JP2004188388A - Filter for cleaning diesel exhaust gas and its production method - Google Patents

Filter for cleaning diesel exhaust gas and its production method Download PDF

Info

Publication number
JP2004188388A
JP2004188388A JP2002362564A JP2002362564A JP2004188388A JP 2004188388 A JP2004188388 A JP 2004188388A JP 2002362564 A JP2002362564 A JP 2002362564A JP 2002362564 A JP2002362564 A JP 2002362564A JP 2004188388 A JP2004188388 A JP 2004188388A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidation
catalyst
filter
diesel exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002362564A
Other languages
Japanese (ja)
Inventor
Masatoshi Fujisawa
雅敏 藤澤
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002362564A priority Critical patent/JP2004188388A/en
Publication of JP2004188388A publication Critical patent/JP2004188388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a filter for cleaning diesel exhaust gas for preventing the oxidation/corrosion of downstream instruments by efficiently oxidizing and decomposing PM (particle material), HC (hydrocarbon), CO and the like at a relatively low temperature even for diesel exhaust gas containing a high concentration sulfur and, moreover, suppressing the oxidation of SO<SB>2</SB>. <P>SOLUTION: Porous filter carriers are impregnated with a sol-like first catalyst component containing at least one metal selected from lanthanum, barium and cerium, and alumina, are allowed to carry the first catalyst, are dried and are sintered. Thereafter, the porous filter carriers are impregnated with an aqueous second catalyst component containing at least one metal selected from iridium, palladium, rhodium, and ruthenium, and platinum, are allowed to carry the second catalyst, are dried and are fired. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼル排ガス浄化用フィルタおよびその製造方法に係り、特に、低温でのHC、CO、NO酸化活性が高く、しかもSO2 のSO3 への酸化を抑制することができる、ディーゼル排ガス浄化用フィルタおよびその製造方法に関する。
【0002】
【従来の技術】
ディーゼル排ガスの浄化方法または装置については多くの研究がなされており、さまざまな技術が開発されている。図1は、従来のディーゼル排ガス処理装置の一般的なフローを示す説明図である。図1において、この排ガス処理装置は、ディーゼル排ガスの煙道にガス流れ方向10に沿って順次設けられた、酸化触媒層1、ディーゼルパティキュレートフィルタ(DPF)2、SCR触媒層4およびNH3 酸化触媒層5と、前記SCR触媒層4の前流の排ガス煙道に尿素またはNH3 を注入する還元剤注入装置3とから主として構成されている。
【0003】
ディーゼル排ガスは、先ず酸化触媒層1に流入し、ここで排ガスに含まれる炭化水素(HC)が酸化、分解されるとともに、一酸化炭素(CO)が酸化されて二酸化炭素(CO2 )となる。また、排ガスに含まれる一酸化窒素(NO)は二酸化窒素(NO2 )に酸化される。このようにして排ガスに含まれる有害成分が酸化、分解された排ガスは、後流のDPF2に流入し、ここで粒子状物質(PM)が捕獲されるとともに、該捕獲された粒子状物質が前記酸化触媒層1で発生したNO2 によって酸化、分解されてCO2 が発生する (特開平01−318715号公報)。酸化触媒層1およびDPF2における反応を纏めると次式のようになる。
【0004】
NO + 1/2O2 → NO2 … (1)
HC + nO2 → mCO2+ pH2O … (2)
CO + 1/2O2 → CO2 … (3)
C + 2NO2 → CO2 + 2NO … (4)
HC、CO、PM等が除去されたディーゼル排ガスは、その後、還元剤注入装置3から注入される還元剤、例えば尿素などのアンモニア誘導体から生成されたアンモニアと混合したのち、後流のSCR触媒層4に流入し、ここで排ガス中の窒素酸化物が脱硝、処理される。脱硝反応に使用されなかったリークアンモニアは後流のアンモニア酸化触媒層5に流入し、ここで酸化分解される。
【0005】
このような排ガス処理装置において、酸化触媒としては、例えば酸化チタン、シリカ、アルミナ、ジルコニア、ゼオライトなどの多孔体に、活性成分として白金などの貴金属を担持したものが広く用いられており、コンパクト化を目的として前記酸化触媒をDPFに担持させる技術なども提案されている。
【0006】
ところで、上記酸化触媒を、硫黄分を多く含んだディーゼル排ガスの浄化用触媒として適用した場合、下記式(5)に示すように、排ガス中のSO2 が高効率で酸化されてSO3 が生成するために、後流機器の酸化腐食が問題となる。
SO2 + 1/2O2 → SO3 … (5)
一方、SO2 のSO3 への酸化を抑制する脱硝用の触媒として、例えばイリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属と白金とを含む触媒成分をシリカ、アルミナ、ゼオライトなどの多孔体に担持させたもの(白金含有触媒体)を脱硝触媒上に塗布した触媒が提案されており (特開平08-290062 号公報) 、上記白金含有触媒体を酸化触媒に適用することも考えられる。
【0007】
しかしながら、上記SO2 酸化抑制効果を有する脱硝触媒は、予め特定の金属と白金とを多孔体に担持して複合化した触媒体を脱硝触媒に担持させたものであり、前記白金含有触媒体を直接または酸化触媒と共にDPFに適用しても、目詰まり等が発生し易く、均一に担持させることが難しいという問題がある。また、前記白金含有触媒体をDPFの表面にそのまま担持させたのでは圧力損失が増大するので、DPF内部へ均一に担持させること等によって圧力損失の増大を抑制する必要がある。さらにDPFに酸化触媒を担持させ,DPF上で粒子状物質(煤)を燃焼させるためには、DPFおよびこれに担持される酸化触媒に高い耐熱性が要求されるので、耐熱性に欠ける酸化チタンを担体とする酸化触媒は適用できないという問題もある。
【特許文献1】特開平01−318715号公報
【特許文献2】特開平08−290062号公報
【0008】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解決し、高濃度の硫黄分を含んだディーゼル排ガスであっても粒子状物質(PM)を効率よく捕集して分解、除去するとともに、HCやCOを比較的低温で効率よく酸化、分解し、しかもSO2 の酸化を抑制して後流機器の酸化腐食を防止することができる、耐久性に優れた、ディーゼル排ガス浄化用フィルタおよびその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明者は、ディーゼル排ガスを効果的に浄化するためには、SO2 酸化抑制効果を有する、低温高活性の酸化触媒を担持したDPFの開発が必要不可欠であると考え、SO2 酸化抑制効果を備えた酸化触媒の開発、およびそのDPFへの担持方法等について鋭意研究した結果、DPFにランタン、バリウムおよびセリウムから選ばれた少なくとも1つの金属とアルミナとを含む第1触媒成分をゾル状にして含浸、担持させた後、養生し、乾燥、焼成し、次いで、イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属と白金とを含有する第2触媒成分を水溶液状にして含浸、担持させ、その後、同様にして養生し、乾燥、焼成することによって、SO2 酸化抑制効果を有する酸化触媒がDPF上に均一に担持されること、およびこのDPFを用いることにより、硫黄分を多量に含んだディーゼル排ガスであっても、PM、HC、CO等を比較的低温で効率よく酸化、分解できるうえ、SO2 のSO3 への酸化が抑制されることを見出し、本発明に到達したものである。
【0010】
すなわち、本願で特許請求する発明は、以下のとおりである。
(1)多孔質フィルタ担体に、ランタン、バリウムおよびセリウムから選ばれた少なくとも1つの金属とアルミナとを含む第1触媒成分と、イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属と白金とを含む第2触媒成分を担持させたことを特徴とする、ディーゼル排ガス浄化用フィルタ。
(2)前記イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属の前記白金に対する重量比が、0を超えて2以下であることを特徴とする上記(1)に記載の、ディーゼル排ガス浄化用フィルタ。
【0011】
(3)多孔質フィルタ担体に、ランタン、バリウムおよびセリウムから選ばれた少なくとも1つの金属とアルミナとを含むゾル状の第1触媒成分を含浸、担持させ、乾燥、焼成した後、イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属と白金とを含む水溶液状の第2触媒成分を含浸、担持させ、乾燥、焼成することを特徴とする、ディーゼル排ガス浄化用フィルタの製造方法。
(4)前記第1および第2触媒成分を担持させた後、乾燥前に所定温度で所定時間養生させることを特徴とする上記(3)に記載の、ディーゼル排ガス浄化用フィルタの製造方法。
【0012】
本発明において、多孔質フィルタ担体としては、例えばコージェライトが好適に使用される。コージェライト以外の多孔質フィルタ担体として、例えばセラミックブロック等を使用することができる。
【0013】
また、本発明において、第1触媒成分中、ランタン、バリウムおよびセリウムから選ばれた少なくとも1つの金属のアルミナに対する比は、原子比でアルミナ:金属=9.5:0.5〜7:3であることが好ましい。これよりも少ないと耐熱性の向上効果が低くなり、これよりも大きいと比表面積の低下により活性が低下する。第1触媒成分に含まれるアルミナとしてはβアルミナが好適に用いられる。βアルミナを使用することによって、触媒体の耐熱性が向上する。
【0014】
本発明において、第2触媒成分中、イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つ以上の金属の白金に対する重量比は、0を超えて2以下である。重量比が0、すなわちイリジウム、パラジウム、ロジウムまたはルテニウムのいずれの金属をも全く含まなければ、上述した(5)式に示されるSO2 の酸化を抑制する効果が得られず、2より多いと上記(1)〜(3)式に示した各含有成分の酸化反応効率が低下する。イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属と白金とを同時に多孔質フィルタ担体に担持させることによって、両者の複合化によりSO2 の酸化活性を抑制することができる。
【0015】
本発明において、第1および第2触媒成分を担持した後の養生は、例えば80〜150℃で2〜6時間行われる。養生温度が80℃未満では吸着促進効果が少なくなり、150℃を越えると表面の乾燥により活性成分が移動し、不均一な担持となる。また、養生時間が2時間未満では内部まで十分に加熱されず、移動が抑制されればよいため、6時間程度で十分となる。養生中は、触媒成分担持多孔質フィルタ担体をビニール袋に入れ、密封し、例えば10〜30分間隔で上下反転させることが好ましい。これによって触媒成分をより均一に担持させることができるようになる。
【0016】
本発明において、触媒成分を担持させた多孔質フィルタ担体の乾燥は、例えば120℃以上で3〜6時間行われる。また、乾燥後の焼成は、例えば500〜550℃で2時間行えば充分である。
【0017】
【発明の実施の形態】
以下、具体的実施例を用いて本発明を詳細に説明する。
実施例1〜3
アルミナゾル(日産化学社製、アルミナゾル200)とセリウムゾル(多木化学社製、ニードラール)を重量比2:1で混合した含浸液を調製し、これにディーゼルパティキュレートフィルタ(日立金属社製、多孔質コージェライト)を浸漬、含浸させ、遠心分離により液切りを行ったのち、ビニール袋に入れ密閉し、100℃で2時間養生した。このとき10〜30分置きに上下を反転させた。その後、ビニール袋から取り出し、150℃で6時間上下を反転させながら乾燥し、500℃で2時間焼成した。得られた焼成物に、塩化イリジウム水溶液とジニトロジアンミン白金硝酸液をIrとPtの重量比が1:2(実施例1)、1:1(実施例2)、2:1(実施例3)となるように混合した含浸液をそれぞれ含浸、担持し、上記と同様にして養生し、150℃で6時間乾燥した後、550℃で2時間焼成し、酸化触媒担持DPF(以下、排ガス浄化フィルタともいう)を得た。得られたDPFを用い、表1に示す条件でNO酸化率を測定したところ、実施例1〜3で得られた排ガス浄化フィルタのNO酸化率は、それぞれ38.5%、36.4%、36.8% であった。次に、電気炉により800℃で20hの耐熱試験を行い、その後、再度表1の条件でNO酸化率を測定したところ、実施例1〜3における耐熱試験後の酸化率は、それぞれ37.0%、35.3%、32.4%であった。
【0018】
【表1】

Figure 2004188388
【0019】
比較例1
チタニアゾル(石原産業社製、CS-N)にディーゼルパティキュレートフィルタ(日立金属社製、多孔質コージェライト)を浸漬し、含浸担持させたのち、遠心分離により液切りを行い、実施例1〜3と同様に養生、乾燥、焼成し、次いでIrとPtの重量比が1:1のジニトロジアンミン白金硝酸液と塩化イリジウム水溶液の混合液を含浸、担持させ、再度、養生、乾燥、焼成し、得られたDPFを用いて実施例1と同様にして耐熱試験前後のNO酸化率を測定したところ、それぞれ31.2%、20.1%であった。
【0020】
比較例2
実施例1におけるIrとPtの含浸液をIr:Pt=5:1とした以外は上記実施例1と同様にして排ガス浄化フィルタを作成し、同様にして耐熱試験前後のNO酸化率を測定したところ、それぞれ32.2%、27.9%であった。
【0021】
実施例4〜6
塩化イリジウム(Ir)を硝酸パラジウム(Pd)に変えた以外は上記実施例1〜3と同様にして排ガス浄化フィルタを作成し、同様にして耐熱試験前後のNO酸化率を測定したところ、実施例4〜6における耐熱試験前のNO酸化率は、それぞれ31.3%、30.0%、30.4%であり、耐熱試験後のNO酸化率は、それぞれ44.1%、40.8%、40.5%であった。
【0022】
比較例3
PdとPtの含浸液をPd:Pt=5:1とした以外は実施例4と同様にして排ガス浄化フィルタを作成し、同様にして耐熱試験前後のNO酸化率を測定したところ、それぞれ27.7%、36.0%であった。
【0023】
実施例1〜6、比較例1〜3における耐熱試験前後でのNO酸化率を纏めて表2に示した。
【0024】
【表2】
Figure 2004188388
【0025】
表2より、実施例1〜6においては耐熱試験前後ともに高いNO酸化活性が得られたのに対し、第1触媒成分(ランタン、バリウムおよびセリウムから選ばれた少なくとも1つの金属とアルミナを含む触媒成分)を含まない比較例1では耐熱試験後のNO酸化活性が極端に低下したことが分かる。また、比較例2および3については耐熱試験前の活性も若干低めとなっていることから、Ir:PtまたはPd:Ptの重量比は5より小さく、2以下が好ましいことが分かる。
【0026】
実施例7、8
実施例2、5と同様の酸化触媒担持DPFを用い、表1に示す条件にSO2 =50ppmを加えて酸化試験を行い、1時間後のSO2 酸化率を測定したところ、それぞれ5.1%、5.3%であった。なお、SO2 酸化率は下記式によって求めた。
【0027】
SO2 酸化率=100−100×(出口SO2濃度/入口SO2濃度)
比較例4
塩化イリジウムを用いないこと以外は上記実施例1と同様にして排ガス浄化フィルタを作成し、得られたフィルタに対し、実施例7または8と同様にしてSO2 酸化率を測定したところ、9.7%であった。
【0028】
実施例7、8および比較例4における結果を纏めて表3に示した。
【表3】
Figure 2004188388
【0029】
表3より、比較例4に比べて実施例7および8におけるSO2 酸化率は大幅に低減していることが分かる。この結果から、本発明を適用することによって初期の酸化活性が高く、耐熱性に優れ、さらにSO2 酸化活性が低い、酸化触媒担持排ガス浄化フィルタが得られ、これによって硫黄分を多量に含んだディーゼル排ガスであっても長期間効率よく浄化できることが分かる。
【0030】
【発明の効果】
本願の請求項1に記載の発明によれば、高濃度の硫黄分を含んだディーゼル排ガスであっても、PM、HCおよびCOを比較的低温から効率よく分解、除去することができ、しかもSO2 の酸化を抑制して後流機器の酸化腐食を回避することができる。
本願の請求項2に記載の発明によれば、上記発明の効果に加え、SO2 の酸化抑制効果およびPM、HCおよびCOの酸化、分解効果がより向上する。
【0031】
本願の請求項3に記載の発明によれば、PM、HCおよびCOを比較的低温から効率よく分解、除去することができ、しかもSO2 の酸化を抑制して後流機器の酸化腐食を回避することができる、耐熱性に優れたディーゼル排ガス浄化用フィルタを得ることができる。
本願の請求項4に記載の発明によれば、上記発明の効果に加え、品質が安定し、耐熱性がより向上する。
【図面の簡単な説明】
【図1】ディーゼル排ガス処理装置のフローを示す説明図。
【符号の説明】
1…酸化触媒層、2…ディーゼルパティキュレートフィルタ(DPF)、3…還元剤注入装置、4…SCR触媒層、5…アンモニア酸化触媒層、10…ガス流れ方向。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a filter for purifying diesel exhaust gas and a method for producing the same, and in particular, to a diesel exhaust gas purification filter which has a high activity of oxidizing HC, CO, and NO at a low temperature and can suppress the oxidation of SO 2 to SO 3 . And a method for manufacturing the same.
[0002]
[Prior art]
A great deal of research has been conducted on a method or an apparatus for purifying diesel exhaust gas, and various technologies have been developed. FIG. 1 is an explanatory diagram showing a general flow of a conventional diesel exhaust gas treatment device. In FIG. 1, the exhaust gas treatment apparatus includes an oxidation catalyst layer 1, a diesel particulate filter (DPF) 2, an SCR catalyst layer 4, and an NH 3 oxidation catalyst sequentially provided in a flue of diesel exhaust gas along a gas flow direction 10. It mainly comprises a catalyst layer 5 and a reducing agent injection device 3 for injecting urea or NH 3 into an exhaust gas flue upstream of the SCR catalyst layer 4.
[0003]
Diesel exhaust gas first flows into the oxidation catalyst layer 1, where hydrocarbons (HC) contained in the exhaust gas are oxidized and decomposed, and carbon monoxide (CO) is oxidized to carbon dioxide (CO 2 ). . Further, nitric oxide (NO) contained in the exhaust gas is oxidized to nitrogen dioxide (NO 2 ). The exhaust gas in which the harmful components contained in the exhaust gas are oxidized and decomposed as described above flows into the downstream DPF 2, where the particulate matter (PM) is captured, and the captured particulate matter is converted into the above-mentioned particulate matter. It is oxidized and decomposed by NO 2 generated in the oxidation catalyst layer 1 to generate CO 2 (Japanese Patent Application Laid-Open No. 01-318715). The reactions in the oxidation catalyst layer 1 and the DPF 2 are summarized as follows.
[0004]
NO + 1 / 2O 2 → NO 2 … (1)
HC + nO 2 → mCO 2 + pH 2 O… (2)
CO + 1 / 2O 2 → CO 2 … (3)
C + 2NO 2 → CO 2 + 2NO… (4)
The diesel exhaust gas from which HC, CO, PM, etc. has been removed is then mixed with a reducing agent injected from the reducing agent injection device 3, for example, ammonia generated from an ammonia derivative such as urea, and then the downstream SCR catalyst layer 4 where the nitrogen oxides in the exhaust gas are denitrated and treated. Leaked ammonia not used for the denitration reaction flows into the downstream ammonia oxidation catalyst layer 5, where it is oxidized and decomposed.
[0005]
In such an exhaust gas treatment apparatus, as an oxidation catalyst, for example, a porous body such as titanium oxide, silica, alumina, zirconia, or zeolite, which supports a noble metal such as platinum as an active component, is widely used, and is compact. For this purpose, a technique for supporting the oxidation catalyst on a DPF has been proposed.
[0006]
By the way, when the oxidation catalyst is applied as a catalyst for purifying diesel exhaust gas containing a large amount of sulfur, SO 2 in the exhaust gas is oxidized with high efficiency to produce SO 3 as shown in the following equation (5). Therefore, oxidative corrosion of downstream equipment becomes a problem.
SO 2 + 1 / 2O 2 → SO 3 … (5)
On the other hand, as a denitration catalyst for suppressing the oxidation of SO 2 to SO 3 , for example, a catalyst component containing at least one metal selected from iridium, palladium, rhodium and ruthenium and platinum and silica, alumina, zeolite and the like A catalyst in which a porous material (platinum-containing catalyst) is coated on a denitration catalyst has been proposed (Japanese Patent Application Laid-Open No. 08-290062), and it is considered that the above-mentioned platinum-containing catalyst is applied to an oxidation catalyst. Can be
[0007]
However, denitration catalysts having the SO 2 oxidation inhibiting effect, which was supported prespecified metal platinum and catalyst complexed by supporting the porous body in denitration catalyst, the platinum-containing catalyst Even when applied to the DPF directly or together with the oxidation catalyst, there is a problem that clogging or the like is liable to occur and it is difficult to uniformly support the DPF. Further, if the platinum-containing catalyst body is directly supported on the surface of the DPF, the pressure loss increases. Therefore, it is necessary to suppress the increase in the pressure loss by, for example, uniformly supporting the platinum-containing catalyst body inside the DPF. Further, in order to support an oxidation catalyst on the DPF and burn particulate matter (soot) on the DPF, high heat resistance is required for the DPF and the oxidation catalyst supported on the DPF. There is also a problem that an oxidation catalyst using as a carrier cannot be applied.
[Patent Document 1] Japanese Patent Application Laid-Open No. 01-318715 [Patent Document 2] Japanese Patent Application Laid-Open No. 08-290062 [0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art and efficiently collect and decompose and remove particulate matter (PM) even in diesel exhaust gas containing a high concentration of sulfur, Filter for diesel exhaust gas purification with excellent durability, capable of efficiently oxidizing and decomposing CO and CO at relatively low temperature and suppressing oxidation of SO 2 by suppressing oxidation of SO 2. It is to provide a method.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present inventor has found that in order to effectively purify diesel exhaust gas, it is essential to develop a DPF supporting an oxidation catalyst having a low-temperature and high-activity, which has an SO 2 oxidation suppressing effect. As a result of intensive research on the development of an oxidation catalyst having an SO 2 oxidation suppression effect and the method of supporting the same on DPF, the results show that DPF contains alumina and at least one metal selected from lanthanum, barium and cerium. (1) Impregnating and supporting a catalyst component in a sol state, curing, drying and calcining, and then a second catalyst component containing at least one metal selected from iridium, palladium, rhodium and ruthenium and platinum. impregnated with an aqueous solution form, and is supported, then cured in the same manner, drying by firing, oxidation catalyst having a SO 2 oxidation inhibiting effect Is uniformly supported on the DPF, and by using this DPF, PM, HC, CO, etc. can be efficiently oxidized and decomposed at a relatively low temperature even in a diesel exhaust gas containing a large amount of sulfur. Furthermore, they have found that the oxidation of SO 2 to SO 3 is suppressed, and have reached the present invention.
[0010]
That is, the invention claimed in the present application is as follows.
(1) A first catalyst component containing alumina and at least one metal selected from lanthanum, barium and cerium, and at least one metal selected from iridium, palladium, rhodium and ruthenium on a porous filter carrier. A diesel exhaust gas purification filter characterized by carrying a second catalyst component comprising:
(2) The diesel exhaust gas according to (1), wherein the weight ratio of at least one metal selected from iridium, palladium, rhodium and ruthenium to the platinum is more than 0 and 2 or less. Purification filter.
[0011]
(3) The porous filter carrier is impregnated with and supports a sol-like first catalyst component containing at least one metal selected from lanthanum, barium and cerium and alumina, dried and calcined, and then iridium, palladium, A method for producing a filter for purifying diesel exhaust gas, comprising impregnating, supporting, drying and calcining an aqueous second catalyst component containing platinum and at least one metal selected from rhodium and ruthenium.
(4) The method for producing a filter for purifying diesel exhaust gas according to the above (3), wherein after the first and second catalyst components are supported, curing is performed at a predetermined temperature for a predetermined time before drying.
[0012]
In the present invention, for example, cordierite is suitably used as the porous filter carrier. As a porous filter carrier other than cordierite, for example, a ceramic block or the like can be used.
[0013]
In the present invention, the ratio of at least one metal selected from lanthanum, barium, and cerium to alumina in the first catalyst component is alumina: metal = 9.5: 0.5 to 7: 3 in atomic ratio. Preferably, there is. If it is less than this, the effect of improving heat resistance will be low, and if it is larger than this, the activity will decrease due to the decrease in specific surface area. Β-alumina is preferably used as the alumina contained in the first catalyst component. By using β-alumina, the heat resistance of the catalyst body is improved.
[0014]
In the present invention, the weight ratio of at least one metal selected from iridium, palladium, rhodium and ruthenium to platinum in the second catalyst component is more than 0 and 2 or less. If the weight ratio is 0, that is, if it does not contain any metal of iridium, palladium, rhodium or ruthenium, the effect of suppressing the oxidation of SO 2 shown in the above formula (5) cannot be obtained, and if it is more than 2, The oxidation reaction efficiency of each component shown in the above formulas (1) to (3) decreases. By simultaneously supporting platinum and at least one metal selected from iridium, palladium, rhodium and ruthenium on a porous filter carrier, the oxidation activity of SO 2 can be suppressed by combining the two.
[0015]
In the present invention, curing after supporting the first and second catalyst components is performed, for example, at 80 to 150 ° C. for 2 to 6 hours. When the curing temperature is lower than 80 ° C., the effect of promoting adsorption is reduced, and when the curing temperature is higher than 150 ° C., the active ingredient is moved by drying the surface, resulting in uneven support. Further, if the curing time is less than 2 hours, the inside is not sufficiently heated and the movement only needs to be suppressed, so that about 6 hours is sufficient. During curing, the catalyst component-supporting porous filter carrier is preferably placed in a vinyl bag, sealed, and turned upside down, for example, at intervals of 10 to 30 minutes. As a result, the catalyst component can be supported more uniformly.
[0016]
In the present invention, drying of the porous filter carrier supporting the catalyst component is performed, for example, at 120 ° C. or higher for 3 to 6 hours. Further, it is sufficient that the firing after drying is performed at, for example, 500 to 550 ° C. for 2 hours.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail using specific examples.
Examples 1-3
An impregnating solution was prepared by mixing alumina sol (Nissan Chemical Co., Alumina Sol 200) and cerium sol (Taki Chemical Co., Ltd., Niedral) at a weight ratio of 2: 1, and this was mixed with a diesel particulate filter (Hitachi Metal Co., Ltd., porous Cordierite) was immersed and impregnated, drained by centrifugation, sealed in a plastic bag, and cured at 100 ° C. for 2 hours. At this time, it was turned upside down every 10 to 30 minutes. Then, it was taken out of the plastic bag, dried at 150 ° C. for 6 hours while turning it upside down, and baked at 500 ° C. for 2 hours. An iridium chloride aqueous solution and a dinitrodiammineplatinum nitrate solution were added to the obtained calcined product at a weight ratio of Ir to Pt of 1: 2 (Example 1), 1: 1 (Example 2), 2: 1 (Example 3). The impregnating liquids mixed so as to be respectively impregnated and supported, cured in the same manner as described above, dried at 150 ° C. for 6 hours, and calcined at 550 ° C. for 2 hours to obtain an oxidation catalyst supporting DPF (hereinafter referred to as an exhaust gas purifying filter). ). When the NO oxidation rate was measured using the obtained DPF under the conditions shown in Table 1, the NO oxidation rates of the exhaust gas purification filters obtained in Examples 1 to 3 were 38.5% and 36.4%, respectively. 36.8%. Next, a heat resistance test was performed in an electric furnace at 800 ° C. for 20 hours, and then the NO oxidation rate was measured again under the conditions shown in Table 1. The oxidation rates after the heat resistance tests in Examples 1 to 3 were 37.0, respectively. %, 35.3% and 32.4%.
[0018]
[Table 1]
Figure 2004188388
[0019]
Comparative Example 1
A diesel particulate filter (porous cordierite, manufactured by Hitachi Metals, Ltd.) was immersed in titania sol (CS-N, manufactured by Ishihara Sangyo Co., Ltd.), impregnated and supported, and then drained by centrifugation. Curing, drying and baking in the same manner as described above, then impregnating and supporting a mixture of a dinitrodiammineplatinic nitric acid solution and a iridium chloride aqueous solution having a weight ratio of Ir and Pt of 1: 1, curing, drying and calcining again to obtain Using the obtained DPF, the NO oxidation rates before and after the heat resistance test were measured in the same manner as in Example 1, and were 31.2% and 20.1%, respectively.
[0020]
Comparative Example 2
Exhaust gas purification filters were prepared in the same manner as in Example 1 except that the impregnation liquid of Ir and Pt in Example 1 was changed to Ir: Pt = 5: 1, and the NO oxidation rate before and after the heat resistance test was measured in the same manner. However, they were 32.2% and 27.9%, respectively.
[0021]
Examples 4 to 6
Except that iridium chloride (Ir) was changed to palladium nitrate (Pd), an exhaust gas purification filter was prepared in the same manner as in Examples 1 to 3 above, and the NO oxidation rate before and after the heat resistance test was measured in the same manner. The NO oxidation rates before the heat resistance test in 4 to 6 were 31.3%, 30.0%, and 30.4%, respectively, and the NO oxidation rates after the heat resistance test were 44.1% and 40.8%, respectively. , 40.5%.
[0022]
Comparative Example 3
Exhaust gas purification filters were prepared in the same manner as in Example 4 except that the impregnation liquid of Pd and Pt was Pd: Pt = 5: 1, and the NO oxidation rates before and after the heat resistance test were measured. 7% and 36.0%.
[0023]
Table 2 shows the NO oxidation rates before and after the heat test in Examples 1 to 6 and Comparative Examples 1 to 3.
[0024]
[Table 2]
Figure 2004188388
[0025]
Table 2 shows that in Examples 1 to 6, high NO oxidation activity was obtained before and after the heat resistance test, whereas the first catalyst component (a catalyst containing alumina and at least one metal selected from lanthanum, barium and cerium). It can be seen that in Comparative Example 1 containing no (component), the NO oxidation activity after the heat test was extremely reduced. In Comparative Examples 2 and 3, since the activity before the heat resistance test was slightly lower, it is understood that the weight ratio of Ir: Pt or Pd: Pt is smaller than 5 and preferably 2 or less.
[0026]
Examples 7 and 8
Using the same oxidation catalyst-supporting DPF as in Examples 2 and 5, an oxidation test was conducted by adding SO 2 = 50 ppm to the conditions shown in Table 1, and the SO 2 oxidation rate after 1 hour was measured. % And 5.3%. The SO 2 oxidation rate was determined by the following equation.
[0027]
SO 2 oxidation rate = 100-100 × (outlet SO 2 concentration / inlet SO 2 concentration)
Comparative Example 4
Except that no iridium chloride was used, an exhaust gas purifying filter was prepared in the same manner as in Example 1 above, and the obtained filter was measured for SO 2 oxidation rate in the same manner as in Example 7 or 8. 7%.
[0028]
Table 3 summarizes the results of Examples 7 and 8 and Comparative Example 4.
[Table 3]
Figure 2004188388
[0029]
Table 3 shows that the SO 2 oxidation rates in Examples 7 and 8 were significantly reduced as compared with Comparative Example 4. From this result, high initial oxidation activity by applying the present invention, excellent heat resistance, further SO low 2 oxidation activity, obtained oxide catalyst carrying exhaust gas purification filter, thereby containing a large amount of sulfur It can be seen that even diesel exhaust gas can be efficiently purified for a long period of time.
[0030]
【The invention's effect】
According to the invention described in claim 1 of the present application, PM, HC and CO can be efficiently decomposed and removed from a relatively low temperature even in a diesel exhaust gas containing a high concentration of sulfur. Oxidation corrosion of downstream equipment can be avoided by suppressing the oxidation of 2 .
According to the invention described in claim 2 of the present application, in addition to the effects of the above invention, the effect of suppressing oxidation of SO 2 and the effects of oxidizing and decomposing PM, HC and CO are further improved.
[0031]
According to the invention described in claim 3 of the present application, PM, HC and CO can be efficiently decomposed and removed from a relatively low temperature, and the oxidation of SO 2 is suppressed to avoid oxidative corrosion of downstream equipment. Thus, a diesel exhaust gas purification filter having excellent heat resistance can be obtained.
According to the invention described in claim 4 of the present application, in addition to the effects of the above invention, the quality is stabilized and the heat resistance is further improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a flow of a diesel exhaust gas treatment device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Oxidation catalyst layer, 2 ... Diesel particulate filter (DPF), 3 ... Reducing agent injection device, 4 ... SCR catalyst layer, 5 ... Ammonia oxidation catalyst layer, 10 ... Gas flow direction.

Claims (4)

多孔質フィルタ担体に、ランタン、バリウムおよびセリウムから選ばれた少なくとも1つの金属とアルミナとを含む第1触媒成分と、イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属と白金とを含む第2触媒成分を担持させたことを特徴とする、ディーゼル排ガス浄化用フィルタ。The porous filter carrier includes a first catalyst component containing at least one metal selected from lanthanum, barium and cerium and alumina, and at least one metal selected from iridium, palladium, rhodium and ruthenium and platinum. A filter for purifying diesel exhaust gas, wherein the filter carries a second catalyst component. 前記イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属の前記白金に対する重量比が、0を超えて2以下であることを特徴とする請求項1に記載の、ディーゼル排ガス浄化用フィルタ。2. The filter for purifying diesel exhaust gas according to claim 1, wherein a weight ratio of at least one metal selected from iridium, palladium, rhodium and ruthenium to the platinum is more than 0 and 2 or less. 3. 多孔質フィルタ担体に、ランタン、バリウムおよびセリウムから選ばれた少なくとも1つの金属とアルミナとを含むゾル状の第1触媒成分を含浸、担持させ、乾燥、焼成した後、イリジウム、パラジウム、ロジウムおよびルテニウムから選ばれた少なくとも1つの金属と白金とを含む水溶液状の第2触媒成分を含浸、担持させ、乾燥、焼成することを特徴とする、ディーゼル排ガス浄化用フィルタの製造方法。The porous filter carrier is impregnated with a sol-like first catalyst component containing at least one metal selected from lanthanum, barium and cerium and alumina, and is dried, calcined, and then iridium, palladium, rhodium and ruthenium. A method for producing a diesel exhaust gas purification filter, comprising impregnating, supporting, drying and calcining an aqueous second catalyst component containing at least one metal selected from the group consisting of platinum and platinum. 前記第1および第2触媒成分を担持させた後、乾燥前に所定温度で所定時間養生させることを特徴とする請求項3に記載の、ディーゼル排ガス浄化用フィルタの製造方法。The method for producing a filter for purifying diesel exhaust gas according to claim 3, wherein after carrying the first and second catalyst components, curing is performed at a predetermined temperature for a predetermined time before drying.
JP2002362564A 2002-12-13 2002-12-13 Filter for cleaning diesel exhaust gas and its production method Pending JP2004188388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362564A JP2004188388A (en) 2002-12-13 2002-12-13 Filter for cleaning diesel exhaust gas and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362564A JP2004188388A (en) 2002-12-13 2002-12-13 Filter for cleaning diesel exhaust gas and its production method

Publications (1)

Publication Number Publication Date
JP2004188388A true JP2004188388A (en) 2004-07-08

Family

ID=32760977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362564A Pending JP2004188388A (en) 2002-12-13 2002-12-13 Filter for cleaning diesel exhaust gas and its production method

Country Status (1)

Country Link
JP (1) JP2004188388A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183507A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
KR100625219B1 (en) 2004-11-22 2006-09-20 (주) 세라컴 Method for preparing of catalyst filter for purifying exhaust gas of diesel automobile
WO2007077921A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Process for denitration of exhaust gas
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
KR100785156B1 (en) * 2006-10-19 2007-12-11 현대자동차주식회사 Exhaust gas reduction system for vehicle
JP2008155204A (en) * 2006-11-29 2008-07-10 Ict:Kk Oxidation catalyst and exhaust gas purification system using the same
JP2008232101A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Exhaust emission control system
JP2010524677A (en) * 2007-04-26 2010-07-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Transition metal / zeolite SCR catalyst
JP2014168764A (en) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc Oxidation catalyst for diesel exhaust gas and purification method of diesel exhaust gas using the same
JP2016517342A (en) * 2013-03-12 2016-06-16 ビーエーエスエフ コーポレーション NO oxidation catalyst material
US9981251B2 (en) * 2014-06-16 2018-05-29 Umicore Ag & Co. Kg Exhaust gas treatment system

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100625219B1 (en) 2004-11-22 2006-09-20 (주) 세라컴 Method for preparing of catalyst filter for purifying exhaust gas of diesel automobile
JP2006183507A (en) * 2004-12-27 2006-07-13 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
KR101004737B1 (en) * 2006-01-06 2011-01-04 미쯔이 죠센 가부시키가이샤 Process for denitration of exhaust gas
WO2007077921A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Process for denitration of exhaust gas
WO2007077919A1 (en) * 2006-01-06 2007-07-12 Mitsui Engineering & Shipbuilding Co., Ltd. Method of denitration of exhaust gas and apparatus therefor
KR101004741B1 (en) * 2006-01-06 2011-01-06 미쯔이 죠센 가부시키가이샤 Method of denitrification of exhaust gas and apparatus therefor
US7700058B2 (en) 2006-01-06 2010-04-20 Mitsui Engineering & Shipbuilding Co., Ltd. Process for denitration of exhaust gas
KR100785156B1 (en) * 2006-10-19 2007-12-11 현대자동차주식회사 Exhaust gas reduction system for vehicle
JP2008155204A (en) * 2006-11-29 2008-07-10 Ict:Kk Oxidation catalyst and exhaust gas purification system using the same
JP2008232101A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Exhaust emission control system
JP2017060944A (en) * 2007-04-26 2017-03-30 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Scr catalyst of transition metal/zeolite
JP2015027673A (en) * 2007-04-26 2015-02-12 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Publiclimited Company Transition metal/zeolite scr catalysts
JP2016195992A (en) * 2007-04-26 2016-11-24 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Transition metal/zeolite scr catalyst
JP2010524677A (en) * 2007-04-26 2010-07-22 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Transition metal / zeolite SCR catalyst
JP2019076895A (en) * 2007-04-26 2019-05-23 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US11478748B2 (en) 2007-04-26 2022-10-25 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
US12064727B2 (en) 2007-04-26 2024-08-20 Johnson Matthey Public Limited Company Transition metal/zeolite SCR catalysts
JP2014168764A (en) * 2013-03-05 2014-09-18 Toyota Central R&D Labs Inc Oxidation catalyst for diesel exhaust gas and purification method of diesel exhaust gas using the same
JP2016517342A (en) * 2013-03-12 2016-06-16 ビーエーエスエフ コーポレーション NO oxidation catalyst material
JP2020196010A (en) * 2013-03-12 2020-12-10 ビーエーエスエフ コーポレーション Catalyst materials for no oxidation
JP7114219B2 (en) 2013-03-12 2022-08-08 ビーエーエスエフ コーポレーション Catalyst material for NO oxidation
US9981251B2 (en) * 2014-06-16 2018-05-29 Umicore Ag & Co. Kg Exhaust gas treatment system

Similar Documents

Publication Publication Date Title
JP4427356B2 (en) Nitrogen oxide purification catalyst system and nitrogen oxide purification method
JP5373255B2 (en) NOx reduction catalyst, NOx reduction catalyst system, and NOx reduction method
JP2015044191A (en) Exhaust system for lean burn ic engine
JP4806613B2 (en) Gas purification method, gas purification device, and gas purification catalyst
WO2005044426A1 (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
WO2006013998A1 (en) Process for catalytic reduction of nitrogen oxides
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
RU2108140C1 (en) Method of treating exhaust gases
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP4316901B2 (en) Diesel exhaust gas treatment method and treatment apparatus
JP2004138022A (en) Method of and device for treating diesel exhaust gas
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2007029768A (en) Regenerating method of catalyst for cleaning exhaust gas
CN106555641B (en) Exhaust gas aftertreatment system
JP2008018374A (en) Catalyst and apparatus for cleaning exhaust gas
JP2005226458A (en) Method and device for treating diesel exhaust gas
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JPS6227041A (en) Production of catalytic body for cleaning up of waste gas
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
US20120124976A1 (en) Apparatus for removing mixed nitrogen oxides, carbon monoxide, hydrocarbons and diesel particulate matter from diesel engine exhaust streams at temperatures at or below 280 degrees c
JPH0824579A (en) Treatment of low concentration nox containing gas
JP3111491B2 (en) Exhaust gas purification catalyst
JP4051514B2 (en) Combustion exhaust gas purification method and combustion exhaust gas purification device
JP2005296861A (en) Diesel exhaust gas purifying filter and exhaust gas purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203