JPH08229404A - Exhaust gas purifying catalyst and apparatus - Google Patents
Exhaust gas purifying catalyst and apparatusInfo
- Publication number
- JPH08229404A JPH08229404A JP7038429A JP3842995A JPH08229404A JP H08229404 A JPH08229404 A JP H08229404A JP 7038429 A JP7038429 A JP 7038429A JP 3842995 A JP3842995 A JP 3842995A JP H08229404 A JPH08229404 A JP H08229404A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- catalyst component
- catalyst
- gas purifying
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 126
- 239000007789 gas Substances 0.000 claims abstract description 104
- 239000002734 clay mineral Substances 0.000 claims abstract description 33
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000011777 magnesium Chemical group 0.000 claims abstract description 18
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 17
- 150000003624 transition metals Chemical class 0.000 claims abstract description 17
- 229910052749 magnesium Chemical group 0.000 claims abstract description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000011572 manganese Chemical group 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 14
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical group [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000011651 chromium Chemical group 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 239000011575 calcium Substances 0.000 claims abstract description 8
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 8
- 239000010941 cobalt Substances 0.000 claims abstract description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical group [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 8
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052788 barium Inorganic materials 0.000 claims abstract description 6
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 6
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 6
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000000746 purification Methods 0.000 claims description 28
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims description 18
- 239000003575 carbonaceous material Substances 0.000 claims description 17
- 238000002156 mixing Methods 0.000 claims description 15
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 11
- 239000004215 Carbon black (E152) Substances 0.000 claims description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 29
- 239000004071 soot Substances 0.000 abstract description 13
- 229910052697 platinum Inorganic materials 0.000 abstract description 10
- -1 for example Substances 0.000 abstract description 4
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract description 3
- 229910021536 Zeolite Inorganic materials 0.000 abstract 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 abstract 1
- 239000010457 zeolite Substances 0.000 abstract 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 239000012298 atmosphere Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 10
- 239000004113 Sepiolite Substances 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 229910052624 sepiolite Inorganic materials 0.000 description 9
- 235000019355 sepiolite Nutrition 0.000 description 9
- 239000000725 suspension Substances 0.000 description 9
- 230000003197 catalytic effect Effects 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 229910052763 palladium Inorganic materials 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 238000005342 ion exchange Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 229910052625 palygorskite Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002321 LaFeO3 Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 101100170542 Mus musculus Disp1 gene Proteins 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005280 amorphization Methods 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical group 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 229910052634 enstatite Inorganic materials 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- BBCCCLINBSELLX-UHFFFAOYSA-N magnesium;dihydroxy(oxo)silane Chemical compound [Mg+2].O[Si](O)=O BBCCCLINBSELLX-UHFFFAOYSA-N 0.000 description 1
- ZADYMNAVLSWLEQ-UHFFFAOYSA-N magnesium;oxygen(2-);silicon(4+) Chemical compound [O-2].[O-2].[O-2].[Mg+2].[Si+4] ZADYMNAVLSWLEQ-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- UYXRCZUOJAYSQR-UHFFFAOYSA-N nitric acid;platinum Chemical compound [Pt].O[N+]([O-])=O UYXRCZUOJAYSQR-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- CBXWGGFGZDVPNV-UHFFFAOYSA-N so4-so4 Chemical compound OS(O)(=O)=O.OS(O)(=O)=O CBXWGGFGZDVPNV-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ディゼルーエンジンな
どの内燃機関から排出される排ガス中に含まれる窒素酸
化物(以下、NOX とも称する)を還元除去できる排ガ
ス浄化触媒およびその触媒を用いた排ガス浄化装置に関
する。さらに詳しくは、排ガス中の窒素酸化物の亜酸化
窒素(N2 0)の発生を低減させて、高い浄化率で窒素
(N2 )に還元できる排ガス浄化触媒および排ガス浄化
装置に関する。BACKGROUND OF THE INVENTION The present invention, nitrogen oxides contained in exhaust gas discharged from an internal combustion engine such as diesel over an engine (hereinafter, also referred to as NO X) an exhaust gas purifying catalyst and a catalyst capable of reducing removed The exhaust gas purifying apparatus used. More specifically, the present invention relates to an exhaust gas purification catalyst and an exhaust gas purification device that can reduce the generation of nitrous oxide (N 2 0) of nitrogen oxides in exhaust gas and reduce it to nitrogen (N 2 ) at a high purification rate.
【0002】[0002]
【従来の技術】近年、地球環境保護の観点から大気の保
全は重要なテーマであり、広い技術分野にわたってこの
問題に対して研究が進められている。とりわけ、大気中
に含まれるオゾン、NOX 、浮遊粒子状物質は、人体や
自然環境に対して有害であるために、発生源からの根絶
が課題となっている。2. Description of the Related Art In recent years, the protection of the atmosphere has been an important theme from the viewpoint of protecting the global environment, and research has been conducted on this problem in a wide range of technical fields. Especially, ozone in the atmosphere, NO X, suspended particulate matter, in order to be harmful to human body and the natural environment, eradication of the sources has become an issue.
【0003】ディーゼルエンジンなどから排出されるN
OX 、炭化水素および微粒子状炭素物質(以下、煤とも
称する)についても上記観点からそれらの除去方法が種
々検討されている。その一つは、耐熱性フィルタを用い
て排ガスを濾過することにより煤を捕集し、フィルタの
捕集能力が低下した時点でフィルタを加熱して捕集した
煤を燃焼させ、フィルタを再生する方法がある(たとえ
ば、特開昭61−46413号公報)。N discharged from a diesel engine or the like
O X, hydrocarbons and particulate carbonaceous material (hereinafter, also referred to as soot) method of removing them from the viewpoint has been studied also. One of them is to collect the soot by filtering the exhaust gas using a heat resistant filter, and when the filter's ability to collect falls, heat the filter to burn the collected soot and regenerate the filter. There is a method (for example, JP-A-61-46413).
【0004】また、排ガス中に、水素、アンモニア、低
分子量炭化水素などの還元剤を添加してNOX を積極的
に還元浄化する方法も提案されている(特開平1−79
30号公報)。一方、特開平4−363119号公報に
は、耐熱多孔性フィルタ上にアルカリ金属元素と、銅、
コバルト、マンガンおよびバナジウムの1種または2種
以上と、希土類元素とを担持した排ガス浄化装置と、そ
の排ガス浄化装置を用いて主として排ガス中の煤と炭化
水素を還元剤として作用させてNOX を還元する技術が
開示されている。この方法は、炭化水素、煤が還元剤と
して作用し、NOX が同時に還元除去されるという優れ
た方法である。A method has also been proposed in which a reducing agent such as hydrogen, ammonia or low molecular weight hydrocarbon is added to the exhaust gas to positively reduce and purify NO X (Japanese Patent Laid-Open No. 1-79).
30 publication). On the other hand, in JP-A-4-363119, an alkali metal element, copper, and
An exhaust gas purifying apparatus carrying one or more kinds of cobalt, manganese, and vanadium and a rare earth element, and using the exhaust gas purifying apparatus, soot and hydrocarbon in the exhaust gas mainly act as reducing agents to reduce NO x . Techniques for reducing are disclosed. This method, hydrocarbons, soot acts as a reducing agent, is an excellent method of NO X is simultaneously reduced and removed.
【0005】[0005]
【発明が解決しようとする課題】上記のフィルタで捕集
した煤を燃焼する方法では、排ガス中の煤は除去される
がNOX は排出されてしまうとうい問題がある。さらに
フィルタ再生時には捕集物が燃焼し、フィルタ温度が急
速に上昇するためにフィルタの寿命が短くなるという不
具合が生じる。In the method of combusting soot trapped by the filter [0006], soot in the exhaust gas is being removed NO X is firstlings problems when would be discharged. Furthermore, when the filter is regenerated, the collected matter burns, and the temperature of the filter rises rapidly, which shortens the life of the filter.
【0006】また、上記の還元剤を添加する方法では、
自動車などの移動しつつ排ガスを発生するものに対して
は、還元剤を積載することは安全上の観点からさらに検
討が必要とされ、また煤が放出されてしまうという不具
合がある。さらに特開平4−363119号公報に開示
された方法では、排ガス浄化装置に担持された触媒金属
元素の作用ではNOX を吸収する吸着点が十分でないた
めに充分な活性が得られず、さらに活性を高めるために
は、NOX を吸収する吸着点を増やす必要がある。Further, in the method of adding the reducing agent,
Loading of a reducing agent needs to be further examined from the viewpoint of safety for a vehicle such as an automobile that generates exhaust gas while moving, and there is a problem that soot is released. In was further disclosed in JP-A 4-363119 discloses a method, not sufficient activity is obtained for adsorption sites to absorb NO X is not sufficient for the action of the catalytic metal element carried on the exhaust gas purifying device, more active to increase the, it is necessary to increase the adsorption sites that absorbs NO X.
【0007】くわえて前記の技術ではNOX は浄化され
るものの、この結果、無害である窒素に加えて有害であ
るN2 Oが生成される恐れがあり、N2 Oの発生を抑え
てNOX を窒素(N2 )に還元できる技術(窒素選択率
の向上)が望まれている。本発明は、前記従来技術の課
題に対してなされたもので、その目的は、排ガス中の少
なくともNOX をさらに高効率で浄化できかつ、排ガス
中の煤および/またはHCを同時に浄化できる排ガス浄
化触媒および装置を提供することを目的とする。さらに
本発明は窒素選択率を向上させた排ガス浄化触媒および
排ガス浄化装置を提供することを目的とする。In addition, although NO X is purified by the above-mentioned technique, as a result, harmful N 2 O may be produced in addition to harmless nitrogen, so that generation of N 2 O is suppressed and NO 2 is suppressed. A technique capable of reducing X to nitrogen (N 2 ) (improvement of nitrogen selectivity) is desired. The present invention has been made to solve the above-mentioned problems of the prior art, and an object thereof is to purify at least NO x in exhaust gas with higher efficiency and to purify soot and / or HC in exhaust gas at the same time. It is an object to provide a catalyst and a device. A further object of the present invention is to provide an exhaust gas purifying catalyst and an exhaust gas purifying apparatus with improved nitrogen selectivity.
【0008】[0008]
【課題を解決するための手段】本発明の排ガス浄化触媒
は、少なくとも微粒子状炭素物質および/または炭化水
素を含む排ガスと接触し該排ガス中に含まれる窒素酸化
物を浄化する触媒であり、貴金属および遷移金属ならび
に非晶質複鎖構造型粘土鉱物とからなる第一触媒成分
と、前記第一触媒成分と混合して使用される、化学式が
ABO3 (AはランタンLa、ストロンチウムSr、セ
リウムCe、バリウムBa、またはカルシウムCaから
選ばれる少なくとも1種、BはコバルトCo、鉄Fe、
ニッケルNi、クロムCr、マンガンMn、またはマグ
ネシウムMgから選ばれる少なくとも1種、Oは酸素)
で表されるペロブスカイト型構造を有する複合酸化物か
らなる第二触媒成分と、を含むことを特徴とする。The exhaust gas purifying catalyst of the present invention is a catalyst for purifying nitrogen oxides contained in the exhaust gas by contacting with the exhaust gas containing at least a particulate carbon material and / or hydrocarbon, and a noble metal And a first catalyst component composed of a transition metal and an amorphous double-chain structure type clay mineral, and a mixture of the first catalyst component and ABO 3 (A is lanthanum La, strontium Sr, cerium Ce) , Barium Ba, or calcium Ca, B is cobalt Co, iron Fe,
(At least one selected from nickel Ni, chromium Cr, manganese Mn, or magnesium Mg, O is oxygen)
And a second catalyst component composed of a complex oxide having a perovskite structure represented by:
【0009】また、本発明の排ガス浄化装置は、担体
と、少なくとも微粒子状炭素物質および/または炭化水
素を含む排ガスと接触し、該排ガス中に含まれる窒素酸
化物を浄化する、貴金属および遷移金属ならびに非晶質
複鎖構造型粘土鉱物とからなる第一触媒成分と、前記第
一触媒成分と混合して使用される、化学式がABO
3 (AはランタンLa、ストロンチウムSr、セリウム
Ce、バリウムBa、またはカルシウムCaから選ばれ
る少なくとも1種、BはコバルトCo、鉄Fe、ニッケ
ルNi、クロムCr、マンガンMn、またはマグネシウ
ムMgから選ばれる少なくとも1種、Oは酸素)で表さ
れるペロブスカイト型構造を有する複合酸化物からなる
第二触媒成分と、を含み、該担体に担持された触媒と、
を有することを特徴とする。In addition, the exhaust gas purifying apparatus of the present invention comprises a precious metal and a transition metal which are brought into contact with a carrier and an exhaust gas containing at least a particulate carbon material and / or a hydrocarbon to purify nitrogen oxides contained in the exhaust gas. And a first catalyst component composed of an amorphous double-chain structure type clay mineral and a chemical formula of ABO, which is used by mixing with the first catalyst component.
3 (A is at least one selected from lanthanum La, strontium Sr, cerium Ce, barium Ba, or calcium Ca, B is at least selected from cobalt Co, iron Fe, nickel Ni, chromium Cr, manganese Mn, or magnesium Mg) And a second catalyst component composed of a complex oxide having a perovskite type structure represented by O (oxygen), and a catalyst supported on the carrier,
It is characterized by having.
【0010】本発明の触媒は、貴金属および遷移金属な
らびに非晶質複鎖構造型粘土鉱物とからなる第一触媒成
分とペロブスカイト型構造を有する複合酸化物からなる
第二触媒成分とを含む。第一触媒成分を構成する貴金属
としては、白金Pt、パラジウムPd、イリジウムIr
およびロジウムRhが挙げられる。これらのなかでは白
金が優れている。すなわち、白金は、酸素過剰雰囲気
下、高いNOX 浄化率を示し、高い窒素選択性を示し、
かつ反応の低温化を促進できる。該貴金属の担持量は
0.1〜10重量%の範囲が好ましい。貴金属の担持量
が0.1重量%未満では触媒作用がほとんどなくなる。
また、10重量%を超えると担持した貴金属が粒となっ
て粗大化し、触媒活性が低下する。また、貴金属の担持
量が多くなりコストが増大するので好ましくない。The catalyst of the present invention comprises a first catalyst component composed of a noble metal and a transition metal, and an amorphous double-chain structure type clay mineral, and a second catalyst component composed of a complex oxide having a perovskite structure. As the noble metal constituting the first catalyst component, platinum Pt, palladium Pd, iridium Ir
And rhodium Rh. Of these, platinum is superior. That is, platinum exhibits a high NO x purification rate and a high nitrogen selectivity in an oxygen excess atmosphere,
In addition, it is possible to promote lowering of the reaction temperature. The supported amount of the noble metal is preferably in the range of 0.1 to 10% by weight. When the amount of the noble metal supported is less than 0.1% by weight, the catalytic action is almost lost.
On the other hand, if it exceeds 10% by weight, the supported noble metal becomes coarse and becomes coarse, and the catalytic activity decreases. In addition, the amount of the noble metal supported increases and the cost increases, which is not preferable.
【0011】第一触媒成分を構成する遷移金属として
は、バナジウムV、マンガンMn、鉄Fe、コバルトC
o、ニッケツNi、銅Cuおよび亜鉛Znを使用するこ
とができる。これらのなかでは鉄が優れている。鉄は、
耐硫黄被毒およびサルフェート生成抑制に最も優れてい
る。これらの遷移金属はたとえばイオン交換によって担
持することができる。イオン交換する量としては、粘土
鉱物中のマグネシウムおよび/またはアルミニウムに対
して5〜10重量%が好ましい。遷移金属の担持量が5
重量%未満では遷移金属と貴金属との競争反応量が低下
し、触媒活性が低下する。また10重量%を超えると複
鎖構造型粘土鉱物中に存在する繊維間隔やチャンネルな
どの拡散通路や吸着サイトが潰れるため触媒の活性が低
下する。As the transition metal constituting the first catalyst component, vanadium V, manganese Mn, iron Fe, cobalt C
o, nickel Ni, copper Cu and zinc Zn can be used. Of these, iron is the best. Iron is
Most excellent in sulfur poisoning resistance and suppression of sulfate formation. These transition metals can be supported by, for example, ion exchange. The amount of ion exchange is preferably 5 to 10% by weight with respect to magnesium and / or aluminum in the clay mineral. The amount of transition metal supported is 5
If it is less than 10% by weight, the amount of competitive reaction between the transition metal and the noble metal decreases, and the catalytic activity decreases. On the other hand, if it exceeds 10% by weight, the activity of the catalyst is lowered because the fiber spaces, diffusion paths such as channels and adsorption sites existing in the double-chain structure type clay mineral are crushed.
【0012】第一触媒成分を構成する非晶質複鎖構造型
粘土鉱物としては、セピオライト(Si12Mg8 O
30(OH)4 ・8H2 O)、アタパルジャイトおよびパ
リゴルスカイト((MgAl)5 (SiAl)8 O
20(OH)2 ・8H2 O)などの粘土鉱物を非晶質化し
たものである。これらの粘土鉱物は、含水珪酸マグネシ
ウムを主成分とし、その表面に反応性にとむ水酸基を有
するものである。これらの粘土鉱物は、直径が0.05
〜0.6μm程度の繊維からなり、該繊維に平行に約1
〜0.6nm程度の長方形の断面積をもついわゆるチャ
ンネルが存在する。また、350〜400m2 /gなる
大きなBET比表面積を有する。As the amorphous double-chain structure type clay mineral constituting the first catalyst component, sepiolite (Si 12 Mg 8 O) is used.
30 (OH) 4 · 8H 2 O), attapulgite and palygorskite ((MgAl) 5 (SiAl) 8 O
It is an amorphized clay mineral such as 20 (OH) 2 .8H 2 O). These clay minerals are mainly composed of hydrous magnesium silicate, and have reactive hydroxyl groups on their surfaces. These clay minerals have a diameter of 0.05
.About.0.6 .mu.m of fibers and about 1 in parallel with the fibers.
There is a so-called channel with a rectangular cross section of about 0.6 nm. Further, it has a large BET specific surface area of 350 to 400 m 2 / g.
【0013】第一触媒成分は、複鎖構造型粘土鉱物を4
00〜800℃の温度で熱処理することにより該粘土鉱
物の構造を変化させ、非晶質化する熱処理工程と、粘土
鉱物中のマグネシウムおよび/またはアルミニウムイオ
ンを遷移金属イオンとイオン交換する置換工程と、前記
イオン交換した複鎖構造型粘土鉱物に貴金属イオンを作
用させて貴金属を担持させる担持工程とで製造できる。The first catalyst component is a multi-chain structure type clay mineral 4
A heat treatment step of changing the structure of the clay mineral by heat treatment at a temperature of 00 to 800 ° C. to make it amorphous, and a substitution step of ion-exchanging magnesium and / or aluminum ions in the clay mineral with transition metal ions. A supporting step of supporting a noble metal by causing a noble metal ion to act on the ion-exchanged double-chain structure type clay mineral.
【0014】熱処理工程において、複鎖構造型粘土鉱物
を加熱してその構造を非晶質化させる。熱処理温度は、
400〜800℃の範囲がよい。熱処理温度が400℃
未満では複鎖構造型粘土鉱物の構造を十分に非晶質化さ
せることができない。また、800℃を超えると複鎖構
造型粘土鉱物がエンスタタイト型の結晶に変化して、金
属元素の担持が困難となり、細孔も消失するので好まし
くない。細孔が消失すると、ガスの吸着サイトやガス拡
散に有効な通路が確保できなくなる。さらに好ましく
は、600〜700℃の範囲で熱処理するのがよい。上
記の温度範囲において複鎖構造型粘土鉱物の非晶質化が
最もよく生じる。In the heat treatment step, the double-chain structure type clay mineral is heated to amorphize its structure. The heat treatment temperature is
The range of 400 to 800 ° C is preferable. Heat treatment temperature is 400 ℃
If the amount is less than the above, the structure of the double-chain structure type clay mineral cannot be sufficiently amorphized. Further, when the temperature exceeds 800 ° C., the double-chain structure type clay mineral changes to an enstatite type crystal, which makes it difficult to carry the metal element and the pores disappear, which is not preferable. When the pores disappear, it becomes impossible to secure a gas adsorption site and a passage effective for gas diffusion. More preferably, the heat treatment is performed in the range of 600 to 700 ° C. Amorphization of the double-chain structure type clay mineral most often occurs in the above temperature range.
【0015】置換工程は、非晶質化した複鎖構造型粘土
鉱物中のマグネシウムおよび/またはアルミニウムを遷
移金属元素から選ばれる少なくとも1種と置換する工程
である。この工程は、まず非晶質複鎖構造型粘土鉱物を
水に分散させて懸濁液を作る。この時の水の量は非晶質
複鎖構造型粘土鉱物の10重量部以上が好適である。1
0重量部より少ないと非晶質複鎖構造型粘土鉱物の懸濁
状態が悪く、マグネシウムおよび/またはアルミニウム
と置換する遷移金属との置換が均一となりにくい。置換
する遷移金属は、塩の形で導入するのが好ましい。The substitution step is a step of substituting magnesium and / or aluminum in the amorphized double-chain structure type clay mineral with at least one selected from transition metal elements. In this step, first, an amorphous double chain structure type clay mineral is dispersed in water to form a suspension. At this time, the amount of water is preferably 10 parts by weight or more of the amorphous double-chain structure type clay mineral. 1
If the amount is less than 0 parts by weight, the suspension state of the amorphous double-chain structure type clay mineral is poor and it is difficult to uniformly replace the transition metal with magnesium and / or aluminum. The substituting transition metal is preferably introduced in the form of a salt.
【0016】非晶質複鎖構造型粘土鉱物に、遷移金属イ
オンを水中で作用させると、非晶質複鎖構造型粘土鉱物
を構成する元素のうち、結合力が低下したマグネシウム
および/またはアルミニウムはイオン化し、遷移金属の
イオンと置換される。これにより遷移金属は非晶質複鎖
構造型粘土鉱物の構造内に導入され、遷移金属が強固に
しかも高度に分散される。When a transition metal ion is allowed to act on an amorphous double-chain structure type clay mineral in water, magnesium and / or aluminum having a lower binding force among the elements constituting the amorphous double-chain structure type clay mineral. Are ionized and replaced with ions of the transition metal. As a result, the transition metal is introduced into the structure of the amorphous double-chain structure type clay mineral, and the transition metal is strongly and highly dispersed.
【0017】また、複鎖構造型粘土鉱物を400〜80
0℃で熱処理した非晶質複鎖構造型粘土鉱物は、120
m2 /g以上のBET比表面積を有しているが、イオン
置換により比表面積の低下は生じない。むしろ、強固で
安定な構造となって比表面積も増加する。貴金属担持工
程では、前記工程でできた遷移金属を置換させた非晶質
複鎖構造型粘土鉱物の懸濁液に貴金属化合物溶液を添加
し、非晶質複鎖構造型粘土鉱物に貴金属を担持させる。
これにより第一触媒成分を得ることができる。In addition, the multi-chain structure type clay mineral is added in an amount of 400-80.
Amorphous double chain structure type clay mineral heat-treated at 0 ° C.
Although it has a BET specific surface area of m 2 / g or more, the specific surface area does not decrease due to ion substitution. Rather, the structure is strong and stable, and the specific surface area is also increased. In the noble metal supporting step, the noble metal compound solution is added to the suspension of the amorphous double-chain structure type clay mineral obtained by substituting the transition metal produced in the above step, and the noble metal is supported on the amorphous double-chain structure type clay mineral. Let
Thereby, the first catalyst component can be obtained.
【0018】第二触媒成分は、化学式がABO3 (Aは
ランタンLa、ストロンチウムSr、セリウムCe、バ
リウムBa、またはカルシウムCaから選ばれる少なく
とも1種、BはコバルトCo、鉄Fe、ニッケルNi、
クロムCr、マンガンMn、またはマグネシウムMgか
ら選ばれる少なくとも1種、Oは酸素である)のペロブ
スカイト型構造を有する複合酸化物からなる。The second catalyst component has a chemical formula of ABO 3 (A is at least one selected from lanthanum La, strontium Sr, cerium Ce, barium Ba, and calcium Ca, B is cobalt Co, iron Fe, nickel Ni,
At least one selected from chromium Cr, manganese Mn, or magnesium Mg, and O is oxygen), which is a complex oxide having a perovskite structure.
【0019】第二触媒成分は、第一触媒成分と混合され
て多孔質フィルタまたは多孔質ハニカム担体に担持され
る。第二触媒成分では、触媒金属としての白金および/
またはパラジウムをペロブスカイト結晶格子内に含むこ
とが好ましい。この場合、白金および/またはパラジウ
ムは化学式ABO3 で表されるペロブスカイト型構造の
Bサイト位置に組み入れ、すなわち固溶させ、化学式A
B1-X CX O3 (0.05≦X≦0.2)で表される構
造とするのがよい。The second catalyst component is mixed with the first catalyst component and supported on the porous filter or the porous honeycomb carrier. In the second catalyst component, platinum as a catalyst metal and / or
Alternatively, it is preferable to include palladium in the perovskite crystal lattice. In this case, platinum and / or palladium are incorporated into the B-site position of the perovskite structure represented by the chemical formula ABO 3 , that is, they are solid-solved, and the chemical formula A
A structure represented by B 1-X C X O 3 (0.05 ≦ X ≦ 0.2) is preferable.
【0020】白金および/またはパラジウムはを触媒に
固溶させることにより、該白金および/またはパラジウ
ムはは凝集することなく高分散で触媒に組み入れられ、
このため、とくに水素の活性化とNOx吸収量の増加を
生じさせることができる。Xの値が0.2より大きくな
ると、効果に対してコスト高となり好ましくない。また
0.05より小さいと白金および/またはパラジウムは
の効果が少ない。このため、Xの範囲は0.05≦X≦
0.2が好ましい。By dissolving platinum and / or palladium in the catalyst as a solid solution, the platinum and / or palladium is incorporated into the catalyst in a highly dispersed state without agglomeration.
Therefore, in particular, activation of hydrogen and an increase in the amount of NOx absorbed can be caused. When the value of X is larger than 0.2, the cost becomes higher than the effect, which is not preferable. If it is less than 0.05, the effect of platinum and / or palladium is small. Therefore, the range of X is 0.05 ≦ X ≦
0.2 is preferable.
【0021】また第二触媒成分に対する第一触媒成分の
混合割合は、重量比で0.1〜20の範囲が好ましい。
重量比で0.1より小さい場合には、酸素過剰雰囲気下
でのNOx浄化反応が十分に進行しないため好ましくな
い。また、20より大きい場合には、低温域からのNO
の酸化と煤の燃焼反応が十分に進行せず、また、NOx
の吸収量が減少するために低温域での同時浄化能が低下
するため好ましくない。The mixing ratio of the first catalyst component to the second catalyst component is preferably in the range of 0.1-20 by weight.
If the weight ratio is less than 0.1, the NOx purification reaction in the oxygen excess atmosphere does not proceed sufficiently, which is not preferable. If it is larger than 20, NO from the low temperature range
Oxidation of soot and combustion reaction of soot do not proceed sufficiently, and NOx
Is not preferable because the simultaneous purification ability in a low temperature range is reduced due to a decrease in the absorption amount of
【0022】次にペロブスカイト型構造を有する複合酸
化物で構成される第二触媒成分の製造方法について説明
する。この製造方法は、ペロブスカイト型構造の複合酸
化物(ABO3 )を構成する金属元素A、Bの塩とクエ
ン酸とを溶解した水溶液を調整する第一工程と、該水溶
液を乾燥して上記金属元素のクエン酸錯体を形成する第
二の工程と、該クエン酸錯体を真空中または不活性ガス
中350℃以上で加熱/仮焼成する第三の工程と、その
後、酸化雰囲気中で焼成する第四の工程とでおこなうこ
とができる。Next, a method for producing a second catalyst component composed of a complex oxide having a perovskite structure will be described. This production method comprises a first step of preparing an aqueous solution in which salts of metal elements A and B constituting a complex oxide having a perovskite structure (ABO 3 ) and citric acid are dissolved, and drying the aqueous solution to obtain the above metal. A second step of forming a citric acid complex of the element, a third step of heating / pre-baking the citric acid complex at 350 ° C. or higher in a vacuum or an inert gas, and then baking in an oxidizing atmosphere It can be done in four steps.
【0023】第一の工程における金属元素A、Bの塩と
しては、硝酸塩または酢酸塩がよい。これは、第三の工
程の仮焼成で金属元素以外の残存物を分解できるためで
ある。たとえば金属元素が塩化物である場合は、仮焼成
後にも塩素が残存して触媒活性や吸着活性などの特性に
影響を与えるので好ましくない。これらの金属元素の塩
は、上記の化学式ABO3 の組成となるような配合割合
とする。The salt of the metal elements A and B in the first step is preferably nitrate or acetate. This is because residual substances other than metal elements can be decomposed by the calcination in the third step. For example, when the metal element is a chloride, chlorine remains even after the calcination and affects characteristics such as catalytic activity and adsorption activity, which is not preferable. The salts of these metal elements are mixed in proportions such that the composition of the chemical formula ABO 3 is obtained.
【0024】クエン酸の配合量としては、形成するペロ
ブスカイト型構造の複合酸化物を1モルに対して、2〜
2.4モルの範囲とするのがよい。該配合量が2モル未
満では錯体形成が困難となる場合があり、2.4モルを
超えると錯体形成には十分であるが、金属元素の均一な
混合が困難となる場合があり好ましくない。金属元素の
塩とクエン酸とを溶解した水溶液を調整する方法として
は、たとえば、金属元素の塩をイオン交換水に溶解し、
また、別のイオン交換水にクエン酸を溶解し、この両者
を混合する方法がある。The content of citric acid is 2 to 1 mol of the complex oxide having a perovskite structure to be formed.
It is preferable that the range is 2.4 mol. If the content is less than 2 mol, complex formation may be difficult, and if it exceeds 2.4 mol, it may be sufficient for complex formation, but uniform mixing of metal elements may be difficult, which is not preferable. As a method of preparing an aqueous solution in which a salt of a metal element and citric acid are dissolved, for example, a salt of a metal element is dissolved in ion-exchanged water,
Further, there is a method in which citric acid is dissolved in another ion-exchanged water and the both are mixed.
【0025】第二の工程における乾燥条件としては、ク
エン酸錯体が分解しない温度範囲で速やかに水分を除去
する条件(たとえば、室温〜150℃、2〜12時間)
が適当である。第三の工程では、上記金属元素のクエン
酸錯体を真空中または不活性ガス中350℃以上で加熱
して仮焼成する。この仮焼成の雰囲気は、真空中または
不活性ガス中とする。なお、真空中の方が不活性ガス中
よりも上記分解が促進されるので好ましい。As the drying conditions in the second step, water is rapidly removed within a temperature range where the citric acid complex is not decomposed (for example, room temperature to 150 ° C., 2 to 12 hours).
Is appropriate. In the third step, the citric acid complex of the above metal element is heated at 350 ° C. or higher in a vacuum or an inert gas to be calcined. The calcination atmosphere is in vacuum or in an inert gas. It should be noted that a vacuum is more preferable than an inert gas because the decomposition is promoted.
【0026】前記加熱温度が350℃未満では、クエン
酸および出発物質である金属元素の塩から残存物(有機
物、硝酸根)が加熱分解できず残存してしまう。また、
加熱温度は500℃を超えても差し支えないが、エネル
ギーの無駄や仮焼成用装置の損傷が生じるので好ましく
ない。第四の工程では、上記の仮焼成体を焼成する。焼
成方法としては限定はないが、酸化物を形成するため、
大気中の様な酸素が存在する酸化雰囲気とするのがよ
い。If the heating temperature is lower than 350 ° C., the residues (organic substances, nitrates) from the citric acid and the salt of the metal element as the starting material cannot be thermally decomposed and remain. Also,
The heating temperature may exceed 500 ° C., but this is not preferable because energy is wasted and the calcining device is damaged. In the fourth step, the above calcined body is calcined. Although the firing method is not limited, since an oxide is formed,
It is preferable to use an oxidizing atmosphere in which oxygen exists such as in the atmosphere.
【0027】また、焼成温度としては、700〜950
℃の範囲が好ましい。700℃未満の温度では、ペロブ
スカイト型構造の結晶が成長しにくい。また、950℃
を超える温度では、結晶成長が進みすぎるため、適度な
格子欠陥を有して格子内に存在していた貴金属が結晶格
子外へ出てしまったり、比表面積が低下して活性が低下
するおそれがある。The firing temperature is 700 to 950.
The range of ° C is preferred. At a temperature lower than 700 ° C., crystals having a perovskite structure are difficult to grow. Also, 950 ℃
If the temperature exceeds, the crystal growth will proceed too much, so the precious metal existing in the lattice with a suitable lattice defect may go out of the crystal lattice, or the specific surface area may decrease and the activity may decrease. is there.
【0028】また、焼成時間は、1時間程度でも焼成体
が得られるが、長時間ほど結晶化率の高い複合酸化物が
得られるため2〜5時間が好ましい。化学式AB1-X C
X O3 で表されるペロブスカイト型構造を有する複合酸
化物からなる触媒は、C元素の大部分を結晶構成原子と
して高分散で分散させることにより、NOのNO2 への
酸化やNOX の吸着や分解作用並びに微粒子状物質およ
び/または炭化水素の酸化作用が高められる。よって、
触媒活性種である前記C元素(PtまたはPd)は、該
元素の組み込みによる効果とコスト面で有意性からその
90%以上を結晶格子中に組み込んで存在させることが
好ましい。The firing time is about 1 hour, but a fired product can be obtained. However, a longer time is preferable because a composite oxide having a high crystallization rate can be obtained. Chemical formula AB 1-X C
A catalyst composed of a complex oxide having a perovskite structure represented by X O 3 disperses most of the C element as crystal constituent atoms in a highly dispersed state, thereby oxidizing NO to NO 2 and adsorbing NO X. The decomposition action and the oxidation action of fine particles and / or hydrocarbons are enhanced. Therefore,
It is preferable that 90% or more of the C element (Pt or Pd), which is a catalytically active species, is incorporated and present in the crystal lattice in terms of the effect of incorporating the element and the significance in terms of cost.
【0029】次に、第一触媒成分と第二触媒成分を混合
する。この混合方法については特に限定しない。通常利
用される物理的な混合法を用いることができる。たとえ
ば、自動乳鉢、ボールミルなどを用いて湿式、乾式いず
れの混合方法を用いてもよい。湿式混合の場合には、イ
オン交換水を用いて混合するか、あらかじめイオン交換
水にジルコニアゾルなどの結合剤を添加したものを用い
て混合するのが好ましい。Next, the first catalyst component and the second catalyst component are mixed. This mixing method is not particularly limited. Conventionally used physical mixing methods can be used. For example, either a wet or dry mixing method using an automatic mortar, a ball mill or the like may be used. In the case of wet mixing, it is preferable to mix using ion-exchanged water or to use ion-exchanged water to which a binder such as zirconia sol has been added in advance.
【0030】次に、混合した前記第一触媒成分と第二触
媒成分を担体に担持するに際しては、該混合触媒を高分
散に担持させるために、分散媒としてポリビニルアルコ
ール(PVA)などを使用するのがよい。また、分散剤
や結合剤の量は、固形分比で3〜15重量%がよく、触
媒活性を低下させない必要最小限の量を使用するのが好
ましい。Next, when supporting the mixed first catalyst component and second catalyst component on the carrier, polyvinyl alcohol (PVA) or the like is used as a dispersion medium in order to support the mixed catalyst in high dispersion. Is good. Further, the amount of the dispersant and the binder is preferably 3 to 15% by weight in terms of solid content ratio, and it is preferable to use the necessary minimum amount that does not reduce the catalytic activity.
【0031】担体としては、ディーゼルエンジンの排気
ガス中の微粒子状炭素物質を濾過するフィルタあるいは
ハニカム担体を採用するのが好ましい。フィルタとして
は連通孔を形成する泡形状のフィルタ、一端側で開き他
端側で閉じると共に隣会う通孔の開きおよび閉じが交互
に逆となる蜂の巣状の多数の平行する通孔を持ち、隣接
する通孔を隔てる隔壁がフィルタとして機能するハニカ
ム状フィルタを使用できる。なお、フィルタは耐熱衝撃
性が高くその孔は平均粒径が0.1〜1μmの微粒子状
炭素物質を捕集するのに十分な細孔を有するものであれ
ばよく、通常の排ガス用フィルタとして使用されている
ものを採用できる。As the carrier, it is preferable to employ a filter or a honeycomb carrier for filtering the particulate carbon material in the exhaust gas of the diesel engine. As a filter, a bubble-shaped filter that forms a communication hole, has a large number of honeycomb-shaped parallel through holes that open at one end side and close at the other end side and adjoin open and closed through holes alternately opposite to each other. It is possible to use a honeycomb filter in which partition walls separating the through holes function as a filter. The filter has a high thermal shock resistance, and its pores may be those having sufficient pores to collect a particulate carbon material having an average particle size of 0.1 to 1 μm. What is used can be adopted.
【0032】なお、ハニカム担体とは蜂の巣状で多数の
平行する通孔の両端いずれにも栓のない排気ガスが一端
開口から入り他端開口から流出するものをいう。担体を
構成する材料としては、たとえば、アルミナ、シリカ、
ジルコニア、チタニア、シリカ−アルミナ、アルミナ−
ジルコニア、シリカ−ジルコニア、シリカ−チタニア、
アルミナ−チタニア、ムライト、コージェライトなどを
使用することができる。The honeycomb carrier means a honeycomb-shaped exhaust gas which has no plugs at both ends of a large number of parallel through holes and which flows from one end opening into the other end opening. Examples of the material constituting the carrier include alumina, silica,
Zirconia, titania, silica-alumina, alumina-
Zirconia, silica-zirconia, silica-titania,
Alumina-titania, mullite, cordierite and the like can be used.
【0033】また、ハニカム担体としては、セラミック
スハニカムのほかに、ステンレス、鉄−クロム−アルミ
ニウム合金からなるメタルハニカムなどを使用すること
ができる。これらの担体は耐熱衝撃性が高い。As the honeycomb carrier, in addition to the ceramic honeycomb, a metal honeycomb made of stainless steel, iron-chromium-aluminum alloy, or the like can be used. These carriers have high thermal shock resistance.
【0034】[0034]
【発明の作用および効果】本発明の排ガス浄化触媒によ
れば、第一触媒成分および第二触媒成分を混合したこと
による相乗効果により微粒子状炭素物質および/または
炭化水素の燃焼反応、ならびに酸化過剰雰囲気下でのN
Oxと還元剤との反応によるNOx浄化反応を低温域か
ら高効率で実現できる。According to the exhaust gas purifying catalyst of the present invention, the combustion reaction of the particulate carbon material and / or the hydrocarbon and the excessive oxidation due to the synergistic effect of mixing the first catalyst component and the second catalyst component. N under the atmosphere
A NOx purification reaction by a reaction between Ox and a reducing agent can be realized with high efficiency from a low temperature range.
【0035】すなわち、第二触媒により、微粒子状炭素
物質および/または炭化水素が低温域から燃焼し始め、
さらに、NOはNO2 への酸化が促進されてNOxとし
て触媒に一時吸収される。吸収されたNOxは、第一触
媒上で還元種と反応し、酸素過剰雰囲気下でも無害なN
2 に還元・浄化できる。また、担体にフィルタを用いる
排ガス浄化装置では、上記排ガス浄化触媒の効果に加え
てディーゼルエンジンから排出される微粒子状炭素物質
を捕集でき、排ガス中から微粒子状炭素物質を効果的に
除去できる。That is, the particulate catalyst and / or hydrocarbons start to burn from the low temperature region by the second catalyst,
Further, NO is promoted to be oxidized to NO 2 and is temporarily absorbed by the catalyst as NOx. The absorbed NOx reacts with the reducing species on the first catalyst, and is harmless N even in an oxygen excess atmosphere.
Can be reduced and purified to 2 . Further, in the exhaust gas purifying apparatus using the filter as the carrier, in addition to the effect of the exhaust gas purifying catalyst, it is possible to collect the particulate carbon material discharged from the diesel engine and effectively remove the particulate carbon material from the exhaust gas.
【0036】担体にハニカムを用いる排ガス浄化装置で
は、上記排ガス浄化触媒の効果に加えて微粒子状炭素物
質がハニカム内部に過剰に蓄積されることがなく、この
ため、圧力損失を低減できる。第二触媒成分にPtおよ
び/またはPdが含まれる場合には、Ptおよび/また
はPdは担体表面に凝集することなく均一に分散してい
るために、微粒子状炭素物質および/または炭化水素に
対する活性およびNOx吸収量の増加に伴いNOx浄化
率が向上する。また、微粒子状炭素物質および/または
炭化水素の酸化温度が下がるために、低温でフィルタま
たはハニカム担体の再生が可能である。そして再生温度
が下がるために、フィルタまたはハニカム担体の破損が
起こりにくくなり、このためフィルタまたはハニカム担
体の寿命が長くなる。またフィルタまたはハニカム担体
の温度を従来より低温に保てるために排ガス中に存在す
る二酸化硫黄ガスの酸化が抑制され、このため硫酸(サ
ルフェート)の発生も抑えることができる。In the exhaust gas purifying apparatus using the honeycomb as the carrier, in addition to the effect of the exhaust gas purifying catalyst, the particulate carbon material is not excessively accumulated inside the honeycomb, so that the pressure loss can be reduced. When Pt and / or Pd is contained in the second catalyst component, since Pt and / or Pd are uniformly dispersed on the support surface without being aggregated, the activity for the particulate carbon material and / or hydrocarbon is increased. Also, the NOx purification rate is improved as the NOx absorption amount is increased. Moreover, since the oxidation temperature of the particulate carbon material and / or hydrocarbon is lowered, the filter or the honeycomb carrier can be regenerated at a low temperature. Since the regeneration temperature is lowered, the filter or the honeycomb carrier is less likely to be damaged, and thus the life of the filter or the honeycomb carrier is extended. Further, since the temperature of the filter or the honeycomb carrier can be kept lower than before, the oxidation of the sulfur dioxide gas existing in the exhaust gas is suppressed, so that the generation of sulfuric acid (sulfate) can also be suppressed.
【0037】[0037]
【実施例】以下、実施例により具体的に説明する。 (第一触媒成分の調整)複鎖構造型粘土鉱物は、トルコ
産セピオライトの粉末を使用した。このセピオライト粉
末をアルミナ製の坩堝に入れ、ニクロム炉内で温度65
0℃にて4.5時間保持して熱処理し、非晶質化した。
この熱処理したセピオライト30gとイオン交換水90
0mlを家庭用ミキサにいれ10分間攪拌し、セピオラ
イトをイオン交換水中に分散させた。分散後、遷移金属
化合物として塩化鉄をセピオライト1モルに対し金属原
子として3モル相当加え、ミキサを用いて溶解させセピ
オライト分散溶液を調整した。次にこの分散溶媒をディ
スパで30分間攪拌することによってセピオライト中の
マグネシウムと鉄をイオン交換させた。イオン交換後、
吸引、濾過を数回繰り返し、塩素イオン等を十分に洗浄
除去した。洗浄除去後、再びイオン交換水を加えて再分
散させた後、分散液に貴金属としてPtを0.4〜5重
量%含むジニトロジアミン白金硝酸溶液を添加した。添
加後加熱スターラ上で攪拌し、均一攪拌下でヒータによ
り110〜120℃の温度で加熱し、水分を蒸発させ
た。水分を蒸発させた後、ニクロム炉内で350℃にて
3時間焼成し、Ptを1.64重量%担持した第一触媒
成分(No.1a(Pt/Fe−ASP;(ASP:Am
orphous Sepiolite)))を得た。EXAMPLES The present invention will be specifically described below with reference to examples. (Adjustment of First Catalyst Component) As the double-chain structure type clay mineral, Turkish sepiolite powder was used. This sepiolite powder was put into an alumina crucible and heated at a temperature of 65 in a nichrome furnace.
It was kept at 0 ° C. for 4.5 hours and heat-treated to be amorphized.
30 g of this heat-treated sepiolite and 90 of deionized water
0 ml was placed in a domestic mixer and stirred for 10 minutes, and sepiolite was dispersed in ion-exchanged water. After the dispersion, iron chloride as a transition metal compound was added in an amount of 3 mol as a metal atom to 1 mol of sepiolite, and the mixture was dissolved using a mixer to prepare a sepiolite dispersion solution. Next, this dispersion solvent was stirred for 30 minutes in a dispa to ion-exchange magnesium and iron in sepiolite. After ion exchange,
Suction and filtration were repeated several times to sufficiently remove chlorine ions and the like by washing. After washing and removing, ion-exchanged water was added again for redispersion, and then a dinitrodiamine platinum nitric acid solution containing 0.4 to 5% by weight of Pt as a noble metal was added to the dispersion. After the addition, the mixture was stirred on a heating stirrer and heated with a heater at a temperature of 110 to 120 ° C. under uniform stirring to evaporate water. After evaporating the water content, the first catalyst component (No. 1a (Pt / Fe-ASP; (ASP: Am:
orphous Sepiolite))) was obtained.
【0038】また、上記と同様にして、貴金属の種類と
その担持量、遷移金属の種類とそのイオン交換量を変化
させて第一触媒成分の各種(No.1b(Pd/Fe−
ASP)、No.1c(Pd/Mn−ASP)、No.
1d(Pt/Fe−ASP)、No.1e(Pt/Co
−ASP)を調整した。 (第二触媒成分の調整)硝酸ランタン21.67g
(0.05モル)をイオン交換水50mlに溶解した。
また、酢酸コバルト11.56g(0.045モル)を
イオン交換水50mlに溶解した。また、クエン酸2
5.22g(0.12モル)をイオン交換水120ml
に溶解した。これらの3種類の水溶液を混合し、約25
0mlの混合溶液を作製した。Further, in the same manner as described above, various kinds of first catalyst components (No. 1b (Pd / Fe-
ASP), No. 1c (Pd / Mn-ASP), No.
1d (Pt / Fe-ASP), No. 1e (Pt / Co
-ASP) was adjusted. (Adjustment of second catalyst component) Lanthanum nitrate 21.67 g
(0.05 mol) was dissolved in 50 ml of deionized water.
Further, 11.56 g (0.045 mol) of cobalt acetate was dissolved in 50 ml of ion-exchanged water. Also, citric acid 2
5.22 g (0.12 mol) of ion-exchanged water 120 ml
Dissolved in. Mix these three types of aqueous solutions to about 25
A 0 ml mixed solution was prepared.
【0039】この混合溶液をエバポレータで減圧にしな
がら80℃の湯浴中で約4時間かけて蒸発乾固させ、ク
エン酸錯体を作製した。このクエン酸錯体を真空ポンプ
で減圧(10-2torr以下)にしながらマントルヒー
タにより80℃から400℃まで、温度が急激に上昇し
ないようにゆっくり昇温した。なお、130℃付近から
酢酸とクエン酸とが分解しはじめた。250℃〜400
℃で硝酸根が分解し黄色のガスが発生するので、この発
生ガスがなくなったことを確認してこの熱処理を完了し
た(処理時間約3時間)。これにより、有機物および硝
酸根を除去した仮焼結体を作製した。The mixed solution was evaporated to dryness in a hot water bath at 80 ° C. for about 4 hours under reduced pressure by an evaporator to prepare a citric acid complex. While the pressure of this citric acid complex was reduced by a vacuum pump (10 -2 torr or less), the temperature was slowly raised by a mantle heater from 80 ° C to 400 ° C so that the temperature did not rise sharply. Note that acetic acid and citric acid began to decompose at around 130 ° C. 250 ° C-400
Since nitrate radicals decomposed and yellow gas was generated at ° C, the heat treatment was completed after confirming that the generated gas was gone (processing time about 3 hours). As a result, a pre-sintered body from which organic substances and nitrates were removed was produced.
【0040】この仮焼結体を粉末した後、坩堝にいれて
空気中にて750℃の温度で3時間焼成し、LaCoO
3 で示される組成のペロブスカイト型構造複合酸化物か
らなる第二触媒成分(No.2a)を調整した。また、
上記と同様にして、Aサイト元素、Bサイト元素を変化
させて、第二触媒成分各種((No.2b(LaMnO
3 )、No.2c(LaFeO3 )、No.2d(La
Co0.9 Pt0.1 O3 )、No.2e(LaCo0.9 P
d0.1 O 3 ))を調整した。After powdering this temporary sintered body, put it in a crucible.
LaCoO was calcined in air at a temperature of 750 ° C. for 3 hours.
3Is it a perovskite structure composite oxide with the composition
The second catalyst component (No. 2a) was prepared. Also,
Change A site element and B site element in the same manner as above.
Then, various second catalyst components ((No. 2b (LaMnO
3), No. 2c (LaFeO3), No. 2d (La
Co0.9Pt0.1O3), No. 2e (LaCo0.9P
d0.1O 3)) Was adjusted.
【0041】(第一触媒成分、第二触媒成分を混合した
ペレット状触媒の調整)上記No.1aの第一触媒成分
0.79gとNo.2aの第二触媒成分0.41gなら
びに微粒子状炭素物質として粉末状カーボン0.5gと
を乳鉢で混合し、圧粉後粉砕して平均直径が1〜2mm
のペレット触媒(No.A)を作製した。(Preparation of Pelletized Catalyst Mixing First Catalyst Component and Second Catalyst Component) No. 1a with 0.79 g of the first catalyst component. An average diameter of 1 to 2 mm was obtained by mixing 0.41 g of the second catalyst component of 2a and 0.5 g of powdery carbon as a fine particulate carbon material in a mortar, crushing and crushing.
Pellet catalyst (No. A) was produced.
【0042】上記ペレット状触媒(No.A)作製と同
様の操作により、表1に示す第一触媒成分、第二触媒成
分の混合触媒からなるペレット状触媒(No.B〜N
o.H)を作製した。また、上記のペレット状触媒(N
o.A)の作製と同様の操作により、表1に示す第一触
媒成分または第二触媒成分のみからなるペレット状触媒
(No.I〜No.K)を作製した。By the same operation as in the preparation of the above pellet catalyst (No. A), pellet catalysts (No. B to N) composed of a mixed catalyst of the first catalyst component and the second catalyst component shown in Table 1 were prepared.
o. H) was prepared. In addition, the above pellet catalyst (N
o. Pelletized catalysts (No. I to No. K) consisting of only the first catalyst component or the second catalyst component shown in Table 1 were produced by the same operation as the production of A).
【0043】作製したペレット状触媒の組成をまとめて
表1に示す。The composition of the produced pellet-shaped catalyst is summarized in Table 1.
【0044】[0044]
【表1】 [Table 1]
【0045】(ペレット状触媒の性能評価試験)本発明
の排ガス浄化装置を作製する前に、上記で作製した各ペ
レット状触媒の性能評価試験をおこなった。試験は、上
記各ペレット状触媒を固定床式反応装置に充填した。そ
して、組成がNO;250ppm、O2 ;10%、He
バランスガス(酸素過剰雰囲気)からなるモデルガスを
流通し(空間速度;SV=80000h-1),ステップ
昇温してその出ガスをガスクロモトグラフおよびNOX
分析計によりNOX (NO)の窒素への転化率をおよび
N2 Oへの転化率を測定した。結果を図1〜図4に示
す。図中窒素への転化率を実線で、窒素+N2 Oへの転
化率を点線で示した。(Performance Evaluation Test of Pelletized Catalyst) Before manufacturing the exhaust gas purifying apparatus of the present invention, a performance evaluation test of each of the pelletized catalysts prepared above was conducted. In the test, each of the above pelletized catalysts was packed in a fixed bed reactor. And the composition is NO; 250 ppm, O 2 ; 10%, He
A model gas composed of a balance gas (excess oxygen atmosphere) is circulated (space velocity; SV = 80000h -1 ), and the temperature is raised step by step, and the resulting gas is gas chromograph and NO x.
The conversion was measured in the conversion to nitrogen of NO X (NO) and N 2 to O by analyzer. The results are shown in FIGS. In the figure, the solid line shows the conversion rate to nitrogen, and the dotted line shows the conversion rate to nitrogen + N 2 O.
【0046】図1〜図4に示す結果より、第一触媒成
分、第二触媒成分を混合してなるペレット状触媒A〜H
は、第一触媒成分または第二触媒成分単独でなるペレッ
ト状触媒I〜Kに比べて酸素過剰雰囲気であっても低温
域からNOX が高い浄化率で浄化できることがわかる。
図1に示す結果より、第一触媒成分の混合量が少ない
(Cの場合)と、酸素過剰雰囲気下でのNOX 浄化率は
低下することがわかる。また、第一触媒成分の混合量は
多すぎても(Bの場合)同様にNOX 浄化率は低下する
傾向にある。From the results shown in FIGS. 1 to 4, pellet catalysts A to H prepared by mixing the first catalyst component and the second catalyst component.
In comparison with the pellet-shaped catalysts I to K consisting of the first catalyst component or the second catalyst component alone, it is understood that NO x can be purified from the low temperature region at a high purification rate even in an oxygen excess atmosphere.
From the results shown in FIG. 1, it is understood that when the mixing amount of the first catalyst component is small (in the case of C), the NO x purification rate in the oxygen excess atmosphere decreases. Further, if the mixing amount of the first catalyst component is too large (in the case of B), the NO x purification rate also tends to decrease.
【0047】図2に示す結果より、第一触媒成分の担持
貴金属としてはPdよりPtが優れていること、さらに
担持させる触媒金属がMnの場合にも優れた浄化率を示
すことが分かる。図3に示す結果より、担持させる触媒
金属がCoの場合にも優れた浄化率を示すこと、さらに
第二触媒成分に貴金属が含まれている場合、浄化率はさ
らに向上することが分かる。From the results shown in FIG. 2, it can be seen that Pt is superior to Pd as the supported noble metal of the first catalyst component and that the purification rate is excellent even when the supported catalytic metal is Mn. From the results shown in FIG. 3, it can be seen that the purification rate is excellent even when the catalyst metal to be carried is Co, and that the purification rate is further improved when the second catalyst component contains a noble metal.
【0048】図4に示す結果より、第一触媒成分、第二
触媒成分を混合してなるペレット状触媒Aは、第一触媒
成分または第二触媒成分単独でなるペレット状触媒I〜
Kに比べて酸素過剰雰囲気であっても低温域からNOX
が高い浄化率で浄化できることが分かる。また、ステッ
プ昇温に伴い、ある温度から微粒子状炭素物質の燃焼に
伴う急激な触媒温度変化が観測された。この変化時の温
度を微粒子状炭素物質の燃焼温度(カーボン燃焼温度)
とし、そのカーボン燃焼温度における窒素生成量を測定
した。結果をまとめて表1に示す。From the results shown in FIG. 4, the pellet catalyst A prepared by mixing the first catalyst component and the second catalyst component was found to be the pellet catalyst I to the first catalyst component or the second catalyst component alone.
Compared to K, even in an oxygen-excess atmosphere, NO x can be generated in the low temperature range.
It can be seen that can be purified at a high purification rate. In addition, a rapid temperature change of the catalyst was observed from a certain temperature accompanying the combustion of the particulate carbonaceous material as the step temperature was raised. The temperature at this change is the combustion temperature of the particulate carbon material (carbon combustion temperature)
And the nitrogen production amount at the carbon burning temperature was measured. The results are summarized in Table 1.
【0049】表1に示す結果より、ペレット状触媒A〜
Hは、I〜Kに比べてカーボン燃焼開始温度が低く、さ
らに、カーボン燃焼開始温度における窒素生成量は多い
ことがわかる。このことは、酸素過剰雰囲気中で吸収し
たNOX をカーボン燃焼時に効率よく窒素に浄化できて
いることを示している。 (排ガス浄化装置の作製)Pt/Fe−ASPからなる
第一触媒成分100重量%、ジルコニアゾル20重量
%、水75重量%を混合し、第一の懸濁液を作製した。
次にLaCoO3 からなる第二触媒成分100重量%、
ジルコニアゾル20重量%、水75重量%を混合し、第
二の懸濁液を作製した。次に、第一の懸濁液、第二の懸
濁液を所定量ずつ混合して第三の懸濁液を作製した。From the results shown in Table 1, pelletized catalysts A to
It can be seen that H has a lower carbon combustion start temperature than I to K, and further has a large amount of nitrogen generation at the carbon combustion start temperature. This indicates that the NO x absorbed in the oxygen excess atmosphere can be efficiently purified to nitrogen during carbon combustion. (Preparation of Exhaust Gas Purification Device) 100% by weight of a first catalyst component composed of Pt / Fe-ASP, 20% by weight of zirconia sol, and 75% by weight of water were mixed to prepare a first suspension.
Next, 100% by weight of the second catalyst component consisting of LaCoO 3 ,
A second suspension was prepared by mixing 20% by weight of zirconia sol and 75% by weight of water. Next, the first suspension and the second suspension were mixed in predetermined amounts to prepare a third suspension.
【0050】次に、押出成形法により成形したコージェ
ライトを主成分とする多数のセルで構成されるハニカム
状多孔体からなるモノリス担体に前記第三の懸濁液を含
浸させた後、700℃で3時間これを焼成して触媒を担
持した。このとき、第二触媒成分に対する第一触媒成分
の担持量は重量比で約2であった。ついで、アルミナ粉
末50重量部、ジルコニアゾル15重量部、ポリビニル
アルコール2重量部、水50重量部を混合攪拌し、ハニ
カム状多孔体からなるモノリス担体の両端面部のセル注
入材料を作製した。Next, after impregnating the above-mentioned third suspension into a monolithic carrier composed of a honeycomb-shaped porous body composed of a large number of cells containing cordierite as a main component, which was molded by an extrusion molding method, the temperature was 700 ° C. It was calcined for 3 hours to support the catalyst. At this time, the amount of the first catalyst component supported on the second catalyst component was about 2 in weight ratio. Then, 50 parts by weight of alumina powder, 15 parts by weight of zirconia sol, 2 parts by weight of polyvinyl alcohol, and 50 parts by weight of water were mixed and stirred to prepare a cell injection material for both end surfaces of the monolithic carrier made of a honeycomb porous body.
【0051】次に、触媒を担持したハニカム状多孔体の
両端に交互にセル注入材料を各セル同量ずつ注入するこ
とにより、一つのセルに流入する排ガスがセル壁を通過
して他のセルに移行した後排出されるよう、排ガス入口
側および出口側閉塞部を形成した。これを空気中700
℃で3時間焼成し、担体が多孔質フィルタからなる実施
例1の排ガス浄化装置を作製した。Next, by alternately injecting the same amount of the cell injection material into both ends of the honeycomb-shaped porous body carrying the catalyst, the exhaust gas flowing into one cell passes through the cell wall and the other cells are injected. The exhaust gas inlet side and outlet side closed portions were formed so that the exhaust gas was discharged after the transition. 700 in the air
Firing at 3 ° C. for 3 hours, an exhaust gas purifying apparatus of Example 1 was prepared in which the carrier was a porous filter.
【0052】次に、第一触媒成分、第二触媒成分の組成
を表2に示す組成に変えたこと以外は実施例1と同様の
操作により、実施例No.2およびNo.3に排ガス浄
化装置を作製した。Next, Example No. 1 was operated in the same manner as in Example 1 except that the compositions of the first catalyst component and the second catalyst component were changed to those shown in Table 2. 2 and No. An exhaust gas purifying device was produced in No. 3.
【0053】[0053]
【表2】 [Table 2]
【0054】また、担持した触媒が第一触媒成分または
第二触媒成分のみからなる比較例の排ガス浄化装置N
o.4〜No.6を作製した。実施例No.1におい
て、ハニカム状多孔体の両端にセル用注入材料を注入し
ないこと以外は実施例No.1と同様の操作により表3
に示す組成を有する担体がハニカム状多孔体空なる実施
例No.7〜No.9、ならびに比較例No.10〜N
o.12の排ガス浄化装置を作製した。Further, the exhaust gas purifying apparatus N of the comparative example in which the supported catalyst comprises only the first catalyst component or the second catalyst component
o. 4 to No. 6 was produced. Example No. In Example No. 1, except that the cell injection material was not injected into both ends of the honeycomb-shaped porous body. Table 3 by the same operation as 1
Example No. 1 in which the carrier having the composition shown in FIG. 7-No. 9, and Comparative Example No. 10-N
o. Twelve exhaust gas purification devices were produced.
【0055】(排ガス浄化装置の性能評価試験)作製し
た前記排ガス浄化装置の評価試験を行った。試験は、排
気量2.45リットルの渦流式ディーゼルエンジンの排
ガス管に排ガス浄化装置を配置し、排ガスを排ガス浄化
装置に導入しておこなった。また、配置した排ガス浄化
装置と排ガス浄化装置の上流の排ガス管には電気ヒータ
を設け、加熱できるようにした。(Performance Evaluation Test of Exhaust Gas Purification Device) An evaluation test of the produced exhaust gas purification device was conducted. The test was conducted by disposing an exhaust gas purifying device in the exhaust gas pipe of a swirl type diesel engine having a displacement of 2.45 liters and introducing the exhaust gas into the exhaust gas purifying device. In addition, an electric heater was provided in the exhaust gas purifying device and the exhaust gas pipe upstream of the exhaust gas purifying device so that heating was possible.
【0056】排ガス浄化装置の下流側の排ガス管には排
ガス分析用のガス導入管を接続し、このガス導入管を自
動車排ガス分析計に接続して導き、これにより排ガス中
のNOX (NO)濃度およびHC濃度を測定した。測定
値は、排ガス浄化装置を設置せずに測定した場合のNO
X 濃度、HC濃度を基準として、NOX 浄化率、HC浄
化率を算出した。A gas introducing pipe for exhaust gas analysis is connected to the exhaust gas pipe on the downstream side of the exhaust gas purifying apparatus, and this gas introducing pipe is connected to an automobile exhaust gas analyzer to guide the exhaust gas, thereby NO x (NO) in the exhaust gas. The concentration and the HC concentration were measured. The measured value is NO when measured without installing an exhaust gas purification device.
The NO x purification rate and the HC purification rate were calculated based on the X concentration and the HC concentration.
【0057】また、パティキュレートの測定は、排ガス
浄化装置の上流側と下流側で交互に一定時間パティキュ
レートをフィルタ捕集し重量測定により行った。なお、
パティキュレートには、微粒子状炭素物質(煤)のほか
に炭化水素およびサルフェートも含まれている。また、
排ガス浄化装置に捕集されたパティキュレートが着火燃
焼し始める温度を圧力測定用センサで求め再生開始温度
とした。The particulates were measured by alternately collecting the particulates on the upstream side and the downstream side of the exhaust gas purifying apparatus for a certain period of time with a filter and measuring the weight. In addition,
Particulates include hydrocarbons and sulphates in addition to particulate carbon material (soot). Also,
The temperature at which the particulates collected in the exhaust gas purifying apparatus start to ignite and burn was determined by the pressure measurement sensor and used as the regeneration starting temperature.
【0058】排ガス浄化装置を設置しない場合は、エン
ジン回転数1600rpmにおける排ガス中のNOX 濃
度は300ppmであった。また、HCの濃度は90p
pmCであった。また、パティキュレートは4.0g/
hであった。担体が多孔質フィルタからなる排ガス浄化
装置を使用した場合のNOX 浄化率およびフィルタの再
生開始温度を表2に示す。When the exhaust gas purifying apparatus was not installed, the NO x concentration in the exhaust gas at an engine speed of 1600 rpm was 300 ppm. Also, the concentration of HC is 90p
It was pmC. Also, the particulate is 4.0 g /
It was h. Table 2 shows the NO x purification rate and the regeneration start temperature of the filter when the exhaust gas purifying apparatus whose carrier is a porous filter is used.
【0059】また、担体が多孔質体ハニカム担体からな
る排ガス浄化装置を使用した場合の入りガス温度と、こ
の温度におけるNOX 、HCおよびパティキュレートの
浄化率を表3に示す。[0059] In addition, shows the gas temperature entering when the carrier using the exhaust gas purifying apparatus comprising a porous honeycomb carrier, the purification rate of NO X, HC and particulates at this temperature in Table 3.
【0060】[0060]
【表3】 [Table 3]
【0061】表2、表3の結果より、本実施例の排ガス
浄化装置は、比較例の排ガス浄化装置に比べて高いNO
X 、HC、およびパティキュレートの浄化率を有してお
り、さらに、NOxの窒素N2 への浄化率も高いことが
示される。すなわち、本実施例の排ガス浄化装置により
優れた排ガスの浄化がおこなわれたことがわかる。From the results of Tables 2 and 3, the exhaust gas purifying apparatus of this embodiment has a higher NO than the exhaust gas purifying apparatus of the comparative example.
It has a purification rate of X , HC, and particulates, and is also shown to have a high purification rate of NOx to nitrogen N 2 . That is, it can be seen that the exhaust gas purifying apparatus of the present example performed excellent purification of exhaust gas.
【図1】実施例A、B、Cの触媒によるモデルガスによ
る窒素への転化率と入ガス温度との関係を示すグラフで
ある。FIG. 1 is a graph showing a relationship between a conversion rate of nitrogen into a model gas by a catalyst of Examples A, B, and C and an inlet gas temperature.
【図2】実施例A、D、E、Fの触媒によるモデルガス
による窒素への転化率と入ガス温度との関係を示すグラ
フである。FIG. 2 is a graph showing a relationship between a conversion rate of nitrogen into a model gas by a catalyst of Examples A, D, E, and F and an inlet gas temperature.
【図3】実施例A、G、Hの触媒によるモデルガスによ
る窒素への転化率と入ガス温度との関係を示すグラフで
ある。FIG. 3 is a graph showing a relationship between a conversion rate of nitrogen into a model gas by a catalyst of Examples A, G and H and an inlet gas temperature.
【図4】実施例Aおよび比較例I、J、Kの触媒による
モデルガスによる窒素への転化率と入ガス温度との関係
を示すグラフである。FIG. 4 is a graph showing the relationship between the conversion rate of nitrogen into model nitrogen by the catalysts of Example A and Comparative Examples I, J, and K and the inlet gas temperature.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102H 104A 104B (72)発明者 土井 晴夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 杉浦 正洽 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B01D 53/36 102H 104A 104B (72) Inventor Haruo Doi 41, Nagakute, Nagakute, Aichi-gun, Aichi Address 1 Inside Toyota Central Research Institute Co., Ltd. (72) Inventor Masahiro Sugiura 41 Nagahote, Nagakute-cho, Aichi-gun, Aichi Prefecture
Claims (8)
たは炭化水素を含む排ガスと接触し該排ガス中に含まれ
る窒素酸化物を浄化する、 貴金属および遷移金属ならびに非晶質複鎖構造型粘土鉱
物とからなる第一触媒成分と、 前記第一触媒成分と混合して使用される、化学式がAB
O3 (AはランタンLa、ストロンチウムSr、セリウ
ムCe、バリウムBa、またはカルシウムCaから選ば
れる少なくとも1種、BはコバルトCo、鉄Fe、ニッ
ケルNi、クロムCr、マンガンMn、またはマグネシ
ウムMgから選ばれる少なくとも1種、Oは酸素)で表
されるペロブスカイト型構造を有する複合酸化物からな
る第二触媒成分と、 を含むことを特徴とする排ガス浄化触媒。1. A noble metal, a transition metal, and an amorphous double-chain structure type clay mineral which are brought into contact with an exhaust gas containing at least a particulate carbon material and / or a hydrocarbon to purify nitrogen oxides contained in the exhaust gas. Which is used as a mixture with the first catalyst component
O 3 (A is at least one selected from lanthanum La, strontium Sr, cerium Ce, barium Ba, or calcium Ca, and B is selected from cobalt Co, iron Fe, nickel Ni, chromium Cr, manganese Mn, or magnesium Mg. An exhaust gas purifying catalyst comprising: a second catalyst component composed of a complex oxide having a perovskite structure represented by at least one kind, and O is oxygen.
型構造を有する複合酸化物に担持およびまたは固溶され
た貴金属を含む請求項1記載の排ガス浄化触媒。2. The exhaust gas purifying catalyst according to claim 1, wherein the second catalyst component contains a noble metal supported and / or solid-dissolved in the complex oxide having the perovskite structure.
出される排ガスである請求項1記載の排ガス浄化触媒。3. The exhaust gas purifying catalyst according to claim 1, wherein the exhaust gas is exhaust gas emitted from a diesel engine.
含む排ガスと接触し、該排ガス中に含まれる窒素酸化物
を浄化する、貴金属および遷移金属ならびに非晶質複鎖
構造型粘土鉱物とからなる第一触媒成分と、前記第一触
媒成分と混合して使用される、化学式がABO3 (Aは
ランタンLa、ストロンチウムSr、セリウムCe、バ
リウムBa、またはカルシウムCaから選ばれる少なく
とも1種、BはコバルトCo、鉄Fe、ニッケルNi、
クロムCr、マンガンMn、またはマグネシウムMgか
ら選ばれる少なくとも1種、Oは酸素)で表されるペロ
ブスカイト型構造を有する複合酸化物からなる有する第
二触媒成分と、を含み、該担体に担持された触媒と、 を有することを特徴とする排ガス浄化装置。4. A noble metal and a transition metal, and an amorphous double-chain structure type, in which a carrier is contacted with an exhaust gas containing at least a particulate carbon material and / or a hydrocarbon to purify nitrogen oxides contained in the exhaust gas. A chemical formula of ABO 3 (A is lanthanum La, strontium Sr, cerium Ce, barium Ba, or calcium Ca, which is used by mixing with the first catalyst component composed of a clay mineral and the first catalyst component is used. Type 1, B is cobalt Co, iron Fe, nickel Ni,
At least one selected from chromium Cr, manganese Mn, or magnesium Mg, and O is oxygen), and a second catalyst component having a complex oxide having a perovskite structure, which is supported on the carrier. An exhaust gas purification device comprising: a catalyst.
型構造を有する複合酸化物に担持および/または固溶さ
れた貴金属を含む請求項4記載の排ガス浄化装置。5. The exhaust gas purifying apparatus according to claim 4, wherein the second catalyst component contains a noble metal supported and / or solid-dissolved in the complex oxide having the perovskite structure.
4記載の排ガス浄化装置。6. The exhaust gas purifying apparatus according to claim 4, wherein the carrier is a porous filter.
求項4記載の排ガス浄化装置。7. The exhaust gas purifying apparatus according to claim 4, wherein the carrier is a porous honeycomb carrier.
出される排ガスである請求項4記載の排ガス浄化装置。8. The exhaust gas purifying apparatus according to claim 4, wherein the exhaust gas is exhaust gas emitted from a diesel engine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7038429A JPH08229404A (en) | 1995-02-27 | 1995-02-27 | Exhaust gas purifying catalyst and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7038429A JPH08229404A (en) | 1995-02-27 | 1995-02-27 | Exhaust gas purifying catalyst and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08229404A true JPH08229404A (en) | 1996-09-10 |
Family
ID=12525073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7038429A Pending JPH08229404A (en) | 1995-02-27 | 1995-02-27 | Exhaust gas purifying catalyst and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08229404A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100416735B1 (en) * | 1995-10-09 | 2004-03-26 | 삼성전기주식회사 | Catalyst for purifying exhaust gas from car and method for preparing thereof |
JP2004509740A (en) * | 2000-09-29 | 2004-04-02 | オーエムゲー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト | Catalytic soot filter and its use in the treatment of lean exhaust gas |
JP2006341235A (en) * | 2005-06-10 | 2006-12-21 | Kyushu Univ | Diesel particulate filter |
KR100804701B1 (en) * | 2006-02-10 | 2008-02-18 | 삼성에스디아이 주식회사 | High porosity catalyst and method of preparing same |
JP2008212898A (en) * | 2007-03-07 | 2008-09-18 | National Institute Of Advanced Industrial & Technology | Catalyst for oxidatively removing methane, and oxidatively removing method of methane |
WO2009078246A1 (en) | 2007-12-14 | 2009-06-25 | Nissan Motor Co., Ltd. | Purification catalyst |
JP2009291753A (en) * | 2008-06-09 | 2009-12-17 | Dowa Electronics Materials Co Ltd | Exhaust gas clarifying catalyst, coating for exhaust gas clarifying catalyst, and diesel exhaust gas clarifying filter |
KR101506491B1 (en) * | 2013-05-29 | 2015-03-27 | 한국생산기술연구원 | Method of manufacturing gas filter for membrane using solvent extraction of amorphous composite powder |
US8999878B2 (en) | 2006-07-03 | 2015-04-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
CN107497443A (en) * | 2017-09-15 | 2017-12-22 | 华北水利水电大学 | Automotive exhaust catalysis nano material and preparation method thereof |
CN107597128A (en) * | 2017-09-15 | 2018-01-19 | 华北水利水电大学 | Soot catalysis material and preparation method thereof |
CN107684912A (en) * | 2017-09-15 | 2018-02-13 | 华北水利水电大学 | Carbon soot particles catalysis material and preparation method thereof |
CN107694574A (en) * | 2017-09-15 | 2018-02-16 | 华北水利水电大学 | Vehicle exhaust composite oxide catalytic material and preparation method thereof |
CN107715891A (en) * | 2017-09-18 | 2018-02-23 | 华北水利水电大学 | Compound soot combustion catalyst of Ca-Ti ore type and preparation method thereof |
CN107754805A (en) * | 2017-09-18 | 2018-03-06 | 华北水利水电大学 | Soot composite oxide catalysts and preparation method thereof |
JP2018535818A (en) * | 2015-09-29 | 2018-12-06 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Catalyst filter having soot catalyst and SCR catalyst |
-
1995
- 1995-02-27 JP JP7038429A patent/JPH08229404A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100416735B1 (en) * | 1995-10-09 | 2004-03-26 | 삼성전기주식회사 | Catalyst for purifying exhaust gas from car and method for preparing thereof |
JP2004509740A (en) * | 2000-09-29 | 2004-04-02 | オーエムゲー アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト | Catalytic soot filter and its use in the treatment of lean exhaust gas |
JP4591959B2 (en) * | 2005-06-10 | 2010-12-01 | 国立大学法人九州大学 | Diesel particulate filter |
JP2006341235A (en) * | 2005-06-10 | 2006-12-21 | Kyushu Univ | Diesel particulate filter |
KR100804701B1 (en) * | 2006-02-10 | 2008-02-18 | 삼성에스디아이 주식회사 | High porosity catalyst and method of preparing same |
US8999878B2 (en) | 2006-07-03 | 2015-04-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purifying catalyst |
JP2008212898A (en) * | 2007-03-07 | 2008-09-18 | National Institute Of Advanced Industrial & Technology | Catalyst for oxidatively removing methane, and oxidatively removing method of methane |
US8101539B2 (en) | 2007-12-14 | 2012-01-24 | Nissan Motor Co., Ltd. | Purifying catalyst |
WO2009078246A1 (en) | 2007-12-14 | 2009-06-25 | Nissan Motor Co., Ltd. | Purification catalyst |
JP2009291753A (en) * | 2008-06-09 | 2009-12-17 | Dowa Electronics Materials Co Ltd | Exhaust gas clarifying catalyst, coating for exhaust gas clarifying catalyst, and diesel exhaust gas clarifying filter |
KR101506491B1 (en) * | 2013-05-29 | 2015-03-27 | 한국생산기술연구원 | Method of manufacturing gas filter for membrane using solvent extraction of amorphous composite powder |
JP2018535818A (en) * | 2015-09-29 | 2018-12-06 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Catalyst filter having soot catalyst and SCR catalyst |
CN107497443A (en) * | 2017-09-15 | 2017-12-22 | 华北水利水电大学 | Automotive exhaust catalysis nano material and preparation method thereof |
CN107597128A (en) * | 2017-09-15 | 2018-01-19 | 华北水利水电大学 | Soot catalysis material and preparation method thereof |
CN107684912A (en) * | 2017-09-15 | 2018-02-13 | 华北水利水电大学 | Carbon soot particles catalysis material and preparation method thereof |
CN107694574A (en) * | 2017-09-15 | 2018-02-16 | 华北水利水电大学 | Vehicle exhaust composite oxide catalytic material and preparation method thereof |
CN107715891A (en) * | 2017-09-18 | 2018-02-23 | 华北水利水电大学 | Compound soot combustion catalyst of Ca-Ti ore type and preparation method thereof |
CN107754805A (en) * | 2017-09-18 | 2018-03-06 | 华北水利水电大学 | Soot composite oxide catalysts and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2726621C1 (en) | Catalytic filter containing soot oxidation catalyst and scr-catalyst | |
RU2634899C2 (en) | Zeolite catalysts containing metals | |
ES2542510T3 (en) | CHA copper zeolite catalysts | |
JP4889873B2 (en) | Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method | |
RU2669556C2 (en) | Zeolite blend catalysts for treating exhaust gas | |
USRE39553E1 (en) | SOx tolerant NOx trap catalysts and methods of making and using the same | |
EP2191892A1 (en) | Exhaust gas purification catalyst and exhaust gas purification apparatus using the exhaust gas purification catalyst | |
JPH07116519A (en) | Exhaust gas purifying material and purifying method of exhaust gas | |
JP5864443B2 (en) | Exhaust gas purification catalyst | |
EP1029582A1 (en) | Mesoporous molecular sieves for absorbing nitrogen oxides in oxygen-rich engine exhaust gas | |
JP2005514551A (en) | Exhaust system and method for removing particulate matter from diesel engine exhaust | |
WO2002058819A2 (en) | So$g(x) tolerant no$g(x) trap catalysts and methods of making and using the same | |
JPH08229404A (en) | Exhaust gas purifying catalyst and apparatus | |
EP0714693A1 (en) | Exhaust gas cleaner and method for cleaning exhaust gas | |
US11291976B2 (en) | Mixed valent manganese-based NOx adsorber | |
EP1166854B1 (en) | Exhaust gas purifing catalyst and method for purifying exhaust gas | |
JP3952617B2 (en) | Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
JPH08155303A (en) | Exhaust gas purification catalyst carrier, production of the same and exhaust gas purification catalyst using the same and method for purifying exhaust gas | |
CN114728234A (en) | Particulate filter | |
CN115917124A (en) | Particulate filter | |
CN101439261A (en) | Cobalt oxide and cerium oxide catalyst for purifying particulate emission of diesel engine and preparation method | |
JP3584702B2 (en) | Exhaust gas purification filter and exhaust gas purification device using the same | |
US8968667B2 (en) | Electrochemical catalysis system | |
JP2002361047A (en) | Method for cleaning exhaust and apparatus therefor | |
JP3874246B2 (en) | Filter type catalyst for diesel exhaust gas purification |