JP2004138022A - Method of and device for treating diesel exhaust gas - Google Patents

Method of and device for treating diesel exhaust gas Download PDF

Info

Publication number
JP2004138022A
JP2004138022A JP2002305503A JP2002305503A JP2004138022A JP 2004138022 A JP2004138022 A JP 2004138022A JP 2002305503 A JP2002305503 A JP 2002305503A JP 2002305503 A JP2002305503 A JP 2002305503A JP 2004138022 A JP2004138022 A JP 2004138022A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidation catalyst
dpf
diesel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002305503A
Other languages
Japanese (ja)
Inventor
Naomi Imada
今田 尚美
Yasuyoshi Kato
加藤 泰良
Masatoshi Fujisawa
藤澤 雅敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002305503A priority Critical patent/JP2004138022A/en
Publication of JP2004138022A publication Critical patent/JP2004138022A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diesel exhaust gas treatment method by which high denitrification performance can be obtained even at a low exhaust gas temperature, e.g. at engine start. <P>SOLUTION: This treatment method removes particulate matters in the exhaust gas first, then oxidizes a part of nitrogen monoxide (NO) in the gas into nitrogen dioxide (NO<SB>2</SB>) by getting through an oxidation catalyst, injects ammonia or its precursor in the gas, and then gets through a denitrification catalyst to remove nitrogen oxides (NOx) in the gas while reducing. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はディーゼル排ガスの浄化方法および装置に係り、特にディーゼルエンジンから排出される排ガス中の窒素酸化物を、低温から効率よく除去する方法および装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンはコジェネレーションシステムや、自動車、発電機などに多く用いられているが、近年地球環境保全に対する関心の高まりから、これらエンジンから排出される排ガスの規制が強化されている。通常、自動車排ガス浄化用の触媒には、一酸化炭素(CO)及び炭化水素(HC)の酸化とNOxの還元とを同時に行う三元触媒(特公昭56−27295)等が用いられるが、リーンバーンエンジンやディーゼルエンジンの場合、酸素過剰雰囲気であるため一般の三元触媒ではNOxが浄化しづらいという問題が生じる。そこで、これら排ガスの浄化には、次に示す方法、すなわち、(1)フィルタにより粒子状汚染物質(以下、PMと記すことがある)を除去後、窒素酸化物を除去する方法、(2)Ptなどの貴金属を担時した触媒上で炭化水素を還元剤としてNOxを還元する方法(特開平5−103985)、(3)NOx吸蔵触媒を用いる方法など多くの方法が提案されている。
【0003】
上記技術のうち、(1)の方法は、図6に示すフローのごとく、ディーゼルエンジン1から排出された排ガス中の粒子状物質(PM)をまずフィルタ(ディーゼルパティキュレートフィルタ、以下DPFと記す)3で捕集し、DPFに担時した酸化触媒成分及び又はDPF前段に設けた酸化触媒によってNOの一部をNOに酸化させ((1)式)、煤との反応性が酸素よりも高いNOによって煤の燃焼を行わせて、煤を二酸化炭素に無害化した後((2)式)、還元剤注入ノズル5からNHまたは尿素などのNH前駆体を添加し、脱硝触媒6上で窒素酸化物を無害な窒素と水に接触還元する方法であり、確実にPMとNOxとを除去できる方法として実用化を目指した検討が行われている。
NO+1/2O → NO  (1)
C+2NO → CO +2NO (2)
【特許文献1】特開平5−103985号公報
【0004】
【発明が解決しようとする課題】
従来技術の(1)の方法で用いられる脱硝方法は、従来、発電所などのボイラ排ガス処理に広く用いられており、触媒には酸化チタン系の脱硝触媒のほか、ゼオライトに活性成分をイオン交換させた触媒などが用いられる。ディーゼル自動車では、エンジンの始動停止が頻繁であるために排ガス温度が200〜300℃の範囲である時間が長いが、上記触媒は通常300〜450℃の温度範囲で高い脱硝活性を示すのに対し、300℃未満では高い活性が得られない。
【0005】
このため、エンジン始動時などの排ガス温度が低い場合には十分なNOx除去率が得られないという問題を生じる。トラックやバスなどの排ガス処理の場合、起動停止が頻繁で排ガス温度が200〜300℃を超えることがほとんどない。このような条件では脱硝率が低いためにNOxが流出するだけでなくNHも多量にリークして二次公害物質となるため好ましくない。
【0006】
本発明の課題は、上記問題を解決し、エンジン始動時などの排ガス温度が低い場合にも、高い脱硝性能を得ることのできるディーゼル排ガスの処理方法を提供することにある。
【0007】
上記課題を解決するため、本発明者らは、ディーゼル排ガス処理では、NOとNOとが共存する系で起こる脱硝反応(下記(3)式)がNOのみの脱硝反応(下記(4)式)よりも低温での反応速度が大きいことを利用し、前流の酸化触媒で生じたNOを利用して低温の脱硝率を向上させることを検討した。
【0008】
NO+NO+2NH+→2N+3HO  (3)
NO+NH+1/4O→N+3/2HO  (4)
ところが、本発明者らがDPFに煤を付着させてNO存在下で200〜300℃で加熱すると、NOのほとんどが消費されてNOとなる現象が見られた。これは、NOが煤の燃焼に使われる(2)式の反応が生じたためであり、またこのことは、NOがPMの燃焼に使われて後流の脱硝反応には到達せず、その結果、NO共存による低温脱硝活性の向上が見込まれないことが分かった。
【0009】
【課題を解決するための手段】
本発明は、上記新しい知見のもとになされたものであり、下記をその要旨とする。
(1)ディーゼルエンジンから排出される排ガスを酸化触媒に通過させることにより、排ガス中の一酸化窒素(NO)の一部を二酸化窒素(NO)に酸化せしめ、次いで該排ガス中にアンモニアまたはアンモニア前駆体を注入した後、脱硝触媒を通過させて排ガス中の窒素酸化物(NOx)を還元除去する排ガスの処理方法において、前記排ガスが酸化触媒を通過する前に、排ガス中の粒子状物質を除去することを特徴とするディーゼル排ガスの処理方法。
【0010】
(2)ディーゼルエンジンから排出される排ガスの処理方法において、排ガス中の粒子状物質を除去した後、排ガスを酸化触媒に通過させることにより、排ガス中の一酸化窒素の一部を二酸化窒素に酸化せしめ、次いで該排ガス中にアンモニアまたはアンモニア前駆体を注入した後、脱硝触媒を通過させて排ガス中の窒素酸化物を還元除去することを特徴とするディーゼル排ガスの処理方法。
【0011】
(3)前記排ガス中の粒子状物質を除去する方法が、ディーゼルパティキュレートフィルタ(DPF)を通過させる方法、または酸化触媒成分を担持したDPFを通過させる方法である(1)および(2)記載の方法。
【0012】
(4)ディーゼル排ガスの排気管内に、粒子状物質の除去手段、酸化触媒、還元剤注入装置および脱硝触媒をこの順に設置したことを特徴とする(1)および(2)の方法に用いるディーゼル排ガス処理装置。
【0013】
(5)前記粒子状物質除去手段が、ディーゼルパティキュレートフィルタ(DPF)、酸化触媒及びDPF、酸化触媒成分を担持したDPF、酸化触媒及び酸化触媒成分を担持したDPFのいずれかである(4)記載の方法ディーゼル排ガス処理装置。
【0014】
本発明方法においては、基本的にあらかじめ排ガス中のPMを除去した後、酸化触媒に通過させ、該酸化触媒で生成したNOがPM(煤等)の未燃物質の酸化に用いられず、可及的に後流の脱硝反応に利用されるようにすることが重要である。PMが存在すると、酸化触媒により生成したNOが、PMの燃焼によって消費され、十分な脱硝性能が得られないためである。
【0015】
本発明が適用されるディーゼル排ガスは、200〜300℃、特に200〜290℃の低温の排ガスが好ましい。
ディーゼル排ガス中のPMの除去方法はどのような方法でもよいが、ディーゼルパティキュレートフィルタ(DPF)とよばれるウォールフロー型のハニカムのセル内に煤等の粒子状物質を捕集し燃焼させる方法、その前段に酸化触媒を置いてNOの一部をNOに酸化させたのち、NOによりDPFに捕集されたPMを低温で酸化させる方法、さらにDPFにも酸化触媒成分を担持させてPMを燃焼させる方法、またこれらを組み合わせた方法などがあるが、これ以外でも排ガス中からPMを除去する方法で有ればどのような方式であっても差し支えない。
【0016】
また、脱硝用還元剤の注入位置は、排ガスの流路に沿って酸化触媒の設置位置後段であることが好ましい。これは、還元剤であるアンモニアまたはアンモニア前駆体(例えば尿素)が酸化触媒によりNOxに酸化されることを防止するためである。
【0017】
本願に用いる酸化触媒は、NOをNOに酸化することのできる触媒で有れば特に限定されないが、例えば、白金、パラジウム、イリジウム、ロジウムなどの貴金属の少なくとも1種類をチタニア、ジルコニア、アルミナなどに担時した触媒成分をコージェライトハニカム構造体などに担時した触媒などが好適である。また、脱硝触媒は、通常脱硝に用いられている触媒で有ればどのような物でも良く、例えば酸化チタンに活性成分を担時した触媒や、銅、鉄、セリウムなどの遷移金属をイオン交換したゼオライトを、コージェライトハニカム構造体などに担時した触媒などが好適である。
【0018】
【発明の実施の形態】
以下、本発明を図面に示す実施例により詳細に説明する。
図1は、本発明方法の一実施例を示す基本フロー図である。ディーゼルエンジン1から排出された排ガスは排気管10を通って酸化触媒2に導かれる。酸化触媒2では,排ガス中のNOの一部がNOに酸化され((1)式)、その後流のDPF3に導かれる。DPFはウォールフロー型のハニカムで,多孔質担体表面にPMが捕集され、ガスは多孔質担体内を通過して後流へと流れる。DPFに捕集されたPMは、前記反応式(2)に従って燃焼してCOとなり,反応に寄与したNOは反応式(2)に従ってNOに還元される。その後ガスは酸化触媒4を通過して,排ガス中のNOの一部がNOに酸化される。排ガスは、DPFですでにPMが除去されているためにNOが消費されることなく、脱硝触媒6上に導かれる。酸化触媒4の後流で脱硝触媒6の前段の排気管11には還元剤である尿素の注入ノズル5が設置されており、排気管11内に還元剤が供給される。脱硝触媒6上ではNOとNOとが共存しており、そのためNOだけの場合よりも反応速度が速い前記反応式(3)式の反応が進行することになり、低温でも窒素酸化物が効率よく窒素に無害化される。
【0019】
図3は、DPFの前段に酸化触媒2を設置し、酸化触媒成分が担持されたDPF7を設けた場合の基本フローを示したものである。この場合、まず酸化触媒2でNOのNOへの酸化が生じ、DPFで煤の捕集、NOのNOへの酸化、さらにはPMのNOによる燃焼を同時に行う。その後のPMが除去された排ガスが酸化触媒4を通過して、排ガス中のNOの一部がNOに酸化される。排気管11には還元剤である尿素の注入ノズル5が設置されており、排気管11内に還元剤が供給される。その後、排ガスは配管内に設けられた脱硝触媒6に導かれる。脱硝触媒6上では、排ガス中のNO、NO、還元剤とが反応して窒素酸化物が窒素に無害化される。
【0020】
図4は、PM除去手段がDPFのみである場合の基本フローを示したものである。この場合、DPFで煤の捕集とPMの酸素による燃焼が行われる。その後のPMが除去されたガスが酸化触媒4を通過して、排ガス中のNOの一部がNOに酸化される。排気管11には還元剤である尿素の注入ノズル5が設置されており、排気管11内に還元剤が供給される。その後排ガスは配管内に設けられた脱硝触媒6に導かれる。脱硝触媒6上では、排ガス中のNO、NO、還元剤とが反応して窒素酸化物が窒素に無害化される。
【0021】
図5は、本発明の排ガス中のNOに対するNOの含有率を変化させた時の、200℃における排ガスの脱硝率の変化を示す図である。NOの共存による脱硝率向上効果はNO/NOの比が1/1の場合に最も高く、NOの割合が少なくなるにつれて脱硝率向上効果は低減し、NOが10%の場合には活性比にして数%しか向上しないことが分る。一方、酸化触媒のNOのNOへの変換率は、200℃で10%程度、300℃においても30%程度である。酸化触媒により発生したNOがPMの燃焼によって消費されると、DPFの後流へ設置された脱硝触媒に至るNOはほとんど無いか、あってもかなり低い値になり、図5からも明らかなように、脱硝活性のNOによる向上効果はほとんど見込めないことになる。図1〜4に示した本発明方法では、あらかじめDPFなどにより排ガス中からPMを除去した後、脱硝触媒の前段に新たに酸化触媒4を設けることにより、この酸化触媒4上ではNOのNOへの酸化が生じるが、PMが存在しないためこの酸化触媒で生じるNOはすべて脱硝に用いることができ、低温の排ガスでも確実に脱硝活性が向上させることができる。
【0022】
試験例1
アルミナゾル(アルミナゾル520、日産化学社製)と水とを混合し、アルミナを15%含有する水溶液を1リットル調製し、この液にフロースルー型のコージエライト担体(300cpsi)100×100mm(50mm長さ)を含浸、エアブローで液切りする操作を2回繰り返した後、大気中150℃で5時間乾燥、500℃で2時間焼成した。得られた担体にジニトロジアンミン白金の水溶液を含浸し、エアブローで液切りした後、大気中150℃で5時間乾燥し、550℃で2時間焼成し、体積当たりの白金の担持量が2g/リットルである酸化触媒を得た。
【0023】
酸化チタン、酸化タングステン、メタバナジン酸アンモニウム、シュウ酸及び水をニーダで混練してペースト状とし、これを押出し造粒した後乾燥、500℃で2時間通気焼成した。得られた造粒物を150μm以下に粉砕して脱硝触媒粉末を得た(Ti/W/V=89/5/6)。脱硝触媒粉末と水とを攪拌機で混合してスラリ濃度35%のスラリを調製し、これにフロースルー型のコージェライト担体(600cpsi) 100×100mm(50mm長さ)を含浸、エアブローで液切りした後乾燥する工程を3回繰り返した後、500℃で2時間焼成して脱硝触媒を得た。
流通式の反応装置を用い,ガス流れ方向に酸化触媒(8セル×8セル)、脱硝触媒(8×8セル)をセットし、酸化触媒と脱硝触媒との間に還元剤(NH)を注入し、表1の条件で脱硝率を測定した。
【0024】
【表1】

Figure 2004138022
【0025】
比較例1
試験例1の酸化触媒を置かずに、脱硝触媒のみとし、後は試験例1と同様に脱硝率を測定した。
試験例1と比較例1の結果を合わせて表2に示す。試験例1では比較例1に比べて200℃での脱硝率が高く、脱硝触媒の前段に酸化触媒を設置してNOのNOへの酸化を行うことにより、脱硝性能が向上することが明らかである。
【0026】
【表2】
Figure 2004138022
【0027】
試験例2
143mmФ、150mm長さのDPF担体(日立金属社製ウォールフロー型ハニカム、300セル)に、試験例1の方法で触媒成分を担持し、Ptアルミナを担持したDPF酸化触媒を得た。
【0028】
得られたDPF酸化触媒を25KVAのディーゼル発電機(排ガス量100m/h)の排ガス出口に設置して、DPF酸化触媒の入口および出口のNOx濃度を測定した。エンジン回転数1850rpm、エンジン出口排ガス温度300℃のときのDPF酸化触媒入口でのNO濃度が257ppm,NO濃度が9ppmであるのに対し、DPF酸化触媒出口のNO濃度は246ppm、NO濃度は15ppmであった。DPF酸化触媒出口排ガス中のNO比率(NO/NOx×100)は6%であり、DPF酸化触媒出口以降の、NOの増加による脱硝率の向上が見込めないことが分かる。
【0029】
【発明の効果】
本請求項1〜5記載の発明によれば、起動停止が頻繁に生じるディーゼル自動車などの排ガス処理において、排ガス温度が低いときにも高い脱硝性能を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例の基本フローを示す図。
【図2】本発明の実施例の基本フローを示す図。
【図3】本発明の実施例の基本フローを示す図。
【図4】本発明の実施例の基本フローを示す図。
【図5】本発明の効果を示す説明図。
【図6】従来技術のフローを示す図。
【符号の説明】
1.ディーゼルエンジン、2.酸化触媒、3.DPF、4.酸化触媒、5.還元剤注入ノズル、6.脱硝触媒、7.酸化触媒つきDPF、10.排気管、11.排気管。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for purifying diesel exhaust gas, and more particularly to a method and an apparatus for efficiently removing nitrogen oxides from exhaust gas discharged from a diesel engine from a low temperature.
[0002]
[Prior art]
Diesel engines are often used in cogeneration systems, automobiles, generators, and the like. In recent years, however, interest in global environmental protection has increased, and regulations on exhaust gas emitted from these engines have been tightened. Usually, a three-way catalyst (Japanese Patent Publication No. 56-27295) for simultaneously oxidizing carbon monoxide (CO) and hydrocarbons (HC) and reducing NOx is used as a catalyst for purifying automobile exhaust gas. In the case of a burn engine or a diesel engine, there is a problem that it is difficult to purify NOx with a general three-way catalyst because of an oxygen excess atmosphere. Therefore, for purifying these exhaust gases, the following methods are used: (1) a method of removing particulate contaminants (hereinafter, sometimes referred to as PM) by a filter and then removing nitrogen oxides; Many methods have been proposed, such as a method of reducing NOx using a hydrocarbon as a reducing agent on a catalyst supporting a noble metal such as Pt (Japanese Patent Laid-Open No. 5-103985), and (3) a method using a NOx storage catalyst.
[0003]
Of the above techniques, the method (1) first filters particulate matter (PM) in exhaust gas discharged from the diesel engine 1 as shown in the flow chart of FIG. 6 (diesel particulate filter, hereinafter referred to as DPF). In step 3, a part of NO is oxidized to NO 2 by an oxidation catalyst component carried by the DPF and / or an oxidation catalyst provided in a stage preceding the DPF (formula (1)). After soot is burned with high NO 2 to make the soot harmless to carbon dioxide (formula (2)), NH 3 or an NH 3 precursor such as urea is added from the reducing agent injection nozzle 5, and the denitration catalyst 6 is a method for catalytically reducing nitrogen oxides to harmless nitrogen and water, and is being studied for practical use as a method for reliably removing PM and NOx.
NO + 1 / 2O 2 → NO 2 (1)
C + 2NO 2 → CO 2 + 2NO (2)
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 5-103985
[Problems to be solved by the invention]
The denitration method used in the method (1) of the prior art has been widely used in the treatment of boiler exhaust gas in power plants and the like. In addition to a titanium oxide type denitration catalyst, the active component is ion-exchanged to zeolite. The used catalyst is used. In diesel vehicles, the start and stop of the engine is frequent, so that the time when the exhaust gas temperature is in the range of 200 to 300 ° C is long, whereas the above catalyst usually shows high denitration activity in the temperature range of 300 to 450 ° C. If the temperature is lower than 300 ° C., high activity cannot be obtained.
[0005]
For this reason, when the exhaust gas temperature is low, such as when starting the engine, a problem arises in that a sufficient NOx removal rate cannot be obtained. In the case of exhaust gas treatment for trucks and buses, starting and stopping are frequent and the exhaust gas temperature rarely exceeds 200 to 300 ° C. Under such conditions, not only NOx flows out due to a low denitration rate, but also a large amount of NH 3 leaks to become a secondary pollutant, which is not preferable.
[0006]
An object of the present invention is to solve the above-mentioned problems and to provide a method for treating diesel exhaust gas that can achieve high denitration performance even when the exhaust gas temperature is low, such as when the engine is started.
[0007]
In order to solve the above problems, the present inventors have found that in diesel exhaust gas treatment, a denitration reaction (formula (3) below) occurring in a system in which NO and NO 2 coexist is a denitration reaction containing only NO (formula (4) below). Using the fact that the reaction rate at a lower temperature is higher than that of ( 2) , the use of NO 2 generated by the upstream oxidation catalyst was studied to improve the denitration rate at a low temperature.
[0008]
NO + NO 2 + 2NH 3 + → 2N 2 + 3H 2 O (3)
NO + NH 3 + / O 2 → N 2 + 3 / 2H 2 O (4)
However, the present inventors when heated at 200 to 300 [° C. in NO 2 presence by adhering soot DPF, was observed a phenomenon that most of the NO 2 is NO is consumed. This is because the reaction of the formula (2) in which NO 2 is used for soot combustion occurs, and this means that NO 2 is used for PM combustion and does not reach the downstream denitration reaction, As a result, it was found that the low-temperature denitration activity was not expected to be improved due to the coexistence of NO 2 .
[0009]
[Means for Solving the Problems]
The present invention has been made based on the above-mentioned new knowledge, and has the following gist.
(1) Part of nitrogen monoxide (NO) in exhaust gas is oxidized to nitrogen dioxide (NO 2 ) by passing exhaust gas discharged from a diesel engine through an oxidation catalyst, and then ammonia or ammonia is contained in the exhaust gas. In the method for treating exhaust gas, in which the precursor is injected and then passed through a denitration catalyst to reduce and remove nitrogen oxides (NOx) in the exhaust gas, the particulate matter in the exhaust gas is removed before the exhaust gas passes through the oxidation catalyst. A method for treating diesel exhaust gas, which comprises removing the exhaust gas.
[0010]
(2) In a method of treating exhaust gas discharged from a diesel engine, after removing particulate matter in the exhaust gas, the exhaust gas is passed through an oxidation catalyst to oxidize a portion of the nitrogen monoxide in the exhaust gas to nitrogen dioxide. A method for treating diesel exhaust gas, comprising injecting ammonia or an ammonia precursor into the exhaust gas and then reducing and removing nitrogen oxides in the exhaust gas through a denitration catalyst.
[0011]
(3) The method of removing particulate matter in the exhaust gas is a method of passing through a diesel particulate filter (DPF) or a method of passing through a DPF carrying an oxidation catalyst component (1) and (2). the method of.
[0012]
(4) A diesel exhaust gas used in the methods (1) and (2), wherein a means for removing particulate matter, an oxidation catalyst, a reducing agent injection device, and a denitration catalyst are installed in this order in an exhaust pipe of the diesel exhaust gas. Processing equipment.
[0013]
(5) The particulate matter removing means is any of a diesel particulate filter (DPF), an oxidation catalyst and a DPF, a DPF carrying an oxidation catalyst component, a oxidation catalyst and a DPF carrying an oxidation catalyst component (4). A method for treating diesel exhaust gas as described.
[0014]
In the method of the present invention, PM in exhaust gas is basically removed in advance and then passed through an oxidation catalyst, and NO 2 generated by the oxidation catalyst is not used for oxidizing unburned substances such as PM (soot). It is important to utilize as much of the downstream denitration reaction as possible. This is because if PM exists, NO 2 generated by the oxidation catalyst is consumed by the combustion of PM, and sufficient denitration performance cannot be obtained.
[0015]
The diesel exhaust gas to which the present invention is applied is preferably a low-temperature exhaust gas having a temperature of 200 to 300 ° C, particularly 200 to 290 ° C.
Although any method may be used for removing PM in diesel exhaust gas, a method of collecting and burning particulate matter such as soot in a cell of a wall flow type honeycomb called a diesel particulate filter (DPF), A method in which a part of NO is oxidized to NO 2 by placing an oxidation catalyst at the preceding stage, and then the PM trapped in the DPF by NO 2 is oxidized at a low temperature. There is a method of burning PM, a method of combining these, and the like. However, any other method may be used as long as it is a method of removing PM from exhaust gas.
[0016]
Further, it is preferable that the injection position of the denitration reducing agent is located after the installation position of the oxidation catalyst along the flow path of the exhaust gas. This is for preventing ammonia or ammonia precursor (for example, urea) as a reducing agent from being oxidized to NOx by the oxidation catalyst.
[0017]
The oxidation catalyst used in the present application is not particularly limited as long as it is a catalyst that can oxidize NO to NO 2. For example, at least one of noble metals such as platinum, palladium, iridium, and rhodium is used as titania, zirconia, alumina, or the like. It is preferable to use a catalyst in which the catalyst component supported on the cordierite honeycomb structure is supported. The denitration catalyst may be any catalyst as long as it is a catalyst usually used for denitration.For example, a catalyst in which an active component is supported on titanium oxide, or a transition metal such as copper, iron or cerium is ion-exchanged. A catalyst in which the zeolite thus obtained is carried on a cordierite honeycomb structure or the like is preferable.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
FIG. 1 is a basic flowchart showing one embodiment of the method of the present invention. Exhaust gas discharged from the diesel engine 1 is guided to the oxidation catalyst 2 through the exhaust pipe 10. In the oxidation catalyst 2, a part of the NO in the exhaust gas is oxidized to NO 2 (formula (1)), and is guided to the DPF 3 downstream. DPF is a wall-flow type honeycomb in which PM is trapped on the surface of the porous carrier, and the gas passes through the porous carrier and flows downstream. The PM trapped in the DPF is burned into CO 2 according to the reaction formula (2), and NO 2 that has contributed to the reaction is reduced to NO according to the reaction formula (2). Then the gas passes through the oxidation catalyst 4, a portion of the NO in the exhaust gas is oxidized to NO 2. The exhaust gas is guided onto the denitration catalyst 6 without consuming NO 2 because PM has already been removed by the DPF. A urea injection nozzle 5 as a reducing agent is provided in the exhaust pipe 11 downstream of the oxidation catalyst 4 and in front of the denitration catalyst 6, and the reducing agent is supplied into the exhaust pipe 11. Since NO and NO 2 coexist on the denitration catalyst 6, the reaction of the above-mentioned reaction formula (3), which has a higher reaction rate than in the case of NO alone, proceeds, and even at a low temperature, the nitrogen oxides are efficiently used. It is often rendered harmless to nitrogen.
[0019]
FIG. 3 shows a basic flow in the case where the oxidation catalyst 2 is installed at a stage preceding the DPF and the DPF 7 supporting the oxidation catalyst component is provided. In this case, first, the oxidation occurs in the oxidation catalyst 2 to NO 2 NO, the collection of soot in DPF, oxidation to NO 2 NO, the further performs combustion by NO 2 of the PM at the same time. And the exhaust gas subsequent PM has been removed passes through the oxidation catalyst 4, a portion of the NO in the exhaust gas is oxidized to NO 2. The exhaust pipe 11 is provided with an injection nozzle 5 for urea as a reducing agent, and the reducing agent is supplied into the exhaust pipe 11. Thereafter, the exhaust gas is guided to the denitration catalyst 6 provided in the pipe. On the denitration catalyst 6, NO, NO 2 and the reducing agent in the exhaust gas react with each other to make nitrogen oxides harmless to nitrogen.
[0020]
FIG. 4 shows a basic flow when the PM removal means is only the DPF. In this case, the DPF collects soot and burns the PM with oxygen. And gas subsequent PM has been removed passes through the oxidation catalyst 4, a portion of the NO in the exhaust gas is oxidized to NO 2. The exhaust pipe 11 is provided with an injection nozzle 5 for urea as a reducing agent, and the reducing agent is supplied into the exhaust pipe 11. Thereafter, the exhaust gas is led to a denitration catalyst 6 provided in the pipe. On the denitration catalyst 6, NO, NO 2 and the reducing agent in the exhaust gas react with each other to make nitrogen oxides harmless to nitrogen.
[0021]
FIG. 5 is a diagram showing a change in the denitration ratio of the exhaust gas at 200 ° C. when the content ratio of NO 2 to NO in the exhaust gas of the present invention is changed. Denitrification efficiency improvement by the coexistence of NO 2 is the ratio of NO / NO 2 is the highest in the case of 1/1, the denitration rate improving effect as the proportion of NO 2 is reduced is reduced, if the NO 2 is 10% Shows that the activity ratio is improved only by a few percent. On the other hand, the conversion rate of NO to NO 2 in the oxidation catalyst is about 10% at 200 ° C. and about 30% even at 300 ° C. When the NO 2 generated by the oxidation catalyst is consumed by the combustion of the PM, little or no NO 2 reaches the denitration catalyst installed downstream of the DPF, and the NO 2 becomes very low, as is apparent from FIG. Thus, the improvement effect of NO 2 on the denitration activity can hardly be expected. In the method of the present invention shown in FIGS. 1 to 4, after removing PM from exhaust gas by DPF or the like in advance, a new oxidation catalyst 4 is provided in front of the denitration catalyst, so that NO 2 However, since PM does not exist, NO 2 generated by this oxidation catalyst can be used for denitration, and the denitration activity can be reliably improved even with low-temperature exhaust gas.
[0022]
Test example 1
Alumina sol (Alumina sol 520, manufactured by Nissan Chemical Industries, Ltd.) and water are mixed to prepare 1 liter of an aqueous solution containing 15% of alumina, and a flow-through type cordierite carrier (300 cpsi) 100 × 100 mm (50 mm length) is added to this solution. Was repeated twice, followed by drying at 150 ° C. for 5 hours in air and baking at 500 ° C. for 2 hours. The resulting carrier was impregnated with an aqueous solution of dinitrodiammine platinum, drained by air blow, dried in the air at 150 ° C. for 5 hours, and calcined at 550 ° C. for 2 hours, and the amount of platinum carried per volume was 2 g / liter. Was obtained.
[0023]
Titanium oxide, tungsten oxide, ammonium metavanadate, oxalic acid, and water were kneaded with a kneader to form a paste, which was extruded, granulated, dried, and fired at 500 ° C. for 2 hours with aeration. The obtained granules were pulverized to 150 μm or less to obtain a denitration catalyst powder (Ti / W / V = 89/5/6). The denitration catalyst powder and water were mixed with a stirrer to prepare a slurry having a slurry concentration of 35%, which was impregnated with a flow-through type cordierite carrier (600 cpsi) 100 × 100 mm (50 mm length) and drained by air blow. After repeating the step of post-drying three times, it was calcined at 500 ° C. for 2 hours to obtain a denitration catalyst.
An oxidation catalyst (8 cells × 8 cells) and a denitration catalyst (8 × 8 cells) are set in the gas flow direction using a flow-through type reaction apparatus, and a reducing agent (NH 3 ) is placed between the oxidation catalyst and the denitration catalyst. After injection, the denitration rate was measured under the conditions shown in Table 1.
[0024]
[Table 1]
Figure 2004138022
[0025]
Comparative Example 1
Without the oxidation catalyst of Test Example 1, only the denitration catalyst was used. Thereafter, the denitration rate was measured in the same manner as in Test Example 1.
Table 2 shows the results of Test Example 1 and Comparative Example 1 together. In Test Example 1, the denitration rate at 200 ° C. was higher than that in Comparative Example 1, and it was clear that the NOx removal performance was improved by installing an oxidation catalyst in front of the NOx removal catalyst and oxidizing NO to NO 2 . It is.
[0026]
[Table 2]
Figure 2004138022
[0027]
Test example 2
A catalyst component was supported on a DPF carrier (Hitachi Metal Co., Ltd., wall flow type honeycomb, 300 cells) having a length of 143 mm and a length of 150 mm by the method of Test Example 1 to obtain a DPF oxidation catalyst supporting Pt alumina.
[0028]
The obtained DPF oxidation catalyst was installed at an exhaust gas outlet of a diesel generator (exhaust gas amount: 100 m 2 / h) of 25 KVA, and the NOx concentration at the inlet and outlet of the DPF oxidation catalyst was measured. When the engine speed is 1850 rpm and the exhaust gas temperature at the engine outlet is 300 ° C., the NO concentration at the DPF oxidation catalyst inlet is 257 ppm and the NO 2 concentration is 9 ppm, whereas the NO concentration at the DPF oxidation catalyst outlet is 246 ppm and the NO 2 concentration is It was 15 ppm. The NO 2 ratio (NO 2 / NOx × 100) in the exhaust gas at the outlet of the DPF oxidation catalyst is 6%, which indicates that an increase in NO 2 after the outlet of the DPF oxidation catalyst cannot improve the denitration rate.
[0029]
【The invention's effect】
According to the first to fifth aspects of the present invention, it is possible to obtain high denitration performance even when the temperature of the exhaust gas is low, in the exhaust gas treatment of a diesel vehicle or the like in which the start and stop frequently occur.
[Brief description of the drawings]
FIG. 1 is a diagram showing a basic flow of an embodiment of the present invention.
FIG. 2 is a diagram showing a basic flow of an embodiment of the present invention.
FIG. 3 is a diagram showing a basic flow of an embodiment of the present invention.
FIG. 4 is a diagram showing a basic flow of an embodiment of the present invention.
FIG. 5 is an explanatory diagram showing the effect of the present invention.
FIG. 6 is a diagram showing a flow of a conventional technique.
[Explanation of symbols]
1. 1. Diesel engine, Oxidation catalyst; 3. DPF, 4. Oxidation catalyst; 5. 5. reducing agent injection nozzle; 6. denitration catalyst, 10. DPF with oxidation catalyst; Exhaust pipe, 11. Exhaust pipe.

Claims (5)

ディーゼルエンジンから排出される排ガスを酸化触媒に通過させることにより、排ガス中の一酸化窒素(NO)の一部を二酸化窒素(NO)に酸化せしめ、次いで該排ガス中にアンモニアまたはアンモニア前駆体を注入した後、脱硝触媒を通過させて排ガス中の窒素酸化物(NOx)を還元除去する排ガスの処理方法において、前記排ガスが酸化触媒を通過する前に、排ガス中の粒子状物質を除去することを特徴とするディーゼル排ガスの処理方法。By passing exhaust gas discharged from a diesel engine through an oxidation catalyst, a part of nitrogen monoxide (NO) in the exhaust gas is oxidized to nitrogen dioxide (NO 2 ), and then ammonia or an ammonia precursor is contained in the exhaust gas. In the exhaust gas treatment method for reducing and removing nitrogen oxides (NOx) in the exhaust gas after the injection and passing through a denitration catalyst, it is preferable to remove particulate matter in the exhaust gas before the exhaust gas passes through an oxidation catalyst. A method for treating diesel exhaust gas. ディーゼルエンジンから排出される排ガスの処理方法において、排ガス中の粒子状物質を除去した後、排ガスを酸化触媒に通過させることにより、排ガス中の一酸化窒素の一部を二酸化窒素に酸化せしめ、次いで該排ガス中にアンモニアまたはアンモニア前駆体を注入した後、脱硝触媒を通過させて排ガス中の窒素酸化物を還元除去することを特徴とするディーゼル排ガスの処理方法。In a method for treating exhaust gas discharged from a diesel engine, after removing particulate matter in the exhaust gas, the exhaust gas is passed through an oxidation catalyst to oxidize a portion of the nitrogen monoxide in the exhaust gas to nitrogen dioxide, and then A method for treating diesel exhaust gas, comprising injecting ammonia or an ammonia precursor into the exhaust gas and reducing and removing nitrogen oxides in the exhaust gas through a denitration catalyst. 前記排ガス中の粒子状物質を除去する方法が、ディーゼルパティキュレートフィルタ(DPF)を通過させる方法、または酸化触媒成分を担持したDPFを通過させる方法である請求項1および2記載の方法。3. The method according to claim 1, wherein the method of removing particulate matter in the exhaust gas is a method of passing through a diesel particulate filter (DPF) or a method of passing through a DPF carrying an oxidation catalyst component. ディーゼル排ガスの排気管内に、粒子状物質の除去手段、酸化触媒、還元剤注入装置および脱硝触媒をこの順に設置したことを特徴とする請求項1および2の方法に用いるディーゼル排ガス処理装置。3. A diesel exhaust gas treatment apparatus used in the method according to claim 1, wherein a means for removing particulate matter, an oxidation catalyst, a reducing agent injection device, and a denitration catalyst are installed in this order in the exhaust pipe of the diesel exhaust gas. 前記粒子状物質除去手段が、ディーゼルパティキュレートフィルタ(DPF)、酸化触媒及びDPF、酸化触媒成分を担持したDPF、酸化触媒及び酸化触媒成分を担持したDPFのいずれかである請求項4記載の方法ディーゼル排ガス処理装置。The method according to claim 4, wherein the particulate matter removing means is any one of a diesel particulate filter (DPF), an oxidation catalyst and a DPF, a DPF carrying an oxidation catalyst component, a DPF carrying an oxidation catalyst and an oxidation catalyst component. Diesel exhaust gas treatment equipment.
JP2002305503A 2002-10-21 2002-10-21 Method of and device for treating diesel exhaust gas Pending JP2004138022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002305503A JP2004138022A (en) 2002-10-21 2002-10-21 Method of and device for treating diesel exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002305503A JP2004138022A (en) 2002-10-21 2002-10-21 Method of and device for treating diesel exhaust gas

Publications (1)

Publication Number Publication Date
JP2004138022A true JP2004138022A (en) 2004-05-13

Family

ID=32452587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002305503A Pending JP2004138022A (en) 2002-10-21 2002-10-21 Method of and device for treating diesel exhaust gas

Country Status (1)

Country Link
JP (1) JP2004138022A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255345A (en) * 2006-03-24 2007-10-04 Isuzu Motors Ltd Control method of exhaust gas cleaning system and exhaust gas cleaning system
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
WO2009044495A1 (en) * 2007-10-04 2009-04-09 Hino Motors, Ltd. Exhaust purification apparatus
KR100969378B1 (en) * 2008-03-31 2010-07-09 현대자동차주식회사 Apparatus for purifying exhaust gas
EP2292316A1 (en) * 2009-09-02 2011-03-09 Hyundai Motor Company Apparatus for after-treatment of exhaust from diesel engine
JP2012007557A (en) * 2010-06-25 2012-01-12 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2012520419A (en) * 2009-03-12 2012-09-06 ボルボ ラストバグナー アーベー Method of operation for exhaust aftertreatment system and exhaust aftertreatment system
JP2014005735A (en) * 2012-06-21 2014-01-16 Isuzu Motors Ltd Exhaust gas cleaning system
KR101526373B1 (en) * 2009-08-28 2015-06-05 현대자동차 주식회사 Exhaust gas purification system
JP7423600B2 (en) 2018-07-30 2024-01-29 ビーエーエスエフ コーポレーション Selective catalytic reduction catalyst based on vanadium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135417A (en) * 1989-10-20 1991-06-10 Matsushita Electric Ind Co Ltd Nox removing device
WO2000021647A1 (en) * 1998-10-12 2000-04-20 Johnson Matthey Public Limited Company Process and apparatus for treating combustion exhaust gas
JP2002250220A (en) * 2001-02-23 2002-09-06 Isuzu Motors Ltd Exhaust emission control apparatus for diesel engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03135417A (en) * 1989-10-20 1991-06-10 Matsushita Electric Ind Co Ltd Nox removing device
WO2000021647A1 (en) * 1998-10-12 2000-04-20 Johnson Matthey Public Limited Company Process and apparatus for treating combustion exhaust gas
JP2002250220A (en) * 2001-02-23 2002-09-06 Isuzu Motors Ltd Exhaust emission control apparatus for diesel engine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4715581B2 (en) * 2006-03-24 2011-07-06 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP2007255345A (en) * 2006-03-24 2007-10-04 Isuzu Motors Ltd Control method of exhaust gas cleaning system and exhaust gas cleaning system
WO2009044495A1 (en) * 2007-10-04 2009-04-09 Hino Motors, Ltd. Exhaust purification apparatus
JP2009091909A (en) * 2007-10-04 2009-04-30 Hino Motors Ltd Exhaust emission control device
CN101815852B (en) * 2007-10-04 2012-09-05 日野自动车株式会社 Exhaust purification apparatus
KR100969378B1 (en) * 2008-03-31 2010-07-09 현대자동차주식회사 Apparatus for purifying exhaust gas
US8402754B2 (en) 2008-03-31 2013-03-26 Hyundai Motor Company Apparatus for purifying exhaust gas
JP2012520419A (en) * 2009-03-12 2012-09-06 ボルボ ラストバグナー アーベー Method of operation for exhaust aftertreatment system and exhaust aftertreatment system
EP2406473A4 (en) * 2009-03-12 2015-10-21 Volvo Lastvagnar Ab Operating method for an exhaust aftertreatment system and exhaust aftertreatment system
US9399937B2 (en) 2009-03-12 2016-07-26 Volvo Lastvagnar Ab Operating method for an exhaust aftertreatment system and exhaust aftertreatment system
EP2406473B1 (en) 2009-03-12 2018-02-28 Volvo Lastvagnar AB Operating method for an exhaust aftertreatment system and exhaust aftertreatment system
KR101526373B1 (en) * 2009-08-28 2015-06-05 현대자동차 주식회사 Exhaust gas purification system
CN102003251A (en) * 2009-09-02 2011-04-06 现代自动车株式会社 Apparatus for after-treatment of exhaust from diesel engine
JP2011052679A (en) * 2009-09-02 2011-03-17 Hyundai Motor Co Ltd Exhaust gas aftertreatment device for diesel engine
EP2292316A1 (en) * 2009-09-02 2011-03-09 Hyundai Motor Company Apparatus for after-treatment of exhaust from diesel engine
JP2012007557A (en) * 2010-06-25 2012-01-12 Honda Motor Co Ltd Exhaust emission control device of internal combustion engine
JP2014005735A (en) * 2012-06-21 2014-01-16 Isuzu Motors Ltd Exhaust gas cleaning system
JP7423600B2 (en) 2018-07-30 2024-01-29 ビーエーエスエフ コーポレーション Selective catalytic reduction catalyst based on vanadium

Similar Documents

Publication Publication Date Title
RU2504668C2 (en) Exhaust system for ice running on lean mixes
CN101564646B (en) Method for purification of an exhaust gas from a diesel engine
JP5808247B2 (en) Method and apparatus for purifying diesel exhaust
RU2451189C2 (en) Method of recovery carbon-black filters in exhaust system of ice running on lean mixes and exhaust system to this end
JP5988493B2 (en) Exhaust system including NOx storage catalyst and catalyst smoke filter
JP2006519332A (en) Exhaust gas purification device and exhaust gas purification method for selective catalytic reduction of nitrogen oxides in lean exhaust gas of internal combustion engine
US20120247088A1 (en) Exhaust gas after-treatment system
US11377993B2 (en) Exhaust gas purification system for a gasoline engine
US11859526B2 (en) Exhaust gas purification system for a gasoline engine
US11547969B2 (en) Exhaust gas purification system for a gasoline engine
WO2020079131A1 (en) Exhaust gas purification system for a gasoline engine
WO2020079137A1 (en) Exhaust gas purification system for a gasoline engine
JPWO2018025827A1 (en) Cold start compatible urea SCR system
WO2020079143A1 (en) Exhaust gas purification system for a gasoline engine
KR20140062899A (en) Exhaust gas purification system of vehicle
CN110785546A (en) Exhaust gas purification system
JP2004138022A (en) Method of and device for treating diesel exhaust gas
JP4316901B2 (en) Diesel exhaust gas treatment method and treatment apparatus
CN211598795U (en) Post-processing system
JP5003042B2 (en) Exhaust gas purification system
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2005226458A (en) Method and device for treating diesel exhaust gas
US20050056977A1 (en) Apparatus for removing carbon particles from an exhaust gas stream of internal combustion engines
KR100368034B1 (en) Device for Reducing Diesel Exhaust Emission by Using Continuously Regenerative Plasma·Catalyst Hybrid System and method thereof
JP7389617B2 (en) Exhaust gas purification equipment for diesel engines and their applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407