JP2004270520A - Method and device for treating diesel exhaust gas - Google Patents

Method and device for treating diesel exhaust gas Download PDF

Info

Publication number
JP2004270520A
JP2004270520A JP2003061385A JP2003061385A JP2004270520A JP 2004270520 A JP2004270520 A JP 2004270520A JP 2003061385 A JP2003061385 A JP 2003061385A JP 2003061385 A JP2003061385 A JP 2003061385A JP 2004270520 A JP2004270520 A JP 2004270520A
Authority
JP
Japan
Prior art keywords
exhaust gas
diesel
oxidation catalyst
reducing agent
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003061385A
Other languages
Japanese (ja)
Other versions
JP4316901B2 (en
Inventor
Naomi Imada
尚美 今田
Ikuhisa Hamada
幾久 浜田
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003061385A priority Critical patent/JP4316901B2/en
Publication of JP2004270520A publication Critical patent/JP2004270520A/en
Application granted granted Critical
Publication of JP4316901B2 publication Critical patent/JP4316901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diesel exhaust gas treatment method obtaining high denitration performance even though exhaust gas temperature is low. <P>SOLUTION: In this diesel exhaust gas treatment method for introducing exhaust gas to an NOx removal catalyst bed 5 and catalytically reducing and removing NOx after exhaust gas delivered from a diesel engine 1 is introduced to a DPF3 with an oxidation catalyst and PM (particulate matters) in exhaust gas is removed, means for injecting a reducing agent for NOx are respectively arranged in the front stage of the DPF3 with the oxidation catalyst and in the front stage of the NOx removal catalyst bed 5, and a reducing agent injecting position is changed over based on exhaust gas temperature. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼル排ガス処理方法および処理装置に係り、特に、ディーゼルエンジンから排出されるディーゼル排ガス中の窒素酸化物を低温域でも効率よく分解、除去することができるディーゼル排ガス処理方法および処理装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンは、コジェネレーションシステムや、自動車、発電機などに多く用いられているが、近年地球環境保全に対する関心の高まりから、これらエンジンから排出される排ガスの規制が強化されている。
【0003】
自動車排ガスの浄化用触媒としては、一酸化炭素(CO)および炭化水素(HC)の酸化とNOxの還元とを同時に行うことができる三元触媒(特公昭56−27295号公報)が好適に用いられるが、リーンバーンエンジンやディーゼルエンジンの排ガスは酸素過剰雰囲気であるため、一般の三元触媒ではNOxが分解されにくいという問題がある。そこで、このような排ガスの浄化技術として、例えば(1)フィルタにより粒子状汚染物質(以下、単にPMともいう)を除去した後、窒素酸化物(NOx)を除去する方法、(2)白金(Pt)などの貴金属を担時した触媒上で炭化水素を還元剤として用いてNOxを還元する方法(特開平5−103985号公報)、(3)NOx吸蔵触媒を用いる方法など多くの技術が提案されている。
【0004】
上記技術のうち、フィルタによりPMを除去した後、窒素酸化物を除去する方法は、図5に示したように、ディーゼルエンジン1から排出された排ガス中のPMをまず酸化触媒付きディーゼルパティキュレートフィルタ3(以下、酸化触媒付きDPFという)で捕集し、該DPFに担時された酸化触媒成分によってNOの一部をNOに酸化させ((1)式)、煤との反応性が酸素よりも高い、前記NOによって煤を燃焼させて二酸化炭素に無害化した後((2)式)、尿素注入ノズル4から還元剤としてNHまたは尿素などのNH前駆体を添加し、脱硝触媒層5上で窒素酸化物を無害な窒素と水に還元、分解するものであり、PMとNOxの両方を確実に除去できる技術として実用化を目指した検討が行われている。
NO+1/2O → NO ・・・(1)
C+2NO → CO +2NO ・・・(2)
【特許文献1】特開平06−123218号公報
【特許文献2】特開平08−121145号公報
【0005】
【発明が解決しようとする課題】
上記従来技術における脱硝方法は、従来から発電所などのボイラ排ガス処理に広く採用されている方法であり、触媒としては、酸化チタン系の脱硝触媒のほか、ゼオライトに活性成分をイオン交換させた触媒などが用いられている。
【0006】
しかしながら、上記脱硝触媒は、通常300〜450℃の温度範囲で高い脱硝活性を示すのに対し、ディーゼル自動車におけるエンジンの始動停止は頻繁であるために、その排ガス温度は、例えば100〜300℃の範囲である時間が長く、従来の脱硝触媒では、高い脱硝率が得られないという問題があった。特にディーゼルエンジンを搭載したトラックやバスなどの排ガスを処理する場合、起動停止が頻繁で排ガス温度が200〜300℃を超えることがほとんどないことから、脱硝率が低く、NOxが未処理状態で排出されるだけでなく、還元剤としてのNHが多量にリークして二次公害の原因になるという問題があった。
【0007】
本発明の課題は、上記従来技術の問題点を解決し、エンジン始動時などの排ガス温度が低い場合であっても高い脱硝性能を得ることができるディーゼル排ガス処理方法および処理装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求する発明は以下のとおりである。
(1)ディーゼルエンジンから排出される排ガスを酸化触媒付きディーゼルパティキュレートフィルタに導入して排ガス中の粒子状物質を除去した後、脱硝触媒層に導入して窒素酸化物を接触還元除去するディーゼル排ガス処理方法において、前記酸化触媒付きディーゼルパティキュレートフィルタの前段および脱硝触媒層の前段にそれぞれ窒素酸化物の還元剤を注入する手段を設け、前記排ガス温度に基づいて前記還元剤の注入位置を切り替えることを特徴とするディーゼル排ガス処理方法。
【0009】
(2)前記排ガス温度が所定温度未満の場合に酸化触媒付きディーゼルパティキュレートフィルタの前流に前記還元剤を注入し、排ガス温度が前記の温度以上の場合に前記脱硝触媒層の前流に前記還元剤を注入することを特徴とする上記(1)に記載のディーゼル排ガス処理方法。
(3)前記酸化触媒付きディーゼルパティキュレートフィルタの前段に酸化触媒層を設け、排ガス温度が所定温度未満の場合に前記酸化触媒層の前流または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に前記還元剤を注入することを特徴とする上記(1)または(2)に記載のディーゼル排ガス処理方法。
(4)前記所定温度は、200〜300℃であることを特徴とする上記(2)または(3)に記載のディーゼル排ガス処理方法。
(5)前記還元剤としてアンモニアまたはアンモニア前駆体を用い、アンモニア前駆体を用いる際は、ディーゼルエンジンの出口に近い排ガス煙道内に注入してアンモニアへの分解反応時間を確保することを特徴とする上記(1)〜(4)の何れかに記載のディーゼル排ガス処理方法。
【0010】
(6)ディーゼルエンジンの排ガス煙道に、排ガスの流れに沿って順次酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層を設け、該酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層の前段にそれぞれ還元剤注入手段を設け、かつ両還元剤注入手段の切り替え手段を設けたことを特徴とするディーゼル排ガス処理装置。
(7)前記酸化触媒付きディーゼルパティキュレートフィルタの前段に酸化触媒層を設け、前記酸化触媒付きディーゼルパティキュレートフィルタの前段の還元剤注入手段を、前記酸化触媒層の前段または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に設けたことを特徴とする上記(6)に記載のディーゼル排ガス処理装置。
【0011】
図4は、本発明の原理を示す説明図である。図4において、酸化触媒付きDPFとSCR触媒(脱硝触媒)のNOとNOの還元性能には温度依存性があることが分かる。すなわち、脱硝触媒において安定した脱硝活性が得られる温度は、250〜300℃以上であるのに対し、酸化触媒付きDPFにおける脱硝活性は、300℃以下、特に250℃以下にピークがあることが分かる。このため、排ガス温度が低い場合には還元剤を酸化触媒付きDPFの前流側に添加することにより、酸化触媒付きDPFはNO、NOを低温で還元、除去する脱硝触媒として機能し、排ガス中のNOxを低温で効率よく還元、分解することができる。一方、排ガス温度が高い場合には、還元剤を通常のように脱硝触媒層の前段に注入することにより、該脱硝触媒の存在下、排ガス中のNOxが前記還元剤によって効率よく還元、分解される。
【0012】
このように、本発明においては、PMの除去手段である酸化触媒付きDPFの前段にも還元剤であるアンモニアまたは尿素などのアンモニア前駆体を注入する手段を設け、被処理排ガス温度に基づいて前記還元剤の注入位置を、通常の脱硝触媒層前流と前記酸化触媒付きDPFの前流との間で切り替えるものである。すなわち、排ガス温度が低温、例えば200〜300℃未満、好ましくは250〜300℃未満の場合は、還元剤は酸化触媒付きDPFの前流に注入され、200〜300℃以上、好ましくは250〜300℃以上であるときは脱硝触媒層の前流に注入される。なお、酸化触媒付きDPFにおいて、排ガス中の窒素酸化物は、還元剤であるアンモニアまたはその前駆体の酸化過程で還元、分解される。
【0013】
ところで、自動車エンジンの排ガス処理では、脱硝触媒層の前流に尿素などの水溶液を注入する場合、排ガス温度が低いと尿素の加水分解反応が進行しにくいだけでなく、還元剤注入位置と触媒との距離が短いために排ガスと還元剤の混合が不十分となり、還元剤濃度に分布が生じてリークが発生し、脱硝率が低くなるという問題が生じやすいが、本発明方法では、排ガス温度が低いときにはDPFの前流から還元剤が注入されるので、エンジン出口により近い場所に注入することができ、これにより尿素等のアンモニア前駆体の加水分解が促進され、分散度が向上して高いNOx除去率を得ることができるという利点がある。
【0014】
本発明において、酸化触媒付きDPFは、ウォールフロー型のディーゼルパティキュレートフィルタ(DPF)上に通常のいわゆる貴金属触媒、例えば、白金、パラジウム、イリジウム、ロジウムなどの貴金属の少なくとも1種類をチタニア、ジルコニア、アルミナ、シリカ、セリアなどの少なくとも1種類の酸化物に担時した触媒成分を担持したものが好適に使用される。
【0015】
脱硝触媒としては、通常の、アンモニアを還元剤とした脱硝処理に用いられている触媒であればどのような物でもよく、例えば酸化チタンに活性成分を担時した触媒や、銅、鉄、セリウムなどの遷移金属をイオン交換したゼオライトを、コージェライトハニカム構造体などに担時した触媒などが好適に用いられる。
【0016】
本発明において、還元剤としては、アンモニアまたはアンモニア前駆体が使用される。アンモニア前駆体としては、例えば尿素が好適に用いられる。還元剤注入手段としては、アンモニアまたは尿素水溶液を排ガス煙道内に噴霧するノズルが好適に用いられる。
【0017】
本発明において、酸化触媒付きDPFの前段に酸化触媒層を設けることもできる。この場合、酸化触媒としては、通常の酸化触媒、例えば上記DPF上に担持される触媒成分と同様の組成からなる触媒成分をフルースロー型のコージェライトハニカム構造体に担持させたものが好適に用いられる。またこのとき、還元剤注入手段は、前記酸化触媒の前段または酸化触媒付きDPFの前段(酸化触媒と酸化触媒付きDPFの間)の何れか一方に設けられる。
【0018】
【発明の実施の形態】
次に、本発明を図面を用いて詳細に説明する。
図1は、本発明の一実施例であるディーゼル排ガス処理装置の系統を示す説明図である。図1において、この装置は、ディーゼルエンジン1の排ガス煙道としての排気管10に、前記排ガスの流れに沿って順次酸化触媒付きディーゼルパティキュレートフィルタ3および脱硝触媒層5を設け、前記酸化触媒付きDPF3および脱硝触媒層5の前段にそれぞれ還元剤注入手段としての尿素注入ノズル2および4を設け、かつその切り替え手段としての切替弁7を設けたものである。8は、ポンプ、9は、尿素水タンクである。
【0019】
このような構成において、ディーゼルエンジン1から排出された排ガスは、排気管10を通って酸化触媒付きDPF3に流入する。このとき排ガス温度が、例えば300℃未満であれば、尿素注入ノズル2から排気管10内に尿素水溶液が注入され、排ガス中のPM、NOおよびNOが酸化触媒付きDPF3上で除去される。PM、NOおよびNOが除去された排ガスは、後流の脱硝触媒層5を通過して系外に排出される。一方、排ガス温度が、例えば300℃以上であれば、注入ノズル2からの尿素水溶液の注入は行われず、排ガスは酸化触媒付きDPF3を流通し、ここで排ガス中のPMが除去された後、尿素注入ノズル4から注入された尿素水溶液と混合して後流の脱硝触媒層5に流入し、ここで、排ガス中のNOおよびNOが前記尿素が分解したNHによって還元、分解されたのち系外に排出される。
【0020】
本実施例によれば、被処理ガスであるディーゼル排ガス温度に基づいてNOxの還元剤であるアンモニアまたはアンモニア前駆体の注入位置を、酸化触媒付きDPF3の前流と脱硝触媒層5の前流との間で切り替えることにより、300℃以下の低温域から300℃以上の高温域に至るまで、ディーゼル排ガス中の窒素酸化物を効率よく分解除去することができる。
【0021】
図2は、本発明の他の実施例を示す装置系統図である。図2において、この装置が図1の装置と異なるところは、酸化触媒付きDPF3の前段に酸化触媒層6を設け、該酸化触媒層6と前記酸化触媒付きDPF3との間に尿素注入ノズル2を設けた点である。
【0022】
本実施例においても、排ガス温度が、例えば300℃未満のときは尿素注入ノズル2から還元剤としての尿素水を注入することにより、実施例1と同様、排ガス中のPM、NOおよびNOが酸化触媒付きDPF3上で除去されるので、起動停止が頻繁に生じるディーゼル自動車などから排出される比較的低温の排ガス中の窒素酸化物でも十分分解、除去することができる。なお、排ガス温度が、例えば300℃以上のときは尿素注入ノズル4から尿素水溶液が注入されるよにう切り替えられるので、窒素酸化物は、脱硝触媒層5で分解除去される。
【0023】
図3は、本発明の別の実施例を示す装置系統図である。図3において、この装置が図1の装置と異なるところは、酸化触媒付きDPF3の前流に酸化触媒層6を設け、該酸化触媒層6の前流側に尿素注入ノズル2を設けた点である。
本実施例においても、上記実施例1および2と同様、排ガス温度が、例えば300℃未満のときは尿素注入ノズル2から還元剤としての尿素水を注入することにより、実施例1および2と同様、排ガス中のPM、NOおよびNOが酸化触媒付きDPF3上で除去されるので、低温での脱硝性能を十分確保することができるうえ、排ガス温度が、例えば300℃以上のときは尿素注入ノズル4から尿素水溶液が注入されるように切り替えられるので、上記と同様に脱硝触媒層5で窒素酸化物が分解、除去される。
【0024】
【実施例】
次に本発明の具体的実施例を説明する。
実施例1
アルミナゾル(アルミナゾル520,日産化学社製)とセリアゾル(エコライトCE、多木化学社製)と水とを混合し、アルミナおよびセリアをそれぞれ15%含有する水溶液を1リットル調製し、この液にウォールフロー型の担体(12mil/300cpsi、日立金属社製)100×100mm(50mm長さ)を浸漬させたのち遠心分離装置によって液切りする操作を2回繰り返し、大気中150℃で5時間乾燥したのち、500℃で2時間焼成して触媒担体とし、得られた触媒担体にジニトロジアンミン白金の水溶液を含浸させ、遠心分離装置により液切りした後、大気中150℃で5時間乾燥し、550℃で2時間焼成して体積当たりの白金の担持量が2g/リットルである酸化触媒付きDPFを得た。
【0025】
得られた酸化触媒付きDPF(5セル×5セル)を、流通式の反応装置に設置し、酸化触媒付きDPFの前段に尿素水溶液を注入して下記表1の条件でNOおよびNOの除去率(脱硝率)を測定したところ、脱硝率は80%であった。
【0026】
【表1】

Figure 2004270520
【0027】
比較例1
酸化チタン、酸化タングステン、メタバナジン酸アンモニウム、シュウ酸および水をニーダで混練してペースト状とし、これを押出し造粒した後乾燥し、500℃で2時間通気焼成し、得られた造粒物を粒径150μm以下に粉砕して脱硝触媒粉末を得た(Ti/W/V=89/5/6)。得られた脱硝触媒粉末と水とを攪拌機で混合してスラリ濃度35%のスラリを調製し、これにフロースルー型のコージェライト担体(600cpsi) 100×100mm(50mm長さ)を浸漬し、エアブローで液切りした後乾燥する工程を3回繰り返した後、500℃で2時間焼成して脱硝触媒を得た。
【0028】
実施例1の酸化触媒付きDPFを上記脱硝触媒に替えた以外は上記実施例1と同様にしてNOおよびNOの除去率を測定したところ、脱硝率は、40%であった。
実施例1および比較例1の結果から、被処理排ガス温度が300℃未満の場合、特に250℃未満の場合は、酸化触媒付きDPFの前段に還元剤を注入し、該酸化触媒付きDPFによって排ガス中のPM、NO、およびNOを除去することにより、脱硝率が著しく向上することが分かる。
【0029】
【発明の効果】
本願の請求項1に記載の発明によれば、エンジン始動時などの排ガス温度が低い場合であってもディーゼル排ガス中の窒素酸化物を効率よく分解、除去することができるので、低温から高温の幅広い温度域で高い脱硝率を得ることができる。
本願の請求項2に記載の発明によれば、上記発明の効果に加え、排ガス温度が所定温度未満であっても高い脱硝率を得ることができる。
【0030】
本願の請求項3に記載の発明によれば、上記発明と同様、低温から高温まで幅広い温度域で効率よくディーゼル排ガス中の窒素酸化物を分解、除去することができる。
本願の請求項4に記載の発明によれば、上記発明と同様、低温から高温まで幅広い温度域で脱硝処理が可能となり、排ガス温度が200〜300℃以下であっても高い脱硝率を得ることができる。
【0031】
本願の請求項5に記載の発明によれば、上記発明の効果に加え、アンモニア前駆体の分解反応時間を確保して効率よく窒素酸化物を還元、除去することができる。
本願の請求項6に記載の発明によれば、低温から高温まで幅広い温度域でディーゼル排ガス中の窒素酸化物を効率よく分解、除去することができる。
本願の請求項7に記載の発明によれば、上記発明の効果と同様、低温から高温まで幅広い温度域でディーゼル排ガス中の窒素酸化物を効率よく分解、除去することができる。
【図面の簡単な説明】
【図1】本発明の一実施例であるディーゼル排ガス処理装置のフローを示す説明図。
【図2】本発明の他の実施例を示す説明図。
【図3】本発明の別の実施例を示す説明図。
【図4】本発明の原理を示す説明図。
【図5】従来技術を示す説明図。
【符号の説明】
1…ディーゼルエンジン、2…尿素注入ノズル、3…酸化触媒付きDPF、4…尿素注入ノズル、5…脱硝触媒層、6…酸化触媒層、7…切替弁、8…ポンプ、9…尿素水タンク、10…排気管。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and apparatus for treating diesel exhaust gas, and more particularly to a method and apparatus for treating diesel exhaust gas that can efficiently decompose and remove nitrogen oxides in diesel exhaust gas discharged from a diesel engine even in a low temperature range. .
[0002]
[Prior art]
Diesel engines are widely used in cogeneration systems, automobiles, generators, and the like. In recent years, however, interest in global environmental conservation has increased, and regulations on exhaust gas emitted from these engines have been tightened.
[0003]
As a catalyst for purifying automobile exhaust gas, a three-way catalyst (JP-B-56-27295) capable of simultaneously oxidizing carbon monoxide (CO) and hydrocarbons (HC) and reducing NOx is preferably used. However, since the exhaust gas of a lean burn engine or a diesel engine is in an oxygen-excess atmosphere, there is a problem that NOx is not easily decomposed by a general three-way catalyst. Therefore, as such an exhaust gas purification technique, for example, (1) a method of removing particulate contaminants (hereinafter, also simply referred to as PM) by a filter and then removing nitrogen oxides (NOx); Many techniques have been proposed, such as a method of reducing NOx using a hydrocarbon as a reducing agent on a catalyst supporting a noble metal such as Pt) (Japanese Patent Laid-Open No. 5-103985), and a method of using a NOx storage catalyst (3). Have been.
[0004]
Among the above-mentioned techniques, a method of removing nitrogen oxides after removing PM by a filter is as follows. First, as shown in FIG. 5, PM in exhaust gas discharged from the diesel engine 1 is first removed from a diesel particulate filter with an oxidation catalyst. 3 (hereinafter referred to as a DPF with an oxidation catalyst), and a part of NO is oxidized to NO 2 by an oxidation catalyst component carried by the DPF (formula (1)), and the reactivity with soot is reduced to oxygen. After the soot is burned by the NO 2 to make the carbon dioxide harmless (formula (2)), NH 3 or an NH 3 precursor such as urea is added as a reducing agent from the urea injection nozzle 4 to denitrate. It is for reducing and decomposing nitrogen oxides into harmless nitrogen and water on the catalyst layer 5, and studies for practical use have been made as a technology capable of reliably removing both PM and NOx.
NO + 1 / 2O 2 → NO 2 (1)
C + 2NO 2 → CO 2 + 2NO (2)
[Patent Document 1] Japanese Patent Application Laid-Open No. 06-123218 [Patent Document 2] Japanese Patent Application Laid-Open No. 08-112145 [0005]
[Problems to be solved by the invention]
The denitration method in the above prior art is a method widely used in the treatment of boiler exhaust gas in power plants and the like, and as a catalyst, in addition to a titanium oxide-based denitration catalyst, a catalyst obtained by ion-exchanging an active component with zeolite. Are used.
[0006]
However, the above-mentioned denitration catalyst usually shows a high denitration activity in a temperature range of 300 to 450 ° C., whereas the start and stop of the engine in a diesel vehicle is frequent, so that the exhaust gas temperature is, for example, 100 to 300 ° C. There is a problem that a high denitration rate cannot be obtained with the conventional denitration catalyst because the time that is within the range is long. Especially when treating exhaust gas from trucks and buses equipped with a diesel engine, starting and stopping are frequent and the exhaust gas temperature rarely exceeds 200 to 300 ° C, so the denitration rate is low and NOx is emitted in an untreated state. In addition, there is a problem that a large amount of NH 3 as a reducing agent leaks to cause secondary pollution.
[0007]
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a diesel exhaust gas treatment method and a treatment apparatus capable of obtaining high denitration performance even when the exhaust gas temperature is low at the time of starting the engine. is there.
[0008]
[Means for Solving the Problems]
The invention claimed in the present application to solve the above problems is as follows.
(1) Exhaust gas discharged from a diesel engine is introduced into a diesel particulate filter equipped with an oxidation catalyst to remove particulate matter in the exhaust gas, and then introduced into a denitration catalyst layer to remove nitrogen oxides by catalytic reduction. In the treatment method, a means for injecting a reducing agent of nitrogen oxide is provided at a stage before the diesel particulate filter with the oxidation catalyst and a stage before the denitration catalyst layer, and the injection position of the reducing agent is switched based on the temperature of the exhaust gas. A method for treating diesel exhaust gas.
[0009]
(2) When the exhaust gas temperature is lower than a predetermined temperature, the reducing agent is injected before the diesel particulate filter with an oxidation catalyst, and when the exhaust gas temperature is equal to or higher than the temperature, the reducing agent is injected before the denitration catalyst layer. The method for treating diesel exhaust gas according to the above (1), wherein a reducing agent is injected.
(3) An oxidation catalyst layer is provided in front of the diesel particulate filter with an oxidation catalyst, and when the exhaust gas temperature is lower than a predetermined temperature, the upstream of the oxidation catalyst layer or the oxidation catalyst layer and the diesel particulate filter with the oxidation catalyst are provided. The method for treating diesel exhaust gas according to the above (1) or (2), wherein the reducing agent is injected during the period.
(4) The method for treating diesel exhaust gas according to the above (2) or (3), wherein the predetermined temperature is 200 to 300 ° C.
(5) Ammonia or an ammonia precursor is used as the reducing agent, and when the ammonia precursor is used, it is injected into an exhaust gas flue near an outlet of a diesel engine to secure a decomposition reaction time to ammonia. The method for treating diesel exhaust gas according to any one of the above (1) to (4).
[0010]
(6) A diesel particulate filter with an oxidation catalyst and a denitration catalyst layer are sequentially provided in the exhaust gas flue of a diesel engine along the flow of exhaust gas, and a reducing agent is provided in front of the diesel particulate filter with an oxidation catalyst and the denitration catalyst layer, respectively. A diesel exhaust gas treatment device comprising an injection means and a switching means for switching between both reducing agent injection means.
(7) An oxidation catalyst layer is provided in front of the diesel particulate filter with oxidation catalyst, and the reducing agent injection means in the front of the diesel particulate filter with oxidation catalyst is provided in the upstream of the oxidation catalyst layer or in the oxidation catalyst layer. The diesel exhaust gas treatment apparatus according to the above (6), which is provided between the catalyst and a diesel particulate filter with a catalyst.
[0011]
FIG. 4 is an explanatory diagram showing the principle of the present invention. In FIG. 4, it can be seen that the NO 2 and NO reduction performance of the DPF with oxidation catalyst and the SCR catalyst (denitration catalyst) has a temperature dependency. That is, the temperature at which stable denitration activity is obtained in the denitration catalyst is 250 to 300 ° C. or higher, whereas the denitration activity in the DPF with the oxidation catalyst has a peak at 300 ° C. or lower, particularly 250 ° C. or lower. . Therefore, by when the exhaust gas temperature is low to adding a reducing agent to the upstream side of the oxidation catalyzed DPF, catalyzed DPF oxidation reduction NO, the NO 2 at low temperature, it acts as a denitration catalyst to be removed, the exhaust gas NOx in it can be efficiently reduced and decomposed at a low temperature. On the other hand, when the exhaust gas temperature is high, NOx in the exhaust gas is efficiently reduced and decomposed by the reducing agent in the presence of the denitration catalyst by injecting the reducing agent into the former stage of the denitration catalyst layer as usual. You.
[0012]
As described above, in the present invention, a means for injecting an ammonia precursor such as ammonia or urea as a reducing agent is also provided in a stage preceding the DPF with an oxidation catalyst which is a means for removing PM, and based on the temperature of the exhaust gas to be treated. The injection position of the reducing agent is switched between the upstream of the ordinary denitration catalyst layer and the upstream of the DPF with the oxidation catalyst. That is, when the exhaust gas temperature is low, for example, less than 200 to 300 ° C., and preferably less than 250 to 300 ° C., the reducing agent is injected into the upstream of the oxidation-catalyzed DPF, and is 200 to 300 ° C. or more, preferably 250 to 300 ° C. When the temperature is higher than or equal to ° C, it is injected upstream of the denitration catalyst layer. In the DPF with an oxidation catalyst, nitrogen oxides in exhaust gas are reduced and decomposed in the oxidation process of ammonia as a reducing agent or a precursor thereof.
[0013]
By the way, in the exhaust gas treatment of an automobile engine, when an aqueous solution such as urea is injected in front of the denitration catalyst layer, when the exhaust gas temperature is low, not only the hydrolysis reaction of urea does not easily proceed, but also the reducing agent injection position and the catalyst Is short, the mixing of the exhaust gas and the reducing agent becomes insufficient, the concentration of the reducing agent is distributed, a leak occurs, and the problem that the denitration rate is low tends to occur.However, in the method of the present invention, the exhaust gas temperature is reduced. When the temperature is low, the reducing agent is injected from the upstream of the DPF, so that it can be injected closer to the engine outlet. This promotes the hydrolysis of ammonia precursors such as urea, improves the degree of dispersion, and increases the NOx. There is an advantage that a removal rate can be obtained.
[0014]
In the present invention, the DPF with an oxidation catalyst is obtained by adding at least one kind of a noble metal catalyst such as platinum, palladium, iridium, and rhodium onto a wall-flow type diesel particulate filter (DPF) by titania, zirconia, or the like. A catalyst in which at least one kind of oxide such as alumina, silica, and ceria supports a supported catalyst component is preferably used.
[0015]
As the denitration catalyst, any catalyst may be used as long as it is a catalyst generally used for denitration treatment using ammonia as a reducing agent.For example, a catalyst in which an active component is supported on titanium oxide, copper, iron, cerium For example, a catalyst in which zeolite obtained by ion-exchange of a transition metal such as the above is carried on a cordierite honeycomb structure or the like is suitably used.
[0016]
In the present invention, ammonia or an ammonia precursor is used as the reducing agent. As the ammonia precursor, for example, urea is preferably used. As the reducing agent injection means, a nozzle for spraying an ammonia or urea aqueous solution into an exhaust gas flue is preferably used.
[0017]
In the present invention, an oxidation catalyst layer may be provided in a stage preceding the DPF with the oxidation catalyst. In this case, as the oxidation catalyst, an ordinary oxidation catalyst, for example, a catalyst in which a catalyst component having the same composition as the catalyst component supported on the DPF is supported on a flow-throw type cordierite honeycomb structure is preferably used. Can be At this time, the reducing agent injection means is provided at one of the preceding stage of the oxidation catalyst or the preceding stage of the DPF with the oxidation catalyst (between the oxidation catalyst and the DPF with the oxidation catalyst).
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing a system of a diesel exhaust gas treatment device according to one embodiment of the present invention. In FIG. 1, this device is provided with a diesel particulate filter 3 with an oxidation catalyst and a denitration catalyst layer 5 in an exhaust pipe 10 as an exhaust gas flue of a diesel engine 1 along the flow of the exhaust gas. The urea injection nozzles 2 and 4 as reducing agent injection means are provided in front of the DPF 3 and the denitration catalyst layer 5, respectively, and a switching valve 7 as switching means is provided. 8 is a pump and 9 is a urea water tank.
[0019]
In such a configuration, the exhaust gas discharged from the diesel engine 1 flows into the DPF 3 with the oxidation catalyst through the exhaust pipe 10. At this time, if the exhaust gas temperature is, for example, less than 300 ° C., a urea aqueous solution is injected into the exhaust pipe 10 from the urea injection nozzle 2, and PM, NO and NO 2 in the exhaust gas are removed on the DPF 3 with the oxidation catalyst. The exhaust gas from which PM, NO and NO 2 have been removed passes through the downstream denitration catalyst layer 5 and is discharged out of the system. On the other hand, if the exhaust gas temperature is, for example, 300 ° C. or higher, the injection of the urea aqueous solution from the injection nozzle 2 is not performed, and the exhaust gas flows through the DPF 3 with the oxidation catalyst, where PM in the exhaust gas is removed. The urea solution is mixed with the aqueous urea solution injected from the injection nozzle 4 and flows into the downstream denitration catalyst layer 5, where NO and NO 2 in the exhaust gas are reduced and decomposed by the urea-decomposed NH 3 , and then the system is decomposed. It is discharged outside.
[0020]
According to the present embodiment, the injection position of the ammonia or the ammonia precursor, which is the NOx reducing agent, is determined based on the temperature of the diesel exhaust gas, which is the gas to be treated, between the upstream of the DPF 3 with the oxidation catalyst and the upstream of the denitration catalyst layer 5. By switching between the above, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed from a low temperature range of 300 ° C. or lower to a high temperature range of 300 ° C. or higher.
[0021]
FIG. 2 is an apparatus system diagram showing another embodiment of the present invention. In FIG. 2, this apparatus is different from the apparatus of FIG. 1 in that an oxidation catalyst layer 6 is provided in front of an oxidation catalyst-added DPF 3, and a urea injection nozzle 2 is provided between the oxidation catalyst layer 6 and the oxidation catalyst-added DPF 3. This is the point provided.
[0022]
Also in this embodiment, when the exhaust gas temperature is, for example, lower than 300 ° C., by injecting urea water as a reducing agent from the urea injection nozzle 2, PM, NO and NO 2 in the exhaust gas are reduced as in the first embodiment. Since it is removed on the DPF 3 with an oxidation catalyst, nitrogen oxides in relatively low temperature exhaust gas discharged from a diesel vehicle or the like, which frequently starts and stops, can be sufficiently decomposed and removed. When the temperature of the exhaust gas is, for example, 300 ° C. or more, switching is performed so that the urea aqueous solution is injected from the urea injection nozzle 4, and thus nitrogen oxides are decomposed and removed by the denitration catalyst layer 5.
[0023]
FIG. 3 is an apparatus system diagram showing another embodiment of the present invention. In FIG. 3, this apparatus differs from the apparatus in FIG. 1 in that an oxidation catalyst layer 6 is provided upstream of the oxidation catalyst-equipped DPF 3, and a urea injection nozzle 2 is provided upstream of the oxidation catalyst layer 6. is there.
Also in this embodiment, as in the above-described first and second embodiments, when the exhaust gas temperature is, for example, lower than 300 ° C., urea water as a reducing agent is injected from the urea injection nozzle 2 to obtain the same as in the first and second embodiments. Since PM, NO and NO 2 in the exhaust gas are removed on the DPF 3 with the oxidation catalyst, the denitration performance at a low temperature can be sufficiently ensured, and when the exhaust gas temperature is, for example, 300 ° C. or more, the urea injection nozzle Since the urea aqueous solution is switched from 4 to 4, the nitrogen oxides are decomposed and removed in the denitration catalyst layer 5 in the same manner as described above.
[0024]
【Example】
Next, specific examples of the present invention will be described.
Example 1
Alumina sol (Alumina sol 520, manufactured by Nissan Chemical Co., Ltd.), ceria sol (Ecolite CE, manufactured by Taki Chemical Co., Ltd.) and water are mixed to prepare 1 liter of an aqueous solution containing 15% each of alumina and ceria. The operation of immersing a flow-type carrier (12 mil / 300 cpsi, manufactured by Hitachi Metals, Ltd.) 100 × 100 mm (50 mm length) and then draining the liquid by a centrifugal separator is repeated twice, followed by drying in air at 150 ° C. for 5 hours. And calcined at 500 ° C. for 2 hours to obtain a catalyst carrier. The obtained catalyst carrier was impregnated with an aqueous solution of dinitrodiammine platinum, drained by a centrifugal separator, dried at 150 ° C. in the air for 5 hours, and dried at 550 ° C. By calcining for 2 hours, a DPF with an oxidation catalyst having a supported amount of platinum per volume of 2 g / liter was obtained.
[0025]
The obtained DPF with an oxidation catalyst (5 cells × 5 cells) is set in a flow-type reaction apparatus, and an aqueous urea solution is injected into a stage preceding the DPF with an oxidation catalyst to remove NO and NO 2 under the conditions shown in Table 1 below. When the rate (denitration rate) was measured, the denitration rate was 80%.
[0026]
[Table 1]
Figure 2004270520
[0027]
Comparative Example 1
Titanium oxide, tungsten oxide, ammonium metavanadate, oxalic acid and water are kneaded with a kneader to form a paste, which is extruded, granulated, dried, and air-fired at 500 ° C. for 2 hours. The powder was pulverized to a particle size of 150 μm or less to obtain a denitration catalyst powder (Ti / W / V = 89/5/6). The obtained denitration catalyst powder and water were mixed with a stirrer to prepare a slurry having a slurry concentration of 35%, and a flow-through type cordierite carrier (600 cpsi) 100 × 100 mm (50 mm length) was immersed in the slurry and air blown. The step of draining and drying was repeated three times, and then calcined at 500 ° C. for 2 hours to obtain a denitration catalyst.
[0028]
When the removal rates of NO and NO 2 were measured in the same manner as in Example 1 except that the DPF with the oxidation catalyst of Example 1 was changed to the denitration catalyst, the denitration rate was 40%.
From the results of Example 1 and Comparative Example 1, when the temperature of the exhaust gas to be treated is lower than 300 ° C., particularly when the temperature is lower than 250 ° C., a reducing agent is injected before the DPF with an oxidation catalyst, It can be seen that the removal of PM, NO and NO 2 therein significantly improves the denitration rate.
[0029]
【The invention's effect】
According to the invention described in claim 1 of the present application, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed even when the exhaust gas temperature is low such as when the engine is started. A high denitration rate can be obtained in a wide temperature range.
According to the invention described in claim 2 of the present application, in addition to the effects of the above invention, a high denitration rate can be obtained even when the exhaust gas temperature is lower than a predetermined temperature.
[0030]
According to the invention described in claim 3 of the present application, similarly to the above invention, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed in a wide temperature range from a low temperature to a high temperature.
According to the invention described in claim 4 of the present application, similarly to the above invention, denitration can be performed in a wide temperature range from low to high, and a high denitration rate can be obtained even when the exhaust gas temperature is 200 to 300 ° C or lower. Can be.
[0031]
According to the invention as set forth in claim 5 of the present application, in addition to the effects of the above invention, it is possible to secure the decomposition reaction time of the ammonia precursor and efficiently reduce and remove nitrogen oxides.
According to the invention described in claim 6 of the present application, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed in a wide temperature range from a low temperature to a high temperature.
According to the invention described in claim 7 of the present application, similarly to the effect of the above invention, nitrogen oxides in diesel exhaust gas can be efficiently decomposed and removed in a wide temperature range from low temperature to high temperature.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a flow of a diesel exhaust gas treatment device according to one embodiment of the present invention.
FIG. 2 is an explanatory view showing another embodiment of the present invention.
FIG. 3 is an explanatory view showing another embodiment of the present invention.
FIG. 4 is an explanatory view showing the principle of the present invention.
FIG. 5 is an explanatory view showing a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Diesel engine, 2 ... Urea injection nozzle, 3 ... DPF with oxidation catalyst, 4 ... Urea injection nozzle, 5 ... Denitration catalyst layer, 6 ... Oxidation catalyst layer, 7 ... Switching valve, 8 ... Pump, 9 ... Urea water tank , 10 ... exhaust pipe.

Claims (7)

ディーゼルエンジンから排出される排ガスを酸化触媒付きディーゼルパティキュレートフィルタに導入して排ガス中の粒子状物質を除去した後、脱硝触媒層に導入して窒素酸化物を接触還元除去するディーゼル排ガス処理方法において、前記酸化触媒付きディーゼルパティキュレートフィルタの前段および脱硝触媒層の前段にそれぞれ窒素酸化物の還元剤を注入する手段を設け、前記排ガス温度に基づいて前記還元剤の注入位置を切り替えることを特徴とするディーゼル排ガス処理方法。Exhaust gas discharged from a diesel engine is introduced into a diesel particulate filter with an oxidation catalyst to remove particulate matter in the exhaust gas, and then introduced into a denitration catalyst layer to perform catalytic reduction and removal of nitrogen oxides. A means for injecting a reducing agent of nitrogen oxide is provided in each of a preceding stage of the oxidation-catalyzed diesel particulate filter and a preceding stage of the denitration catalyst layer, and the injection position of the reducing agent is switched based on the exhaust gas temperature. Diesel exhaust gas treatment method. 前記排ガス温度が所定温度未満の場合に酸化触媒付きディーゼルパティキュレートフィルタの前流に前記還元剤を注入し、排ガス温度が前記の温度以上の場合に前記脱硝触媒層の前流に前記還元剤を注入することを特徴とする請求項1に記載のディーゼル排ガス処理方法。When the exhaust gas temperature is lower than a predetermined temperature, the reducing agent is injected into the upstream of the oxidation-catalyzed diesel particulate filter, and when the exhaust gas temperature is equal to or higher than the temperature, the reducing agent is upstream of the denitration catalyst layer. The method for treating diesel exhaust gas according to claim 1, wherein the injection is performed. 前記酸化触媒付きディーゼルパティキュレートフィルタの前段に酸化触媒層を設け、排ガス温度が所定温度未満の場合に前記酸化触媒層の前流または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に前記還元剤を注入することを特徴とする請求項1または2に記載のディーゼル排ガス処理方法。An oxidation catalyst layer is provided before the oxidation-catalyzed diesel particulate filter, and when the exhaust gas temperature is lower than a predetermined temperature, between the oxidation catalyst layer and the upstream of the oxidation catalyst layer or between the oxidation catalyst layer and the oxidation-catalyzed diesel particulate filter. The method for treating diesel exhaust gas according to claim 1 or 2, wherein the reducing agent is injected. 前記所定温度は、200〜300℃であることを特徴とする請求項2または3に記載のディーゼル排ガス処理方法。The method according to claim 2, wherein the predetermined temperature is 200 to 300 ° C. 5. 前記還元剤としてアンモニアまたはアンモニア前駆体を用い、アンモニア前駆体を用いる際は、ディーゼルエンジンの出口に近い排ガス煙道内に注入してアンモニアへの分解反応時間を確保することを特徴とする請求項1〜4の何れかに記載のディーゼル排ガス処理方法。2. The method according to claim 1, wherein ammonia or an ammonia precursor is used as the reducing agent, and when the ammonia precursor is used, the ammonia is injected into an exhaust gas flue near an outlet of a diesel engine to secure a decomposition reaction time to ammonia. 5. The method for treating diesel exhaust gas according to any one of claims 1 to 4. ディーゼルエンジンの排ガス煙道に、排ガスの流れに沿って順次酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層を設け、該酸化触媒付きディーゼルパティキュレートフィルタおよび脱硝触媒層の前段にそれぞれ還元剤注入手段を設け、かつ両還元剤注入手段の切り替え手段を設けたことを特徴とするディーゼル排ガス処理装置。In the exhaust gas flue of a diesel engine, a diesel particulate filter with an oxidation catalyst and a denitration catalyst layer are sequentially provided along the flow of the exhaust gas, and a reducing agent injection means is provided in front of the diesel particulate filter with an oxidation catalyst and the denitration catalyst layer, respectively. A diesel exhaust gas treatment apparatus, wherein a switching means for switching between both reducing agent injection means is provided. 前記酸化触媒付きディーゼルパティキュレートフィルタの前段に酸化触媒層を設け、前記酸化触媒付きディーゼルパティキュレートフィルタの前段の還元剤注入手段を、前記酸化触媒層の前段または酸化触媒層と前記酸化触媒付きディーゼルパティキュレートフィルタとの間に設けたことを特徴とする請求項6に記載のディーゼル排ガス処理装置。An oxidation catalyst layer is provided in front of the diesel particulate filter with oxidation catalyst, and a reducing agent injection means in the front of the diesel particulate filter with oxidation catalyst is provided in front of the oxidation catalyst layer or the oxidation catalyst layer and the diesel catalyst with oxidation catalyst. The diesel exhaust gas treatment apparatus according to claim 6, wherein the apparatus is provided between the particulate filter and the particulate filter.
JP2003061385A 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus Expired - Fee Related JP4316901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061385A JP4316901B2 (en) 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061385A JP4316901B2 (en) 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2004270520A true JP2004270520A (en) 2004-09-30
JP4316901B2 JP4316901B2 (en) 2009-08-19

Family

ID=33123621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061385A Expired - Fee Related JP4316901B2 (en) 2003-03-07 2003-03-07 Diesel exhaust gas treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP4316901B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP2006326437A (en) * 2005-05-24 2006-12-07 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytic reduction of nitrogen oxide
JP2007138887A (en) * 2005-11-22 2007-06-07 Babcock Hitachi Kk Method and device for purification of exhaust gas containing particulate matter
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP2007315328A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Diesel exhaust gas purifying structure and exhaust gas purifying method using the same
KR100785156B1 (en) * 2006-10-19 2007-12-11 현대자동차주식회사 Exhaust gas reduction system for vehicle
JP2008545085A (en) * 2005-07-06 2008-12-11 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and corresponding exhaust gas purification unit for reducing the particulate and nitric oxide content in an exhaust gas stream of an internal combustion engine
JP2012012944A (en) * 2010-06-29 2012-01-19 Hino Motors Ltd Exhaust emission control device
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
JP2015068175A (en) * 2013-09-26 2015-04-13 三菱重工業株式会社 Exhaust gas treatment device and exhaust gas treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
JP2006326437A (en) * 2005-05-24 2006-12-07 Valtion Teknillinen Tutkimuskeskus Catalyst for catalytic reduction of nitrogen oxide
JP2008545085A (en) * 2005-07-06 2008-12-11 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Method and corresponding exhaust gas purification unit for reducing the particulate and nitric oxide content in an exhaust gas stream of an internal combustion engine
JP2007138887A (en) * 2005-11-22 2007-06-07 Babcock Hitachi Kk Method and device for purification of exhaust gas containing particulate matter
JP4664807B2 (en) * 2005-11-22 2011-04-06 バブコック日立株式会社 Purification method and apparatus for exhaust gas containing particulate matter
JP2007285295A (en) * 2006-03-24 2007-11-01 Ngk Insulators Ltd Exhaust emission control system
JP2007315328A (en) * 2006-05-26 2007-12-06 Toyota Central Res & Dev Lab Inc Diesel exhaust gas purifying structure and exhaust gas purifying method using the same
KR100785156B1 (en) * 2006-10-19 2007-12-11 현대자동차주식회사 Exhaust gas reduction system for vehicle
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
JP2012012944A (en) * 2010-06-29 2012-01-19 Hino Motors Ltd Exhaust emission control device
JP2015068175A (en) * 2013-09-26 2015-04-13 三菱重工業株式会社 Exhaust gas treatment device and exhaust gas treatment method

Also Published As

Publication number Publication date
JP4316901B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CN101564646B (en) Method for purification of an exhaust gas from a diesel engine
RU2278281C2 (en) Device for and method of processing of waste gases formed when engine operates on lean mixtures by selective catalytic reduction of nitrogen oxides
RU2504668C2 (en) Exhaust system for ice running on lean mixes
EP3925700A1 (en) Oxidation catalyst and exhaust-gas purification system using the same
CN105715329A (en) Method For Purification Of Exhaust Gas From A Diesel Engine
JP2009262098A (en) Exhaust gas clarifying method using selective reduction catalyst
JP2003530983A (en) Plasma assisted catalytic processing of gas
KR20140027062A (en) Selective reduction catalyst, and exhaust gas purification device and exhaust gas purification method using same
WO2018025827A1 (en) Cold start-compatible urea scr system
CN107636271B (en) Method, multifunctional filter and system for removing particulate matter and harmful compounds from engine exhaust
JP2006289211A (en) Ammonia oxidation catalyst
JP2005177570A (en) Scr catalyst excellent in characteristic at high temperature
WO2016001034A1 (en) An exhaust aftertreatment system for a diesel engine
JP4316901B2 (en) Diesel exhaust gas treatment method and treatment apparatus
CN110785546A (en) Exhaust gas purification system
JPH05195756A (en) Exhaust gas purification device of engine
JP2004138022A (en) Method of and device for treating diesel exhaust gas
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JP2005125275A (en) Device for treating diesel exhaust gas and method therefor
JPH10118457A (en) Exhaust gas cleaning apparatus for internal combustion engine
JP5003042B2 (en) Exhaust gas purification system
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2005226458A (en) Method and device for treating diesel exhaust gas
KR102364271B1 (en) Exhaust gas purification device including combined catalyst filter and a control method of the same
KR100368034B1 (en) Device for Reducing Diesel Exhaust Emission by Using Continuously Regenerative Plasma·Catalyst Hybrid System and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees