JP2008212898A - Catalyst for oxidatively removing methane, and oxidatively removing method of methane - Google Patents

Catalyst for oxidatively removing methane, and oxidatively removing method of methane Download PDF

Info

Publication number
JP2008212898A
JP2008212898A JP2007057317A JP2007057317A JP2008212898A JP 2008212898 A JP2008212898 A JP 2008212898A JP 2007057317 A JP2007057317 A JP 2007057317A JP 2007057317 A JP2007057317 A JP 2007057317A JP 2008212898 A JP2008212898 A JP 2008212898A
Authority
JP
Japan
Prior art keywords
methane
catalyst
lanthanum
iron
oxidative decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007057317A
Other languages
Japanese (ja)
Other versions
JP4882048B2 (en
Inventor
Satoshi Hamakawa
聡 濱川
Fujio Mizukami
富士夫 水上
Takuji Iseya
卓司 伊瀬谷
Masahiro Furukawa
昌弘 古川
Masato Kurihara
正人 栗原
Masaomi Sakamoto
政臣 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007057317A priority Critical patent/JP4882048B2/en
Publication of JP2008212898A publication Critical patent/JP2008212898A/en
Application granted granted Critical
Publication of JP4882048B2 publication Critical patent/JP4882048B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perovskite oxide catalyst which shows a high oxidative activity to methane, does not contain any expensive palladium metal, oxidatively removes effectively methane contained much in an exhaust gas or the like at a temperature range of 600°C or less, and further, has a high thermal stability, and to provide an oxidation removing method of methane using the same. <P>SOLUTION: The catalyst for oxidation-decomposing methane comprises a composite metal oxide, which contains lanthanum and iron and keeps an atom ratio of lanthanum and iron at substantially 1/1, and lanthanum and iron form a perovskite structure, does not contain any palladium, and has a high thermal stability. The oxidation-decomposing method of methane uses the catalyst. Thereby, the perovskite oxide catalyst with a high inversion rate of CH<SB>4</SB>can be provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、メタンの酸化的分解用触媒及びそれを用いたメタンの酸化的分解方法に関するものであり、更に詳しくは、ランタンと鉄を含有し、ランタンと鉄の原子比が実質的に1/1であり、かつ該ランタンと鉄は、ペロブスカイト構造を形成している複合金属酸化物からなるメタンの酸化的分解用触媒、その製造方法及び該触媒を用いたメタンの酸化的分解方法に関するものである。   The present invention relates to a catalyst for oxidative decomposition of methane and a method for oxidative decomposition of methane using the same. More specifically, the present invention contains lanthanum and iron, and the atomic ratio of lanthanum and iron is substantially 1 /. The lanthanum and iron are related to a catalyst for oxidative decomposition of methane comprising a composite metal oxide having a perovskite structure, a method for producing the same, and a method for oxidative decomposition of methane using the catalyst. is there.

天然ガスの主成分であるメタンは、酸化的に燃焼することで、熱エネルギーとして回収することができる。メタンを効率的に熱エネルギーとして利用するためには、600℃以下の温度域で効率的に燃焼する必要がある。従来、かかるメタンの酸化的分解用の触媒としては、担体に活性金属としてパラジウムや貴金属を担持するものが知られていた。   Methane, the main component of natural gas, can be recovered as thermal energy by oxidative combustion. In order to efficiently use methane as thermal energy, it is necessary to efficiently burn in a temperature range of 600 ° C. or lower. Conventionally, a catalyst for supporting palladium or a noble metal as an active metal on a carrier has been known as a catalyst for oxidative decomposition of methane.

しかし、これらの触媒は、高価であることや、担体との相互作用の影響を大きく受けるため、調製が困難である。また、高温の反応中にシンタリングなどが起こり、触媒寿命も短いことなどから、パラジウムや貴金属を用いない安価で耐熱性の高い触媒が望まれている。一方、非金属系複合酸化物では、組成の均一性と共に高表面積な材料が望まれることから、触媒調製時に短時間でしかも低温で焼結する触媒が望まれている。   However, these catalysts are difficult to prepare because they are expensive and are greatly affected by the interaction with the support. In addition, since sintering and the like occur during a high-temperature reaction and the catalyst life is short, an inexpensive and highly heat-resistant catalyst that does not use palladium or a noble metal is desired. On the other hand, since non-metallic composite oxides are desired to have a high surface area as well as composition uniformity, a catalyst that sinters in a short time and at a low temperature during catalyst preparation is desired.

先行技術として、例えば、R.Spinicciらは、非金属系複合酸化物であるLaFeOに注目して、Pd等の金属を含まない安価なメタンの燃料触媒を報告しているが、480℃で約20%程度のメタン転換を可能とするものでしかなかった(非特許文献1)。効率的な熱エネルギーの利用には、更なる性能の向上が望まれている。 As prior art, for example, R.I. Spinicci et al. Reported an inexpensive methane fuel catalyst that does not contain metals such as Pd, focusing on LaFeO 3 , which is a non-metallic composite oxide. It was only possible (Non-Patent Document 1). For efficient utilization of thermal energy, further improvement in performance is desired.

一方、ペロブスカイト型酸化物は、高温での酸化雰囲気における熱安定性や酸素の移動性が高いことから、環境・エネルギー関連材料等として研究されているものが多い。このようなペロブスカイト型酸化物の調製法は、従来より、固相反応や共沈法が主流である。   On the other hand, perovskite oxides are often studied as environment / energy-related materials because of their high thermal stability and high oxygen mobility in an oxidizing atmosphere at high temperatures. Conventionally, a solid phase reaction or a coprecipitation method has been mainly used as a method for preparing such a perovskite oxide.

R.Spinicci et al.,Materials Chemistry and Pysics76(2002)20−25R. Spinicci et al. , Materials Chemistry and Physicals 76 (2002) 20-25.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、パラジウムや貴金属を用いない安価で耐熱性の高い触媒を開発することを目標として鋭意研究を重ねた結果、ヘキサシアノ鉄錯体を用いて架橋した六角多面型ヘテロ金属配位高分子をペロブスカイト構造の前駆体として調製したペロブスカイト型複合酸化物触媒を用いることで所期の目的を達成し得ることを見出し、本発明を完成するに至った。   Under such circumstances, in view of the above prior art, the present inventors have conducted extensive research with the goal of developing an inexpensive and heat-resistant catalyst that does not use palladium or noble metals. Discovered that the intended purpose can be achieved by using a perovskite-type complex oxide catalyst prepared by using a hexagonal polyhedral heterometallic coordination polymer crosslinked with a complex as a precursor of the perovskite structure, and completed the present invention. It came to do.

本発明は、このような観点の下になされたものであって、活性金属としてパラジウムや他の貴金属を一切含まない600℃以下の温度領域で安定にメタンを酸化的に分解するペロブスカイト型酸化物触媒及びそれを用いたメタンの酸化的分解方法を提供することを目的とするものである。   The present invention has been made under such a viewpoint, and is a perovskite oxide that stably decomposes methane oxidatively in a temperature range of 600 ° C. or lower, which does not contain palladium or other noble metals as active metals. It is an object of the present invention to provide a catalyst and a method for oxidative decomposition of methane using the catalyst.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)ランタンと鉄を含有し、ランタンと鉄の原子比が実質的に1/1であり、かつ該ランタンと鉄は、ペロブスカイト構造を形成している複合金属酸化物からなることを特徴とするメタンの酸化的分解用触媒。
(2)複合金属酸化物中の金属が、LaFeOの組成式を有し、ランタンと鉄とはペロブスカイト型酸化物を形成していることを特徴とする、前記(1)記載のメタンの酸化的分解用触媒。
(3)出発原料にヘキサシアノ鉄錯体を用いて架橋した六角多面型ヘテロ金属配位高分子を前駆体として複合金属酸化物を調製することを特徴とするメタンの酸化的分解用触媒の製造方法。
(4)前駆体が、ヘキサシアノ鉄(III)酸ラクタン錯体であることを特徴とする、前記(3)記載のメタンの酸化的分解用触媒の製造方法。
(5)前記ヘテロ金属配位高分子を、空気中、650℃〜1000℃で処理してランタン鉄ペロブスカイト金属酸化物とすることを特徴とする、前記(3)に記載のメタンの酸化的分解用触媒の製造方法。
(6)メタンの触媒を用いた酸化的分解方法において、ランタンと鉄を含有し、ランタンと鉄の原子比が実質的に1/1であり、かつ該ランタンと鉄は、ペロブスカイト構造を形成している複合金属酸化物からなる触媒を用いることを特徴とするメタンの酸化的分解方法。
(7)ランタン鉄ペロブスカイト金属酸化物を触媒として、600℃以下でメタンを酸化することを特徴とする、前記(6)に記載のメタンの酸化的分解方法。
(8)メタンと酸素の混合ガスを触媒と接触させる、前記(6)記載のメタンの酸化的分解方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) It contains lanthanum and iron, the atomic ratio of lanthanum and iron is substantially 1/1, and the lanthanum and iron are composed of a composite metal oxide that forms a perovskite structure. Catalyst for oxidative decomposition of methane.
(2) The oxidation of methane according to (1), wherein the metal in the composite metal oxide has a composition formula of LaFeO 3 , and lanthanum and iron form a perovskite oxide. Catalytic cracking catalyst.
(3) A method for producing a catalyst for oxidative decomposition of methane, comprising preparing a composite metal oxide using a hexagonal polyhedral heterometal coordination polymer crosslinked with a hexacyanoiron complex as a starting material as a precursor.
(4) The method for producing a catalyst for oxidative decomposition of methane according to the above (3), wherein the precursor is a hexacyanoferrate (III) lactan complex.
(5) Oxidative decomposition of methane as described in (3) above, wherein the heterometal coordination polymer is treated in air at 650 ° C. to 1000 ° C. to obtain a lanthanum iron perovskite metal oxide. For producing a catalyst for use.
(6) In an oxidative decomposition method using a catalyst of methane, lanthanum and iron are contained, the atomic ratio of lanthanum and iron is substantially 1/1, and the lanthanum and iron form a perovskite structure. A method for the oxidative decomposition of methane, comprising using a catalyst comprising a mixed metal oxide.
(7) The methane oxidative decomposition method according to (6) above, wherein methane is oxidized at 600 ° C. or lower using a lanthanum iron perovskite metal oxide as a catalyst.
(8) The methane oxidative decomposition method according to (6), wherein a mixed gas of methane and oxygen is brought into contact with a catalyst.

次に、本発明について更に詳細に説明する。
本発明は、メタンの酸化的分解用触媒であって、ランタンと鉄を含有し、ランタンと鉄の原子比が実質的に1/1であり、かつ該ランタンと鉄は、ペロブスカイト構造を形成している複合金属酸化物からなることを特徴とするものである。本発明では、出発原料にヘキサシアノ鉄錯体を用いて架橋した六角多面型ヘテロ金属配位高分子La[Fe(CN)]・HOをペロブスカイト構造体の前駆体として使用することにより、組成の均一性とともに低温焼結を可能にした触媒の調製方法及びペロブスカイト型酸化物触媒が提供される。
Next, the present invention will be described in more detail.
The present invention is a catalyst for oxidative decomposition of methane, which contains lanthanum and iron, the atomic ratio of lanthanum and iron is substantially 1/1, and the lanthanum and iron form a perovskite structure. It is characterized by comprising a complex metal oxide. In the present invention, a hexagonal polyhedral heterometallic coordination polymer La [Fe (CN) 6 ] · H 2 O crosslinked using a hexacyanoiron complex as a starting material is used as a precursor of the perovskite structure. A catalyst preparation method and a perovskite oxide catalyst that enable low-temperature sintering together with uniformity of the catalyst are provided.

また、本発明では、3次元の編み目状の特異な表面構造を有したペロブスカイト型酸化物触媒が提供される。また、本発明は、メタンを触媒を用いて酸化的分解する方法であって、ランタンと鉄を含有し、ランタンと鉄の原子比が実質的に1/1であり、かつ該ランタンと鉄はペロブスカイト構造を形成している複合金属酸化物からなる触媒を用いることを特徴とするものである。   The present invention also provides a perovskite oxide catalyst having a unique surface structure with a three-dimensional stitch shape. Further, the present invention is a method for oxidatively decomposing methane using a catalyst, comprising lanthanum and iron, wherein the atomic ratio of lanthanum and iron is substantially 1/1, and the lanthanum and iron are It is characterized by using a catalyst made of a composite metal oxide forming a perovskite structure.

本発明は、ランタンと鉄を含有する複合酸化物触媒の調製において、出発原料にヘキサシアノ鉄錯体を用いて架橋した六角多面型ヘテロ金属配位高分子をペロブスカイト構造体の前駆体とすること、及びランタンと鉄との原子比が実質的に1/1であること、を特徴とするものであり、かつ得られた触媒が、ペロブスカイト構造を形成していること、が必要であり、これによって、600℃以下の低温でメタンを酸化的に分解できる触媒を調製することができる。   In the preparation of a composite oxide catalyst containing lanthanum and iron, the present invention uses a hexagonal polyhedral heterometallic coordination polymer crosslinked with a hexacyanoiron complex as a starting material as a precursor of a perovskite structure, and It is necessary that the atomic ratio of lanthanum and iron is substantially 1/1, and that the obtained catalyst forms a perovskite structure. A catalyst capable of oxidatively decomposing methane at a low temperature of 600 ° C. or lower can be prepared.

本発明の触媒を調製するには、先ず、ヘキサシアノ鉄(III)酸カリウムを蒸留水に溶解させ、これと硝酸ランタンを同じ濃度になるように混合し、直後に沈殿するヘキサシアノ鉄(III)酸ランタン錯体を吸引濾過し、蒸留水、メタノールで洗浄した後に、減圧下で乾燥する。得られたものは、ペロブスカイト構造体の中間体であるヘキサシアノ鉄錯体を用いて架橋した六角多面型ヘテロ金属配位高分子であるヘキサシアノ鉄(III)酸ランタン錯体であり、これを空気中、例えば、550℃で2時間熱処理をする。その後、室温まで自然冷却し、LaFeOの組成式で示されるペロブスカイト型の複合酸化物とする。 To prepare the catalyst of the present invention, first, potassium hexacyanoferrate (III) is dissolved in distilled water, and this and lanthanum nitrate are mixed so as to have the same concentration. The lanthanum complex is filtered by suction, washed with distilled water and methanol, and then dried under reduced pressure. What is obtained is a hexacyanoferrate (III) lanthanum complex which is a hexagonal polyhedral heterometallic coordination polymer crosslinked with a hexacyanoiron complex which is an intermediate of a perovskite structure, Heat treatment is performed at 550 ° C. for 2 hours. Thereafter, it is naturally cooled to room temperature to obtain a perovskite complex oxide represented by the composition formula of LaFeO 3 .

得られた複合酸化物のX線回折図は、ランタンと鉄からなるペロブスカイト型酸化物に帰属される回折パターンを示すものである。この複合酸化物の調製方法として、固相反応法や共沈法などがあるが、組成の均一性とともに低温焼結が可能である、ヘキサシアノ鉄(III)カリウムを出発原料とする錯体法が望ましい。   The X-ray diffraction pattern of the obtained composite oxide shows a diffraction pattern attributed to the perovskite oxide composed of lanthanum and iron. As a method for preparing this complex oxide, there are a solid-phase reaction method and a coprecipitation method, but a complex method using hexacyanoiron (III) potassium as a starting material, which can be sintered at low temperature with a uniform composition, is desirable. .

上記三種類の調製法により得られた酸化物をIRスペクトルとXRDによって分析した結果、錯体法では550℃以上で、ほぼ完全にペロブスカイト型酸化物LaFeOの単相となることが分かった。これに対し、共沈法により調製した酸化物は、1000℃でもLaとFeが若干混合していた。また、固相反応法では、混合・熱処理(1000℃)を繰り返し行っても、LaFeOがほとんど生成していないことが分かった。 As a result of analyzing the oxides obtained by the above three preparation methods by IR spectrum and XRD, it was found that the complex method almost completely became a single phase of the perovskite oxide LaFeO 3 at 550 ° C. or higher. In contrast, the oxide prepared by the coprecipitation method had a slight mixture of La 2 O 3 and Fe 2 O 3 even at 1000 ° C. In the solid phase reaction method, it was found that even when mixing and heat treatment (1000 ° C.) were repeated, LaFeO 3 was hardly generated.

本発明の触媒を用いてメタンの酸化的分解を行う際には、メタンと酸素の混合ガスを触媒と接触させる。この場合、混合ガスを通気する前に、空気で予め触媒を酸化状態に保持するのが望ましい。反応圧力は、常圧であり、反応方式は、固定床流通方式が望ましい。   When performing oxidative decomposition of methane using the catalyst of the present invention, a mixed gas of methane and oxygen is brought into contact with the catalyst. In this case, it is desirable to keep the catalyst in an oxidized state with air in advance before venting the mixed gas. The reaction pressure is normal pressure, and the reaction system is preferably a fixed bed flow system.

錯体法により500℃、650℃、800℃及び1000℃の各温度で調製したLaFeOを用いてCHの酸化反応を行い、CHの転化率と反応温度の関係を調べた結果、いずれの反応温度でも、調製温度の低いLaFeOで転化率が高かった。また、550℃で調製した酸化物を用いてCHの転化率を(錯体法、共沈法、Fe及びLaを用いた場合、及び固相反応法について)比較した結果、どの反応温度でも、錯体法の場合が最もCHの転化率が高くなった。更に、1000℃で調製した酸化物のCH転化率は、錯体法以外は、CH転化率が著しく低いことが分かった。 As a result of conducting the oxidation reaction of CH 4 using LaFeO 3 prepared at 500 ° C., 650 ° C., 800 ° C. and 1000 ° C. by the complex method, and investigating the relationship between the conversion rate of CH 4 and the reaction temperature, Even at the reaction temperature, LaFeO 3 having a low preparation temperature had a high conversion rate. Further, the conversion rate of CH 4 using an oxide prepared in 550 ° C. (complex method, for coprecipitation, in the case of using Fe 2 O 3 and La 2 O 3, and a solid phase reaction method) result of comparison The conversion rate of CH 4 was the highest in the complex method at any reaction temperature. Furthermore, CH 4 conversion of oxides prepared at 1000 ° C., except complex method, CH 4 conversion was found to be significantly lower.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following examples.

(1)触媒の調製
ヘキサシアノ鉄(III)酸カリウム50gを、できるだけ少量の蒸留水に溶解させ、1.7Mの硝酸ランタンをヘキサシアノ鉄(III)酸カリウムと同濃度になるように混合し、直後に沈殿するヘキサシアノ鉄(III)酸ランタンを吸引濾過し、蒸留水、メタノールで数回洗浄した後に、減圧下で乾燥した。
(1) Preparation of catalyst 50 g of potassium hexacyanoferrate (III) was dissolved in as little distilled water as possible, and 1.7 M lanthanum nitrate was mixed to the same concentration as potassium hexacyanoferrate (III). The lanthanum hexacyanoferrate (III) precipitated in the solution was suction filtered, washed several times with distilled water and methanol, and dried under reduced pressure.

得られたヘキサシアノ鉄(III)酸ランタンは100ml/minの空気気流中で室温から550℃まで5℃/minで昇温させた後に、2時間保持した。その後、室温まで自然冷却して、複合金属酸化物を得た。この複合金属酸化物中の金属は、LaFeOの組成式で表されるもので、ランタンと鉄とはペロブスカイト型酸化物を形成していることが確認された。 The obtained lanthanum hexacyanoferrate (III) was heated from room temperature to 550 ° C. at 5 ° C./min in an air stream of 100 ml / min and held for 2 hours. Thereafter, it was naturally cooled to room temperature to obtain a composite metal oxide. The metal in this composite metal oxide is represented by the composition formula of LaFeO 3 , and it was confirmed that lanthanum and iron form a perovskite oxide.

(2)低温焼結
本実施例で得られたヘキサシアノ鉄(III)カリウムを出発原料とする錯体法で調製した触媒のX線回折図から、錯体法では550℃で均一なペロブスカイト構造体が生成できることが確認された(図1)。これにより、本発明の触媒は、焼成を600℃で実施していた既報(R.Spinicci et al.,Materials Chemistry and Pysics76(2002)20−25)の触媒に比べて、50℃の低温焼結が可能であることが確認された。
(2) Low-temperature sintering From the X-ray diffraction pattern of the catalyst prepared by the complex method using hexacyano iron (III) potassium obtained in this example as a starting material, a uniform perovskite structure is formed at 550 ° C. by the complex method. It was confirmed that it was possible (FIG. 1). Accordingly, the catalyst of the present invention is sintered at a low temperature of 50 ° C. compared with the catalyst of the previous report (R. Spinicci et al., Materials Chemistry and Pythics 76 (2002) 20-25) in which calcination is performed at 600 ° C. Is confirmed to be possible.

(3)表面の特異構造
本実施例で得られた、ヘキサシアノ鉄(III)カリウムを出発原料とする錯体法で調製した触媒は、図2に示すような特異な3次元の編み目構造を取るという特徴を有した触媒であり、この特徴のために、反応ガスメタンとの接触がより円滑になると考えられる。
(3) Specific surface structure The catalyst prepared by the complex method using hexacyanoiron (III) potassium as a starting material, obtained in this example, has a specific three-dimensional stitch structure as shown in FIG. It is considered that the catalyst has a characteristic, and the contact with the reaction gas methane becomes smoother due to this characteristic.

比較例1
実施例1で、ヘキサシアノ鉄(III)カリウムを出発原料とする錯体法で調製した触媒を用いないで、共沈法及び固相法で調製した触媒は、特異な3次元の編み目状の表面構造を有しない触媒であることが確認された(図3)。
Comparative Example 1
In Example 1, the catalyst prepared by the coprecipitation method and the solid phase method without using the catalyst prepared by the complex method using hexacyano iron (III) potassium as a starting material, has a unique three-dimensional surface structure. (Fig. 3).

(メタンの酸化的分解)
実施例1の条件で、ヘキサシアノ鉄(III)カリウムを出発原料とする錯体法(錯体分解法)で調製した触媒0.1gを充填した石英反応管に、混合ガス(メタン:O=1:6)を流速30リットル/分を流して反応を行い、一定の時間の後の反応管出口ガスをガスクロマトグラフィーにかけた。その結果、メタンの転化率は温度とともに増大し、600℃ではメタンの92.9%が酸化的に分解され、二酸化炭素と水が連続的に生成した(図4)。
(Oxidative decomposition of methane)
A quartz reaction tube filled with 0.1 g of a catalyst prepared by a complex method (complex decomposition method) using hexacyanoiron (III) potassium as a starting material under the conditions of Example 1 was mixed with a mixed gas (methane: O 2 = 1: 1). The reaction was carried out at a flow rate of 30 liters / minute, and the reaction tube outlet gas after a certain time was subjected to gas chromatography. As a result, the conversion rate of methane increased with temperature. At 600 ° C., 92.9% of methane was decomposed oxidatively, and carbon dioxide and water were continuously generated (FIG. 4).

また、500℃でも、53.9%と高いメタンの分解活性を示し、文献(R.Spinicci et al.,Materials Chemistry and Pysics76(2002)20−25)の触媒(480℃、メタン転化率25%程度)に比べて、2倍以上の高い触媒活性を有していることが確認された。   Further, even at 500 ° C., it showed a high methane decomposition activity of 53.9%, and the catalyst (480 ° C., methane conversion rate 25%) of the literature (R. Spinicci et al., Materials Chemistry and Physicals 76 (2002) 20-25). It was confirmed that the catalyst activity was twice or more as high as

比較例2
実施例2の反応条件で、ヘキサシアノ鉄(III)カリウムを出発原料とする錯体法で調製した触媒を用いないで、共沈法、固相法(固相反応法)のそれぞれで調製した触媒を用いてメタンの酸化的分解を行った。その結果、特異な3次元網目構造を有している本発明のペロブスカイト型酸化物触媒が最も高い触媒活性を示していることが確認された(図4)。
Comparative Example 2
The catalyst prepared by the coprecipitation method and the solid phase method (solid phase reaction method) was used without using the catalyst prepared by the complex method using hexacyanoiron (III) potassium as the starting material under the reaction conditions of Example 2. The methane was oxidatively decomposed. As a result, it was confirmed that the perovskite oxide catalyst of the present invention having a unique three-dimensional network structure showed the highest catalytic activity (FIG. 4).

比較例3
実施例1でヘキサシアノ鉄(III)カリウムを用いないで調製した酸化物を用いて、実施例2と同じ方法で実験を行った。その結果、ペロブスカイト構造を有している本発明の触媒が最も高い触媒活性を有していることが確認された(図4)。
Comparative Example 3
The experiment was performed in the same manner as in Example 2 using the oxide prepared in Example 1 without using potassium hexacyanoiron (III). As a result, it was confirmed that the catalyst of the present invention having a perovskite structure has the highest catalytic activity (FIG. 4).

比較例4
実施例1で硝酸ランタンを用いないで調製した酸化物を用いて、実施例2と同じ方法で実験を行った。その結果、ペロブスカイト構造を有している本発明の触媒が最も高い触媒活性を有していることが確認された(図4)。
Comparative Example 4
Using the oxide prepared in Example 1 without using lanthanum nitrate, the experiment was performed in the same manner as in Example 2. As a result, it was confirmed that the catalyst of the present invention having a perovskite structure has the highest catalytic activity (FIG. 4).

以上詳述したように、本発明は、メタンの酸化的除去用触媒及びメタンの酸化的除去方法に係るものであり、本発明により、3次元の網目状の特異な表面構造を有したメタンの酸化的分解用のペロブスカイト型酸化物LaFeOを提供することができる。本発明のメタンの酸化的分解用触媒は、パラジウムや貴金属などの活性金属を全く含まない安価なものである。また、この触媒を用いることにより、メタンを容易に酸化分解することができ、効率的にメタンを熱エネルギーとして回収できる。本発明は、従来の固相法乃至共沈法により調製した酸化物触媒と比較してCH転化率が著しく高いペロブスカイト型酸化物触媒及び該触媒によるメタン酸化分解方法を提供するものとして有用である。 As described above in detail, the present invention relates to a catalyst for oxidative removal of methane and a method for oxidative removal of methane, and according to the present invention, methane having a unique three-dimensional network surface structure is provided. A perovskite oxide LaFeO 3 for oxidative decomposition can be provided. The catalyst for oxidative decomposition of methane of the present invention is an inexpensive catalyst that does not contain any active metals such as palladium and noble metals. Moreover, by using this catalyst, methane can be easily oxidatively decomposed, and methane can be efficiently recovered as thermal energy. INDUSTRIAL APPLICABILITY The present invention is useful as a perovskite oxide catalyst having a remarkably high CH 4 conversion rate as compared with an oxide catalyst prepared by a conventional solid phase method or coprecipitation method, and a methane oxidative decomposition method using the catalyst. is there.

ヘキサシアノ鉄(III)カリウムを出発原料とする錯体法で調製したLaFeOのX線回折図を示す。Hexacyanoferrate (III) potassium showing the X-ray diffraction diagram of LaFeO 3 prepared by complex method used as a starting material. ヘキサシアノ鉄(III)カリウムを出発原料とする錯体法で調製したLaFeOの表面観察像を示す。Shows the surface observation image of LaFeO 3 prepared in hexacyanoferrate (III) complex method used as a starting material potassium. 共沈法(a)及び固相法(b)で調製したLaFeOの表面観察像を示す。Shows the co-precipitation method (a) and the solid surface observation image of LaFeO 3 prepared in phase (b). LaFeOを用いたメタンの酸化的分解反応を示す。The oxidative decomposition reaction of methane using LaFeO 3 is shown.

Claims (8)

ランタンと鉄を含有し、ランタンと鉄の原子比が実質的に1/1であり、かつ該ランタンと鉄は、ペロブスカイト構造を形成している複合金属酸化物からなることを特徴とするメタンの酸化的分解用触媒。   Lanthanum and iron are contained, the atomic ratio of lanthanum and iron is substantially 1/1, and the lanthanum and iron are composed of a complex metal oxide forming a perovskite structure. Catalyst for oxidative decomposition. 複合金属酸化物中の金属が、LaFeOの組成式を有し、ランタンと鉄とはペロブスカイト型酸化物を形成していることを特徴とする、請求項1記載のメタンの酸化的分解用触媒。 The catalyst for oxidative decomposition of methane according to claim 1, wherein the metal in the composite metal oxide has a composition formula of LaFeO 3 and lanthanum and iron form a perovskite oxide. . 出発原料にヘキサシアノ鉄錯体を用いて架橋した六角多面型ヘテロ金属配位高分子を前駆体として複合金属酸化物を調製することを特徴とするメタンの酸化的分解用触媒の製造方法。   A method for producing a catalyst for oxidative decomposition of methane, comprising preparing a composite metal oxide using a hexagonal polyhedral heterometallic coordination polymer crosslinked with a hexacyanoiron complex as a starting material as a precursor. 前駆体が、ヘキサシアノ鉄(III)酸ラクタン錯体であることを特徴とする、請求項3記載のメタンの酸化的分解用触媒の製造方法。   4. The method for producing a catalyst for oxidative decomposition of methane according to claim 3, wherein the precursor is a lactane complex of hexacyanoferrate (III). 前記ヘテロ金属配位高分子を、空気中、650℃〜1000℃で処理してランタン鉄ペロブスカイト金属酸化物とすることを特徴とする、請求項3に記載のメタンの酸化的分解用触媒の製造方法。   [Claim 4] The process for producing a catalyst for oxidative decomposition of methane according to claim 3, wherein the heterometal coordination polymer is treated at 650C to 1000C in air to obtain a lanthanum iron perovskite metal oxide. Method. メタンの触媒を用いた酸化的分解方法において、ランタンと鉄を含有し、ランタンと鉄の原子比が実質的に1/1であり、かつ該ランタンと鉄は、ペロブスカイト構造を形成している複合金属酸化物からなる触媒を用いることを特徴とするメタンの酸化的分解方法。   In a methane-catalyzed oxidative decomposition method, a composite containing lanthanum and iron, the atomic ratio of lanthanum and iron being substantially 1/1, and the lanthanum and iron forming a perovskite structure A method for oxidative decomposition of methane, comprising using a catalyst comprising a metal oxide. ランタン鉄ペロブスカイト金属酸化物を触媒として、600℃以下でメタンを酸化することを特徴とする、請求項6に記載のメタンの酸化的分解方法。   The method for oxidative decomposition of methane according to claim 6, wherein methane is oxidized at 600 ° C. or lower using a lanthanum iron perovskite metal oxide as a catalyst. メタンと酸素の混合ガスを触媒と接触させる、請求項6記載のメタンの酸化的分解方法。   The method for oxidative decomposition of methane according to claim 6, wherein a mixed gas of methane and oxygen is brought into contact with the catalyst.
JP2007057317A 2007-03-07 2007-03-07 Catalyst for oxidative removal of methane and method for oxidative removal of methane Expired - Fee Related JP4882048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007057317A JP4882048B2 (en) 2007-03-07 2007-03-07 Catalyst for oxidative removal of methane and method for oxidative removal of methane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007057317A JP4882048B2 (en) 2007-03-07 2007-03-07 Catalyst for oxidative removal of methane and method for oxidative removal of methane

Publications (2)

Publication Number Publication Date
JP2008212898A true JP2008212898A (en) 2008-09-18
JP4882048B2 JP4882048B2 (en) 2012-02-22

Family

ID=39833577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007057317A Expired - Fee Related JP4882048B2 (en) 2007-03-07 2007-03-07 Catalyst for oxidative removal of methane and method for oxidative removal of methane

Country Status (1)

Country Link
JP (1) JP4882048B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132016A (en) * 2013-12-13 2015-07-23 国立研究開発法人産業技術総合研究所 Rare metal water-based fractional precipitation method utilizing polymer coordination
CN105776430A (en) * 2016-04-25 2016-07-20 武汉玻尔科技股份有限公司 Electro-catalytic oxidation device and method for sewage treatment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293835A (en) * 1994-04-25 1995-11-10 Mitsubishi Heavy Ind Ltd Method of burning combustible gas
JPH08229404A (en) * 1995-02-27 1996-09-10 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst and apparatus
JP2006036558A (en) * 2004-07-23 2006-02-09 Dowa Mining Co Ltd Perovskite complex oxide and catalyst
JP2006062942A (en) * 2004-07-30 2006-03-09 Dowa Mining Co Ltd Perovskite-type composite oxide having pore distribution with high catalytic activity and catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07293835A (en) * 1994-04-25 1995-11-10 Mitsubishi Heavy Ind Ltd Method of burning combustible gas
JPH08229404A (en) * 1995-02-27 1996-09-10 Toyota Central Res & Dev Lab Inc Exhaust gas purifying catalyst and apparatus
JP2006036558A (en) * 2004-07-23 2006-02-09 Dowa Mining Co Ltd Perovskite complex oxide and catalyst
JP2006062942A (en) * 2004-07-30 2006-03-09 Dowa Mining Co Ltd Perovskite-type composite oxide having pore distribution with high catalytic activity and catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015132016A (en) * 2013-12-13 2015-07-23 国立研究開発法人産業技術総合研究所 Rare metal water-based fractional precipitation method utilizing polymer coordination
CN105776430A (en) * 2016-04-25 2016-07-20 武汉玻尔科技股份有限公司 Electro-catalytic oxidation device and method for sewage treatment

Also Published As

Publication number Publication date
JP4882048B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
Ding et al. A novel composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas
Ma et al. Effects of Zr doping on Fe2O3/CeO2 oxygen carrier in chemical looping hydrogen generation
Wasalathanthri et al. Mesoporous manganese oxides for NO2 assisted catalytic soot oxidation
Ding et al. Development of BaSrCo-based perovskite for chemical-looping steam methane reforming: a study on synergistic effects of A-site elements and CeO2 support
US20160167962A1 (en) Ammonia oxidation/decomposition catalyst
Wang et al. Highly improved soot combustion performance over synergetic MnxCe1− xO2 solid solutions within mesoporous nanosheets
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
US8435486B2 (en) Redox material for thermochemical water splitting, and method for producing hydrogen
Wang et al. Hierarchically structured NiO/CeO2 nanocatalysts templated by eggshell membranes for methane steam reforming
CN113385185A (en) High-activity and selective perovskite type photo-thermal catalyst and preparation method and application thereof
Cheng et al. Achieving efficient toluene mineralization over ordered porous LaMnO3 catalyst: The synergistic effect of high valence manganese and surface lattice oxygen
Yin et al. Chemical looping steam methane reforming using Al doped LaMnO3+ δ perovskites as oxygen carriers
Colussi et al. Ceria-based palladium zinc catalysts as promising materials for water gas shift reaction
JP6272609B2 (en) Method for producing composite oxide and composite oxide catalyst
US8807988B2 (en) Regenerable MgO promoted metal oxide oxygen carriers for chemical looping combustion
Cao et al. Screening loaded perovskite oxygen carriers for chemical looping steam methane reforming
Chen et al. Migration of lattice oxygen during chemical looping dry reforming of methane with Ca2Fe2O5/Zr0. 5Ce0. 5O2 oxygen carrier
JP4882048B2 (en) Catalyst for oxidative removal of methane and method for oxidative removal of methane
Li et al. Methane oxidation to synthesis gas using lattice oxygen in La1− xSrxFeO3 perovskite oxides instead of molecular oxygen
US9962685B2 (en) Catalyst and process for producing same
CN114849698B (en) Mesoporous Na-alpha-MnO 2 Catalyst, preparation method and application thereof
CN114225969A (en) Cerium-based metal organic framework derivative material with synergistic effect with low-temperature plasma and preparation method and application thereof
Jain et al. Role of La-based perovskite catalysts in environmental pollution remediation
JP7349146B2 (en) Separation of catalyst carrier and solid carbon and recovery method of carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees