (en) * | 1997-12-03 | 2001-04-04 | 埃克森化学专利公司 | Catalyst comprising a zeolite partially coated with a second zeolite, its use for hydrocarbon conversion |
| DE69729757T2 (en) | 1997-12-10 | 2005-08-04 | Volvo Car Corp. | POROUS MATERIAL, METHOD AND ARRANGEMENT FOR THE CATALYTIC IMPROVEMENT OF EXHAUST GASES |
| US5958370A (en) * | 1997-12-11 | 1999-09-28 | Chevron U.S.A. Inc. | Zeolite SSZ-39 |
| US6346498B1 (en) * | 1997-12-19 | 2002-02-12 | Exxonmobil Oil Corporation | Zeolite catalysts having stabilized hydrogenation-dehydrogenation function |
| GB9808876D0 (en) | 1998-04-28 | 1998-06-24 | Johnson Matthey Plc | Combatting air pollution |
| AU3765299A (en) | 1998-05-07 | 1999-11-23 | Engelhard Corporation | Catalyzed hydrocarbon trap and method using the same |
| US6576203B2 (en) | 1998-06-29 | 2003-06-10 | Ngk Insulators, Ltd. | Reformer |
| US6143681A (en) * | 1998-07-10 | 2000-11-07 | Northwestern University | NOx reduction catalyst |
| EP1105347B1 (en) | 1998-07-29 | 2012-11-28 | ExxonMobil Chemical Patents Inc. | Processes for manufacture of molecular sieves |
| US20020014071A1 (en) * | 1998-10-01 | 2002-02-07 | Mari Lou Balmer | Catalytic plasma reduction of nox |
| EP1005904A3 (en) | 1998-10-30 | 2000-06-14 | The Boc Group, Inc. | Adsorbents and adsorptive separation process |
| DE19854502A1 (en) | 1998-11-25 | 2000-05-31 | Siemens Ag | Catalyst body and process for breaking down nitrogen oxides |
| KR100293531B1 (en) | 1998-12-24 | 2001-10-26 | 윤덕용 | Hybrid Catalysts for Hydrocarbon Generation from Carbon Dioxide |
| US6787023B1 (en) | 1999-05-20 | 2004-09-07 | Exxonmobil Chemical Patents Inc. | Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use |
| US6503863B2 (en) | 1999-06-07 | 2003-01-07 | Exxonmobil Chemical Patents, Inc. | Heat treating a molecular sieve and catalyst |
| US6316683B1 (en) | 1999-06-07 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Protecting catalytic activity of a SAPO molecular sieve |
| US6395674B1 (en) | 1999-06-07 | 2002-05-28 | Exxon Mobil Chemical Patents, Inc. | Heat treating a molecular sieve and catalyst |
| JP4352516B2 (en) * | 1999-08-03 | 2009-10-28 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
| US7084087B2 (en) * | 1999-09-07 | 2006-08-01 | Abb Lummus Global Inc. | Zeolite composite, method for making and catalytic application thereof |
| JP4380859B2 (en) * | 1999-11-29 | 2009-12-09 | 三菱瓦斯化学株式会社 | Catalyst molded body |
| NZ519670A (en) * | 1999-12-15 | 2004-02-27 | Chevron U | Zeolite SSZ-50 |
| ATE307661T1 (en) | 2000-03-01 | 2005-11-15 | Umicore Ag & Co Kg | CATALYST FOR PURIFYING THE EXHAUST GASES FROM DIESEL ENGINES AND METHOD FOR THE PRODUCTION THEREOF |
| US6606856B1 (en) | 2000-03-03 | 2003-08-19 | The Lubrizol Corporation | Process for reducing pollutants from the exhaust of a diesel engine |
| JP2001280363A (en) | 2000-03-29 | 2001-10-10 | Toyota Autom Loom Works Ltd | Power transmission mechanism |
| AU2001252241A1 (en) * | 2000-04-03 | 2001-10-15 | Basf Aktiengesellschaft | Catalyst system for the decomposition of n2o |
| DE10036476A1 (en) * | 2000-07-25 | 2002-02-07 | Basf Ag | Heterogeneous catalyzed gas phase decomposition of N2O uses fixed bed catalyst comprising two or more catalyst layers that are optionally separated by inert intermediate layers or gas chambers |
| DE10020100A1 (en) * | 2000-04-22 | 2001-10-31 | Dmc2 Degussa Metals Catalysts | Process and catalyst for the reduction of nitrogen oxides |
| US6448197B1 (en) * | 2000-07-13 | 2002-09-10 | Exxonmobil Chemical Patents Inc. | Method for making a metal containing small pore molecular sieve catalyst |
| US6576796B1 (en) * | 2000-06-28 | 2003-06-10 | Basf Aktiengesellschaft | Process for the preparation of alkylamines |
| DE10059520A1 (en) | 2000-11-30 | 2001-05-17 | Univ Karlsruhe | Separation of zeolite crystals, useful as catalyst or adsorbent, involves adding water-soluble salt or precursor to aqueous sol or suspension before sedimentation, centrifugation or filtration |
| US20050096214A1 (en) | 2001-03-01 | 2005-05-05 | Janssen Marcel J. | Silicoaluminophosphate molecular sieve |
| ATE355904T1 (en) | 2001-06-25 | 2007-03-15 | Exxonmobil Chem Patents Inc | COMPOSITION OF A MOLECULAR SIEVE CATALYST, ITS PRODUCTION AND ITS USE IN A CONVERSION PROCESS |
| US6440894B1 (en) * | 2001-06-25 | 2002-08-27 | Exxonmobil Chemical Patents, Inc. | Methods of removing halogen from non-zeolitic molecular sieve catalysts |
| US20030007901A1 (en) * | 2001-07-03 | 2003-01-09 | John Hoard | Method and system for reduction of NOx in automotive vehicle exhaust systems |
| JP5189236B2 (en) | 2001-07-25 | 2013-04-24 | 日本碍子株式会社 | Exhaust gas purification honeycomb structure and exhaust gas purification honeycomb catalyst body |
| US6759358B2 (en) † | 2001-08-21 | 2004-07-06 | Sud-Chemie Inc. | Method for washcoating a catalytic material onto a monolithic structure |
| US6709644B2 (en) | 2001-08-30 | 2004-03-23 | Chevron U.S.A. Inc. | Small crystallite zeolite CHA |
| US6914026B2 (en) * | 2001-09-07 | 2005-07-05 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
| US6508860B1 (en) * | 2001-09-21 | 2003-01-21 | L'air Liquide - Societe Anonyme A'directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Gas separation membrane with organosilicon-treated molecular sieve |
| DE10150480B4 (en) * | 2001-10-16 | 2019-11-28 | Exxonmobil Chemical Patents Inc. | Process for the preparation of an olefin-containing product stream |
| US6601385B2 (en) * | 2001-10-17 | 2003-08-05 | Fleetguard, Inc. | Impactor for selective catalytic reduction system |
| US7014827B2 (en) | 2001-10-23 | 2006-03-21 | Machteld Maria Mertens | Synthesis of silicoaluminophosphates |
| US6696032B2 (en) | 2001-11-29 | 2004-02-24 | Exxonmobil Chemical Patents Inc. | Process for manufacturing a silicoaluminophosphate molecular sieve |
| WO2003054364A2 (en) | 2001-12-20 | 2003-07-03 | Johnson Matthey Public Limited Company | Method and apparatus for filtering partriculate matter and selective catalytic reduction of nox |
| US6685905B2 (en) † | 2001-12-21 | 2004-02-03 | Exxonmobil Chemical Patents Inc. | Silicoaluminophosphate molecular sieves |
| AU2002367007A1 (en) * | 2002-01-03 | 2003-07-30 | Exxon Mobil Chemical Patents Inc. | Stabilisation of acid catalysts |
| US6995111B2 (en) * | 2002-02-28 | 2006-02-07 | Exxonmobil Chemical Patents Inc. | Molecular sieve compositions, catalysts thereof, their making and use in conversion processes |
| DE10232406A1 (en) | 2002-07-17 | 2004-01-29 | Basf Ag | Process for the preparation of a zeolite-containing solid |
| US20040064007A1 (en) * | 2002-09-30 | 2004-04-01 | Beech James H. | Method and system for regenerating catalyst from a plurality of hydrocarbon conversion apparatuses |
| US6717025B1 (en) * | 2002-11-15 | 2004-04-06 | Exxonmobil Chemical Patents Inc | Process for removing oxygenates from an olefinic stream |
| US6928806B2 (en) | 2002-11-21 | 2005-08-16 | Ford Global Technologies, Llc | Exhaust gas aftertreatment systems |
| JP2004188388A (en) * | 2002-12-13 | 2004-07-08 | Babcock Hitachi Kk | Filter for cleaning diesel exhaust gas and its production method |
| US7122492B2 (en) | 2003-02-05 | 2006-10-17 | Exxonmobil Chemical Patents Inc. | Combined cracking and selective hydrogen combustion for catalytic cracking |
| WO2004074411A1 (en) * | 2003-02-18 | 2004-09-02 | Japan Gas Synthesize, Ltd. | Method for producing liquefied petroleum gas |
| US7049261B2 (en) | 2003-02-27 | 2006-05-23 | General Motors Corporation | Zeolite catalyst and preparation process for NOx reduction |
| DE10315593B4 (en) * | 2003-04-05 | 2005-12-22 | Daimlerchrysler Ag | Exhaust gas aftertreatment device and method |
| JP4413520B2 (en) | 2003-04-17 | 2010-02-10 | 株式会社アイシーティー | Exhaust gas purification catalyst and exhaust gas purification method using the catalyst |
| US6897179B2 (en) * | 2003-06-13 | 2005-05-24 | Exxonmobil Chemical Patents Inc. | Method of protecting SAPO molecular sieve from loss of catalytic activity |
| US7861516B2 (en) | 2003-06-18 | 2011-01-04 | Johnson Matthey Public Limited Company | Methods of controlling reductant addition |
| US20040262197A1 (en) * | 2003-06-24 | 2004-12-30 | Mcgregor Duane R. | Reduction of NOx in low CO partial-burn operation using full burn regenerator additives |
| JP2005047721A (en) * | 2003-07-29 | 2005-02-24 | Mitsubishi Chemicals Corp | Method for producing aluminophosphates |
| US7229597B2 (en) | 2003-08-05 | 2007-06-12 | Basfd Catalysts Llc | Catalyzed SCR filter and emission treatment system |
| US7253005B2 (en) * | 2003-08-29 | 2007-08-07 | Exxonmobil Chemical Patents Inc. | Catalyst sampling system |
| US7094389B2 (en) | 2003-12-23 | 2006-08-22 | Exxonmobil Chemical Patents Inc. | Chabazite-containing molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins |
| US7008610B2 (en) | 2003-12-23 | 2006-03-07 | Exxonmobil Chemical Patents Inc. | AEI-Type zeolite, its synthesis and its use in the conversion of oxygenates to olefins |
| US7192987B2 (en) * | 2004-03-05 | 2007-03-20 | Exxonmobil Chemical Patents Inc. | Processes for making methanol streams and uses for the streams |
| GB0405015D0 (en) * | 2004-03-05 | 2004-04-07 | Johnson Matthey Plc | Method of loading a monolith with catalyst and/or washcoat |
| DE102004013165A1 (en) * | 2004-03-17 | 2005-10-06 | Adam Opel Ag | Method for improving the effectiveness of NOx reduction in motor vehicles |
| NL1026207C2 (en) * | 2004-05-17 | 2005-11-21 | Stichting Energie | Process for the decomposition of N2O, catalyst for it and preparation of this catalyst. |
| WO2006006702A1 (en) * | 2004-07-15 | 2006-01-19 | Nikki-Universal Co., Ltd. | Catalyst for purifying exhaust gas containing organic nitrogen compound and method for purifying such exhaust gas |
| WO2006031297A2 (en) * | 2004-07-27 | 2006-03-23 | The Regents Of The University Of California | Catalyst and method for reduction of nitrogen oxides |
| US20060035782A1 (en) * | 2004-08-12 | 2006-02-16 | Ford Global Technologies, Llc | PROCESSING METHODS AND FORMULATIONS TO ENHANCE STABILITY OF LEAN-NOx-TRAP CATALYSTS BASED ON ALKALI- AND ALKALINE-EARTH-METAL COMPOUNDS |
| US7481983B2 (en) | 2004-08-23 | 2009-01-27 | Basf Catalysts Llc | Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia |
| JP4662334B2 (en) | 2004-11-04 | 2011-03-30 | 三菱ふそうトラック・バス株式会社 | Exhaust gas purification device for internal combustion engine |
| US20060115403A1 (en) | 2004-11-29 | 2006-06-01 | Chevron U.S.A. Inc. | Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA |
| AU2005309942B2 (en) * | 2004-11-29 | 2010-11-25 | Chevron U.S.A. Inc. | High-silica molecular sieve CHA |
| CA2589269A1 (en) * | 2004-11-30 | 2006-06-08 | Chevron U.S.A. Inc. | Boron-containing molecular sieve cha |
| BRPI0607578A2 (en) * | 2005-03-24 | 2009-09-15 | Grace W R & Co | method for fccu nox emission control |
| EP1872852A1 (en) | 2005-03-30 | 2008-01-02 | Sued-Chemie Catalysts Japan, Inc. | Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst |
| JP5383184B2 (en) * | 2005-04-27 | 2014-01-08 | ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット | Compositions and methods for reducing NOx emissions during fluid catalytic cracking |
| US7879295B2 (en) * | 2005-06-30 | 2011-02-01 | General Electric Company | Conversion system for reducing NOx emissions |
| WO2007004774A1 (en) | 2005-07-06 | 2007-01-11 | Heesung Catalysts Corporation | An oxidation catalyst for nh3 and an apparatus for treating slipped or scrippedd nh3 |
| US20070012032A1 (en) * | 2005-07-12 | 2007-01-18 | Eaton Corporation | Hybrid system comprising HC-SCR, NOx-trapping, and NH3-SCR for exhaust emission reduction |
| US8048402B2 (en) | 2005-08-18 | 2011-11-01 | Exxonmobil Chemical Patents Inc. | Synthesis of molecular sieves having the chabazite framework type and their use in the conversion of oxygenates to olefins |
| JP4698359B2 (en) | 2005-09-22 | 2011-06-08 | Udトラックス株式会社 | Exhaust purification device |
| JP2007100508A (en) | 2005-09-30 | 2007-04-19 | Bosch Corp | Exhaust emission control device of internal combustion engine, and exhaust emission control method for internal combustion engine |
| US7678955B2 (en) | 2005-10-13 | 2010-03-16 | Exxonmobil Chemical Patents Inc | Porous composite materials having micro and meso/macroporosity |
| US7807122B2 (en) * | 2005-11-02 | 2010-10-05 | Exxonmobil Chemical Patents Inc. | Metalloaluminophosphate molecular sieves, their synthesis and use |
| JP5261189B2 (en) * | 2005-12-14 | 2013-08-14 | ビーエーエスエフ コーポレーション | Zeolite catalyst with improved NOx selective catalytic reduction efficiency |
| US20070149385A1 (en) | 2005-12-23 | 2007-06-28 | Ke Liu | Catalyst system for reducing nitrogen oxide emissions |
| WO2007104385A1 (en) * | 2006-03-10 | 2007-09-20 | Exxonmobil Chemical Patents Inc. | Lowering nitrogen-containing lewis bases in molecular sieve oligomerisation |
| US8383079B2 (en) * | 2006-04-17 | 2013-02-26 | Exxonmobil Chemical Patents Inc. | Molecular sieves having micro and mesoporosity, their synthesis and their use in the organic conversion reactions |
| DE102006020158B4 (en) * | 2006-05-02 | 2009-04-09 | Argillon Gmbh | Extruded full catalyst and process for its preparation |
| US8383080B2 (en) | 2006-06-09 | 2013-02-26 | Exxonmobil Chemical Patents Inc. | Treatment of CHA-type molecular sieves and their use in the conversion of oxygenates to olefins |
| US20080003909A1 (en) | 2006-06-29 | 2008-01-03 | Hien Nguyen | Non-woven structures and methods of making the same |
| DE102006037314A1 (en) * | 2006-08-08 | 2008-02-14 | Süd-Chemie AG | Use of a catalyst based on zeolites in the reaction of oxygenates to lower olefins and processes for this purpose |
| CN101121532A (en) | 2006-08-08 | 2008-02-13 | 中国科学院大连化学物理研究所 | A kind of metal modification method of small-pore phosphorus silicon aluminum molecular sieve |
| US7829751B2 (en) * | 2006-10-27 | 2010-11-09 | Exxonmobil Chemical Patents, Inc. | Processes for converting oxygenates to olefins using aluminosilicate catalysts |
| US7815712B2 (en) * | 2006-12-18 | 2010-10-19 | Uop Llc | Method of making high performance mixed matrix membranes using suspensions containing polymers and polymer stabilized molecular sieves |
| MX2009008206A (en) | 2007-01-31 | 2009-08-28 | Basf Catalysts Llc | Gas catalysts comprising porous wall honeycombs. |
| RU2009135861A (en) | 2007-02-27 | 2011-04-10 | Басф Каталистс Ллк (Us) | BIFUNCTIONAL CATALYSTS FOR SELECTIVE OXIDATION OF AMMONIA |
| US7998423B2 (en) | 2007-02-27 | 2011-08-16 | Basf Corporation | SCR on low thermal mass filter substrates |
| US10384162B2 (en) * | 2007-03-26 | 2019-08-20 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
| EP2517775B1 (en) † | 2007-04-26 | 2016-12-21 | Johnson Matthey Public Limited Company | Transition metal/afx-zeolite scr catalyst |
| DE102007063604A1 (en) | 2007-05-24 | 2008-12-04 | Süd-Chemie AG | Metal-doped zeolite and process for its preparation |
| DE102007030895A1 (en) | 2007-07-03 | 2009-01-08 | Süd-Chemie AG | Catalytic converter for hydrochloric acid-containing exhaust gases |
| EP2689846A1 (en) | 2007-08-13 | 2014-01-29 | PQ Corporation | Selective catalytic reduction of nitrogen oxides in the presence of iron-containing aluminosilicate zeolites |
| US20090056319A1 (en) * | 2007-09-04 | 2009-03-05 | Warner Jay V | Exhaust Aftertreatment System with Pre-Catalysis |
| WO2009073099A1 (en) | 2007-11-30 | 2009-06-11 | Corning Incorporated | Zeolite-based honeycomb body |
| US20090196812A1 (en) * | 2008-01-31 | 2009-08-06 | Basf Catalysts Llc | Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure |
| EP2304821B1 (en) * | 2008-06-11 | 2012-06-27 | 3M Innovative Properties Company | Mixed solvent systems for deposition of organic semiconductors |
| US8225597B2 (en) * | 2008-09-30 | 2012-07-24 | Ford Global Technologies, Llc | System for reducing NOx in exhaust |
| GB0903262D0 (en) | 2009-02-26 | 2009-04-08 | Johnson Matthey Plc | Filter |
| WO2010121257A1 (en) | 2009-04-17 | 2010-10-21 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| DE102010007626A1 (en) † | 2010-02-11 | 2011-08-11 | Süd-Chemie AG, 80333 | Copper-containing zeolite of the KFI type and use in SCR catalysis |
| US8017097B1 (en) | 2010-03-26 | 2011-09-13 | Umicore Ag & Co. Kg | ZrOx, Ce-ZrOx, Ce-Zr-REOx as host matrices for redox active cations for low temperature, hydrothermally durable and poison resistant SCR catalysts |
| US9221015B2 (en) | 2010-07-15 | 2015-12-29 | Basf Se | Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx |
| US8956992B2 (en) * | 2011-10-27 | 2015-02-17 | GM Global Technology Operations LLC | SCR catalysts preparation methods |
| WO2014062944A1 (en) * | 2012-10-19 | 2014-04-24 | Basf Corporation | Mixed metal 8-ring small pore molecular sieve catalyst compositions, catalytic articles, systems and methods |
| EP2999857A1 (en) * | 2013-09-30 | 2016-03-30 | Siemens Aktiengesellschaft | Method for operating a turbo-machine, wherein an efficiency characteristic value of a stage is determined, and turbo-machine having a device for carrying out the method |
| KR20240051329A (en) * | 2015-02-27 | 2024-04-19 | 바스프 코포레이션 | Exhaust gas treatment system |
| US10711674B2 (en) * | 2017-10-20 | 2020-07-14 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber catalyst |
-
2008
- 2008-04-24 EP EP12177681.9A patent/EP2517775B1/en active Active
- 2008-04-24 EP EP19206118.2A patent/EP3626329B1/en active Active
- 2008-04-24 EP EP21204033.1A patent/EP3981502B8/en active Active
- 2008-04-24 KR KR1020097024528A patent/KR101589760B1/en active Active
- 2008-04-24 WO PCT/GB2008/001451 patent/WO2008132452A2/en not_active Ceased
- 2008-04-24 EP EP20120177699 patent/EP2517777A3/en not_active Ceased
- 2008-04-24 PL PL21204033.1T patent/PL3981502T3/en unknown
- 2008-04-24 DK DK12177690T patent/DK2517776T3/en active
- 2008-04-24 JP JP2010504833A patent/JP5777339B2/en active Active
- 2008-04-24 DK DK12177681.9T patent/DK2517775T3/en active
- 2008-04-24 EP EP12177705.6A patent/EP2517778B2/en active Active
- 2008-04-24 EP EP14171510.2A patent/EP2786796B1/en active Active
- 2008-04-24 DK DK14171510.2T patent/DK2786796T3/en active
- 2008-04-24 BR BRPI0810133-7A patent/BRPI0810133B1/en active IP Right Grant
- 2008-04-24 DK DK17200920.1T patent/DK3300791T3/en active
- 2008-04-24 KR KR1020167033642A patent/KR101965943B1/en active Active
- 2008-04-24 CN CN201210469171XA patent/CN102974391A/en active Pending
- 2008-04-24 ES ES21204033T patent/ES3031820T3/en active Active
- 2008-04-24 EP EP17200920.1A patent/EP3300791B1/en active Active
- 2008-04-24 EP EP12177690.0A patent/EP2517776B2/en active Active
- 2008-04-24 US US12/597,707 patent/US20100290963A1/en not_active Abandoned
- 2008-04-24 CA CA2685009A patent/CA2685009C/en active Active
- 2008-04-24 CN CN201210468386XA patent/CN102974390A/en active Pending
- 2008-04-24 DK DK12177705.6T patent/DK2517778T4/en active
- 2008-04-24 KR KR1020187011116A patent/KR20180043406A/en not_active Ceased
- 2008-04-24 EP EP25161380.8A patent/EP4578532A2/en active Pending
- 2008-04-24 KR KR1020197000095A patent/KR102089480B1/en active Active
- 2008-04-24 MX MX2014005893A patent/MX377321B/en unknown
- 2008-04-24 MX MX2009011443A patent/MX2009011443A/en active IP Right Grant
- 2008-04-24 DK DK08762186.8T patent/DK2150328T5/en active
- 2008-04-24 CN CN2008800217622A patent/CN101730575B/en active Active
- 2008-04-24 CA CA2939726A patent/CA2939726C/en active Active
- 2008-04-24 EP EP17189358.9A patent/EP3278863B1/en active Active
- 2008-04-24 EP EP12177604.1A patent/EP2517773B2/en active Active
- 2008-04-24 DK DK17189358.9T patent/DK3278863T3/en active
- 2008-04-24 EP EP20120177636 patent/EP2517774A3/en not_active Ceased
- 2008-04-24 RU RU2009143682/05A patent/RU2506989C2/en active
- 2008-04-24 MY MYPI20094495A patent/MY180938A/en unknown
- 2008-04-24 EP EP08762186.8A patent/EP2150328B1/en active Active
-
2011
- 2011-06-20 US US13/164,150 patent/US8603432B2/en active Active
-
2012
- 2012-08-06 US US13/567,698 patent/US20120301379A1/en not_active Abandoned
- 2012-08-06 US US13/567,705 patent/US8906820B2/en active Active
- 2012-08-06 US US13/567,692 patent/US20120301378A1/en not_active Abandoned
- 2012-08-06 US US13/567,703 patent/US20120301380A1/en not_active Abandoned
-
2014
- 2014-09-11 JP JP2014185086A patent/JP6053734B2/en active Active
- 2014-11-24 US US14/552,161 patent/US20150078968A1/en not_active Abandoned
- 2014-12-31 US US14/587,793 patent/US20150110682A1/en not_active Abandoned
- 2014-12-31 US US14/587,653 patent/US20150118121A1/en not_active Abandoned
- 2014-12-31 US US14/587,709 patent/US20150118115A1/en not_active Abandoned
- 2014-12-31 US US14/587,613 patent/US20150118114A1/en not_active Abandoned
-
2016
- 2016-04-06 JP JP2016076435A patent/JP6387039B2/en active Active
- 2016-08-31 US US15/252,376 patent/US20160367939A1/en not_active Abandoned
- 2016-09-26 JP JP2016187204A patent/JP6822812B2/en active Active
-
2018
- 2018-05-29 US US15/991,565 patent/US11478748B2/en active Active
- 2018-11-27 JP JP2018220918A patent/JP6855432B2/en active Active
-
2022
- 2022-09-12 US US17/931,415 patent/US12064727B2/en active Active
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3895094A (en) | 1974-01-28 | 1975-07-15 | Gulf Oil Corp | Process for selective reduction of oxides of nitrogen |
| US4220632A (en) | 1974-09-10 | 1980-09-02 | The United States Of America As Represented By The United States Department Of Energy | Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia |
| US4961917A (en) | 1989-04-20 | 1990-10-09 | Engelhard Corporation | Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts |
| US5589147A (en) | 1994-07-07 | 1996-12-31 | Mobil Oil Corporation | Catalytic system for the reducton of nitrogen oxides |
| US5958818A (en) | 1997-04-14 | 1999-09-28 | Bulldog Technologies U.S.A., Inc. | Alkaline phosphate-activated clay/zeolite catalysts |
| WO1999039809A1 (en) | 1998-02-06 | 1999-08-12 | Johnson Matthey Public Limited Company | SYSTEM FOR NOx REDUCTION IN EXHAUST GASES |
| EP1057519A1 (en) | 1999-05-18 | 2000-12-06 | Kemira Metalkat Oy | Purification system for diesel engine exhaust gases |
| WO2000072965A1 (en) | 1999-05-27 | 2000-12-07 | The Regents Of The University Of Michigan | Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making |
| US6514470B1 (en) | 1999-10-28 | 2003-02-04 | The Regents Of The University Of California | Catalysts for lean burn engine exhaust abatement |
| WO2001080978A1 (en) | 2000-04-25 | 2001-11-01 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Method for removing soot particles from an exhaust gas and corresponding collecting element |
| WO2002041991A2 (en) | 2000-11-15 | 2002-05-30 | Engelhard Corporation | HYDROTHERMALLY STABLE METAL PROMOTED ZEOLITE BETA FOR NOx REDUCTION |
| WO2004002611A1 (en) | 2002-06-28 | 2004-01-08 | Johnson Matthey Public Limited Company | Doped ceria-containing zeolite-based nh3 scr catalyst |
| DE102004013164A1 (en) | 2004-03-17 | 2005-10-13 | Adam Opel Ag | Catalyst for improving the efficiency of NOx reduction in motor vehicles |
| WO2006064805A1 (en) | 2004-12-17 | 2006-06-22 | Munekatsu Furugen | Electric treating method for exhaust gas of diesel engine and its device |
| DE102005010221A1 (en) | 2005-03-05 | 2006-09-07 | S&B Industrial Minerals Gmbh | Process for the preparation of a catalytically active mineral based on a framework silicate |
| WO2008106519A1 (en) | 2007-02-27 | 2008-09-04 | Basf Catalysts Llc | Copper cha zeolite catalysts |
| WO2008118434A1 (en) | 2007-03-26 | 2008-10-02 | Pq Corporation | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
Non-Patent Citations (3)
| Title |
|---|
| ISHIHARA ET AL., JOURNAL OF CATALYSIS, vol. 169, 1997, pages 93 |
| LONG ET AL., JOURNAL OF CATALYSIS, vol. 207, 2002, pages 274 - 285 |
| S. KASAOKA ET AL.: "Effect of Inlet NO/N02 Molar Ratio and Contribution of Oxygen in the Catalytic Reduction of Nitrogen Oxides with Ammonia", NIPPON KAGAKU KAISHI, vol. 6, 1978, pages 874 - 881 |
Cited By (403)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7998423B2 (en) | 2007-02-27 | 2011-08-16 | Basf Corporation | SCR on low thermal mass filter substrates |
| US9162218B2 (en) | 2007-02-27 | 2015-10-20 | Basf Corporation | Copper CHA zeolite catalysts |
| US11529619B2 (en) | 2007-02-27 | 2022-12-20 | Basf Corporation | Copper CHA zeolite catalysts |
| EP2117707A1 (en) | 2007-02-27 | 2009-11-18 | Basf Catalysts Llc | Copper cha zeolite catalysts |
| US9656254B2 (en) | 2007-02-27 | 2017-05-23 | Basf Corporation | Copper CHA zeolite catalysts |
| US11845067B2 (en) | 2007-02-27 | 2023-12-19 | Basf Corporation | Copper CHA zeolite catalysts |
| US8735311B2 (en) | 2007-02-27 | 2014-05-27 | Basf Corporation | Copper CHA zeolite catalysts |
| US9138732B2 (en) | 2007-02-27 | 2015-09-22 | Basf Corporation | Copper CHA zeolite catalysts |
| US8119088B2 (en) | 2007-02-27 | 2012-02-21 | Basf Corporation | SCR on low thermal mass filter substrates |
| US9839905B2 (en) | 2007-02-27 | 2017-12-12 | Basf Corporation | Copper CHA zeolite catalysts |
| US10654031B2 (en) | 2007-02-27 | 2020-05-19 | Basf Corporation | Copper CHA zeolite catalysts |
| US7601662B2 (en) | 2007-02-27 | 2009-10-13 | Basf Catalysts Llc | Copper CHA zeolite catalysts |
| US8404203B2 (en) | 2007-02-27 | 2013-03-26 | Basf Corporation | Processes for reducing nitrogen oxides using copper CHA zeolite catalysts |
| US8603432B2 (en) | 2007-04-26 | 2013-12-10 | Paul Joseph Andersen | Transition metal/zeolite SCR catalysts |
| EP2517776B2 (en) † | 2007-04-26 | 2019-08-07 | Johnson Matthey Public Limited Company | Transition metal/kfi-zeolite scr catalyst |
| US12064727B2 (en) | 2007-04-26 | 2024-08-20 | Johnson Matthey Public Limited Company | Transition metal/zeolite SCR catalysts |
| US11478748B2 (en) | 2007-04-26 | 2022-10-25 | Johnson Matthey Public Limited Company | Transition metal/zeolite SCR catalysts |
| US8617474B2 (en) | 2008-01-31 | 2013-12-31 | Basf Corporation | Systems utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure |
| WO2009099937A1 (en) * | 2008-01-31 | 2009-08-13 | Basf Catalysts Llc | Catalysts, systems and methods utilizing non-zeolitic metal-containing molecular sieves having the cha crystal structure |
| US10105649B2 (en) | 2008-01-31 | 2018-10-23 | Basf Corporation | Methods utilizing non-zeolitic metal-containing molecular sieves having the CHA crystal structure |
| EP2918329B1 (en) | 2008-05-07 | 2017-08-02 | Umicore Ag & Co. Kg | Device and method for reducing nitrogen oxides in hydrocarbon-containing waste gas streams using an scr catalytic converter on the basis of a molecular filter |
| JP2011519722A (en) * | 2008-05-07 | 2011-07-14 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Method for reducing nitrogen oxides in exhaust gases containing hydrocarbons using SCR catalysts based on molecular sieves |
| WO2009135588A1 (en) * | 2008-05-07 | 2009-11-12 | Umicore Ag & Co. Kg | Method for decreasing nitrogen oxides in hydrocarbon-containing exhaust gases using an scr catalyst based on a molecular sieve |
| EP2918330A1 (en) * | 2008-05-07 | 2015-09-16 | Umicore Ag & Co. Kg | Method for reducing nitrogen oxides in hydrocarbon containing waste gas streams using an scr catalytic converter on the basis of a molecular filter |
| EP2918329A1 (en) * | 2008-05-07 | 2015-09-16 | Umicore Ag & Co. Kg | Method for reducing nitrogen oxides in hydrocarbon containing waste gas streams using an scr catalytic converter on the basis of a molecular filter |
| EP3195920A1 (en) * | 2008-05-07 | 2017-07-26 | Umicore Ag & Co. Kg | Method for decreasing nitrogen oxides in hydrocarbon-containing exhaust gases using an scr catalyst based on a molecular sieve |
| EP2898941A1 (en) * | 2008-05-07 | 2015-07-29 | Umicore AG & Co. KG | System for treating diesel engine exhaust gases containing nitrogen oxides and hydrocarbons |
| EP3778484A1 (en) * | 2008-05-21 | 2021-02-17 | Basf Se | Process for the direct synthesis of cu containing zeolites having cha structure |
| US8715618B2 (en) | 2008-05-21 | 2014-05-06 | Basf Se | Process for the direct synthesis of Cu containing zeolites having CHA structure |
| WO2009141324A1 (en) * | 2008-05-21 | 2009-11-26 | Basf Se | Process for the direct synthesis of cu containing zeolites having cha structure |
| EP2551240A3 (en) * | 2008-05-21 | 2016-04-20 | Basf Se | Process for the direct synthesis of Cu containing zeolites having CHA structure |
| US9272272B2 (en) | 2008-05-21 | 2016-03-01 | Basf Se | Process for the direct synthesis of Cu containing zeolites having CHA structure |
| US10316739B2 (en) | 2008-06-27 | 2019-06-11 | Umicore Ag & Co. Kg | Method and device for the purification of diesel exhaust gases |
| US10001053B2 (en) | 2008-06-27 | 2018-06-19 | Umicore Ag & Co. Kg | Method and device for the purification of diesel exhaust gases |
| EP2878361A1 (en) * | 2008-10-15 | 2015-06-03 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
| DE202009018988U1 (en) | 2008-10-15 | 2015-03-05 | Johnson Matthey Public Ltd., Co. | Copper-containing aluminosilicate zeolite catalyst |
| WO2010043891A1 (en) | 2008-10-15 | 2010-04-22 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
| EP2352912B1 (en) | 2008-11-03 | 2018-07-04 | BASF Corporation | Integrated scr and amox catalyst systems |
| US11660585B2 (en) | 2008-11-06 | 2023-05-30 | Basf Corporation | Chabazite zeolite catalysts having low silica to alumina ratios |
| US10583424B2 (en) | 2008-11-06 | 2020-03-10 | Basf Corporation | Chabazite zeolite catalysts having low silica to alumina ratios |
| US20120020875A1 (en) * | 2009-01-22 | 2012-01-26 | Mitsubishi Plastics, Inc. | Catalyst for reducing nitrogen oxides and method for producing the same |
| US8919110B2 (en) * | 2009-02-26 | 2014-12-30 | Johnson Matthey Public Limited Company | Method and system using a filter for treating exhaust gas having particulate matter |
| WO2010097634A1 (en) | 2009-02-26 | 2010-09-02 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a positive ignition engine |
| US8512657B2 (en) | 2009-02-26 | 2013-08-20 | Johnson Matthey Public Limited Company | Method and system using a filter for treating exhaust gas having particulate matter |
| WO2010097638A1 (en) | 2009-02-26 | 2010-09-02 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
| DE202010018079U1 (en) | 2009-02-26 | 2014-02-04 | Johnson Matthey Public Limited Company | A spark-ignition engine comprising an exhaust system with a filter therefor |
| EP3777998A1 (en) | 2009-02-26 | 2021-02-17 | Johnson Matthey Public Limited Company | Filter |
| US8012439B2 (en) | 2009-02-26 | 2011-09-06 | Johnson Matthey Public Limited Company | Filter |
| US8608820B2 (en) | 2009-02-26 | 2013-12-17 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a compression ignition engine |
| DE202010018081U1 (en) | 2009-02-26 | 2014-02-17 | Johnson Matthey Public Limited Company | filter |
| EP2401056B1 (en) | 2009-02-26 | 2016-04-13 | Johnson Matthey Public Limited Company | Filter for filtering particulate matter from exhaust gas emitted from a positive ignition engine |
| DE102010002425A1 (en) | 2009-02-26 | 2010-09-23 | Johnson Matthey Public Limited Company | filter |
| US8211393B2 (en) | 2009-02-26 | 2012-07-03 | Johnson Matthey Public Limited Company | Exhaust system for a vehicular positive ignition internal combustion engine |
| DE102010002425B4 (en) * | 2009-02-26 | 2016-03-31 | Johnson Matthey Public Limited Company | filter |
| US9415344B2 (en) * | 2009-02-26 | 2016-08-16 | Johnson Matthey Public Limited Company | Method and system using a filter for treating exhaust gas having particulate matter |
| US10124292B2 (en) | 2009-04-03 | 2018-11-13 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
| US9321009B2 (en) | 2009-04-03 | 2016-04-26 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
| JP2015178103A (en) * | 2009-04-03 | 2015-10-08 | ビーエーエスエフ コーポレーション | Emission treatment system comprising an ammonia generation catalyst and an SCR catalyst |
| KR102268414B1 (en) * | 2009-04-03 | 2021-06-23 | 바스프 코포레이션 | Emissions treatment system with ammonia-generating and scr catalysts |
| KR102031990B1 (en) * | 2009-04-03 | 2019-10-14 | 바스프 코포레이션 | Emissions treatment system with ammonia-generating and scr catalysts |
| JP2012522636A (en) * | 2009-04-03 | 2012-09-27 | ビーエーエスエフ コーポレーション | Emission treatment system comprising an ammonia generation catalyst and an SCR catalyst |
| JP2017225974A (en) * | 2009-04-03 | 2017-12-28 | ビーエーエスエフ コーポレーション | Emissions treatment system with ammonia-generating and scr catalysts |
| US9662611B2 (en) | 2009-04-03 | 2017-05-30 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
| EP2414081B1 (en) | 2009-04-03 | 2018-06-06 | BASF Corporation | Emissions treatment system with ammonia-generating and scr catalysts |
| US9358503B2 (en) | 2009-04-03 | 2016-06-07 | Basf Corporation | Emissions treatment system with ammonia-generating and SCR catalysts |
| KR20120008521A (en) * | 2009-04-03 | 2012-01-30 | 바스프 코포레이션 | Emission Treatment System by Ammonia Generation and Scr Catalyst |
| KR20200013802A (en) * | 2009-04-03 | 2020-02-07 | 바스프 코포레이션 | Emissions treatment system with ammonia-generating and scr catalysts |
| EP2995367A1 (en) | 2009-04-17 | 2016-03-16 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| GB2482094B (en) * | 2009-04-17 | 2014-05-14 | Johnson Matthey Plc | Small pore molecular sieve supported copper catalysts durable against lean/rich ageing for the reduction of nitrogen oxides |
| JP2020116573A (en) * | 2009-04-17 | 2020-08-06 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Small-pore molecular sieve-supported copper catalyst for reduction of nitrogen oxides resistant to lean/rich aging |
| EP4112168A1 (en) | 2009-04-17 | 2023-01-04 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalyst durable against lean/rich aging for the reduction of nitrogen oxides |
| GB2482094A (en) * | 2009-04-17 | 2012-01-18 | Johnson Matthey Plc | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| DE102010027883A1 (en) | 2009-04-17 | 2011-03-31 | Johnson Matthey Public Ltd., Co. | Process for using a catalyst with copper and a small pore molecular sieve in a chemical process |
| CN105833717A (en) * | 2009-04-17 | 2016-08-10 | 约翰逊马西有限公司 | Small pore molecular sieve supported copper catalysts |
| EP2698192A1 (en) | 2009-04-17 | 2014-02-19 | Johnson Matthey Public Limited Company | Exhaust gas treatment with a small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| EP3456413A3 (en) * | 2009-04-17 | 2019-12-25 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalyst durable against lean/rich aging for the reduction of nitrogen oxides |
| US7998443B2 (en) | 2009-04-17 | 2011-08-16 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| KR102180723B1 (en) * | 2009-04-17 | 2020-11-20 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| EP3456413A2 (en) | 2009-04-17 | 2019-03-20 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalyst durable against lean/rich aging for the reduction of nitrogen oxides |
| JP2019000848A (en) * | 2009-04-17 | 2019-01-10 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalyst for the reduction of nitrogen oxides with durability against lean / rich aging |
| CN102802791A (en) * | 2009-04-17 | 2012-11-28 | 约翰逊马西有限公司 | A Small Pore Molecular Sieve Supported Copper Catalyst for Nitrogen Oxide Reduction with Lean/Rich Aging Tolerance |
| US8101147B2 (en) | 2009-04-17 | 2012-01-24 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| US9802156B2 (en) | 2009-04-17 | 2017-10-31 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| JP2015164729A (en) * | 2009-04-17 | 2015-09-17 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company | Small pore molecular sieve supported copper catalyst for the reduction of nitrogen oxides with durability against lean / rich aging |
| EP2995367B1 (en) | 2009-04-17 | 2017-12-20 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| EP2698193A1 (en) | 2009-04-17 | 2014-02-19 | Johnson Matthey Public Limited Company | Exhaust gas treatment with a small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| KR20170141263A (en) * | 2009-04-17 | 2017-12-22 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| CN105749747A (en) * | 2009-04-17 | 2016-07-13 | 约翰逊马西有限公司 | Small pore molecular sieve supported copper catalysts |
| WO2010121257A1 (en) | 2009-04-17 | 2010-10-21 | Johnson Matthey Public Limited Company | Small pore molecular sieve supported copper catalysts durable against lean/rich aging for the reduction of nitrogen oxides |
| EP2269733A1 (en) | 2009-06-08 | 2011-01-05 | Basf Se | Process for the direct synthesis of cu containing silicoaluminophosphate (cu-sapo-34) |
| US8887495B2 (en) * | 2009-07-14 | 2014-11-18 | GM Global Technology Operations LLC | Ash filter, exhaust gas treatment system incorporating the same and method of using the same |
| US20110011067A1 (en) * | 2009-07-14 | 2011-01-20 | Gm Global Technology Operations, Inc. | Ash Filter, Exhaust Gas Treatment System Incorporating the Same and Method of Using the Same |
| CN102548658A (en) * | 2009-08-27 | 2012-07-04 | 东曹株式会社 | High hot water resistance SCR catalyst and manufacturing method thereof |
| US9138685B2 (en) | 2009-08-27 | 2015-09-22 | Tosoh Corporation | Highly hydrothermal-resistant SCR catalyst and manufacturing method therefor |
| JP2011067814A (en) * | 2009-08-27 | 2011-04-07 | Tosoh Corp | Highly heat-resistant aqueous scr catalyst and manufacturing method thereof |
| EP2471597A4 (en) * | 2009-08-27 | 2013-02-27 | Tosoh Corp | HIGHLY HEAT-RESISTANT SCR CATALYST AND METHOD FOR MANUFACTURING THE SAME |
| US9550182B2 (en) | 2009-09-05 | 2017-01-24 | Johnson Matthey Catalysts (Germany) Gmbh | Method for the production of an SCR-active zeolite catalyst, and SCR-active zeolite catalyst |
| RU2506999C2 (en) * | 2009-09-05 | 2014-02-20 | Джонсон Мэтти Каталистс (Джермани) Гмбх | Method of obtaining scr-active zeolite catalyst and scr-active zeolite catalyst |
| JP2013506787A (en) * | 2009-10-02 | 2013-02-28 | ビー・エイ・エス・エフ、コーポレーション | Catalyst used for four-cycle diesel and method of using the same |
| WO2011045252A1 (en) | 2009-10-14 | 2011-04-21 | Basf Se | Copper containing levyne molecular sieve for selective reduction of nox |
| US20160129431A1 (en) * | 2009-10-14 | 2016-05-12 | Basf Se | Copper Containing Levyne Molecular Sieve For Selective Reduction Of NOx |
| JP2013507321A (en) * | 2009-10-14 | 2013-03-04 | ビーエーエスエフ ソシエタス・ヨーロピア | Copper-containing levite molecular sieve for selective reduction of NOx |
| US9242241B2 (en) | 2009-10-14 | 2016-01-26 | Base Se | Copper containing levyne molecular sieve for selective reduction of NOx |
| JP2011125852A (en) * | 2009-11-19 | 2011-06-30 | Ibiden Co Ltd | Honeycomb structure and exhaust gas cleaning apparatus |
| JP2011125846A (en) * | 2009-11-19 | 2011-06-30 | Ibiden Co Ltd | Honeycomb structure and apparatus for cleaning exhaust gas |
| EP2325143A2 (en) | 2009-11-24 | 2011-05-25 | Basf Se | Process for the preparation of zeolites having B-CHA structure |
| US9895684B2 (en) | 2009-11-24 | 2018-02-20 | Basf Se | Process for the preparation of zeolites having CHA structure |
| US8883119B2 (en) | 2009-11-24 | 2014-11-11 | Basf Se | Process for the preparation of zeolites having CHA structure |
| US8409546B2 (en) | 2009-11-24 | 2013-04-02 | Basf Se | Process for the preparation of zeolites having B-CHA structure |
| WO2011064186A1 (en) | 2009-11-24 | 2011-06-03 | Basf Se | Process for the preparation of zeolites having cha structure |
| JP2013013894A (en) * | 2009-11-30 | 2013-01-24 | Johnson Matthey Plc | Catalyst for treating transient nox emissions |
| WO2011064666A2 (en) | 2009-11-30 | 2011-06-03 | Johnson Matthey Public Limited Company | Catalysts for treating transient nox emissions |
| GB2475740B (en) * | 2009-11-30 | 2017-06-07 | Johnson Matthey Plc | Catalysts for treating transient NOx emissions |
| KR101969688B1 (en) | 2009-11-30 | 2019-04-16 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Catalysts for treating transient nox emissions |
| JP2018183774A (en) * | 2009-11-30 | 2018-11-22 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Catalyst for treating transient NOx exhaust gas |
| CN102821847A (en) * | 2009-11-30 | 2012-12-12 | 约翰逊马西有限公司 | Catalysts to deal with transient NOx emissions |
| US9815048B2 (en) * | 2009-11-30 | 2017-11-14 | Johnson Matthey Public Limited Company | Catalysts for treating transient NOx emissions |
| KR101843388B1 (en) * | 2009-11-30 | 2018-03-29 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Catalysts for treating transient nox emissions |
| KR101985158B1 (en) * | 2009-11-30 | 2019-05-31 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Catalysts for treating transient nox emissions |
| US9616420B2 (en) | 2009-11-30 | 2017-04-11 | Johnson Matthey Public Limited Company | Catalysts for treating transient NOx emissions |
| CN104588092A (en) * | 2009-11-30 | 2015-05-06 | 约翰逊马西有限公司 | CATALYSTS FOR TREATING TRANSIENT NOx EMISSIONS |
| CN105032477A (en) * | 2009-11-30 | 2015-11-11 | 约翰逊马西有限公司 | Catalysts for treating transient NOX emissions |
| EP2520365A2 (en) | 2009-11-30 | 2012-11-07 | Johnson Matthey Public Limited Company | Catalysts for treating transient nox emissions |
| KR20180037298A (en) * | 2009-11-30 | 2018-04-11 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Catalysts for treating transient nox emissions |
| KR20180034714A (en) * | 2009-11-30 | 2018-04-04 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Catalysts for treating transient nox emissions |
| JP2016175076A (en) * | 2009-11-30 | 2016-10-06 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Catalyst for treating transient NOx exhaust gas |
| WO2011073123A3 (en) * | 2009-12-18 | 2011-10-20 | Basf Se | Ferrous zeolite, method for producing ferrous zeolites, and method for catalytically reducing nitrous oxides |
| CN102946997A (en) * | 2009-12-18 | 2013-02-27 | 巴斯夫公司 | Method for direct copper exchange into Na+-type chabazite molecular sieves, as well as catalysts, systems and methods |
| EP2965813A1 (en) | 2009-12-18 | 2016-01-13 | BASF Corporation | Process for the preparation of copper containing molecular sieves with the cha structure |
| US9517461B2 (en) | 2009-12-18 | 2016-12-13 | Basf Se | Ferrous zeolite, method for producing ferrous zeolites, and method for catalytically reducing nitrous oxides |
| WO2011073398A3 (en) * | 2009-12-18 | 2011-12-15 | Basf Corporation | Process of direct copper exchange into na+-form of chabazite molecular sieve, and catalysts, systems and methods |
| RU2587078C2 (en) * | 2009-12-18 | 2016-06-10 | Басф Се | Iron-containing zeolite, method of producing iron-containing zeolites and method for catalytic reduction of nitrogen oxides |
| WO2011073398A2 (en) | 2009-12-18 | 2011-06-23 | Basf Corporation | Process of direct copper exchange into na+-form of chabazite molecular sieve, and catalysts, systems and methods |
| WO2011073390A2 (en) | 2009-12-18 | 2011-06-23 | Basf Corporation | Process for preparation of copper containing molecular sieves with the cha structure, catalysts, systems and methods |
| US8293199B2 (en) | 2009-12-18 | 2012-10-23 | Basf Corporation | Process for preparation of copper containing molecular sieves with the CHA structure, catalysts, systems and methods |
| CN102655933A (en) * | 2009-12-18 | 2012-09-05 | 巴斯夫欧洲公司 | Ferrous zeolite, method for producing ferrous zeolites, and method for catalytically reducing nitrous oxides |
| US8293198B2 (en) | 2009-12-18 | 2012-10-23 | Basf Corporation | Process of direct copper exchange into Na+-form of chabazite molecular sieve, and catalysts, systems and methods |
| EP2377613A3 (en) * | 2009-12-18 | 2011-11-02 | JGC Catalysts and Chemicals Ltd. | Metal-supported crystalline silica aluminophosphate catalyst and process for producing the same |
| DE102010056223A1 (en) | 2009-12-24 | 2011-07-28 | Johnson Matthey Public Limited Company | Exhaust system for a vehicle engine with spark ignition |
| WO2011077168A1 (en) | 2009-12-24 | 2011-06-30 | Johnson Matthey Plc | Exhaust system for a vehicular positive ignition internal combustion engine |
| US9040003B2 (en) | 2010-02-01 | 2015-05-26 | Johnson Matthey Public Limited Company | Three way catalyst comprising extruded solid body |
| US8263032B2 (en) | 2010-02-01 | 2012-09-11 | Johnson Matthey Public Limited Company | Oxidation catalyst |
| US8641993B2 (en) | 2010-02-01 | 2014-02-04 | Johnson Matthey Public Limited Co. | NOx absorber catalysts |
| US8609047B2 (en) | 2010-02-01 | 2013-12-17 | Johnson Matthey Public Limited Company | Extruded SCR filter |
| US9283519B2 (en) | 2010-02-01 | 2016-03-15 | Johnson Matthey Public Limited Company | Filter comprising combined soot oxidation and NH3-SCR catalyst |
| US8815190B2 (en) | 2010-02-01 | 2014-08-26 | Johnson Matthey Public Limited Company | Extruded SCR filter |
| WO2011092521A1 (en) * | 2010-02-01 | 2011-08-04 | Johnson Matthey Plc | Extruded scr filter |
| US8603423B2 (en) | 2010-02-01 | 2013-12-10 | Johnson Matthey Public Limited Co. | Three way catalyst comprising extruded solid body |
| WO2011098512A1 (en) | 2010-02-11 | 2011-08-18 | Süd-Chemie AG | Kfi-type copper-containing zeolith and use in the scr-catalyst |
| DE102010007626A1 (en) | 2010-02-11 | 2011-08-11 | Süd-Chemie AG, 80333 | Copper-containing zeolite of the KFI type and use in SCR catalysis |
| KR101798030B1 (en) * | 2010-03-08 | 2017-11-15 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Improvements in control of emissions |
| CN102822462B (en) * | 2010-03-08 | 2016-06-01 | 约翰逊马西有限公司 | Diesel engine exhaust aftertreatment system and method |
| JP2013522517A (en) * | 2010-03-08 | 2013-06-13 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニー | Improved exhaust gas control |
| CN102822462A (en) * | 2010-03-08 | 2012-12-12 | 约翰逊马西有限公司 | Improvements in Emissions Control |
| US9574474B2 (en) | 2010-03-08 | 2017-02-21 | Johnson Matthey Public Limited Company | Control of emissions |
| WO2011110919A1 (en) | 2010-03-08 | 2011-09-15 | Johnson Matthey Public Limited Company | Improvements in control of emissions |
| US8809217B2 (en) | 2010-03-11 | 2014-08-19 | Johnson Matthey Public Limited Company | Disordered molecular sieve supports for the selective catalytic reduction of NOx |
| US8932973B2 (en) | 2010-03-11 | 2015-01-13 | Johnson Matthey Public Limited Company | Disordered molecular sieve supports for the selective catalytic reduction of NOx |
| EP2555853A4 (en) * | 2010-03-11 | 2014-04-16 | Johnson Matthey Plc | OFFSETTED MOLECULAR SIEVE SUPPORTS FOR SELECTIVE CATALYTIC REDUCTION OF NOx &xA; |
| US9352307B2 (en) * | 2010-04-08 | 2016-05-31 | Basf Corporation | Cu-CHA/Fe-MFI mixed zeolite catalyst and process for the treatment of NOx in gas streams |
| US20110305614A1 (en) * | 2010-04-08 | 2011-12-15 | Basf Corporation | Cu-CHA/Fe-MFI Mixed Zeolite Catalyst And Process For The Treatment Of NOx In Gas Streams |
| KR101844089B1 (en) * | 2010-04-08 | 2018-03-30 | 바스프 에스이 | Cu-cha/fe-mfi mixed zeolite catalyst and process for treating nox in gas streams using the same |
| EP2555866A4 (en) * | 2010-04-08 | 2014-12-10 | Basf Se | CU-CHA / FE-MFI MIXED ZEOLITE CATALYST AND METHOD FOR THE SUCCESS OF NOX PROCESSING IN GAS STREAMS |
| US9352277B2 (en) | 2010-06-02 | 2016-05-31 | Johnson Matthey Plc | Diesel particulate filter |
| WO2011151711A1 (en) | 2010-06-02 | 2011-12-08 | Johnson Matthey Public Limited Company | Diesel particulate filter |
| EP2593212B1 (en) * | 2010-07-15 | 2015-12-16 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| EP2593222A1 (en) | 2010-07-15 | 2013-05-22 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| US20120014867A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx |
| EP2593223A4 (en) * | 2010-07-15 | 2014-02-12 | Basf Se | COPPER CONTAINING ZSM-34, OFFERABILITY AND / OR ERIONITE TYPE ZEOLITHIC MATERIAL USED FOR SELECTIVE NOX REDUCTION |
| US20120014865A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx |
| WO2012007874A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| CN103167907A (en) * | 2010-07-15 | 2013-06-19 | 巴斯夫欧洲公司 | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| US20120014866A1 (en) * | 2010-07-15 | 2012-01-19 | Ivor Bull | Copper Containing ZSM-34, OFF And/Or ERI Zeolitic Material For Selective Reduction Of NOx |
| US9289756B2 (en) | 2010-07-15 | 2016-03-22 | Basf Se | Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx |
| EP2593222B1 (en) * | 2010-07-15 | 2015-12-16 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| WO2012007873A1 (en) * | 2010-07-15 | 2012-01-19 | Basf Se | Copper containing zsm-34, off and/or eri zeolitic material for selective reduction of nox |
| US9221015B2 (en) | 2010-07-15 | 2015-12-29 | Basf Se | Copper containing ZSM-34, OFF and/or ERI zeolitic material for selective reduction of NOx |
| US8987161B2 (en) * | 2010-08-13 | 2015-03-24 | Ut-Battelle, Llc | Zeolite-based SCR catalysts and their use in diesel engine emission treatment |
| US9403156B2 (en) | 2010-08-13 | 2016-08-02 | Ut-Battelle, Llc | Zeolite-based SCR catalysts and their use in diesel engine emission treatment |
| US20120039759A1 (en) * | 2010-08-13 | 2012-02-16 | Ut-Battelle, Llc | Zeolite-based scr catalysts and their use in diesel engine emission treatment |
| RU2584748C2 (en) * | 2010-09-13 | 2016-05-20 | Умикоре Аг Унд Ко. Кг | Catalyst for removing nitrogen oxides from exhaust gases of diesel engines |
| US8865120B2 (en) | 2010-12-11 | 2014-10-21 | Umicore Ag & Co., Kg | Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic remediation of nitrogen oxides |
| WO2012076648A1 (en) | 2010-12-11 | 2012-06-14 | Umicore Ag & Co. Kg | Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic remediation of nitrogen oxides |
| EP2463028A1 (en) | 2010-12-11 | 2012-06-13 | Umicore Ag & Co. Kg | Process for the production of metal doped zeolites and zeotypes and application of same to the catalytic removal of nitrogen oxides |
| WO2012085572A2 (en) | 2010-12-21 | 2012-06-28 | Johnson Matthey Public Limited Company | Oxidation catalyst for a lean burn internal combustion engine |
| EP3673978A1 (en) | 2010-12-21 | 2020-07-01 | Johnson Matthey Public Limited Company | Oxidation catalyst for a lean burn internal combustion engine |
| DE102011089371A1 (en) | 2010-12-21 | 2012-06-21 | Johnson Matthey Plc | Oxidation catalyst for a lean-burn internal combustion engine |
| US9140167B2 (en) | 2010-12-21 | 2015-09-22 | Johnson Matthey Public Limited Company | Oxidation catalyst for a lean burn internal combustion engine |
| WO2012090922A1 (en) | 2010-12-27 | 2012-07-05 | 三菱樹脂株式会社 | Catalyst for nitrogen oxide removal |
| US8617502B2 (en) | 2011-02-07 | 2013-12-31 | Cristal Usa Inc. | Ce containing, V-free mobile denox catalyst |
| WO2012158239A1 (en) | 2011-02-28 | 2012-11-22 | Johnson Matthey Public Limited Company | High-temperature scr catalyst |
| US9616409B2 (en) | 2011-03-04 | 2017-04-11 | Johnson Matthey Public Limited Company | Catalyst and method of preparation |
| DE102012203461A1 (en) | 2011-03-04 | 2012-09-06 | Johnson Matthey Public Ltd. Co. | CATALYST AND METHOD OF MANUFACTURE |
| WO2012120292A1 (en) | 2011-03-04 | 2012-09-13 | Johnson Matthey Public Limited Company | Alloy-comprising catalyst, method of preparation and uses |
| WO2012138652A1 (en) | 2011-04-04 | 2012-10-11 | Pq Corporation | Fe-sapo-34 catalyst and methods of making and using the same |
| US20120251422A1 (en) * | 2011-04-04 | 2012-10-04 | Pq Corporation | Fe-SAPO-34 CATALYST AND METHODS OF MAKING AND USING THE SAME |
| US10226762B1 (en) * | 2011-06-17 | 2019-03-12 | Johnson Matthey Public Limited Company | Alumina binders for SCR catalysts |
| US9138731B2 (en) | 2011-08-03 | 2015-09-22 | Johnson Matthey Public Limited Company | Extruded honeycomb catalyst |
| WO2013030584A1 (en) | 2011-08-31 | 2013-03-07 | Johnson Matthey Public Limited Company | Method and system using a filter for treating exhaust gas having particulate matter |
| US20130089483A1 (en) * | 2011-10-05 | 2013-04-11 | Basf Se | Cu-CHA/Fe-BEA Mixed Zeolite Catalyst And Process For The Treatment Of NOx In Gas Streams |
| US9999877B2 (en) | 2011-10-05 | 2018-06-19 | Basf Se | Cu-CHA/Fe-BEA mixed zeolite catalyst and process for the treatment of NOx in gas streams |
| WO2013050964A1 (en) * | 2011-10-05 | 2013-04-11 | Basf Se | Cu-CHA/Fe-BEA MIXED ZEOLITE CATALYST AND PROCESS FOR THE TREATMENT OF NOX IN GAS STREAMS |
| US9005559B2 (en) | 2011-10-06 | 2015-04-14 | Johnson Matthey Public Limited Company | Oxidation catalyst for internal combustion engine exhaust gas treatment |
| EP3363526A1 (en) | 2011-10-06 | 2018-08-22 | Johnson Matthey Public Limited Company | Oxidation catalyst for internal combustion engine exhaust gas treatment |
| EP3363525A1 (en) | 2011-10-06 | 2018-08-22 | Johnson Matthey Public Limited Company | Oxidation catalyst for internal combustion engine exhaust gas treatment |
| US9868115B2 (en) | 2011-10-06 | 2018-01-16 | Johnson Matthey Public Limited Company | Oxidation catalyst for internal combustion engine exhaust gas treatment |
| WO2013050784A2 (en) | 2011-10-06 | 2013-04-11 | Johnson Matthey Public Limited Company | Oxidation catalyst for internal combustion engine exhaust gas treatment |
| US8652429B2 (en) | 2011-10-06 | 2014-02-18 | Johnson Matthey Public Limited Company | Oxidation catalyst for internal combustion engine exhaust gas treatment |
| DE102012218254A1 (en) | 2011-10-06 | 2013-04-11 | Johnson Matthey Japan Godo Kaisha | Oxidation catalyst for a treatment of exhaust gas of an internal combustion engine |
| DE102012218254B4 (en) | 2011-10-06 | 2022-11-17 | Johnson Matthey Public Limited Company | EXHAUST SYSTEM FOR AN INTERNAL COMBUSTION ENGINE |
| RU2608616C2 (en) * | 2011-10-24 | 2017-01-23 | Хальдор Топсеэ А/С | Catalyst composition and method for use in selective catalytic reduction of nitrogen oxides |
| US8956992B2 (en) | 2011-10-27 | 2015-02-17 | GM Global Technology Operations LLC | SCR catalysts preparation methods |
| DE102012222801B4 (en) | 2011-12-12 | 2020-06-04 | Johnson Matthey Public Limited Company | Exhaust system and use of a washcoat |
| US8668891B2 (en) | 2011-12-12 | 2014-03-11 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn IC engine comprising a PGM component and a SCR catalyst |
| WO2013088133A1 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Catalysed substrate monolith |
| DE102012025751A1 (en) | 2011-12-12 | 2015-07-30 | Johnson Matthey Public Limited Company | An exhaust system for a lean-burn internal combustion engine comprising a PGM component and an SCR catalyst |
| WO2013088128A1 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn internal combustion engine including scr catalyst |
| WO2013088129A2 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Substrate monolith comprising scr catalyst |
| DE102012025746A1 (en) | 2011-12-12 | 2015-06-25 | Johnson Matthey Public Limited Company | Catalyzed substrate monolith |
| WO2013088132A1 (en) | 2011-12-12 | 2013-06-20 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst |
| DE102012222807A1 (en) | 2011-12-12 | 2013-06-27 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn internal combustion engine comprising an SCR catalyst |
| DE102012222804A1 (en) | 2011-12-12 | 2013-06-27 | Johnson Matthey Public Limited Company | Substrate monolith comprising an SCR catalyst |
| US9333461B2 (en) | 2011-12-12 | 2016-05-10 | Johnson Matthey Public Limited Company | Substrate monolith comprising SCR catalyst |
| DE102012222806A1 (en) | 2011-12-12 | 2013-06-27 | Johnson Matthey Public Limited Company | An exhaust system for a lean-burn internal combustion engine comprising a PGM component and an SCR catalyst |
| DE102012222801A1 (en) | 2011-12-12 | 2013-06-27 | Johnson Matthey Public Limited Company | Catalyzed substrate monolith |
| US9597661B2 (en) | 2011-12-12 | 2017-03-21 | Johnson Matthey Public Limited Company | Catalysed substrate monolith |
| US9046022B2 (en) | 2011-12-12 | 2015-06-02 | Johnson Matthey Public Limited Company | Catalysed substrate monolith |
| US8986635B2 (en) | 2011-12-12 | 2015-03-24 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn IC engine comprising a PGM component and a SCR catalyst |
| US8667785B2 (en) | 2011-12-12 | 2014-03-11 | Johnson Matthey Public Limited Company | Catalysed substrate monolith |
| EP3636336A1 (en) | 2011-12-12 | 2020-04-15 | Johnson Matthey Public Limited Company | Exhaust system comprising catalysed substrate monolith including washcoat for trapping volatilised pt upstream from scr catalyst |
| US9259684B2 (en) | 2011-12-12 | 2016-02-16 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn internal combustion engine including SCR catalyst |
| RU2642443C2 (en) * | 2012-01-31 | 2018-01-25 | Джонсон Мэтти Паблик Лимитед Компани | Catalytic mixtures |
| US9126180B2 (en) | 2012-01-31 | 2015-09-08 | Johnson Matthey Public Limited Company | Catalyst blends |
| US9999876B2 (en) * | 2012-01-31 | 2018-06-19 | Johnson Matthey Public Limited Company | Catalyst blends |
| GB2514945A (en) * | 2012-01-31 | 2014-12-10 | Johnson Matthey Plc | Catalyst blends |
| JP2018140387A (en) * | 2012-01-31 | 2018-09-13 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Catalyst mixture |
| GB2514945B (en) * | 2012-01-31 | 2018-01-31 | Johnson Matthey Plc | Catalyst blends |
| EP3326714A1 (en) * | 2012-01-31 | 2018-05-30 | Johnson Matthey Public Limited Company | Catalyst blends |
| WO2013114172A1 (en) * | 2012-01-31 | 2013-08-08 | Johnson Matthey Public Limited Company | Catalyst blends |
| WO2013126619A1 (en) * | 2012-02-24 | 2013-08-29 | Ut-Battelle, Llc | Hydrothermally stable, low-temperature nox reduction nh3-scr catalyst |
| US20150238946A1 (en) * | 2012-02-24 | 2015-08-27 | Ut-Battelle, Llc | Hydrothermally stable, low-temperature nox reduction nh3-scr catalyst |
| US9475039B2 (en) * | 2012-02-24 | 2016-10-25 | Ut-Battelle, Llc | Hydrothermally stable, low-temperature NOx reduction NH3-SCR catalyst |
| US9352279B2 (en) | 2012-04-24 | 2016-05-31 | Johnson Matthey Public Limited Company | Filter substrate comprising three-way catalyst |
| CN109268108A (en) * | 2012-04-27 | 2019-01-25 | 优美科两合公司 | For purifying the method and system of the exhaust gas from internal combustion engine |
| US9561468B2 (en) | 2012-04-27 | 2017-02-07 | Haldor Topsoe A/S | Method and system for the purification of exhaust gas from an internal combustion engine |
| EP2850294B1 (en) * | 2012-04-27 | 2017-06-07 | Haldor Topsøe A/S | Method and system for the purification of exhaust gas from an internal combustion engine |
| WO2013159828A1 (en) | 2012-04-27 | 2013-10-31 | Haldor Topsøe A/S | Process for the direct synthesis of cu-sapo-34 |
| EP3165733A1 (en) * | 2012-04-27 | 2017-05-10 | Haldor Topsøe A/S | Method for the purification of exhaust gas from an internal combustion engine |
| CN104520548B (en) * | 2012-04-27 | 2018-09-07 | 优美科两合公司 | Method and system for purifying exhaust gases from internal combustion engines |
| US9855528B2 (en) | 2012-04-27 | 2018-01-02 | Haldor Topsoe A/S | System for the purification of exhaust gas from an internal combustion engine |
| EP3369897A1 (en) * | 2012-04-27 | 2018-09-05 | Umicore Ag & Co. Kg | Method and system for the purification of exhaust gas from an internal combustion engine |
| EP2995790A1 (en) * | 2012-04-27 | 2016-03-16 | Haldor Topsøe A/S | System for the purification of exhaust gas from an internal combustion engine |
| CN104520548A (en) * | 2012-04-27 | 2015-04-15 | 赫多特普索化工设备公司 | Method and system for purifying exhaust gases from internal combustion engines |
| EP3425182A1 (en) * | 2012-04-27 | 2019-01-09 | Umicore Ag & Co. Kg | Method and system for the purification of exhaust gas from an internal combustion engine |
| EP3425181A1 (en) * | 2012-04-27 | 2019-01-09 | Umicore Ag & Co. Kg | Method and system for the purification of exhaust gas from an internal combustion engine |
| CN102671691A (en) * | 2012-05-28 | 2012-09-19 | 四川君和环保工程有限公司 | Low-temperature SCR (Selective Catalytic Reduction) denitrification catalyst, as well as preparation method and application thereof |
| RU2704617C2 (en) * | 2012-10-19 | 2019-10-30 | Басф Корпорейшн | 8-ring molecular sieve with small pores as high-temperature scr catalyst |
| RU2767067C1 (en) * | 2012-10-19 | 2022-03-16 | Басф Корпорейшн | 8-ring molecular sieve with small pores as high-temperature scr catalyst |
| EP4070884A1 (en) | 2012-11-21 | 2022-10-12 | Johnson Matthey Public Limited Company | Exhaust system for a compression ignition engine comprising oxidation catalyst |
| US9034286B2 (en) | 2012-11-21 | 2015-05-19 | Johnson Matthey Public Limited Company | Oxidation catalyst for treating the exhaust gas of a compression ignition engine |
| WO2014080202A1 (en) | 2012-11-21 | 2014-05-30 | Johnson Matthey Public Limited Company | Catalysed soot filter for treating the exhaust gas of a compression ignition engine |
| US9057310B2 (en) | 2012-11-21 | 2015-06-16 | Johnson Matthey Public Limited Company | Catalysed soot filter for treating the exhaust gas of a compression ignition engine |
| US9527035B2 (en) | 2012-11-21 | 2016-12-27 | Johnson Matthey Public Limited Company | Catalysed soot filter for treating the exhaust gas of a compression ignition engine |
| DE102013223845A1 (en) | 2012-11-21 | 2014-05-22 | Johnson Matthey Public Limited Company | Oxidation catalyst for the treatment of exhaust gas of an internal combustion engine |
| WO2014080200A1 (en) | 2012-11-21 | 2014-05-30 | Johnson Matthey Public Limited Company | Oxidation catalyst for treating the exhaust gas of a compression ignition engine |
| US9527034B2 (en) | 2012-11-21 | 2016-12-27 | Johnson Matthey Public Limited Company | Oxidation catalyst for treating the exhaust gas of a compression ignition engine |
| DE102013223839A1 (en) | 2012-11-21 | 2014-05-22 | Johnson Matthey Public Limited Company | Catalyzed soot filter for treating the exhaust gas of a compression ignition engine |
| US8992869B2 (en) | 2012-12-20 | 2015-03-31 | Caterpillar Inc. | Ammonia oxidation catalyst system |
| US9931620B2 (en) | 2013-03-13 | 2018-04-03 | Basf Corporation | Stabilized metal-exchanged SAPO material |
| US9802182B2 (en) | 2013-03-13 | 2017-10-31 | Basf Corporation | Stabilized metal-exchanged SAPO material |
| RU2771714C2 (en) * | 2013-03-15 | 2022-05-11 | Джонсон Мэтти Паблик Лимитед Компани | Catalyst for exhaust gas processing |
| GB2532342A (en) * | 2013-03-15 | 2016-05-18 | Johnson Matthey Plc | Catalyst for treating exhaust gas |
| RU2675821C2 (en) * | 2013-03-15 | 2018-12-25 | Джонсон Мэтти Паблик Лимитед Компани | Catalyst for treating exhaust gases |
| US9044744B2 (en) | 2013-03-15 | 2015-06-02 | Johnson Matthey Public Limited Company | Catalyst for treating exhaust gas |
| GB2558467B (en) * | 2013-03-15 | 2019-01-30 | Johnson Matthey Plc | Catalyst for treating exhaust gas |
| WO2014141200A1 (en) * | 2013-03-15 | 2014-09-18 | Johnson Matthey Public Limited Company | Catalyst for treating exhaust gas |
| GB2558467A (en) * | 2013-03-15 | 2018-07-11 | Johnson Matthey Plc | Catalyst for treating exhaust gas |
| GB2532342B (en) * | 2013-03-15 | 2018-07-18 | Johnson Matthey Plc | Catalyst for treating exhaust gas |
| DE202013012229U1 (en) | 2013-04-05 | 2015-10-08 | Umicore Ag & Co. Kg | CuCHA material for SCR catalysis |
| DE102013005749A1 (en) | 2013-04-05 | 2014-10-09 | Umicore Ag & Co. Kg | CuCHA material for SCR catalysis |
| US9327239B2 (en) | 2013-04-05 | 2016-05-03 | Johnson Matthey Public Limited Company | Filter substrate comprising three-way catalyst |
| DE102014105736A1 (en) | 2013-04-24 | 2014-10-30 | Johnson Matthey Public Limited Company | A spark-ignition engine and exhaust system comprising a catalyzed zoned filter substrate |
| DE102014105739A1 (en) | 2013-04-24 | 2014-10-30 | Johnson Matthey Public Limited Company | Filter substrate comprising a zoned catalyst washcoat |
| US9366166B2 (en) | 2013-04-24 | 2016-06-14 | Johnson Matthey Public Limited Company | Filter substrate comprising zone-coated catalyst washcoat |
| US9347349B2 (en) | 2013-04-24 | 2016-05-24 | Johnson Matthey Public Limited Company | Positive ignition engine and exhaust system comprising catalysed zone-coated filter substrate |
| EP3753626A1 (en) | 2013-04-24 | 2020-12-23 | Johnson Matthey Public Limited Company | Filter substrate comprising zone-coated catalyst washcoat |
| EP3753625A1 (en) | 2013-04-24 | 2020-12-23 | Johnson Matthey Public Limited Company | Filter substrate comprising zone-coated catalyst washcoat |
| US9403157B2 (en) | 2013-04-29 | 2016-08-02 | Ford Global Technologies, Llc | Three-way catalyst comprising mixture of nickel and copper |
| DE102014106944A1 (en) | 2013-05-17 | 2014-11-20 | Johnson Matthey Public Limited Company | Oxidation catalyst for a compression ignition engine |
| US9643161B2 (en) | 2013-05-17 | 2017-05-09 | Johnson Matthey Public Limited Company | Oxidation catalyst for a compression ignition engine |
| US11794169B2 (en) | 2013-05-17 | 2023-10-24 | Johnson Matthey Public Limited Company | Oxidation catalyst for a compression ignition engine |
| DE102014106943A1 (en) | 2013-05-17 | 2014-11-20 | Johnson Matthey Public Limited Company | OXIDATION CATALYST FOR A COMPRESSION IGNITION ENGINE |
| US9707542B2 (en) | 2013-05-17 | 2017-07-18 | Johnson Matthey Public Limited Company | Oxidation catalyst for a compression ignition engine |
| US9630146B2 (en) | 2013-06-03 | 2017-04-25 | Ford Global Technologies, Llc | Particulate filter containing a nickel-copper catalyst |
| KR20160020422A (en) | 2013-06-14 | 2016-02-23 | 도소 가부시키가이샤 | Lev-type zeolite and production method therefor |
| WO2014199945A1 (en) | 2013-06-14 | 2014-12-18 | 東ソー株式会社 | Lev-type zeolite and production method therefor |
| US9968917B2 (en) | 2013-06-14 | 2018-05-15 | Tosoh Corporation | LEV-type zeolite and production method therefor |
| WO2015018815A1 (en) * | 2013-08-09 | 2015-02-12 | Basf Se | Process for the oxygen free conversion of methane to ethylene on zeolite catalysts |
| US9480976B2 (en) | 2013-12-02 | 2016-11-01 | Johnson Matthey Public Limited Company | Synthesis of AEI zeolite |
| WO2015084834A1 (en) * | 2013-12-02 | 2015-06-11 | Johnson Matthey Public Limited Company | Synthesis of aei zeolite |
| DE102014117672A1 (en) | 2013-12-02 | 2015-06-03 | Johnson Matthey Public Limited Company | WALL CURRENT FILTER CONTAINING A CATALYTIC WASHCOAT |
| GB2522977B (en) * | 2013-12-06 | 2017-02-08 | Johnson Matthey Plc | Passive NOx adsorber |
| GB2522977A (en) * | 2013-12-06 | 2015-08-12 | Johnson Matthey Plc | Passive NOx adsorber |
| US20150231620A1 (en) * | 2014-02-19 | 2015-08-20 | Ford Global Technologies, Llc | IRON-ZEOLITE CHABAZITE CATALYST FOR USE IN NOx REDUCTION AND METHOD OF MAKING |
| US20150231617A1 (en) * | 2014-02-19 | 2015-08-20 | Ford Global Technologies, Llc | Fe-SAPO-34 CATALYST FOR USE IN NOX REDUCTION AND METHOD OF MAKING |
| GB2527398B (en) * | 2014-03-27 | 2019-05-08 | Johnson Matthey Plc | SCR method for reducing oxides of nitrogen and method for producing a catalyst for such method |
| GB2527398A (en) * | 2014-03-27 | 2015-12-23 | Johnson Matthey Plc | SCR method for reducing oxides of nitrogen and method for producing a catalyst for such method |
| US20150290632A1 (en) * | 2014-04-09 | 2015-10-15 | Ford Global Technologies, Llc | IRON AND COPPER-CONTAINING CHABAZITE ZEOLITE CATALYST FOR USE IN NOx REDUCTION |
| EP2985068A1 (en) | 2014-08-13 | 2016-02-17 | Umicore AG & Co. KG | Catalyst system for the reduction of nitrogen oxides |
| US10443463B2 (en) | 2014-08-13 | 2019-10-15 | Umicore Ag & Co. Kg | Catalyst system for reducing nitrogen oxides |
| US20170333883A1 (en) * | 2014-10-30 | 2017-11-23 | Basf Corporation | Mixed metal large crystal molecular sieve catalyst compositions, catalytic articles, systems and methods |
| US10792648B2 (en) * | 2014-10-30 | 2020-10-06 | Basf Corporation | Mixed metal large crystal molecular sieve catalyst compositions, catalytic articles, systems and methods |
| GB2538877A (en) * | 2014-12-08 | 2016-11-30 | Johnson Matthey Plc | Passive NOx adsorber |
| GB2538877B (en) * | 2014-12-08 | 2017-04-26 | Johnson Matthey Plc | Passive NOx adsorber |
| US11103855B2 (en) | 2015-02-16 | 2021-08-31 | Johnson Matthey Public Limited Company | Catalyst with stable nitric oxide (NO) oxidation performance |
| DE102016102527A1 (en) | 2015-02-16 | 2016-08-18 | Johnson Matthey Public Limited Company | Catalyst with stable nitrogen monoxide (NO) oxidation performance |
| EP3307434B1 (en) | 2015-04-09 | 2021-06-09 | PQ Corporation | Stabilized microporous crystalline material, the method of making the same, and the use for selective catalytic reduction of nox |
| WO2017001829A1 (en) | 2015-06-28 | 2017-01-05 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter having a membrane |
| DE102016111766A1 (en) | 2015-06-28 | 2016-12-29 | Johnson Matthey Public Limited Company | CATALYTIC WALL CURRENT FILTER WITH A MEMBRANE |
| EP3574983A2 (en) | 2015-06-28 | 2019-12-04 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter having a membrane |
| US11311867B2 (en) | 2016-02-03 | 2022-04-26 | Basf Corporation | Copper and iron co-exchanged chabazite catalyst |
| EP3411145A4 (en) * | 2016-02-03 | 2019-10-02 | BASF Corporation | CHABAZITE CATALYST FOR EXCHANGE OF COPPER AND IRON |
| US10105691B2 (en) | 2016-03-31 | 2018-10-23 | Ford Global Technologies, Llc | Multiple zeolite hydrocarbon traps |
| US10092897B2 (en) * | 2016-04-20 | 2018-10-09 | Ford Global Technologies, Llc | Catalyst trap |
| US11014077B2 (en) | 2016-05-03 | 2021-05-25 | Umicore Ag & Co. Kg | Active SCR catalyst |
| WO2017207969A1 (en) * | 2016-05-31 | 2017-12-07 | Johnson Matthey Public Limited Company | Method and exhaust system for treating nox in exhaust gas from stationary emission sources |
| US10799831B2 (en) | 2016-08-11 | 2020-10-13 | Umicore Ag & Co. Kg | SCR-active material |
| WO2018029329A1 (en) | 2016-08-11 | 2018-02-15 | Umicore Ag & Co. Kg | Scr-active material having enhanced thermal stability |
| WO2018029328A1 (en) | 2016-08-11 | 2018-02-15 | Umicore Ag & Co. Kg | Scr-active material |
| EP3281698A1 (en) | 2016-08-11 | 2018-02-14 | Umicore AG & Co. KG | Scr active material |
| US10914214B2 (en) | 2016-09-20 | 2021-02-09 | Umicore Ag & Co. Kg | SCR diesel particle filter with oxidation catalyst and oxygen storage catalyst loadings, and exhaust system including the same |
| WO2018054929A1 (en) | 2016-09-20 | 2018-03-29 | Umicore Ag & Co. Kg | Diesel particle filter |
| WO2018069199A1 (en) | 2016-10-10 | 2018-04-19 | Umicore Ag & Co. Kg | Catalytic converter arrangement |
| WO2018078559A1 (en) | 2016-10-28 | 2018-05-03 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter with partial surface coating |
| DE102017125192A1 (en) | 2016-10-28 | 2018-05-03 | Johnson Matthey Public Limited Company | Catalytic wall-flow filter with partial surface coating |
| WO2018081682A1 (en) * | 2016-10-31 | 2018-05-03 | Johnson Matthey Public Limited Company | Lta catalysts having extra-framework iron and/or manganese for treating exhaust gas |
| US10500574B2 (en) | 2016-10-31 | 2019-12-10 | Johnson Matthey Public Limited Company | LTA catalysts having extra-framework iron and/or manganese for treating exhaust gas |
| GB2570831A (en) * | 2016-12-01 | 2019-08-07 | Johnson Matthey Plc | Method of extending the useful life of an aged SCR catalyst bed in an exhaust system of a stationary source of NOx |
| US10961871B2 (en) | 2016-12-01 | 2021-03-30 | Johnson Matthey Public Limited Company | Method of extending the useful life of an aged SCR catalyst bed in an exhaust system of a stationary source of NOX |
| WO2018100368A1 (en) * | 2016-12-01 | 2018-06-07 | Johnson Matthey Public Limited Company | METHOD OF EXTENDING THE USEFUL LIFE OF AN AGED SCR CATALYST BED IN AN EXHAUST SYSTEM OF A STATIONARY SOURCE OF NOx |
| CN110050110A (en) * | 2016-12-01 | 2019-07-23 | 庄信万丰股份有限公司 | Method for extending the service life of an aged SCR catalyst bed in an emission system with a fixed source of NOx |
| US10213767B2 (en) | 2017-02-03 | 2019-02-26 | Umicore Ag & Co. Kg | Catalyst for purifying the exhaust gases of diesel engines |
| WO2018141887A1 (en) | 2017-02-03 | 2018-08-09 | Umicore Ag & Co. Kg | Catalytic converter for cleaning the exhaust gases of diesel engines |
| EP3357558A1 (en) | 2017-02-03 | 2018-08-08 | Umicore Ag & Co. Kg | Catalyst for cleaning diesel engine exhaust gases |
| DE102018204690A1 (en) | 2017-03-31 | 2018-10-04 | Johnson Matthey Catalysts (Germany) Gmbh | Selective catalytic reduction catalyst |
| DE102018204802A1 (en) | 2017-03-31 | 2018-10-04 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Catalyst composition for selective catalytic reduction |
| US10926251B2 (en) | 2017-03-31 | 2021-02-23 | Johnson Matthey Catalysts (Germany) Gmbh | Selective catalytic reduction catalyst |
| CN109250729B (en) * | 2017-07-12 | 2022-02-25 | 中国科学院大连化学物理研究所 | Cu-SAPO-34 molecular sieve synthesis method, synthesized molecular sieve and application |
| CN109250729A (en) * | 2017-07-12 | 2019-01-22 | 中国科学院大连化学物理研究所 | The molecular sieve and application of Cu-SAPO-34 Zeolite synthesis method and synthesis |
| WO2019042884A1 (en) | 2017-08-31 | 2019-03-07 | Umicore Ag & Co. Kg | USE OF A PALLADIUM PLATINUM ZEOLITE-BASED CATALYST AS A PASSIVE STAIN OXIDE ADSORBER FOR EMISSION CONTROL |
| EP3450015A1 (en) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Palladium-zeolite-based passive nitrogen oxide adsorber catalyst for exhaust gas treatment |
| WO2019042883A1 (en) | 2017-08-31 | 2019-03-07 | Umicore Ag & Co. Kg | PALLADIUM ZEOLITE BASED PASSIVE STAINOXIDE ADSORBER CATALYST FOR EXHAUST PURIFICATION |
| EP3450016A1 (en) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Palladium-zeolite-based passive nitrogen oxide adsorber catalyst for exhaust gas treatment |
| US11161100B2 (en) | 2017-08-31 | 2021-11-02 | Umicore Ag & Co. Kg | Use of a palladium/platinum/zeolite-based catalyst as passive nitrogen oxide adsorber for purifying exhaust gas |
| US11141717B2 (en) | 2017-08-31 | 2021-10-12 | Umicore Ag & Co. Kg | Palladium/zeolite-based passive nitrogen oxide adsorber catalyst for purifying exhaust gas |
| EP3449999A1 (en) | 2017-08-31 | 2019-03-06 | Umicore Ag & Co. Kg | Passive nitric oxide adsorber |
| DE102018121503A1 (en) | 2017-09-05 | 2019-03-07 | Umicore Ag & Co. Kg | Exhaust gas purification with NO oxidation catalyst and SCR-active particle filter |
| US10711674B2 (en) | 2017-10-20 | 2020-07-14 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber catalyst |
| WO2019077111A1 (en) | 2017-10-20 | 2019-04-25 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber catalyst |
| WO2019134958A1 (en) | 2018-01-05 | 2019-07-11 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
| WO2019141718A1 (en) | 2018-01-16 | 2019-07-25 | Umicore Ag & Co. Kg | Method for producing an scr catalytic converter by way of pre-drying |
| US11230955B2 (en) | 2018-01-16 | 2022-01-25 | Umicore Ag & Co. Kg | Method for producing an SCR catalytic converter by way of pre-drying |
| DE102018100834A1 (en) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Process for producing an SCR catalyst |
| DE102018100833A1 (en) | 2018-01-16 | 2019-07-18 | Umicore Ag & Co. Kg | Process for producing an SCR catalyst |
| US11400443B2 (en) | 2018-01-16 | 2022-08-02 | Umicore Ag & Co. Kg | Ultrasound-assisted method for producing an SCR catalytic converter |
| WO2019141719A1 (en) | 2018-01-16 | 2019-07-25 | Umicore Ag & Co. Kg | Ultrasound-assisted method for producing an scr catalytic converter |
| WO2019145198A1 (en) | 2018-01-23 | 2019-08-01 | Umicore Ag & Co. Kg | Scr catalyst and exhaust gas cleaning system |
| US10898889B2 (en) | 2018-01-23 | 2021-01-26 | Umicore Ag & Co. Kg | SCR catalyst and exhaust gas cleaning system |
| US10456746B2 (en) | 2018-02-12 | 2019-10-29 | GM Global Technology Operations LLC | Selective catalytic reduction filter for reducing nitrous oxide formation and methods of using the same |
| EP3613503A1 (en) | 2018-08-22 | 2020-02-26 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
| WO2020039015A1 (en) | 2018-08-22 | 2020-02-27 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
| WO2020043578A1 (en) | 2018-08-28 | 2020-03-05 | Umicore Ag & Co. Kg | Nitrogen oxide storage catalyst |
| US11376550B2 (en) | 2018-08-28 | 2022-07-05 | Umicore Ag & Co. Kg | Nitrogen oxide storage catalyst |
| EP3616792A1 (en) | 2018-08-28 | 2020-03-04 | Umicore Ag & Co. Kg | Nitrogen oxide storage catalyst |
| US11511228B2 (en) | 2018-11-02 | 2022-11-29 | Basf Corporation | Exhaust treatment system for a lean burn engine |
| WO2020089043A1 (en) | 2018-11-02 | 2020-05-07 | Basf Corporation | Exhaust treatment system for a lean burn engine |
| WO2020099253A1 (en) | 2018-11-16 | 2020-05-22 | Umicore Ag & Co. Kg | Low temperature nitrogen oxide adsorber |
| US11439952B2 (en) | 2018-11-16 | 2022-09-13 | Umicore Ag & Co. Kg | Low temperature nitrogen oxide adsorber |
| US11278874B2 (en) | 2018-11-30 | 2022-03-22 | Johnson Matthey Public Limited Company | Enhanced introduction of extra-framework metal into aluminosilicate zeolites |
| WO2020109810A1 (en) | 2018-11-30 | 2020-06-04 | Johnson Matthey Public Limited Company | Enhanced introduction of extra-frame work metal into aluminosilicate zeolites |
| WO2020144195A1 (en) | 2019-01-08 | 2020-07-16 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber having oxidation-catalytically active function |
| US11772077B2 (en) | 2019-01-08 | 2023-10-03 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber having oxidation-catalytically active function |
| WO2020148186A1 (en) | 2019-01-14 | 2020-07-23 | Friedrich-Alexander-Universität Erlangen-Nürnberg | Iron-loaded small pore aluminosilicate cha zeolites and method of making metal loaded small pore aluminosilicate cha zeolites |
| EP3695902A1 (en) | 2019-02-18 | 2020-08-19 | Umicore Ag & Co. Kg | Catalyst for reducing nitrogen oxides |
| WO2020169600A1 (en) | 2019-02-18 | 2020-08-27 | Umicore Ag & Co. Kg | Catalyst for reduction of nitrogen oxides |
| EP3791955A1 (en) | 2019-09-10 | 2021-03-17 | Umicore Ag & Co. Kg | Scr-catalytic material containing copper-zeolite and copper/alumina, exhaust gas treatment process with said material and method for producing said material |
| WO2021078977A1 (en) | 2019-10-24 | 2021-04-29 | Dinex A/S | Durable copper-scr catalyst |
| EP3812034A1 (en) | 2019-10-24 | 2021-04-28 | Dinex A/S | Durable copper-scr catalyst |
| EP3824988A1 (en) | 2019-11-20 | 2021-05-26 | UMICORE AG & Co. KG | Catalyst for reducing nitrogen oxides |
| US12246306B2 (en) | 2019-11-20 | 2025-03-11 | Umicore Ag & Co. Kg | Catalyst for reducing nitrogen oxides |
| WO2021099361A1 (en) | 2019-11-20 | 2021-05-27 | Umicore Ag & Co. Kg | Catalyst for reducing nitrogen oxides |
| EP3885040A1 (en) | 2020-03-24 | 2021-09-29 | UMICORE AG & Co. KG | Ammonia oxidation catalyst |
| EP3978100A1 (en) | 2020-09-30 | 2022-04-06 | UMICORE AG & Co. KG | Bismuth-containing zoned diesel oxidation catalyst |
| WO2022069465A1 (en) | 2020-09-30 | 2022-04-07 | Umicore Ag & Co. Kg | Bismut containing dieseloxidation catalyst |
| WO2022079141A1 (en) | 2020-10-14 | 2022-04-21 | Umicore Ag & Co. Kg | Passive nitrogen oxide adsorber |
| WO2022200310A1 (en) | 2021-03-23 | 2022-09-29 | Umicore Ag & Co. Kg | Filter for the aftertreatment of exhaust gases of internal combustion engines |
| EP4063003A1 (en) | 2021-03-23 | 2022-09-28 | UMICORE AG & Co. KG | Filter for the aftertreatment of exhaust gases of internal combustion engines |
| US12270326B2 (en) | 2021-03-23 | 2025-04-08 | Umicore Ag & Co. Kg | Filter for the aftertreatment of exhaust gases of internal combustion engines |
| WO2023067134A1 (en) | 2021-10-22 | 2023-04-27 | Johnson Matthey Catalysts (Germany) Gmbh | Method and catalyst article |
| DE102022130469A1 (en) | 2022-11-17 | 2024-05-23 | Umicore Ag & Co. Kg | Method and device for producing a substrate for an exhaust gas aftertreatment device |
| DE102023117464A1 (en) | 2023-07-03 | 2025-01-09 | Umicore Ag & Co. Kg | Method and device for producing a substrate for an exhaust gas aftertreatment device |
| WO2025104217A1 (en) | 2023-11-17 | 2025-05-22 | Umicore Ag & Co. Kg | Catalytic particulate filter |
| DE102023132075A1 (en) * | 2023-11-17 | 2025-05-22 | Umicore Ag & Co. Kg | Catalytic particulate filter |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12064727B2 (en) | Transition metal/zeolite SCR catalysts | |
| KR20150052335A (en) | Transition metal/zeolite scr catalysts |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200880021762.2 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08762186 Country of ref document: EP Kind code of ref document: A2 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2685009 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2009/011443 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010504833 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20097024528 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 6921/CHENP/2009 Country of ref document: IN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009143682 Country of ref document: RU Ref document number: 2008762186 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12597707 Country of ref document: US |
|
| ENP | Entry into the national phase |
Ref document number: PI0810133 Country of ref document: BR Kind code of ref document: A2 Effective date: 20091023 |







