JP4316901B2 - Diesel exhaust gas treatment method and treatment apparatus - Google Patents

Diesel exhaust gas treatment method and treatment apparatus Download PDF

Info

Publication number
JP4316901B2
JP4316901B2 JP2003061385A JP2003061385A JP4316901B2 JP 4316901 B2 JP4316901 B2 JP 4316901B2 JP 2003061385 A JP2003061385 A JP 2003061385A JP 2003061385 A JP2003061385 A JP 2003061385A JP 4316901 B2 JP4316901 B2 JP 4316901B2
Authority
JP
Japan
Prior art keywords
exhaust gas
diesel
oxidation catalyst
reducing agent
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003061385A
Other languages
Japanese (ja)
Other versions
JP2004270520A (en
Inventor
尚美 今田
幾久 浜田
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003061385A priority Critical patent/JP4316901B2/en
Publication of JP2004270520A publication Critical patent/JP2004270520A/en
Application granted granted Critical
Publication of JP4316901B2 publication Critical patent/JP4316901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼル排ガス処理方法および処理装置に係り、特に、ディーゼルエンジンから排出されるディーゼル排ガス中の窒素酸化物を低温域でも効率よく分解、除去することができるディーゼル排ガス処理方法および処理装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンは、コジェネレーションシステムや、自動車、発電機などに多く用いられているが、近年地球環境保全に対する関心の高まりから、これらエンジンから排出される排ガスの規制が強化されている。
【0003】
自動車排ガスの浄化用触媒としては、一酸化炭素(CO)および炭化水素(HC)の酸化とNOxの還元とを同時に行うことができる三元触媒(特公昭56−27295号公報)が好適に用いられるが、リーンバーンエンジンやディーゼルエンジンの排ガスは酸素過剰雰囲気であるため、一般の三元触媒ではNOxが分解されにくいという問題がある。そこで、このような排ガスの浄化技術として、例えば(1)フィルタにより粒子状汚染物質(以下、単にPMともいう)を除去した後、窒素酸化物(NOx)を除去する方法、(2)白金(Pt)などの貴金属を担時した触媒上で炭化水素を還元剤として用いてNOxを還元する方法(特開平5−103985号公報)、(3)NOx吸蔵触媒を用いる方法など多くの技術が提案されている。
【0004】
上記技術のうち、フィルタによりPMを除去した後、窒素酸化物を除去する方法は、図5に示したように、ディーゼルエンジン1から排出された排ガス中のPMをまず酸化触媒付きディーゼルパティキュレートフィルタ3(以下、酸化触媒付きDPFという)で捕集し、該DPFに担時された酸化触媒成分によってNOの一部をNO2 に酸化させ((1)式)、煤との反応性が酸素よりも高い、前記NO2 によって煤を燃焼させて二酸化炭素に無害化した後((2)式)、尿素注入ノズル4から還元剤としてNH3 または尿素などのNH3 前駆体を添加し、脱硝触媒層5上で窒素酸化物を無害な窒素と水に還元、分解するものであり、PMとNOxの両方を確実に除去できる技術として実用化を目指した検討が行われている。
NO+1/2O2 → NO2 ・・・(1)
C+2NO2 → CO2 +2NO ・・・(2)
【特許文献1】
特開平06−123218号公報
【特許文献2】
特開平08−121145号公報
【0005】
【発明が解決しようとする課題】
上記従来技術における脱硝方法は、従来から発電所などのボイラ排ガス処理に広く採用されている方法であり、触媒としては、酸化チタン系の脱硝触媒のほか、ゼオライトに活性成分をイオン交換させた触媒などが用いられている。
【0006】
しかしながら、上記脱硝触媒は、通常300〜450℃の温度範囲で高い脱硝活性を示すのに対し、ディーゼル自動車におけるエンジンの始動停止は頻繁であるために、その排ガス温度は、例えば100〜300℃の範囲である時間が長く、従来の脱硝触媒では、高い脱硝率が得られないという問題があった。特にディーゼルエンジンを搭載したトラックやバスなどの排ガスを処理する場合、起動停止が頻繁で排ガス温度が200〜300℃を超えることがほとんどないことから、脱硝率が低く、NOxが未処理状態で排出されるだけでなく、還元剤としてのNH3 が多量にリークして二次公害の原因になるという問題があった。
【0007】
本発明の課題は、上記従来技術の問題点を解決し、エンジン始動時などの排ガス温度が低い場合であっても高い脱硝性能を得ることができるディーゼル排ガス処理方法および処理装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求する発明は以下のとおりである。
(1)ディーゼルエンジンから排出される排ガスを酸化触媒付きディーゼルパティキュレートフィルタに導入して排ガス中の粒子状物質を除去した後、脱硝触媒層に導入して窒素酸化物を接触還元除去するディーゼル排ガス処理方法において、前記酸化触媒は、白金、パラジウム、イリジウムおよびロジウムから選ばれた少なくとも1種類をチタニア、ジルコニア、アルミナ、シリカおよびセリアから選ばれた少なくとも1種類の酸化物に担時した触媒であり、かつ、該酸化触媒付きディーゼルパティキュレートフィルタの前段および脱硝触媒層の前段にそれぞれ窒素酸化物の還元剤を注入する手段を設け、前記排ガス温度に基づいて前記還元剤の注入位置を切り替えることを特徴とするディーゼル排ガス処理方法。
【0009】
(2)前記排ガス温度が所定温度未満の場合に酸化触媒付きディーゼルパティキュレートフィルタの前流に前記還元剤を注入し、排ガス温度が前記の温度以上の場合に前記脱硝触媒層の前流に前記還元剤を注入することを特徴とする上記(1)に記載のディーゼル排ガス処理方法。
(3)前記酸化触媒付きディーゼルパティキュレートフィルタの前段に前記酸化触媒層を設け、排ガス温度が所定温度未満の場合に酸化触媒層の前流または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に前記還元剤を注入することを特徴とする上記(1)または(2)に記載のディーゼル排ガス処理方法。
(4)前記所定温度は、200〜300℃であることを特徴とする上記(2)または(3)に記載のディーゼル排ガス処理方法。
(5)前記還元剤としてアンモニアまたはアンモニア前駆体を用い、アンモニア前駆体を用いる際は、ディーゼルエンジンの出口に近い排ガス煙道内に注入してアンモニアへの分解反応時間を確保することを特徴とする上記(1)〜(4)の何れかに記載のディーゼル排ガス処理方法。
【0010】
(6)ディーゼルエンジンの排ガス煙道に、排ガスの流れに沿って順次酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層を設け、該酸化触媒は、白金、パラジウム、イリジウムおよびロジウムから選ばれた少なくとも1種類をチタニア、ジルコニア、アルミナ、シリカおよびセリアから選ばれた少なくとも1種類の酸化物に担時した触媒であり、かつ、該酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層の前段にそれぞれ還元剤注入手段を設け、かつ両還元剤注入手段の切り替え手段を設けたことを特徴とするディーゼル排ガス処理装置。
(7)前記酸化触媒付きディーゼルパティキュレートフィルタの前段に前記酸化触媒層を設け、前記酸化触媒付きディーゼルパティキュレートフィルタの前段の還元剤注入手段を、前記酸化触媒層の前段または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に設けたことを特徴とする上記(6)に記載のディーゼル排ガス処理装置。
【0011】
図4は、本発明の原理を示す説明図である。図4において、酸化触媒付きDPFとSCR触媒(脱硝触媒)のNO2 とNOの還元性能には温度依存性があることが分かる。すなわち、脱硝触媒において安定した脱硝活性が得られる温度は、250〜300℃以上であるのに対し、酸化触媒付きDPFにおける脱硝活性は、300℃以下、特に250℃以下にピークがあることが分かる。このため、排ガス温度が低い場合には還元剤を酸化触媒付きDPFの前流側に添加することにより、酸化触媒付きDPFはNO、NO2 を低温で還元、除去する脱硝触媒として機能し、排ガス中のNOxを低温で効率よく還元、分解することができる。一方、排ガス温度が高い場合には、還元剤を通常のように脱硝触媒層の前段に注入することにより、該脱硝触媒の存在下、排ガス中のNOxが前記還元剤によって効率よく還元、分解される。
【0012】
このように、本発明においては、PMの除去手段である酸化触媒付きDPFの前段にも還元剤であるアンモニアまたは尿素などのアンモニア前駆体を注入する手段を設け、被処理排ガス温度に基づいて前記還元剤の注入位置を、通常の脱硝触媒層前流と前記酸化触媒付きDPFの前流との間で切り替えるものである。すなわち、排ガス温度が低温、例えば200〜300℃未満、好ましくは250〜300℃未満の場合は、還元剤は酸化触媒付きDPFの前流に注入され、200〜300℃以上、好ましくは250〜300℃以上であるときは脱硝触媒層の前流に注入される。なお、酸化触媒付きDPFにおいて、排ガス中の窒素酸化物は、還元剤であるアンモニアまたはその前駆体の酸化過程で還元、分解される。
【0013】
ところで、自動車エンジンの排ガス処理では、脱硝触媒層の前流に尿素などの水溶液を注入する場合、排ガス温度が低いと尿素の加水分解反応が進行しにくいだけでなく、還元剤注入位置と触媒との距離が短いために排ガスと還元剤の混合が不十分となり、還元剤濃度に分布が生じてリークが発生し、脱硝率が低くなるという問題が生じやすいが、本発明方法では、排ガス温度が低いときにはDPFの前流から還元剤が注入されるので、エンジン出口により近い場所に注入することができ、これにより尿素等のアンモニア前駆体の加水分解が促進され、分散度が向上して高いNOx除去率を得ることができるという利点がある。
【0014】
本発明において、酸化触媒付きDPFは、ウォールフロー型のディーゼルパティキュレートフィルタ(DPF)上に通常のいわゆる貴金属触媒、例えば、白金、パラジウム、イリジウム、ロジウムなどの貴金属の少なくとも1種類をチタニア、ジルコニア、アルミナ、シリカ、セリアなどの少なくとも1種類の酸化物に担時した触媒成分を担持したものが使用される。
【0015】
脱硝触媒としては、通常の、アンモニアを還元剤とした脱硝処理に用いられている触媒であればどのような物でもよく、例えば酸化チタンに活性成分を担時した触媒や、銅、鉄、セリウムなどの遷移金属をイオン交換したゼオライトを、コージェライトハニカム構造体などに担時した触媒などが好適に用いられる。
【0016】
本発明において、還元剤としては、アンモニアまたはアンモニア前駆体が使用される。アンモニア前駆体としては、例えば尿素が好適に用いられる。還元剤注入手段としては、アンモニアまたは尿素水溶液を排ガス煙道内に噴霧するノズルが好適に用いられる。
【0017】
本発明において、酸化触媒付きDPFの前段に酸化触媒層を設けることもできる。この場合、酸化触媒としては、通常の酸化触媒、例えば上記DPF上に担持される触媒成分と同様の組成からなる触媒成分をフルースロー型のコージェライトハニカム構造体に担持させたものが好適に用いられる。またこのとき、還元剤注入手段は、前記酸化触媒の前段または酸化触媒付きDPFの前段(酸化触媒と酸化触媒付きDPFの間)の何れか一方に設けられる。
【0018】
【発明の実施の形態】
次に、本発明を図面を用いて詳細に説明する。
図1は、本発明の一実施例であるディーゼル排ガス処理装置の系統を示す説明図である。図1において、この装置は、ディーゼルエンジン1の排ガス煙道としての排気管10に、前記排ガスの流れに沿って順次酸化触媒付きディーゼルパティキュレートフィルタ3および脱硝触媒層5を設け、前記酸化触媒付きDPF3および脱硝触媒層5の前段にそれぞれ還元剤注入手段としての尿素注入ノズル2および4を設け、かつその切り替え手段としての切替弁7を設けたものである。8は、ポンプ、9は、尿素水タンクである。
【0019】
このような構成において、ディーゼルエンジン1から排出された排ガスは、排気管10を通って酸化触媒付きDPF3に流入する。このとき排ガス温度が、例えば300℃未満であれば、尿素注入ノズル2から排気管10内に尿素水溶液が注入され、排ガス中のPM、NOおよびNO2 が酸化触媒付きDPF3上で除去される。PM、NOおよびNO2 が除去された排ガスは、後流の脱硝触媒層5を通過して系外に排出される。一方、排ガス温度が、例えば300℃以上であれば、注入ノズル2からの尿素水溶液の注入は行われず、排ガスは酸化触媒付きDPF3を流通し、ここで排ガス中のPMが除去された後、尿素注入ノズル4から注入された尿素水溶液と混合して後流の脱硝触媒層5に流入し、ここで、排ガス中のNOおよびNO2 が前記尿素が分解したNH3 によって還元、分解されたのち系外に排出される。
【0020】
本実施例によれば、被処理ガスであるディーゼル排ガス温度に基づいてNOxの還元剤であるアンモニアまたはアンモニア前駆体の注入位置を、酸化触媒付きDPF3の前流と脱硝触媒層5の前流との間で切り替えることにより、300℃以下の低温域から300℃以上の高温域に至るまで、ディーゼル排ガス中の窒素酸化物を効率よく分解除去することができる。
【0021】
図2は、本発明の他の実施例を示す装置系統図である。図2において、この装置が図1の装置と異なるところは、酸化触媒付きDPF3の前段に酸化触媒層6を設け、該酸化触媒層6と前記酸化触媒付きDPF3との間に尿素注入ノズル2を設けた点である。
【0022】
本実施例においても、排ガス温度が、例えば300℃未満のときは尿素注入ノズル2から還元剤としての尿素水を注入することにより、実施例1と同様、排ガス中のPM、NOおよびNO2 が酸化触媒付きDPF3上で除去されるので、起動停止が頻繁に生じるディーゼル自動車などから排出される比較的低温の排ガス中の窒素酸化物でも十分分解、除去することができる。なお、排ガス温度が、例えば300℃以上のときは尿素注入ノズル4から尿素水溶液が注入されるよにう切り替えられるので、窒素酸化物は、脱硝触媒層5で分解除去される。
【0023】
図3は、本発明の別の実施例を示す装置系統図である。図3において、この装置が図1の装置と異なるところは、酸化触媒付きDPF3の前流に酸化触媒層6を設け、該酸化触媒層6の前流側に尿素注入ノズル2を設けた点である。
本実施例においても、上記実施例1および2と同様、排ガス温度が、例えば300℃未満のときは尿素注入ノズル2から還元剤としての尿素水を注入することにより、実施例1および2と同様、排ガス中のPM、NOおよびNO2 が酸化触媒付きDPF3上で除去されるので、低温での脱硝性能を十分確保することができるうえ、排ガス温度が、例えば300℃以上のときは尿素注入ノズル4から尿素水溶液が注入されるように切り替えられるので、上記と同様に脱硝触媒層5で窒素酸化物が分解、除去される。
【0024】
【実施例】
次に本発明の具体的実施例を説明する。
実施例1
アルミナゾル(アルミナゾル520,日産化学社製)とセリアゾル(エコライトCE、多木化学社製)と水とを混合し、アルミナおよびセリアをそれぞれ15%含有する水溶液を1リットル調製し、この液にウォールフロー型の担体(12mil/300cpsi、日立金属社製)100×100mm(50mm長さ)を浸漬させたのち遠心分離装置によって液切りする操作を2回繰り返し、大気中150℃で5時間乾燥したのち、500℃で2時間焼成して触媒担体とし、得られた触媒担体にジニトロジアンミン白金の水溶液を含浸させ、遠心分離装置により液切りした後、大気中150℃で5時間乾燥し、550℃で2時間焼成して体積当たりの白金の担持量が2g/リットルである酸化触媒付きDPFを得た。
【0025】
得られた酸化触媒付きDPF(5セル×5セル)を、流通式の反応装置に設置し、酸化触媒付きDPFの前段に尿素水溶液を注入して下記表1の条件でNOおよびNO2 の除去率(脱硝率)を測定したところ、脱硝率は80%であった。
【0026】
【表1】

Figure 0004316901
【0027】
比較例1
酸化チタン、酸化タングステン、メタバナジン酸アンモニウム、シュウ酸および水をニーダで混練してペースト状とし、これを押出し造粒した後乾燥し、500℃で2時間通気焼成し、得られた造粒物を粒径150μm以下に粉砕して脱硝触媒粉末を得た(Ti/W/V=89/5/6)。得られた脱硝触媒粉末と水とを攪拌機で混合してスラリ濃度35%のスラリを調製し、これにフロースルー型のコージェライト担体(600cpsi) 100×100mm(50mm長さ)を浸漬し、エアブローで液切りした後乾燥する工程を3回繰り返した後、500℃で2時間焼成して脱硝触媒を得た。
【0028】
実施例1の酸化触媒付きDPFを上記脱硝触媒に替えた以外は上記実施例1と同様にしてNOおよびNO2 の除去率を測定したところ、脱硝率は、40%であった。
実施例1および比較例1の結果から、被処理排ガス温度が300℃未満の場合、特に250℃未満の場合は、酸化触媒付きDPFの前段に還元剤を注入し、該酸化触媒付きDPFによって排ガス中のPM、NO、およびNO2 を除去することにより、脱硝率が著しく向上することが分かる。
【0029】
【発明の効果】
本願の請求項1に記載の発明によれば、エンジン始動時などの排ガス温度が低い場合であってもディーゼル排ガス中の窒素酸化物を効率よく分解、除去することができるので、低温から高温の幅広い温度域で高い脱硝率を得ることができる。
本願の請求項2に記載の発明によれば、上記発明の効果に加え、排ガス温度が所定温度未満であっても高い脱硝率を得ることができる。
【0030】
本願の請求項3に記載の発明によれば、上記発明と同様、低温から高温まで幅広い温度域で効率よくディーゼル排ガス中の窒素酸化物を分解、除去することができる。
本願の請求項4に記載の発明によれば、上記発明と同様、低温から高温まで幅広い温度域で脱硝処理が可能となり、排ガス温度が200〜300℃以下であっても高い脱硝率を得ることができる。
【0031】
本願の請求項5に記載の発明によれば、上記発明の効果に加え、アンモニア前駆体の分解反応時間を確保して効率よく窒素酸化物を還元、除去することができる。
本願の請求項6に記載の発明によれば、低温から高温まで幅広い温度域でディーゼル排ガス中の窒素酸化物を効率よく分解、除去することができる。
本願の請求項7に記載の発明によれば、上記発明の効果と同様、低温から高温まで幅広い温度域でディーゼル排ガス中の窒素酸化物を効率よく分解、除去することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であるディーゼル排ガス処理装置のフローを示す説明図。
【図2】本発明の他の実施例を示す説明図。
【図3】本発明の別の実施例を示す説明図。
【図4】本発明の原理を示す説明図。
【図5】従来技術を示す説明図。
【符号の説明】
1…ディーゼルエンジン、2…尿素注入ノズル、3…酸化触媒付きDPF、4…尿素注入ノズル、5…脱硝触媒層、6…酸化触媒層、7…切替弁、8…ポンプ、9…尿素水タンク、10…排気管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diesel exhaust gas processing method and a processing apparatus, and more particularly to a diesel exhaust gas processing method and a processing apparatus capable of efficiently decomposing and removing nitrogen oxides in diesel exhaust discharged from a diesel engine even in a low temperature range. .
[0002]
[Prior art]
Diesel engines are widely used in cogeneration systems, automobiles, generators, and the like. However, in recent years, regulations on exhaust gas emitted from these engines have been strengthened due to increasing interest in global environmental conservation.
[0003]
As a catalyst for purifying automobile exhaust gas, a three-way catalyst (Japanese Patent Publication No. 56-27295) capable of simultaneously performing oxidation of carbon monoxide (CO) and hydrocarbon (HC) and reduction of NOx is suitably used. However, since the exhaust gas of a lean burn engine or a diesel engine has an oxygen-excess atmosphere, there is a problem that NOx is hardly decomposed by a general three-way catalyst. Therefore, as such exhaust gas purification technology, for example, (1) a method of removing particulate pollutants (hereinafter also simply referred to as PM) with a filter and then removing nitrogen oxides (NOx), (2) platinum ( Many techniques have been proposed, such as a method of reducing NOx using a hydrocarbon as a reducing agent on a catalyst carrying a noble metal such as Pt) (Japanese Patent Laid-Open No. 5-103985), and a method of using a NOx storage catalyst. Has been.
[0004]
Among the above techniques, after removing PM by a filter, the method of removing nitrogen oxides is as follows. As shown in FIG. 5, the PM in the exhaust gas discharged from the diesel engine 1 is first filtered with a diesel particulate filter with an oxidation catalyst. 3 (hereinafter referred to as DPF with an oxidation catalyst), a part of NO is oxidized to NO 2 by the oxidation catalyst component carried by the DPF (Equation (1)), and the reactivity with soot is oxygen After the soot is burned with NO 2 to be rendered harmless by carbon dioxide (equation (2)), NH 3 precursor such as NH 3 or urea is added as a reducing agent from the urea injection nozzle 4 and denitration is performed. On the catalyst layer 5, nitrogen oxides are reduced and decomposed into harmless nitrogen and water, and studies aiming at practical use are being carried out as a technique that can reliably remove both PM and NOx.
NO + 1 / 2O 2 → NO 2 (1)
C + 2NO 2 → CO 2 + 2NO (2)
[Patent Document 1]
Japanese Patent Laid-Open No. 06-123218 [Patent Document 2]
Japanese Patent Laid-Open No. 08-121145
[Problems to be solved by the invention]
The above-mentioned conventional denitration method is a method widely used for boiler exhaust gas treatment in power plants and the like, and as a catalyst, in addition to a titanium oxide-based denitration catalyst, a catalyst in which an active component is ion-exchanged with zeolite. Etc. are used.
[0006]
However, while the above-mentioned denitration catalyst usually shows high denitration activity in the temperature range of 300 to 450 ° C, the start and stop of the engine in diesel automobiles is frequent, so the exhaust gas temperature is, for example, 100 to 300 ° C. The range of time is long, and the conventional denitration catalyst has a problem that a high denitration rate cannot be obtained. Especially when processing exhaust gas from trucks and buses equipped with diesel engines, the start-stop is frequent and the exhaust gas temperature rarely exceeds 200 to 300 ° C, so the NOx removal rate is low and NOx is discharged in an untreated state. In addition, there is a problem that a large amount of NH 3 as a reducing agent leaks and causes secondary pollution.
[0007]
An object of the present invention is to provide a diesel exhaust gas processing method and a processing apparatus that can solve the above-described problems of the prior art and obtain high denitration performance even when the exhaust gas temperature is low, such as at the time of engine start. is there.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) Diesel exhaust gas that introduces exhaust gas discharged from a diesel engine into a diesel particulate filter with an oxidation catalyst to remove particulate matter in the exhaust gas, and then introduces it into a denitration catalyst layer to catalytically reduce and remove nitrogen oxides In the treatment method, the oxidation catalyst is a catalyst in which at least one selected from platinum, palladium, iridium and rhodium is supported by at least one oxide selected from titania, zirconia, alumina, silica and ceria. In addition, a means for injecting a nitrogen oxide reducing agent is provided at the front stage of the diesel particulate filter with an oxidation catalyst and the front stage of the denitration catalyst layer, respectively, and the injection position of the reducing agent is switched based on the exhaust gas temperature. A method for treating diesel exhaust gas.
[0009]
(2) When the exhaust gas temperature is lower than a predetermined temperature, the reducing agent is injected into the upstream of the diesel particulate filter with an oxidation catalyst, and when the exhaust gas temperature is equal to or higher than the above temperature, the reducing agent is introduced into the upstream of the denitration catalyst layer. The diesel exhaust gas treatment method as described in (1) above, wherein a reducing agent is injected.
(3) the said oxidation catalyst layer in front of the oxidation catalytic diesel particulate filter provided, diesel particulate filters the conditioned oxidation catalyst and the upstream side or the oxidation catalyst layer of the oxidation catalyst layer when the exhaust gas temperature is lower than a predetermined temperature The diesel exhaust gas treatment method according to (1) or (2), wherein the reducing agent is injected between the two.
(4) The diesel exhaust gas treatment method according to (2) or (3), wherein the predetermined temperature is 200 to 300 ° C.
(5) Ammonia or an ammonia precursor is used as the reducing agent, and when the ammonia precursor is used, it is injected into an exhaust gas flue close to the outlet of the diesel engine to ensure a decomposition reaction time into ammonia. The diesel exhaust gas treatment method according to any one of (1) to (4) above.
[0010]
(6) A diesel particulate filter with an oxidation catalyst and a denitration catalyst layer are sequentially provided in the exhaust gas flue of the diesel engine along the flow of the exhaust gas, and the oxidation catalyst is at least one selected from platinum, palladium, iridium and rhodium It is a catalyst that is supported by at least one oxide selected from titania, zirconia, alumina, silica, and ceria, and a reducing agent is injected before the diesel particulate filter with the oxidation catalyst and the denitration catalyst layer, respectively. And a diesel exhaust gas treatment apparatus characterized in that a means for switching between both reducing agent injection means is provided.
(7) the said oxidation catalyst layer in front of the oxidation catalytic diesel particulate filter provided, the front stage of the reducing agent injection means of the diesel particulate filter with an oxidation catalyst, wherein a pre-stage or oxidation catalyst layer of the oxidation catalyst layer The diesel exhaust gas treatment apparatus as described in (6) above, which is provided between the diesel particulate filter with an oxidation catalyst.
[0011]
FIG. 4 is an explanatory diagram showing the principle of the present invention. In FIG. 4, it can be seen that the NO 2 and NO reduction performance of the DPF with an oxidation catalyst and the SCR catalyst (denitration catalyst) have temperature dependence. That is, the temperature at which stable denitration activity is obtained in the denitration catalyst is 250 to 300 ° C. or higher, whereas the denitration activity in the DPF with an oxidation catalyst has a peak at 300 ° C. or less, particularly 250 ° C. or less. . For this reason, when the exhaust gas temperature is low, by adding a reducing agent to the upstream side of the DPF with an oxidation catalyst, the DPF with an oxidation catalyst functions as a denitration catalyst that reduces and removes NO and NO 2 at a low temperature. NOx inside can be efficiently reduced and decomposed at low temperatures. On the other hand, when the exhaust gas temperature is high, the NOx in the exhaust gas is efficiently reduced and decomposed by the reducing agent in the presence of the NOx removal catalyst by injecting the reducing agent into the previous stage of the NOx removal catalyst layer as usual. The
[0012]
Thus, in the present invention, a means for injecting an ammonia precursor such as ammonia or urea as a reducing agent is also provided in the preceding stage of the DPF with an oxidation catalyst, which is a means for removing PM, and based on the exhaust gas temperature to be treated. The injection position of the reducing agent is switched between the normal upstream of the denitration catalyst layer and the upstream of the oxidation catalyst-attached DPF. That is, when the exhaust gas temperature is low, for example, less than 200 to 300 ° C., preferably less than 250 to 300 ° C., the reducing agent is injected into the upstream of the DPF with an oxidation catalyst, and is 200 to 300 ° C. or more, preferably 250 to 300 ° C. When the temperature is higher than ° C., it is injected upstream of the denitration catalyst layer. In the DPF with an oxidation catalyst, nitrogen oxides in the exhaust gas are reduced and decomposed during the oxidation process of ammonia as a reducing agent or its precursor.
[0013]
By the way, in the exhaust gas treatment of an automobile engine, when an aqueous solution such as urea is injected into the upstream of the denitration catalyst layer, if the exhaust gas temperature is low, not only the hydrolysis reaction of urea is difficult to proceed, but also the reducing agent injection position and the catalyst However, the mixing of the exhaust gas and the reducing agent becomes insufficient, the distribution of the reducing agent concentration is generated, leaks occur, and the denitration rate tends to decrease. When it is low, the reducing agent is injected from the upstream of the DPF, so that it can be injected closer to the engine outlet, which promotes hydrolysis of ammonia precursors such as urea and improves the degree of dispersion and high NOx. There is an advantage that a removal rate can be obtained.
[0014]
In the present invention, the oxidation catalyst-attached DPF is a so-called noble metal catalyst such as platinum, palladium, iridium, rhodium, titania, zirconia, or the like, usually on a wall flow type diesel particulate filter (DPF). alumina, silica, those obtained by supporting the catalyst ingredients担時at least one oxide such as ceria is used.
[0015]
As the denitration catalyst, any catalyst can be used as long as it is a catalyst that is used in a conventional denitration treatment using ammonia as a reducing agent. For example, a catalyst in which an active component is supported on titanium oxide, copper, iron, cerium, or the like. A catalyst in which a zeolite obtained by ion exchange of a transition metal such as a cordierite honeycomb structure is used is preferably used.
[0016]
In the present invention, ammonia or an ammonia precursor is used as the reducing agent. For example, urea is preferably used as the ammonia precursor. As the reducing agent injection means, a nozzle for spraying ammonia or urea aqueous solution into the flue gas flue is preferably used.
[0017]
In the present invention, an oxidation catalyst layer may be provided in the front stage of the DPF with an oxidation catalyst. In this case, as the oxidation catalyst, a normal oxidation catalyst, for example, a catalyst component having the same composition as the catalyst component supported on the DPF is supported on a full throw type cordierite honeycomb structure is preferably used. It is done. Further, at this time, the reducing agent injection means is provided at either the preceding stage of the oxidation catalyst or the preceding stage of the DPF with the oxidation catalyst (between the oxidation catalyst and the DPF with the oxidation catalyst).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory view showing a system of a diesel exhaust gas treatment apparatus according to an embodiment of the present invention. In FIG. 1, this apparatus is provided with a diesel particulate filter 3 with an oxidation catalyst and a denitration catalyst layer 5 in an exhaust pipe 10 as an exhaust gas flue of a diesel engine 1 along the flow of the exhaust gas, and with the oxidation catalyst. The urea injection nozzles 2 and 4 as the reducing agent injection means are provided in front of the DPF 3 and the denitration catalyst layer 5, respectively, and the switching valve 7 as the switching means is provided. 8 is a pump, and 9 is a urea water tank.
[0019]
In such a configuration, the exhaust gas discharged from the diesel engine 1 flows into the DPF 3 with the oxidation catalyst through the exhaust pipe 10. At this time, if the exhaust gas temperature is lower than 300 ° C., for example, the urea aqueous solution is injected into the exhaust pipe 10 from the urea injection nozzle 2, and PM, NO, and NO 2 in the exhaust gas are removed on the DPF 3 with an oxidation catalyst. The exhaust gas from which PM, NO and NO 2 have been removed passes through the downstream denitration catalyst layer 5 and is discharged out of the system. On the other hand, if the exhaust gas temperature is, for example, 300 ° C. or higher, the urea aqueous solution is not injected from the injection nozzle 2, and the exhaust gas flows through the DPF 3 with an oxidation catalyst. It is mixed with the urea aqueous solution injected from the injection nozzle 4 and flows into the downstream denitration catalyst layer 5, where NO and NO 2 in the exhaust gas are reduced and decomposed by NH 3 decomposed by the urea. Discharged outside.
[0020]
According to the present embodiment, the injection position of ammonia or ammonia precursor, which is a NOx reducing agent, based on the temperature of the diesel exhaust gas that is the gas to be treated, the upstream of the DPF 3 with oxidation catalyst and the upstream of the denitration catalyst layer 5 By switching between these, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed from a low temperature range of 300 ° C. or lower to a high temperature range of 300 ° C. or higher.
[0021]
FIG. 2 is an apparatus system diagram showing another embodiment of the present invention. In FIG. 2, this apparatus differs from the apparatus of FIG. 1 in that an oxidation catalyst layer 6 is provided in front of the DPF 3 with an oxidation catalyst, and a urea injection nozzle 2 is provided between the oxidation catalyst layer 6 and the DPF 3 with the oxidation catalyst. It is a point provided.
[0022]
Also in the present embodiment, when the exhaust gas temperature is lower than 300 ° C., for example, urea water as a reducing agent is injected from the urea injection nozzle 2, so that PM, NO, and NO 2 in the exhaust gas are discharged as in the first embodiment. Since it is removed on the DPF 3 with the oxidation catalyst, it is possible to sufficiently decompose and remove even the nitrogen oxides in the relatively low temperature exhaust gas discharged from diesel vehicles or the like that frequently start and stop. When the exhaust gas temperature is, for example, 300 ° C. or higher, the urea aqueous solution is injected from the urea injection nozzle 4 so that the nitrogen oxide is decomposed and removed by the denitration catalyst layer 5.
[0023]
FIG. 3 is an apparatus system diagram showing another embodiment of the present invention. In FIG. 3, this apparatus differs from the apparatus of FIG. 1 in that an oxidation catalyst layer 6 is provided upstream of the oxidation catalyst-attached DPF 3 and a urea injection nozzle 2 is provided upstream of the oxidation catalyst layer 6. is there.
Also in the present embodiment, as in the first and second embodiments, when the exhaust gas temperature is less than 300 ° C., for example, urea water as a reducing agent is injected from the urea injection nozzle 2, thereby the same as in the first and second embodiments. Since PM, NO and NO 2 in the exhaust gas are removed on the DPF 3 with the oxidation catalyst, it is possible to sufficiently secure the denitration performance at low temperature, and when the exhaust gas temperature is, for example, 300 ° C. or higher, a urea injection nozzle Since the urea aqueous solution is switched from 4 to 4 so as to be injected, nitrogen oxides are decomposed and removed by the denitration catalyst layer 5 as described above.
[0024]
【Example】
Next, specific examples of the present invention will be described.
Example 1
Alumina sol (Alumina sol 520, manufactured by Nissan Chemical Co., Ltd.), ceria sol (Ecolite CE, manufactured by Taki Chemical Co., Ltd.) and water are mixed, and 1 liter of an aqueous solution containing 15% each of alumina and ceria is prepared. After immersing a flow-type carrier (12mil / 300cpsi, manufactured by Hitachi Metals) 100 x 100mm (50mm length) and draining it with a centrifuge twice, after drying in air at 150 ° C for 5 hours The catalyst support was calcined at 500 ° C. for 2 hours, impregnated with an aqueous solution of dinitrodiammine platinum into the obtained catalyst support, drained by a centrifugal separator, dried in air at 150 ° C. for 5 hours, and at 550 ° C. The DPF with an oxidation catalyst having a platinum loading per volume of 2 g / liter was obtained by calcination for 2 hours.
[0025]
The obtained oxidation catalyst-attached DPF (5 cells x 5 cells) was placed in a flow reactor, and an aqueous urea solution was injected before the oxidation catalyst-attached DPF to remove NO and NO 2 under the conditions shown in Table 1 below. When the rate (denitration rate) was measured, the denitration rate was 80%.
[0026]
[Table 1]
Figure 0004316901
[0027]
Comparative Example 1
Titanium oxide, tungsten oxide, ammonium metavanadate, oxalic acid and water were kneaded with a kneader to form a paste, which was extruded and granulated, dried, ventilated and fired at 500 ° C for 2 hours, and the resulting granulated product was Denitration catalyst powder was obtained by grinding to a particle size of 150 μm or less (Ti / W / V = 89/5/6). The resulting denitration catalyst powder and water are mixed with a stirrer to prepare a slurry with a slurry concentration of 35%. A flow-through cordierite carrier (600 cpsi) 100 x 100 mm (50 mm length) is immersed in the slurry and air blown. The process of draining and drying after 3 times was repeated 3 times, followed by calcination at 500 ° C. for 2 hours to obtain a denitration catalyst.
[0028]
When the removal rate of NO and NO 2 was measured in the same manner as in Example 1 except that the DPF with an oxidation catalyst in Example 1 was replaced with the above denitration catalyst, the denitration rate was 40%.
From the results of Example 1 and Comparative Example 1, when the temperature of the exhaust gas to be treated is less than 300 ° C., particularly less than 250 ° C., a reducing agent is injected before the DPF with an oxidation catalyst, and the exhaust gas is exhausted by the DPF with an oxidation catalyst. It can be seen that removal of PM, NO, and NO 2 in the medium significantly improves the denitration rate.
[0029]
【The invention's effect】
According to the invention described in claim 1 of the present application, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed even when the exhaust gas temperature is low such as when the engine is started. High denitration rate can be obtained in a wide temperature range.
According to the invention described in claim 2 of the present application, in addition to the effects of the above invention, a high denitration rate can be obtained even if the exhaust gas temperature is lower than a predetermined temperature.
[0030]
According to the invention described in claim 3 of the present application, similarly to the above-described invention, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed in a wide temperature range from a low temperature to a high temperature.
According to the invention described in claim 4 of the present application, similarly to the above-described invention, it is possible to perform a denitration treatment in a wide temperature range from a low temperature to a high temperature, and to obtain a high denitration rate even when the exhaust gas temperature is 200 to 300 ° C. or less. Can do.
[0031]
According to the invention described in claim 5 of the present application, in addition to the effects of the above-described invention, it is possible to efficiently reduce and remove nitrogen oxides while securing the decomposition reaction time of the ammonia precursor.
According to the invention described in claim 6 of the present application, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed in a wide temperature range from low temperature to high temperature.
According to the invention described in claim 7 of the present application, similarly to the effect of the invention, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed in a wide temperature range from low temperature to high temperature.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a flow of a diesel exhaust gas processing apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing another embodiment of the present invention.
FIG. 3 is an explanatory diagram showing another embodiment of the present invention.
FIG. 4 is an explanatory diagram showing the principle of the present invention.
FIG. 5 is an explanatory diagram showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Diesel engine, 2 ... Urea injection nozzle, 3 ... DPF with oxidation catalyst, 4 ... Urea injection nozzle, 5 ... Denitration catalyst layer, 6 ... Oxidation catalyst layer, 7 ... Switching valve, 8 ... Pump, 9 ... Urea water tank 10 ... exhaust pipe.

Claims (7)

ディーゼルエンジンから排出される排ガスを酸化触媒付きディーゼルパティキュレートフィルタに導入して排ガス中の粒子状物質を除去した後、脱硝触媒層に導入して窒素酸化物を接触還元除去するディーゼル排ガス処理方法において、前記酸化触媒は、白金、パラジウム、イリジウムおよびロジウムから選ばれた少なくとも1種類をチタニア、ジルコニア、アルミナ、シリカおよびセリアから選ばれた少なくとも1種類の酸化物に担時した触媒であり、かつ、該酸化触媒付きディーゼルパティキュレートフィルタの前段および脱硝触媒層の前段にそれぞれ窒素酸化物の還元剤を注入する手段を設け、前記排ガス温度に基づいて前記還元剤の注入位置を切り替えることを特徴とするディーゼル排ガス処理方法。In a diesel exhaust gas treatment method in which exhaust gas discharged from a diesel engine is introduced into a diesel particulate filter with an oxidation catalyst to remove particulate matter in the exhaust gas, and then introduced into a denitration catalyst layer to remove nitrogen oxides by catalytic reduction. The oxidation catalyst is a catalyst in which at least one selected from platinum, palladium, iridium and rhodium is supported by at least one oxide selected from titania, zirconia, alumina, silica and ceria, and the means for injecting respectively a reducing agent of nitrogen oxides in front of the oxidation catalytic diesel particulate previous and the denitration catalyst layer of the filter is provided, and switches the injection position of the reducing agent based on the exhaust gas temperature Diesel exhaust gas treatment method. 前記排ガス温度が所定温度未満の場合に酸化触媒付きディーゼルパティキュレートフィルタの前流に前記還元剤を注入し、排ガス温度が前記の温度以上の場合に前記脱硝触媒層の前流に前記還元剤を注入することを特徴とする請求項1に記載のディーゼル排ガス処理方法。  When the exhaust gas temperature is lower than a predetermined temperature, the reducing agent is injected into the upstream of the diesel particulate filter with an oxidation catalyst, and when the exhaust gas temperature is equal to or higher than the temperature, the reducing agent is introduced into the upstream of the denitration catalyst layer. It inject | pours, The diesel exhaust gas processing method of Claim 1 characterized by the above-mentioned. 前記酸化触媒付きディーゼルパティキュレートフィルタの前段に前記酸化触媒層を設け、排ガス温度が所定温度未満の場合に酸化触媒層の前流または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に前記還元剤を注入することを特徴とする請求項1または2に記載のディーゼル排ガス処理方法。Between the said oxidation catalyst layer in front of the oxidation catalytic diesel particulate filter provided, the oxidation catalytic diesel particulate filter and the upstream side or the oxidation catalyst layer of the oxidation catalyst layer when the exhaust gas temperature is lower than a predetermined temperature The diesel exhaust gas treatment method according to claim 1 or 2, wherein the reducing agent is injected into the exhaust gas. 前記所定温度は、200〜300℃であることを特徴とする請求項2または3に記載のディーゼル排ガス処理方法。  The diesel exhaust gas treatment method according to claim 2 or 3, wherein the predetermined temperature is 200 to 300 ° C. 前記還元剤としてアンモニアまたはアンモニア前駆体を用い、アンモニア前駆体を用いる際は、ディーゼルエンジンの出口に近い排ガス煙道内に注入してアンモニアへの分解反応時間を確保することを特徴とする請求項1〜4の何れかに記載のディーゼル排ガス処理方法。  The ammonia or ammonia precursor is used as the reducing agent, and when the ammonia precursor is used, it is injected into an exhaust gas flue close to the outlet of the diesel engine to ensure a decomposition reaction time into ammonia. The diesel exhaust gas treatment method according to any one of? ディーゼルエンジンの排ガス煙道に、排ガスの流れに沿って順次酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層を設け、該酸化触媒は、白金、パラジウム、イリジウムおよびロジウムから選ばれた少なくとも1種類をチタニア、ジルコニア、アルミナ、シリカおよびセリアから選ばれた少なくとも1種類の酸化物に担時した触媒であり、かつ、該酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層の前段にそれぞれ還元剤注入手段を設け、かつ両還元剤注入手段の切り替え手段を設けたことを特徴とするディーゼル排ガス処理装置。A diesel particulate filter with an oxidation catalyst and a denitration catalyst layer are sequentially provided in the exhaust gas flue of the diesel engine along the flow of the exhaust gas, and the oxidation catalyst is at least one selected from platinum, palladium, iridium and rhodium. , A catalyst deposited on at least one oxide selected from zirconia, alumina, silica and ceria, and provided with a reducing agent injection means in front of the diesel particulate filter with oxidation catalyst and the denitration catalyst layer, respectively. And a diesel exhaust gas treatment apparatus provided with switching means for both reducing agent injection means. 前記酸化触媒付きディーゼルパティキュレートフィルタの前段に前記酸化触媒層を設け、前記酸化触媒付きディーゼルパティキュレートフィルタの前段の還元剤注入手段を、前記酸化触媒層の前段または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に設けたことを特徴とする請求項6に記載のディーゼル排ガス処理装置。Wherein said oxidation catalyst layer in front of the oxidation catalytic diesel particulate filter provided, wherein the front of the reducing agent injection means diesel particulate filter with an oxidation catalyst, wherein with an oxide catalyst and a previous or oxidation catalyst layer of the oxidation catalyst layer The diesel exhaust gas treatment apparatus according to claim 6, wherein the diesel exhaust gas treatment apparatus is provided between the diesel particulate filter and the diesel particulate filter.
JP2003061385A 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus Expired - Fee Related JP4316901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061385A JP4316901B2 (en) 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061385A JP4316901B2 (en) 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2004270520A JP2004270520A (en) 2004-09-30
JP4316901B2 true JP4316901B2 (en) 2009-08-19

Family

ID=33123621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061385A Expired - Fee Related JP4316901B2 (en) 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP4316901B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799046B2 (en) * 2005-05-20 2011-10-19 日野自動車株式会社 Engine exhaust gas purification device
JP4901129B2 (en) * 2005-05-24 2012-03-21 本田技研工業株式会社 Nitrogen oxide catalytic reduction catalyst
DE102005031816A1 (en) * 2005-07-06 2007-01-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Method for reducing the particle and nitrogen oxide content in the exhaust stream of an internal combustion engine and corresponding exhaust gas treatment unit
JP4664807B2 (en) * 2005-11-22 2011-04-06 バブコック日立株式会社 Purification method and apparatus for exhaust gas containing particulate matter
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP4826944B2 (en) * 2006-05-26 2011-11-30 株式会社豊田中央研究所 Diesel exhaust gas purification structure and exhaust gas purification method using the same
KR100785156B1 (en) * 2006-10-19 2007-12-11 현대자동차주식회사 Exhaust gas reduction system for vehicle
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
JP5517781B2 (en) * 2010-06-29 2014-06-11 日野自動車株式会社 Exhaust gas purification device
JP5875562B2 (en) * 2013-09-26 2016-03-02 三菱重工業株式会社 Exhaust gas treatment apparatus and exhaust gas treatment method

Also Published As

Publication number Publication date
JP2004270520A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
RU2278281C2 (en) Device for and method of processing of waste gases formed when engine operates on lean mixtures by selective catalytic reduction of nitrogen oxides
US8883100B2 (en) Particle reduction with combined SCR and NH3 slip catalyst
RU2504668C2 (en) Exhaust system for ice running on lean mixes
JP4745968B2 (en) Denitration catalyst with excellent low temperature characteristics
EP1985353B1 (en) Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying process of exhaust gas
JP5769732B2 (en) Selective reduction catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
JP2008279334A (en) Selective reduction catalyst and apparatus for cleaning exhaust gas using the same, and method of cleaning exhaust gas
WO2018025827A1 (en) Cold start-compatible urea scr system
JP2009262098A (en) Exhaust gas clarifying method using selective reduction catalyst
JP2009513335A (en) Diesel engine exhaust gas purification system
JP2006289211A (en) Ammonia oxidation catalyst
CN102454453A (en) Emission scr nox aftertreatment system having reduced so3 generation and improved durability
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
US8932546B2 (en) Catalytically active particulate filter and use thereof
CN110785546A (en) Exhaust gas purification system
JP4316901B2 (en) Diesel exhaust gas treatment method and treatment apparatus
JP2004138022A (en) Method of and device for treating diesel exhaust gas
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
KR20190030225A (en) Diesel oxidation catalytic converter
JP2005125275A (en) Device for treating diesel exhaust gas and method therefor
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP2005226458A (en) Method and device for treating diesel exhaust gas
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JPH1052628A (en) Catalytic device for purifying exhaust gas from diesel engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees