JPS6227041A - Production of catalytic body for cleaning up of waste gas - Google Patents

Production of catalytic body for cleaning up of waste gas

Info

Publication number
JPS6227041A
JPS6227041A JP60165109A JP16510985A JPS6227041A JP S6227041 A JPS6227041 A JP S6227041A JP 60165109 A JP60165109 A JP 60165109A JP 16510985 A JP16510985 A JP 16510985A JP S6227041 A JPS6227041 A JP S6227041A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
waste gas
exhaust gas
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60165109A
Other languages
Japanese (ja)
Inventor
Kunio Ito
伊藤 邦夫
Isao Matsumoto
功 松本
Hidenori Suzaki
洲崎 秀矩
Akira Hashimoto
彰 橋本
Kikuo Senoo
菊雄 妹尾
Yasuhiro Takeuchi
康弘 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60165109A priority Critical patent/JPS6227041A/en
Publication of JPS6227041A publication Critical patent/JPS6227041A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To simultaneously clean up CO and NO2 in a waste gas at 300-900 deg.C by melting and uniting a catalyst component down to 100mum depth from the surface of a carrier contg. a lanthanide oxide thereby depositing said component on the carrier. CONSTITUTION:The catalyst mixture composed of platinum or palladium and lanthanide oxide is deposited on the carrier such as honeycomb type porous ceramic carrier molded of calcium aluminate, silicon dioxide, titanium dioxide, etc. down to about 100mum depth from the surface thereof. The carrier is then subjected to a heat treatment in a 300-1,100 deg.C temp. range by which the catalyst melted and united with the carrier and deposited catalyst for cleaning up of the waste gas is produced. The harmful materials in the waste gas are efficiently cleaned up by installing such catalyst into the waste gas flow passage of a combustion apparatus.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は石油、ガス、固形燃料等を燃料とする燃焼機器
からの排ガス流路に設置され、排ガス中に含まれている
一酸化炭素、炭化水素および二酸化窒素等を、無害な物
質に浄化する触媒体の製造法に関し、製造が容易で、よ
シ浄化効率のすぐれた触媒体を提供するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention is installed in an exhaust gas flow path from a combustion equipment using oil, gas, solid fuel, etc. as fuel, and is used to remove carbon monoxide and hydrocarbons contained in the exhaust gas. The present invention also relates to a method for producing a catalyst body that purifies nitrogen dioxide and the like into harmless substances, and provides a catalyst body that is easy to manufacture and has excellent purification efficiency.

従来の技術 石油、ガス、固形燃料等を燃料とした燃料機器からの排
ガス中には、炭化水素のような臭いの元となる物質や、
−酸化炭素、二酸化窒素のような人体に有害な物質が含
まれており、住宅環境や大気汚染防止の意味から、これ
らの有害物質の発生の少ない燃焼機器が強く要望されて
いる。その一つの手段として燃焼排ガス流路に、二酸化
マンガンを担持した触媒体を設置し、排ガス中の一酸化
炭素や炭化水素を酸化浄化する方法が実公昭64−43
831号公報等で提案されている。しかしこれらの使用
方法では二酸化窒素については言及されていない。
Conventional technology Exhaust gas from fuel devices using oil, gas, solid fuel, etc. as fuel contains odor-causing substances such as hydrocarbons,
- Contains substances that are harmful to the human body, such as carbon oxide and nitrogen dioxide, and there is a strong demand for combustion equipment that generates less of these harmful substances from the perspective of housing environments and air pollution prevention. One of the methods is to install a catalyst supporting manganese dioxide in the combustion exhaust gas flow path to oxidize and purify carbon monoxide and hydrocarbons in the exhaust gas.
This is proposed in Publication No. 831 and the like. However, these usage methods do not mention nitrogen dioxide.

また自動車排ガス中の一酸化炭素、炭化水素、二酸化窒
素等の窒素酸化物を同時に浄化するものとして、三元触
媒なるものが使用されている。しかし特公昭59−13
66号公報等にみられるように、これらの触媒体は12
00℃以上の温度で焼結させたコージェライト質基体の
表面に、白金やロジウム等を担持させたアルミやシリカ
の微粉末から成る触媒層を付与している。さらに、これ
らの三元触媒は、通常酸素濃度を1チ以下にする必要が
あり、燃焼状態を厳しくコントロールしなければならな
い。
Furthermore, a three-way catalyst is used to simultaneously purify nitrogen oxides such as carbon monoxide, hydrocarbons, and nitrogen dioxide in automobile exhaust gas. However, the special public service
As seen in Publication No. 66, etc., these catalyst bodies are 12
A catalyst layer made of fine powder of aluminum or silica supporting platinum, rhodium, etc. is applied to the surface of a cordierite substrate sintered at a temperature of 00° C. or higher. Furthermore, these three-way catalysts usually require an oxygen concentration of 1 g or less, and combustion conditions must be strictly controlled.

発明が解決しようとする問題点 このように石油、ガス、固形燃料等を燃料とした燃焼機
器におけるように、6〜15%と比較的酸素濃度の高い
排ガス中に含まれている一酸化炭素、炭化水素、二酸化
窒素等の人体に有害な物質を、従来技術では、安価な製
造法に基づく触媒体を用いて、同時にしかも高効率で浄
化することは困難であった。
Problems to be Solved by the Invention In this way, carbon monoxide, which is contained in exhaust gas with a relatively high oxygen concentration of 6 to 15%, as in combustion equipment that uses oil, gas, solid fuel, etc. as fuel, With conventional techniques, it has been difficult to purify substances harmful to the human body, such as hydrocarbons and nitrogen dioxide, at the same time and with high efficiency using a catalyst body based on an inexpensive manufacturing method.

本発明はこのような従来の問題漁を解決することを目的
としたものである。
The present invention aims to solve such conventional problems.

問題点を解決するための手段 すなわち、本発明は担体、例えばアルミン酸石灰、二酸
化ケイ素、二酸化チタンから成るノ・ニカム型多孔質セ
ラミック担体の、表面から約100μmの深さまで、白
金またはパラジウムと、ランタンド系酸化物の混合触媒
を担持させ、300〜1100℃の温度範囲で熱処理を
施すことによって、担体と担持触媒とを溶融一体化した
触媒体の製造法である。このような本発明による触媒体
を燃焼機器の排ガス流路に設置することによって、排ガ
ス中の有害物質を効率よく浄化することができる。
To solve the problem, the present invention provides a method of applying platinum or palladium to a depth of about 100 μm from the surface of a carrier, such as a porous ceramic carrier made of lime aluminate, silicon dioxide, or titanium dioxide. This is a method for producing a catalyst body in which a mixed catalyst of lanthanide oxides is supported and heat treated in a temperature range of 300 to 1100°C, thereby melting and integrating the support and the supported catalyst. By installing such a catalyst body according to the present invention in the exhaust gas flow path of a combustion device, harmful substances in the exhaust gas can be efficiently purified.

作  用 白金、パラジウム等の白金属金属は、300’C以上の
条件で一酸化炭素(Go)、炭化水素(HC)を酸化浄
化することは広く知られている。その反応は次式%式% 一方燃焼排ガス中の窒素酸化物は一酸化窒素(No)、
二酸化窒素(N02)を主体として、一部N2O5,N
2o等が含まれる。この中で人体に最も有害なものはN
O□であシ、その低減化が大気汚染防止の最大の問題点
となっている。発明者らはこのNo、No2に的を絞り
、種々の触媒組成による窒素酸化物の浄化特性を検討し
た。この検討に当シ窒素酸化物の酸化、還元特性として
次式のような平衡反応を考えた。
Function: It is widely known that platinum metals such as platinum and palladium oxidize and purify carbon monoxide (Go) and hydrocarbons (HC) under conditions of 300'C or higher. The reaction is expressed by the following formula % Formula % On the other hand, nitrogen oxides in the combustion exhaust gas are nitrogen monoxide (No),
Mainly nitrogen dioxide (N02), with some N2O5, N
2o etc. are included. Of these, the most harmful to the human body is N.
The reduction of O□ is the biggest problem in preventing air pollution. The inventors focused on No. 2 and No. 2, and investigated the nitrogen oxide purification characteristics of various catalyst compositions. For this study, we considered the following equilibrium reaction as the oxidation and reduction characteristics of nitrogen oxides.

■ No + 1 /202: No2−・−−−−(3)
■ 一般に石油燃焼機器からの排出ガス中のNoとNo2 
との割合は10/1〜7/1程度であり、02濃度は1
0%前後である。今、燃焼器からの排出ガス(NOハ0
゜=7/1.o2濃度IQ%)にライてNo−NO2−
02系の平衡関係を考えると、第6図に示す平衡曲線が
得られる。
■ No + 1 /202: No2-・----(3)
■ Generally, No. and No.2 in exhaust gas from oil-burning equipment
The ratio is about 10/1 to 7/1, and the 02 concentration is 1
It is around 0%. Now, the exhaust gas from the combustor (NOx 0
゜=7/1. o2 concentration IQ%) No-NO2-
Considering the equilibrium relationship of the 02 system, the equilibrium curve shown in FIG. 6 is obtained.

すなわち温度約660℃以上では(3)式の反応が■の
方向に進み、その温度以下では■の方向に進行する。そ
こで低温で出来るだけ■の方向の進行速度が小さく、高
温で■の方向の進行速度の大きい触媒組成の探索を行な
った結果、本発明を見出したものである。
That is, at temperatures above about 660° C., the reaction of formula (3) proceeds in the direction (2), and below that temperature, the reaction proceeds in the direction (2). Therefore, the present invention was discovered as a result of searching for a catalyst composition that would have a slow propagation speed in the direction (2) at low temperatures and a large propagation speed in the (2) direction at high temperatures.

実施例 以下、本発明の詳細を実施例で説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

触媒体A−アルミン酸石灰40重量部、二酸化ケイ素4
0重量部、二酸化チタン20重量部に、水を粉体に対し
20重量%添加して・・ニカム状に成形した担体を、白
金塩水溶液に1Q秒間浸漬することにより白金を0.1
 t/l (担体の見かけ体積当たりの白金量)担持さ
せ、10oo’cで熱処理を施したもの。
Catalyst A - 40 parts by weight of lime aluminate, 4 parts by weight of silicon dioxide
0 parts by weight, 20 parts by weight of titanium dioxide, 20% by weight of water based on the powder was added... Platinum was added to 0.1 parts by immersing the carrier formed into a nicomb shape in an aqueous platinum salt solution for 1 Q seconds.
t/l (amount of platinum per apparent volume of carrier) supported and heat treated at 10 oo'c.

触媒体B−触媒体Aと同じ担体をパラジウム塩水溶液に
10秒間浸漬することにより、パラジウムを0.1 f
/(l担持させ、1000°Cで熱処理を施したもの。
Catalyst B - By immersing the same carrier as catalyst A in a palladium salt aqueous solution for 10 seconds, palladium was added to 0.1 f.
/(l) and heat treated at 1000°C.

触媒体C−触媒体Aと同じ担体を白金塩とセリウム塩と
の混合水溶液に1Q秒間浸漬することにより、白金とセ
リウム酸化物をそれぞれ0.15’/(lrl、o9/
l担持させ、1000℃で熱処理を施したもの。
Catalyst C - By immersing the same carrier as Catalyst A in a mixed aqueous solution of platinum salt and cerium salt for 1 Q seconds, platinum and cerium oxides were 0.15'/(lrl, o9/
1 supported and heat treated at 1000°C.

触媒体り一触媒体Aと同じ担体をパラジウム塩とセリウ
ム塩との混合水溶液10秒間浸漬することにより、パラ
ジウムとセリウム酸化物をそれぞれ0.1 ?、Q 、
1.0 ?/(l担持させ、10oo′Cで熱処理を施
したもの。
Catalyst Body - By immersing the same carrier as Catalyst A for 10 seconds in a mixed aqueous solution of palladium salt and cerium salt, palladium and cerium oxides were added to a concentration of 0.1% each. ,Q,
1.0? /(l) and heat treated at 10oo'C.

触媒体E−触媒体Aと同じ担体をパラジウム塩。Catalyst E - The same carrier as catalyst A is a palladium salt.

セリウム塩、ランタン塩の混合水溶液に10秒間浸漬す
ることによシ、ヘパラジウム、セリウム酸化物、ランタ
ン酸化物を、それぞれo、1?/(1。
By immersing it in a mixed aqueous solution of cerium salt and lanthanum salt for 10 seconds, hepalladium, cerium oxide, and lanthanum oxide were extracted with o and 1? /(1.

0.5 ?/l  、 o、s ?/l担持させ、1o
oo′Cで熱処理を施したもの。
0.5? /l, o, s? /l supported, 1o
Heat treated at oo'C.

上記6種の触媒体を調製し、第3図に示したシミュレー
ション装置で一酸化炭素(Co)、及び二酸化窒素(N
O2)の浄化効果を測定した。すなわちカス入口部1か
らNo2.N0202.N2あるいはCQ、02.N2
の混合ガスを流し、電気炉2の石英管3内に置いた触媒
体8を通過させ、出口部4に設置したNo計あるいはC
o計6により、出口から出るガス中のNOあるいはCo
濃度を測定スル。Co浄化率はSV 80000 H、
入口Co濃度50 ppm 、入口02濃度10%の条
件下で行なった。その結果を第4図に示す。又No2浄
化率測定は5v8oooOH−1、入口NO濃度70p
pm、ムロNo2濃度10ppm、入口02濃度10%
(7)条件下で行なった。その結果を第2図に示す。
The above six types of catalyst bodies were prepared, and carbon monoxide (Co) and nitrogen dioxide (N
The purification effect of O2) was measured. That is, from the waste inlet portion 1 to No. 2. N0202. N2 or CQ, 02. N2
A mixed gas of
o Total 6 determines whether NO or Co in the gas exiting from the outlet.
Measure the concentration. Co purification rate is SV 80000H,
The experiment was carried out under the conditions of an inlet Co concentration of 50 ppm and an inlet 02 concentration of 10%. The results are shown in FIG. Also, No2 purification rate measurement is 5v8oooOH-1, inlet NO concentration 70p
pm, Muro No2 concentration 10ppm, inlet 02 concentration 10%
(7) Conducted under conditions. The results are shown in FIG.

第4図、第2図から明らかなように、Coについては3
00℃以上で全融媒体がO0チ以上の浄化率を示した。
As is clear from Figures 4 and 2, for Co, 3
At 00°C or higher, the total melting medium showed a purification rate of 00°C or higher.

又No2 については約660°C以上の温度では、い
ずれの触媒体もNO2浄化に対して極めて大きな効果を
有する。一方560℃以下では、触媒体A、Bはむしろ
No2 を増大させる傾向があるのに対し、触媒体C,
D及びEは浄化効果を有する。触媒体C,D及びEが低
温でNo2 浄化作用を有するのは、同時に担持してい
るセリウム酸化物が、低温時に前式(3)の■の方向の
反応を促進する働きがあるためと考えられる。
Regarding No2, any catalyst has an extremely large effect on NO2 purification at temperatures above about 660°C. On the other hand, below 560°C, catalysts A and B tend to increase No2, while catalysts C and B tend to increase No2.
D and E have a purifying effect. The reason why catalyst bodies C, D, and E have No2 purification effect at low temperature is thought to be because the cerium oxide supported at the same time has the function of promoting the reaction in the direction of the previous formula (3) at low temperature. It will be done.

またランタン酸化物も同様な働きがあるものと考えられ
る。以下の説明では主にセリウム酸化物を含む触媒体を
取り上げる。
Lanthanum oxide is also thought to have a similar effect. The following description will mainly focus on catalyst bodies containing cerium oxide.

ことにより生じる。従って触媒の表面積が大きいほどそ
の浄化効果が犬となる。本発明における多孔質担体は、
ガスが容易に拡散可能な細孔を多数有し、触媒反応にと
って好都合な場を提供する。
caused by Therefore, the larger the surface area of the catalyst, the greater its purification effect. The porous carrier in the present invention is
It has many pores through which gas can easily diffuse, providing a convenient field for catalytic reactions.

しかし担体の表面のみに触媒を付けたのでは反応の場が
不足し、逆に表面からあまりに深い場所に触媒を付けて
もガスの拡散が困難となり、触媒の浪費となる。そこで
触媒体りと同一触媒組成で、触媒濃度と浸漬時間をコン
トロールすることにより、担体表面から深さ方向に担持
される触媒の分布を変えた試料を作製した。X線マイク
ロアナライザー分析による触媒濃度分布の平均値を示す
深さを横軸にとり、その試料の400℃におけるNo2
 浄化率を縦軸にプロットしたのが第1図である。すな
わち担体表面から100μm以内に触媒が存在すると、
高いNo2浄化率を示す。上記に示した実施例における
6種の触媒体は、いずれも担体表面から100μm以内
に触媒が担持されるように作製したものである。
However, if the catalyst is attached only to the surface of the carrier, there will be insufficient reaction space, and conversely, if the catalyst is attached too deep from the surface, gas diffusion will be difficult and the catalyst will be wasted. Therefore, we prepared samples with the same catalyst composition as the catalyst body, but by controlling the catalyst concentration and immersion time, we changed the distribution of the supported catalyst in the depth direction from the surface of the carrier. The horizontal axis is the depth showing the average value of the catalyst concentration distribution by X-ray microanalyzer analysis, and the No.
Figure 1 shows the purification rate plotted on the vertical axis. That is, if the catalyst is present within 100 μm from the carrier surface,
Shows high No2 purification rate. The six types of catalyst bodies in the examples shown above were all produced so that the catalyst was supported within 100 μm from the surface of the carrier.

また上記浄化作用を長期にわたり行わせるためには、触
媒が担体から脱落せずに、両者が強固に溶融一体化され
ていることが必要である。このことは担体に触媒液を含
浸させたのち、300〜1100°Cの温度範囲で熱処
理を行ない、担体中に含まれている水分、成形時の添加
物等を除去することによって達成される。3o○℃以下
の熱処理のみでは、成形時の添加物を完全に除去するこ
とが困難である。また11oo′Cを越える温度で熱処
理した場合には、担体と触媒との溶融が激しく、良好な
浄化特性が得にくい。
Further, in order to carry out the purification effect for a long period of time, it is necessary that the catalyst does not fall off from the carrier and that the two are firmly fused and integrated. This is accomplished by impregnating the carrier with the catalyst liquid and then heat-treating it at a temperature in the range of 300 to 1100°C to remove water contained in the carrier, additives during molding, and the like. It is difficult to completely remove additives during molding only by heat treatment at 3°C or lower. In addition, when the heat treatment is carried out at a temperature exceeding 110'C, the carrier and the catalyst melt violently, making it difficult to obtain good purification properties.

発明の効果 以上のように多孔質担体の表面から約100μmの深さ
に白金またはパラジウムと、ランタニド系酸化物から成
る混合触媒が担持されている触媒体は、製造が容易であ
シ、かつ排ガス浄化に用いた時300〜900°Cの全
温度領域においてCoとN02 を同時に浄化すること
ができる。
Effects of the Invention As described above, a catalyst body in which a mixed catalyst consisting of platinum or palladium and a lanthanide oxide is supported at a depth of about 100 μm from the surface of a porous carrier is easy to manufacture, and has no exhaust gas. When used for purification, it is possible to simultaneously purify Co and N02 in the entire temperature range of 300 to 900°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は深さ方向の触媒分布を変えた試料のNo2 浄
化率を示すグラフ、第2図は各触媒体のNo2 浄化率
を示すグラフ、第3図は排ガスの浄化効果を測定するシ
ミュレーション装置の概略図、第4図はCo浄化率を示
すグラフ、第5図はNo−NO2−02系の平衡関係か
ら得られるNO2変化率曲線を示すグラフである。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
区 表面力ゝうの;fj−セ (P) 第2図 、7L   L    (”) 第3図 第4図 ;A & (”)
Figure 1 is a graph showing the No. 2 purification rate of samples with different catalyst distributions in the depth direction, Figure 2 is a graph showing the No. 2 purification rate of each catalyst body, and Figure 3 is a simulation device for measuring the exhaust gas purification effect. FIG. 4 is a graph showing the Co purification rate, and FIG. 5 is a graph showing the NO2 change rate curve obtained from the equilibrium relationship of the No-NO2-02 system. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
ward surface force uno;fj-se (P) Fig. 2, 7L L ('') Fig. 3 Fig. 4; A &('')

Claims (3)

【特許請求の範囲】[Claims] (1)石油、ガス、固形燃料等を燃料とする燃焼機器か
らの排ガスを浄化する触媒と多孔質担体とから成る触媒
体の製造法であって、触媒は少なくともランタニド系酸
化物を有し、担体と溶融一体化されているとともに担体
表面から100μmの深さまでに担持されていることを
特徴とする排ガス浄化用触媒体の製造法。
(1) A method for producing a catalyst body comprising a catalyst and a porous carrier for purifying exhaust gas from combustion equipment using oil, gas, solid fuel, etc. as fuel, the catalyst having at least a lanthanide oxide, A method for producing a catalyst for exhaust gas purification, characterized in that the catalyst is fused and integrated with a carrier and supported at a depth of 100 μm from the surface of the carrier.
(2)担体はアルミン酸石灰、二酸化ケイ素、二酸化チ
タンから成るハニカム型セラミック多孔体であり、触媒
は白金またはパラジウムと、セリウム酸化物との混合触
媒であることを特徴とする特許請求の範囲第1項記載の
排ガス浄化用触媒体の製造法。
(2) The carrier is a honeycomb-shaped ceramic porous body made of lime aluminate, silicon dioxide, and titanium dioxide, and the catalyst is a mixed catalyst of platinum or palladium and cerium oxide. A method for producing a catalyst body for exhaust gas purification according to item 1.
(3)触媒体は、触媒と多孔質担体を溶融一体化するた
めに、300〜1100℃の温度範囲で熱処理されたこ
とを特徴とする特許請求の範囲第1項記載の排ガス浄化
用触媒体の製造法。
(3) The catalyst body for exhaust gas purification according to claim 1, wherein the catalyst body is heat-treated in a temperature range of 300 to 1100°C in order to melt and integrate the catalyst and the porous carrier. manufacturing method.
JP60165109A 1985-07-26 1985-07-26 Production of catalytic body for cleaning up of waste gas Pending JPS6227041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165109A JPS6227041A (en) 1985-07-26 1985-07-26 Production of catalytic body for cleaning up of waste gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165109A JPS6227041A (en) 1985-07-26 1985-07-26 Production of catalytic body for cleaning up of waste gas

Publications (1)

Publication Number Publication Date
JPS6227041A true JPS6227041A (en) 1987-02-05

Family

ID=15806071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165109A Pending JPS6227041A (en) 1985-07-26 1985-07-26 Production of catalytic body for cleaning up of waste gas

Country Status (1)

Country Link
JP (1) JPS6227041A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310128A (en) * 1999-04-09 2001-11-06 Nippon Soken Inc Ceramic body, ceramic carrier having catalyst-carrying function, and ceramic catalyst body and its producion
JP2004503375A (en) * 2000-07-13 2004-02-05 ポール・コーポレーション Ceramic filter element and method of manufacturing the same
US7150861B2 (en) 2001-09-28 2006-12-19 Nippon Shokubai Co., Ltd. Catalyst for purification of exhaust gases and process for purification of exhaust gases
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
BE1016749A3 (en) * 2002-05-20 2007-06-05 Denso Corp CATALYST BODY AND PROCESS FOR PRODUCING THE SAME
US7358210B2 (en) 2001-03-22 2008-04-15 Denso Corporation Ceramic body and ceramic catalyst body
US8450235B2 (en) 2007-10-26 2013-05-28 Asahi Kasei Chemicals Corporation Supported composite particle material, production process of same and process for producing compounds using supported composite particle material as catalyst for chemical synthesis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022930A (en) * 1983-07-19 1985-02-05 Matsushita Electric Ind Co Ltd Gas purification catalyst and its preparation
JPS6186945A (en) * 1984-10-02 1986-05-02 Matsushita Electric Ind Co Ltd Catalyst for purifying catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6022930A (en) * 1983-07-19 1985-02-05 Matsushita Electric Ind Co Ltd Gas purification catalyst and its preparation
JPS6186945A (en) * 1984-10-02 1986-05-02 Matsushita Electric Ind Co Ltd Catalyst for purifying catalyst

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310128A (en) * 1999-04-09 2001-11-06 Nippon Soken Inc Ceramic body, ceramic carrier having catalyst-carrying function, and ceramic catalyst body and its producion
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7723263B2 (en) 1999-04-09 2010-05-25 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
JP2004503375A (en) * 2000-07-13 2004-02-05 ポール・コーポレーション Ceramic filter element and method of manufacturing the same
US8388898B2 (en) 2000-07-13 2013-03-05 Pall Corporation Ceramic filter element
US7358210B2 (en) 2001-03-22 2008-04-15 Denso Corporation Ceramic body and ceramic catalyst body
US7150861B2 (en) 2001-09-28 2006-12-19 Nippon Shokubai Co., Ltd. Catalyst for purification of exhaust gases and process for purification of exhaust gases
BE1016749A3 (en) * 2002-05-20 2007-06-05 Denso Corp CATALYST BODY AND PROCESS FOR PRODUCING THE SAME
US8450235B2 (en) 2007-10-26 2013-05-28 Asahi Kasei Chemicals Corporation Supported composite particle material, production process of same and process for producing compounds using supported composite particle material as catalyst for chemical synthesis

Similar Documents

Publication Publication Date Title
JPH03224631A (en) Continuously operating catalyst for oxidizing and purifying exhaust gas from diesel engine without discharging particulate and interrupting gas purification periodically
JP3479980B2 (en) Exhaust gas purification method and exhaust gas purification catalyst
WO2004076037A1 (en) Method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine and exhaust-gas purification system therefor
RU2009135861A (en) BIFUNCTIONAL CATALYSTS FOR SELECTIVE OXIDATION OF AMMONIA
KR20010053142A (en) Exhaust gas catalyst comprising rhodium, zirconia and rare earth oxide
CN109475843B (en) Three-zone diesel oxidation catalyst
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
US10408102B2 (en) Oxidation catalyst device for exhaust gas purification
JPWO2002062468A1 (en) Exhaust gas purification catalyst and internal combustion engine provided with the catalyst
JPH08229404A (en) Exhaust gas purifying catalyst and apparatus
JP3584702B2 (en) Exhaust gas purification filter and exhaust gas purification device using the same
JPS6227041A (en) Production of catalytic body for cleaning up of waste gas
JP2004188388A (en) Filter for cleaning diesel exhaust gas and its production method
JPH05285387A (en) Catalyst for purification of exhaust gas and purification method
JP4887550B2 (en) Exhaust gas purification material
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JPH09271637A (en) Catalyst device for purifying ammonia
JPS63178847A (en) Catalyst for purifying exhaust gas
JP4734806B2 (en) Exhaust gas purification catalyst
JP2007007606A (en) Engine exhaust gas cleaning catalyst, catalytic reactor, and engine exhaust gas cleaning method
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH06142523A (en) Waste gas purifying material and waste gas purifying method
JPH0326343A (en) Catalyst for purification of exhaust gas
JPH07275709A (en) Material and method for purifying exhaust gas
JPS62140646A (en) Catalytic body for purifying exhaust gas