JP2002361047A - Method for cleaning exhaust and apparatus therefor - Google Patents

Method for cleaning exhaust and apparatus therefor

Info

Publication number
JP2002361047A
JP2002361047A JP2001167506A JP2001167506A JP2002361047A JP 2002361047 A JP2002361047 A JP 2002361047A JP 2001167506 A JP2001167506 A JP 2001167506A JP 2001167506 A JP2001167506 A JP 2001167506A JP 2002361047 A JP2002361047 A JP 2002361047A
Authority
JP
Japan
Prior art keywords
exhaust gas
filter
exhaust
catalyst
gas purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001167506A
Other languages
Japanese (ja)
Other versions
JP4174976B2 (en
Inventor
Hiroshi Akama
弘 赤間
Yasunari Hanaki
保成 花木
Motohisa Kamijo
元久 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001167506A priority Critical patent/JP4174976B2/en
Publication of JP2002361047A publication Critical patent/JP2002361047A/en
Application granted granted Critical
Publication of JP4174976B2 publication Critical patent/JP4174976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cleaning exhaust by which NOx and PM can be continuously self-removed under ordinary burning conditions without requiring specified control and to provide an exhaust cleaning catalyst and an apparatus for cleaning exhaust. SOLUTION: In the method for cleaning exhaust, PM particles and NOx in exhaust are removed by converting the PM particles to HC by a reaction represented by the formula mC+nH2 O→H2n Cm +n/2.O2 . The apparatus for cleaning exhaust has a filter obtained by carrying a noble metal and fine oxide particles of <=1 μm average particle diameter on the inner walls of pores in a monolithic filer and disposed in an exhaust flue. In the method for cleaning exhaust, hydrogen generation reactions represented by the formulae C+H2 O→H2 +CO and C+2H2 O→2H2 +CO2 are carried out at <=500 deg.C exhaust temperature. The exhaust cleaning catalyst contains an H2 generation catalyst and an NOx removal catalyst, the H2 generation catalyst contains Rh-carrying porous particles and metals such as Fe, Co, Mn and Ni, and these metals are contained at a ratio of 0.1-10 when Rh is represented by 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気浄化方法、排
気浄化触媒及び排気浄化装置に係り、更に詳細には、内
燃機関などから発生する排気中のパーティキュレート
(PM)粒子と窒素酸化物(NOx)を高効率で浄化し
得る排気浄化方法、排気浄化触媒及び排気浄化装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification method, an exhaust gas purification catalyst, and an exhaust gas purification apparatus, and more particularly, to particulate (PM) particles and nitrogen oxide (PM) in exhaust gas generated from an internal combustion engine or the like. The present invention relates to an exhaust gas purification method, an exhaust gas purification catalyst, and an exhaust gas purification device capable of purifying NOx) with high efficiency.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
燃費向上及び二酸化炭素排出量の削減の観点から、理論
空燃比より高い空燃比でも運転するリーンバーンエンジ
ンが普及してきている。特に、ディーゼルエンジンは、
その低燃費のゆえに改めて注目されている。
2. Description of the Related Art In recent years,
From the viewpoint of improving fuel efficiency and reducing carbon dioxide emission, lean burn engines that operate even at an air-fuel ratio higher than the stoichiometric air-fuel ratio have become widespread. In particular, diesel engines
Due to its low fuel consumption, it is attracting attention again.

【0003】しかしながら、排気中に固体粒子分である
PMを含み、且つ排気温度が低いことから、従来型の触
媒では高効率の排気浄化が困難な状況にある。昨今はエ
ンジンの燃費向上技術が格段に進歩し、排気温度が更に
低下する傾向にあるために、排気の浄化は、ますます困
難となってきており、ディーゼルエンジンの排気中の有
害成分を高効率浄化できる有効な方法が望まれている。
従来のディーゼルエンジンの排気浄化用触媒としては、
白金(Pt)をアルミナ(Al)等の耐火性高表
面積無機担体材料に担持してなる酸化触媒が用いられて
いるが、COとHCの酸化が主機能であり、SOF分も
ある程度は酸化できるものの、PMの主成分であるドラ
イスート(C=炭素粒子)の浄化には効力を示さない。
[0003] However, since the exhaust gas contains PM as solid particles and the exhaust temperature is low, it is difficult to purify the exhaust gas with high efficiency using the conventional catalyst. In recent years, exhaust gas purification has become increasingly difficult due to the remarkable progress in engine fuel efficiency technology and the tendency for exhaust temperatures to further decrease, resulting in highly efficient removal of harmful components in diesel engine exhaust. An effective method that can purify is desired.
As a conventional catalyst for exhaust gas purification of diesel engines,
An oxidation catalyst in which platinum (Pt) is supported on a refractory high surface area inorganic carrier material such as alumina (Al 2 O 3 ) is used, but the main function is oxidation of CO and HC, and the SOF content is also to some extent. Although it can be oxidized, it has no effect on the purification of dry soot (C = carbon particles) which is a main component of PM.

【0004】ディーゼルエンジンの排気のようにPM分
を含有する排気を浄化するには、フィルタ技術が不可欠
であり、コージェライトや炭化珪素から成る多孔質焼結
体や繊維状のフィルタが多数提案されている。なお、上
記繊維状フィルタの素材としては、アルミナやシリカ等
各種材料からなるものも提案されている。また、自動車
技術会 学術講演会前刷集 No.103−98(19
98年秋季大会)には、炭化珪素繊維を用いたディーゼ
ル・パーティキュレート・フィルタ(DPF)が提案さ
れているが、トラップしたPMを除去してフィルタを再
生するためのヒーターが不可欠であり、複雑なシステム
が必要であることから、搭載スペースが少ない乗用車に
は適用が困難である。
In order to purify exhaust gas containing PM, such as exhaust gas from a diesel engine, a filter technology is indispensable. A number of porous sintered bodies made of cordierite and silicon carbide and fibrous filters have been proposed. ing. As the material of the fibrous filter, those made of various materials such as alumina and silica have been proposed. In addition, preprints of the Automotive Engineering Society Academic Lecture No. 103-98 (19
1998 Fall Meeting), a diesel particulate filter (DPF) using silicon carbide fiber has been proposed, but a heater for removing trapped PM and regenerating the filter is indispensable. It is difficult to apply it to passenger cars with a small mounting space because of the need for a simple system.

【0005】また、ヒーターを用いないでフィルタを再
生する方法として、フィルタの前段にPt系触媒を配置
させることによって排気中のNOを酸化力の強いNO
に転化し、このNOの酸化力を利用してフィルタにト
ラップしたPM分を燃焼する方法が提案されている(特
開平1−318715号公報,J.P.Warren,
et.al.,”Effects on after−
treatmenton particulate m
atter when using theConti
nuously Regenerating Tra
p”,ImechE 1998 S491/006,
B.Carberry,et.al.,”A focu
s on current and future p
article after−treatment s
ystems”,ImechE1998 S491/0
07)。この方法は、排気中の成分同士の反応を利用し
たもので、トラップしたPM分を連続的に燃焼浄化でき
ることから、連続再生式トラップと呼ばれている。しか
し、PM中のカーボン(C)は固体粒子であるために、
NOとの反応速度は比較的遅く、エンジンから排出さ
れたCを十分な速度で燃焼させるためには、排気の条件
が400℃以上の比較的高い温度条件を要すること、更
には、そのような温度域で酸化剤となるNO量を増加
することが必要となる。即ち、エンジンからのNOx排
出量を増やすことが必要になり、その結果、増えたNO
xを浄化するために高性能のNOx触媒が必要となる。
As a method of regenerating a filter without using a heater, a Pt-based catalyst is disposed in front of the filter to convert NO in exhaust gas into NO 2 having a strong oxidizing power.
And a method of burning the PM trapped in the filter using the oxidizing power of NO 2 (JP-A-1-318715, JP Warren,
et. al. , "Effects on after-
treatmentton particulateic m
after when using the Conti
Nuusly Regenerating Tra
p ", ImechE 1998 S491 / 006,
B. Carvery, et. al. , "A focus
s on current and future p
article after-treatments
systems ", Imech 1998 S491 / 0
07). This method utilizes a reaction between components in exhaust gas, and is capable of continuously burning and purifying trapped PM components. Therefore, this method is called a continuous regeneration trap. However, since carbon (C) in PM is a solid particle,
The reaction speed with NO 2 is relatively slow, and in order to burn C discharged from the engine at a sufficient speed, the condition of the exhaust requires relatively high temperature conditions of 400 ° C. or more. It is necessary to increase the amount of NO 2 serving as an oxidant in a suitable temperature range. That is, it is necessary to increase the NOx emission from the engine, and as a result, the increased NOx
In order to purify x, a high-performance NOx catalyst is required.

【0006】PMとNOxを同時に浄化するための各種
方法も提案されている。例えば、特開平7−11651
9号公報には、多孔質フィルタにペロブスカイト構造を
有する触媒を担持してなる排ガス浄化材が提案されてお
り、これは排ガス中に含まれる微粒子状物質及び/又は
炭化水素を還元剤として作用させ、排気中の窒素酸化物
を還元する方法であり、該触媒を用い下記反応式5及び
6 C+2NO→N+CO …(5) 4HC+10NO→5N+4CO+2HO …(6) で表される反応によりNOxを還元するとされている。
上記反応において、反応式6は気体分子同士の反応であ
ることから触媒作用が期待されるのに対し、反応式5は
固体と気体との反応であるため触媒作用を期待すること
は難しく、通常の走行モード条件下でフィルタ再生がで
きるかは不明である。
Various methods for simultaneously purifying PM and NOx have been proposed. For example, Japanese Patent Application Laid-Open No. Hei 7-11651
No. 9 proposes an exhaust gas purifying material in which a catalyst having a perovskite structure is supported on a porous filter, which makes fine particles and / or hydrocarbons contained in exhaust gas act as a reducing agent. A method of reducing nitrogen oxides in exhaust gas, using the catalyst, and represented by the following reaction formulas 5 and 6: C + 2NO → N 2 + CO 2 (5) 4HC + 10NO → 5N 2 + 4CO 2 + 2H 2 O (6) It is said that NOx is reduced by such a reaction.
In the above reaction, the reaction formula 6 is a reaction between gas molecules, and therefore, a catalytic action is expected. On the other hand, the reaction formula 5 is a reaction between a solid and a gas, so it is difficult to expect a catalytic action. It is unknown whether the filter regeneration can be performed under the running mode conditions.

【0007】一方、特許掲載第2722987号公報に
は、NOx吸収剤とフィルタを伝熱可能な位置に配置し
てNOx吸収剤からNOx放出還元後にPMを燃焼させ
ることが提案されている。また、特開平9−94434
号公報には、NOx吸収剤をウォールフロー型フィルタ
の隔壁気孔内部に担持して、フィルタとNOx吸収剤を
一体化した触媒が提案されている。
On the other hand, Japanese Patent Publication No. 2722987 proposes disposing a NOx absorbent and a filter at a position where heat can be transferred, and burning PM after reducing and releasing NOx from the NOx absorbent. Also, Japanese Patent Application Laid-Open No. 9-94434
Japanese Patent Laid-Open Publication No. HEI 9-214686 proposes a catalyst in which a NOx absorbent is supported inside the partition pores of a wall flow type filter, and the filter and the NOx absorbent are integrated.

【0008】これらはNOxを処理する触媒とフィルタ
とを組み合わせて得られる技術であり、NOx処理とP
M燃焼のためにそれぞれ別のエンジン制御を必要とす
る。NOx吸収剤を働かせてNOxを吸収、還元するた
めには排気の空燃比(A/F)を変える制御が必要であ
る。また、フィルタを再生させるための堆積PMの燃
焼、及びNOx吸収剤にトラップされた硫黄化合物の除
去には、NOx吸収剤及び/又はフィルタを600℃あ
るいはそれ以上にまで昇温させる必要があり、更にNO
x吸収剤からの硫黄化合物の除去は還元雰囲気下で行う
のに対し、フィルタの再生は酸化雰囲気条件で行うこと
が必要である。更にまた、高温化により触媒の劣化を促
進し、システム的にも高コスト化するという問題点があ
る。このような排気温度や雰囲気(A/F)の制御は複
雑であり、また、燃費や運転性の犠牲を伴うことから、
通常の走行条件の下で特定の制御を加えることなく連続
的に自己浄化可能な排気浄化方法が切望されている。ま
た、PM、NOxの同時除去を目的に、フィルタに触媒
を担持する提案がなされているが、触媒成分とPM粒子
との接触あるいは衝突確率という観点からの工夫はなれ
ていなかった。
[0008] These are techniques obtained by combining a catalyst for treating NOx and a filter.
Separate engine controls are required for M combustion. Control of changing the air-fuel ratio (A / F) of exhaust gas is required to absorb and reduce NOx by operating the NOx absorbent. Further, in order to burn the deposited PM for regenerating the filter and to remove the sulfur compounds trapped in the NOx absorbent, it is necessary to raise the temperature of the NOx absorbent and / or the filter to 600 ° C. or more. Further NO
While the removal of sulfur compounds from the x-absorbent is performed under a reducing atmosphere, the regeneration of the filter needs to be performed under oxidizing atmosphere conditions. Further, there is a problem that the catalyst is deteriorated by the high temperature and the cost is increased in terms of the system. Such control of the exhaust temperature and the atmosphere (A / F) is complicated, and involves sacrificing fuel efficiency and drivability.
There is a long-felt need for an exhaust gas purification method that can continuously perform self-purification without adding specific control under normal driving conditions. In addition, although a proposal has been made to carry a catalyst on a filter for the purpose of simultaneous removal of PM and NOx, no device has been devised from the viewpoint of contact probability or collision probability between a catalyst component and PM particles.

【0009】本発明は、このような従来技術にの有する
課題に鑑みてなされたものであり、その目的とするとこ
ろは、通常の燃焼条件の下で、特定の制御を必要とせず
にNOxとPMを連続的に自己浄化することが可能な排
気浄化方法、排気浄化触媒及び排気浄化装置を提供する
ことにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to produce NOx under ordinary combustion conditions without requiring specific control. An object of the present invention is to provide an exhaust gas purification method, an exhaust gas purification catalyst, and an exhaust gas purification device capable of continuously self-purifying PM.

【0010】[0010]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、PM中のC固体粒
子(パーティキュレート粒子)を一旦炭化水素や水素に
変換すること、触媒成分とPM粒子との接触(衝突)率
を高めて該変換反応を促進させることにより、上記課題
が解決できることを見出し、本発明を完成するに至っ
た。
Means for Solving the Problems The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, once converted C solid particles (particulate particles) in PM into hydrocarbons and hydrogen; The inventors have found that the above problem can be solved by increasing the contact (collision) rate between the catalyst component and PM particles to promote the conversion reaction, and have completed the present invention.

【0011】即ち、本発明の排気浄化方法は、排気中の
パーティキュレート粒子及び窒素酸化物を浄化する方法
であって、次の反応式1 mC+nHO→H2n+n/2・O …(1) で表される反応によりパーティキュレート粒子を炭化水
素に変換する過程を含むことを特徴とする。
That is, the exhaust gas purification method of the present invention is a method for purifying particulate particles and nitrogen oxides in exhaust gas. The following reaction formula 1 mC + nH 2 O → H 2n C m + n / 2 · O 2 (1) is characterized by including a process of converting particulate particles into hydrocarbons by the reaction represented by the following formula (1).

【0012】また、本発明の排気浄化方法の好適形態
は、上記炭化水素を窒素酸化物と反応させ、次の反応式
2 H2n+4NO→2N+mCO+nHO …(2) で表される反応により窒素、二酸化炭素及び水に変換す
る過程を含むことを特徴とする。
[0012] Preferred embodiments of the exhaust gas purifying method of the present invention, the hydrocarbon is reacted with the nitrogen oxides, in the following reaction scheme 2 H 2n C m + 4NO → 2N 2 + mCO 2 + nH 2 O ... (2) It is characterized by including a process of converting into nitrogen, carbon dioxide, and water by the represented reaction.

【0013】更に、本発明の排気浄化装置は、上記排気
浄化方法を用いて排気中のパーティキュレート粒子及び
窒素酸化物を浄化する装置であって、モノリス型フィル
タの気孔内壁に、白金、パラジウム及びロジウムから成
る群より選ばれた少なくとも1種の貴金属成分と、平均
粒径が1μm以下であるアルミナ、チタニア、ジルコニ
ア及びシリカから成る群より選ばれた少なくとも1種の
酸化物微粒子と、を担持して成る触媒機能付きフィルタ
を内燃機関の排気煙道に配設したことを特徴とする。
Further, an exhaust gas purifying apparatus according to the present invention is an apparatus for purifying particulate particles and nitrogen oxides in exhaust gas by using the above-mentioned exhaust gas purifying method. Carrying at least one noble metal component selected from the group consisting of rhodium and at least one oxide fine particle selected from the group consisting of alumina, titania, zirconia and silica having an average particle size of 1 μm or less; The filter having a catalytic function is disposed in an exhaust flue of an internal combustion engine.

【0014】更にまた、本発明の排気浄化装置の好適形
態は、上記モノリス型フィルタの気孔率が30〜80%
であり、平均気孔径が5〜40μmであることを特徴と
する。
Further, in a preferred embodiment of the exhaust gas purifying apparatus according to the present invention, the monolithic filter has a porosity of 30 to 80%.
And an average pore diameter of 5 to 40 μm.

【0015】また、本発明の排気浄化装置の他の好適形
態は、上記触媒機能付きフィルタが、2段以上に分割さ
れ直列に配置されて成ることを特徴とする。
Another preferred embodiment of the exhaust gas purifying apparatus according to the present invention is characterized in that the filter with a catalytic function is divided into two or more stages and arranged in series.

【0016】更に、本発明の排気浄化装置の更に他の好
適形態は、上記触媒機能付きフィルタの排気上流側に、
炭化水素及び可溶性有機成分を除去する機能を有するH
C・SOF除去材料を配設して成ることを特徴とする。
Further, still another preferred embodiment of the exhaust gas purifying apparatus of the present invention is arranged on the exhaust gas upstream side of the filter having a catalytic function.
H having a function of removing hydrocarbons and soluble organic components
It is characterized by comprising a C / SOF removal material.

【0017】更にまた、本発明の排気浄化装置の製造方
法は、上記排気浄化装置を製造する方法であって、上記
モノリス型フィルタの気孔内壁に上記酸化物微粒子を分
散担持させた後に、上記貴金属成分を含浸法及び/又は
メッキ法によって担持させることを特徴とする。
Further, the method of manufacturing an exhaust gas purifying apparatus according to the present invention is a method of manufacturing the above exhaust gas purifying apparatus, wherein the noble metal is dispersed and supported on the inner wall of the pores of the monolithic filter. The components are supported by an impregnation method and / or a plating method.

【0018】また、本発明の他の排気浄化方法は、排気
中のパーティキュレート粒子及び窒素酸化物を浄化する
方法であって、内燃機関から排出される排気の温度が5
00℃以下のときに、次の反応式3及び/又は4 C+HO→H+CO …(3) C+2HO→2H+CO …(4) で表される水素生成反応を行う過程を含むことを特徴と
する。
Another method of purifying exhaust gas according to the present invention is a method of purifying particulate particles and nitrogen oxides in exhaust gas, wherein the temperature of exhaust gas discharged from an internal combustion engine is 5%.
When the temperature is not higher than 00 ° C., a process of performing a hydrogen generation reaction represented by the following reaction formula 3 and / or 4 C + H 2 O → H 2 + CO (3) C + 2H 2 O → 2H 2 + CO 2 (4) It is characterized by including.

【0019】更に、本発明の排気浄化触媒は、上記排気
浄化方法に用いられる水素生成触媒及び窒素酸化物浄化
触媒を含む排気浄化触媒であって、上記水素生成触媒
が、少なくともロジウムを担持した多孔質粒子の粉末
と、鉄、コバルト、マンガン及びニッケルから成る群よ
り選ばれた少なくとも1種の金属とを含み、これら金属
はロジウムを1としたときに0.1〜10の比率で含ま
れることを特徴とする。
Further, the exhaust gas purifying catalyst of the present invention is an exhaust gas purifying catalyst including a hydrogen generating catalyst and a nitrogen oxide purifying catalyst used in the above exhaust gas purifying method, wherein the hydrogen generating catalyst is a porous material carrying at least rhodium. Powder, and at least one metal selected from the group consisting of iron, cobalt, manganese and nickel, wherein these metals are contained in a ratio of 0.1 to 10 when rhodium is defined as 1. It is characterized by.

【0020】更にまた、本発明の他の排気浄化装置は、
上記排気浄化触媒を用いて排気中のパーティキュレート
粒子及び窒素酸化物を浄化する装置であって、内燃機関
の排気煙道の上流側に上記水素生成触媒を配設し、その
下流側に上記窒素酸化物浄化触媒を配設して成ることを
特徴とする。
Further, another exhaust gas purifying apparatus of the present invention comprises:
An apparatus for purifying particulate particles and nitrogen oxides in exhaust gas using the exhaust gas purification catalyst, wherein the hydrogen generation catalyst is disposed upstream of an exhaust flue of an internal combustion engine, and the nitrogen An oxide purification catalyst is provided.

【0021】また、本発明の更に他の排気浄化装置は、
上記排気浄化触媒を用いて排気中のパーティキュレート
粒子及び窒素酸化物を浄化する装置であって、内燃機関
の排気煙道上に上記窒素酸化物浄化触媒の積層体を配設
し、その上に上記水素生成触媒を被覆して成ることを特
徴とする。
Further, still another exhaust gas purifying apparatus of the present invention comprises:
An apparatus for purifying particulate particles and nitrogen oxides in exhaust gas using the exhaust gas purification catalyst, wherein a stack of the nitrogen oxide purification catalyst is disposed on an exhaust flue of an internal combustion engine, and the It is characterized by being coated with a hydrogen generation catalyst.

【0022】[0022]

【発明の実施の形態】以下、本発明の排気浄化方法につ
いて詳細に説明する。なお、本明細書において「%」は
特記しない限り、質量百分率を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The exhaust gas purifying method of the present invention will be described below in detail. In this specification, “%” indicates a percentage by mass unless otherwise specified.

【0023】本発明の排気浄化方法は、排気中のパーテ
ィキュレート(PM)粒子及び窒素酸化物(NOx)を
浄化する方法であって、PM粒子を炭化水素(HC)に
変換することにより、通常の走行条件では燃焼し難い排
気中のPM粒子を高効率で浄化することを特徴とする。
また、生成したHCを排気中のNOxと反応させること
で、NOxは無害な窒素(N)、CO及びHOに
変換される。なお、生成したHCは、直ちに酸化して二
酸化炭素(CO)や水(HO)に変換しても良い。
The exhaust gas purifying method of the present invention is a method of purifying particulate (PM) particles and nitrogen oxides (NOx) in exhaust gas, and usually converts PM particles into hydrocarbons (HC) by converting them into hydrocarbons (HC). The present invention is characterized in that PM particles in exhaust gas, which are difficult to combust under the traveling conditions, are highly efficiently purified.
Further, by reacting the generated HC with NOx in the exhaust gas, NOx is converted into harmless nitrogen (N 2 ), CO 2 and H 2 O. The generated HC may be immediately oxidized and converted into carbon dioxide (CO 2 ) or water (H 2 O).

【0024】即ち、本発明の排気浄化方法では、次の反
応式1及び2 mC+nHO→H2n+n/2・O …(1) H2n+4NO→2N+mCO+nHO …(2) で表される変換反応を進行させることでNOx及びPM
がほぼ同時に除去される。ここで、CとHOによるH
C生成反応(式1)において、PM中のCがHCに変換
されるメカニズムの詳細は現時点では不明であるが、本
発明者らは、例えば、Pt/アルミナ系触媒を、C(グ
ラファイト)/O/HO/N系のモデルガスと反
応させた評価を行い、図1のグラフに示すように、HC
を検出した。また、モデルガス中にNOを追加導入して
評価を行い、図2に示すように、NO濃度が減少するこ
とを確認した。従って、HC生成反応(式1)及びHC
−NO反応(式2)が起こっていることが推察できる。
That is, in the exhaust gas purification method of the present invention, the following reaction formulas 1 and 2 mC + nH 2 O → H 2n C m + n / 2 · O 2 (1) H 2n C m + 4NO → 2N 2 + mCO 2 + nH 2 O 2 (2) NOx and PM
Are almost simultaneously removed. Here, H by C and H 2 O
The details of the mechanism by which C in PM is converted to HC in the C generation reaction (Equation 1) are not known at this time, but the present inventors, for example, use Pt / alumina-based catalyst to convert C (graphite) / An evaluation was performed by reacting with an O 2 / H 2 O / N 2 system model gas, and as shown in the graph of FIG.
Was detected. In addition, evaluation was performed by additionally introducing NO into the model gas, and it was confirmed that the NO concentration decreased as shown in FIG. Therefore, the HC generation reaction (Equation 1)
It can be inferred that the -NO reaction (Equation 2) is occurring.

【0025】更に、上記HC生成反応(式1)及びHC
−NO反応(式2)を進行させるには、一例である図1
及び図2のグラフからもわかるように、温度条件を35
0℃以下とすることが好ましく、特に280℃以下とす
ることがより好ましい。なお、下限温度は、触媒の性能
などにより異なるが、概ね200℃以上の温度であれば
顕著な反応速度が得られる。ここで、350℃より高い
温度条件では、上記HC生成反応(式1)で生成したH
Cの酸化反応が優勢となり、上記HC−NO反応(式
2)も劣勢となると考えられる。一方、酸素の多い排気
条件(リーンバーンエンジンなど)におけるPt系触媒
上でのHC−NOx反応(式2)は、概ね150℃〜3
00℃の温度域で顕著に進行することが知られている。
このように、本発明の排気浄化方法を用いれば、上記H
C生成反応(式1)及びHC−NO反応(式2)を比較
的低温条件で進行させ得るので、PMが重大な問題とな
っているディーゼルエンジンからの排気を特定のエンジ
ン制御を行わずに高効率で浄化できる。
Further, the above HC generation reaction (Equation 1) and HC
To make the -NO reaction (Equation 2) proceed, an example is shown in FIG.
As can be seen from the graph of FIG.
The temperature is preferably set to 0 ° C or lower, more preferably 280 ° C or lower. The lower limit temperature varies depending on the performance of the catalyst and the like, but a remarkable reaction rate can be obtained at a temperature of approximately 200 ° C. or higher. Here, under a temperature condition higher than 350 ° C., H generated by the above-described HC generation reaction (Equation 1) is used.
It is considered that the oxidation reaction of C becomes dominant and the HC-NO reaction (Equation 2) also becomes inferior. On the other hand, the HC-NOx reaction (Equation 2) on a Pt-based catalyst under exhaust conditions with a large amount of oxygen (e.g., a lean-burn engine)
It is known that the temperature significantly progresses in a temperature range of 00 ° C.
As described above, by using the exhaust gas purification method of the present invention, the above H
Since the C generation reaction (Equation 1) and the HC-NO reaction (Equation 2) can proceed under relatively low temperature conditions, the exhaust from the diesel engine where PM is a serious problem can be removed without performing specific engine control. Can be purified with high efficiency.

【0026】次に、本発明の排気浄化装置について詳細
に説明する。上述のHC生成反応(式1)や上記HC−
NO反応(式2)を進行させるには、触媒を使用するこ
とが必須条件であるが、本発明者らは、かかる反応では
触媒とPM粒子とが直接接触することが大変有効である
ことを知見した。例えば、上記HC生成反応(式1)
は、Pt/アルミナ系触媒粉末とカーボン(C)粉末と
を十分に良く混合した場合にのみ進行し、混合が不十分
な場合には進行しない。本発明の排気浄化装置は、かか
る観点から触媒成分とPM粒子との接触(衝突)確率を
高める手段として、濾過機能を積極的に利用する。即
ち、濾過機能及び触媒機能を有する排気浄化装置とし、
フィルタの気孔内壁表面上に触媒成分を分散、担持させ
ることで、狭い気孔内に流入してくるPM粒子と触媒成
分との接触(衝突)確率を高める。なお、上記触媒成分
の担持方法としては、後述するように、メッキ法などに
より内壁一面を被覆する担持方法が有効である。
Next, the exhaust gas purifying apparatus of the present invention will be described in detail. The above-mentioned HC generation reaction (Equation 1) and the above-mentioned HC-
In order for the NO reaction (Equation 2) to proceed, it is essential to use a catalyst. However, the present inventors have found that direct contact between the catalyst and PM particles is very effective in such a reaction. I learned. For example, the above HC generation reaction (Equation 1)
Progresses only when the Pt / alumina-based catalyst powder and the carbon (C) powder are sufficiently mixed well, and does not progress when the mixing is insufficient. From such a viewpoint, the exhaust gas purification apparatus of the present invention positively utilizes the filtration function as means for increasing the contact (collision) probability between the catalyst component and the PM particles. That is, an exhaust purification device having a filtering function and a catalytic function,
By dispersing and supporting the catalyst component on the inner wall surface of the pores of the filter, the probability of contact (collision) between the PM particles flowing into the narrow pores and the catalyst component is increased. As a method for supporting the above-mentioned catalyst component, a supporting method in which the entire inner wall is covered by plating or the like is effective, as described later.

【0027】ここで、本発明の排気浄化装置は、具体的
には、モノリス型フィルタの気孔内壁に、上記触媒成分
として、白金(Pt)、パラジウム(Pd)又は(R
h)、及びこれらの任意の組合せより成る貴金属成分を
担持させて成る。このとき、貴金属成分は、特に単独で
使用する必要はなく、2成分以上を組合せて使用すると
きは、上記HC生成反応(式1)及びHC−NO反応
(式2)をより円滑に進めることができる。例えば、P
tとRhの組合せでは、PtでHC生成反応(式1)を
促進させ、RhでHC−NO反応(式2)を促進させる
ことができる。
Here, the exhaust gas purifying apparatus of the present invention specifically includes platinum (Pt), palladium (Pd) or (R) as the catalyst component on the pore inner wall of the monolithic filter.
h) and a noble metal component comprising any combination thereof. At this time, the precious metal component does not need to be used alone, and when two or more components are used in combination, the above-described HC generation reaction (Equation 1) and the HC-NO reaction (Equation 2) should proceed more smoothly. Can be. For example, P
In the combination of t and Rh, Pt can promote the HC generation reaction (Equation 1), and Rh can promote the HC-NO reaction (Equation 2).

【0028】また、上記モノリス型フィルタの気孔内壁
には、平均粒径が1μm以下の微粉の酸化物粒子、具体
的には、貴金属成分の担体として従来から用いられてい
るアルミナ(Al)、チタニア(TiO)、ジ
ルコニア(ZrO)又はシリカ(SiO)、及びこ
れらの任意の組合せに係る酸化物微粒子を担持させる。
これより、気孔が閉塞されず、気孔内壁の表面に触媒成
分が良好に分散する。更に、上記平均粒径は0.6μm
以下であることがより好ましい。更にまた、上記酸化物
微粒子は、単独でも使用できるが、2種以上の触媒成分
を担持するときなどは2種以上の酸化物微粒子を組合せ
て使用するとより効果的なことがある。なお、平均粒径
が1μmを超えると上記モノリス型フィルタの気孔が閉
塞されてしまうことがある。また、上記酸化物微粒子
は、該酸化物微粒子を生成し得る水酸化物や硝酸塩の水
溶液をフィルタの気孔内壁に浸透させ、分散担持させる
ことができる。
On the inner wall of the pores of the monolithic filter, fine oxide particles having an average particle diameter of 1 μm or less, specifically, alumina (Al 2 O 3 ) conventionally used as a carrier for a noble metal component are used. ), Titania (TiO 2 ), zirconia (ZrO 2 ) or silica (SiO 2 ), and oxide fine particles of any combination thereof.
As a result, the pores are not closed, and the catalyst component is favorably dispersed on the surface of the pore inner wall. Further, the average particle size is 0.6 μm
It is more preferred that: Furthermore, the above oxide fine particles can be used alone, but when two or more kinds of catalyst components are supported, it may be more effective to use two or more kinds of oxide fine particles in combination. If the average particle diameter exceeds 1 μm, the pores of the monolithic filter may be closed. Further, the oxide fine particles can be dispersed and carried by allowing an aqueous solution of a hydroxide or a nitrate capable of producing the oxide fine particles to penetrate into the pore inner wall of the filter.

【0029】更に、上記貴金属成分や酸化物微粒子の担
持方法としては、酸化物微粒子の粉末をフィルタ気孔内
壁に浸透担持させ、次いで貴金属成分を担持させる方法
や、貴金属成分を予め酸化物微粒子に担持させた後、該
酸化物微粒子をフィルタ気孔内壁に浸漬担持させる方法
などが例示できる。特に、貴金属成分をできるだけ粒子
表面側に露出させるには、前者がより有効である。
Further, as a method for supporting the noble metal component and the oxide fine particles, there is a method in which the powder of the oxide fine particles is permeated and supported on the inner wall of the pores of the filter, and then the noble metal component is supported. Then, the oxide fine particles are immersed and supported on the inner wall of the pores of the filter. In particular, the former is more effective for exposing the noble metal component to the particle surface as much as possible.

【0030】更にまた、上記貴金属成分や酸化物微粒子
の担体としては、濾過機能を有するモノリス型のフィル
タを使用する。このとき、該モノリス型フィルタは、フ
ィルタとしての基本特性が優れていること、即ち、高捕
集率・高捕集量・低圧損であることが望ましい。また、
触媒成分(貴金属成分)を気孔内壁表面に担持でき、こ
の触媒成分を排気中のPM粒子と高い確率で接触させ得
ることがよい。
Further, a monolithic filter having a filtering function is used as a carrier for the above-mentioned noble metal component and oxide fine particles. At this time, the monolithic filter desirably has excellent basic characteristics as a filter, that is, a high collection rate, a high collection amount, and a low pressure loss. Also,
It is preferable that the catalyst component (noble metal component) can be supported on the inner surface of the pores, and that this catalyst component can be brought into contact with the PM particles in the exhaust gas at a high probability.

【0031】また、上記モノリス型フィルタにおいて、
気孔率は30〜80%であることが好適である。気孔率
が30%未満であると、所定の性能を満たすためのフィ
ルタサイズを大きくとらなくてはならず、搭載性が悪化
することがある。また、80%を超えると強度が低下
し、搭載性が悪化することがある。更に、気孔径は平均
気孔径で5〜40μmであることが好適である。このと
きは、気孔の大きさが担持する触媒成分の粒径に適切で
あり、PM粒子が容易に侵入可能となり気孔壁との接触
確率を増大できるので有効である。5μmより小さいと
PM粒子の侵入が困難となり、侵入しても気孔内を移動
し難いことがある。一方、40μmより大きいとPM粒
子と気孔壁との接触確率が低下し、反応せずに気孔内を
通過してしまうことになる。
In the above monolithic filter,
The porosity is preferably 30 to 80%. When the porosity is less than 30%, the filter size for satisfying the predetermined performance must be increased, and the mountability may be deteriorated. On the other hand, if it exceeds 80%, the strength may be reduced and the mountability may be deteriorated. Further, the average pore diameter is preferably 5 to 40 μm. In this case, the size of the pores is appropriate for the particle size of the catalyst component to be supported, and it is effective because PM particles can easily enter and the probability of contact with the pore walls can be increased. If it is smaller than 5 μm, it becomes difficult for the PM particles to enter, and even if it enters, it may be difficult to move through the pores. On the other hand, if it is larger than 40 μm, the probability of contact between the PM particles and the pore walls decreases, and the PM particles pass through the pores without reacting.

【0032】更にまた、上記モノリス型フィルタとして
は、コージェライト、ムライト及びSiC等のセラミッ
ク焼結体や、セラミック繊維(ファイバ)の織布及び/
又は不織布などを用いることができる。また、フィルタ
形状は、例えば、上記セラミック焼結体であればハニカ
ム交互目詰めタイプ、上記セラミック繊維の織布や不織
布であれば何らかの基材に巻いたり所望形状に成形した
ものなどを挙げることができる。なお、上記モノリス型
フィルタは、特に限定されないが、それぞれの特性に合
わせて使い分けることが重要である。例えば、ファイバ
から成るフィルタは、捕集効率を高めるには不利である
が、気孔径分布を比較的広くすることが可能であり、幅
広いPM粒子径の排気に適用し易い。特に、ファイバは
比較的フレキシブルであるためPM粒子との接触確率が
高く、より反応し難い大きなPM粒子の処理に有効であ
る。また、フィルタを2段以上に分割配置する場合は、
排気上流側にセラミック繊維の織布及び/又は不織布を
用いたフィルタを配設することがよく、排気下流側にセ
ラミック焼結体を用いたハニカム型フィルタを配設する
ことがよい。なお、ハニカム型フィルタは、比較的小サ
イズでも接触面積が大きく取れるため、低圧損−高捕集
量−高捕集率の代表的なフィルタである。
Further, as the above-mentioned monolith type filter, a ceramic sintered body such as cordierite, mullite and SiC, a woven cloth of ceramic fiber (fiber) and / or
Alternatively, a nonwoven fabric or the like can be used. The filter shape may be, for example, the above-mentioned ceramic sintered body, a honeycomb alternating plugging type, or the above-mentioned ceramic fiber woven or non-woven fabric, which may be wound on any substrate or formed into a desired shape. it can. The monolithic filter is not particularly limited, but it is important to properly use the monolithic filter according to each characteristic. For example, a filter made of a fiber is disadvantageous for enhancing the collection efficiency, but can relatively widen the pore size distribution, and is easily applicable to exhaust with a wide range of PM particle diameters. In particular, since the fiber is relatively flexible, the probability of contact with the PM particles is high, which is effective for treating large PM particles that are more difficult to react. When the filter is divided into two or more stages,
A filter using a woven and / or non-woven fabric of ceramic fibers is preferably provided on the exhaust upstream side, and a honeycomb filter using a ceramic sintered body is preferably provided on the exhaust downstream side. The honeycomb filter is a typical filter having a low pressure loss, a high trapping amount, and a high trapping rate because a large contact area can be obtained even with a relatively small size.

【0033】また、上記モノリス型フィルタに触媒成分
を担持させた触媒機能付フィルタは、2段以上に分割し
て配置することが好適である。この場合は、排気上流側
と下流側とで特性の違った触媒機能付フィルタを配置で
きるので有効である。例えば、図4に示すように、上記
触媒機能付フィルタを2段に分割し直列に配置すること
ができる。これより、PM粒子の気孔通過距離を稼ぐこ
とができ、触媒成分が担持されたフィルタ気孔内壁への
PM粒子の衝突回数が増大するため、上記HC生成反応
(式1)や上記HC−NO反応(式2)の効率が大幅に
向上し得る。
It is preferable that the filter having a catalytic function in which a catalyst component is carried on the monolithic filter be divided into two or more stages. In this case, a filter with a catalytic function having different characteristics between the upstream side and the downstream side of the exhaust gas can be disposed, which is effective. For example, as shown in FIG. 4, the filter with a catalytic function can be divided into two stages and arranged in series. As a result, the passage distance of the PM particles through the pores can be increased, and the number of collisions of the PM particles with the inner wall of the filter pore carrying the catalyst component increases, so that the HC generation reaction (Equation 1) and the HC-NO reaction The efficiency of (Equation 2) can be greatly improved.

【0034】更に、上記分割配置した触媒機能付フィル
タでは、排気上流側のフィルタの圧力損失を排気下流側
のフィルタの圧力損失より大きくすることが好適であ
る。通常、分割配置は圧力損失を高めてしまうが、この
場合は、その影響を抑えることができる。これはPM粒
子と触媒成分との接触確率を高める上でも重要であり、
上流側のフィルタでPM粒子の大部分を捕捉すると、反
応速度よりも堆積速度が優勢となり、フィルタが閉塞し
易い。なお、フィルタの圧力損失は、フィルタの気孔率
や平均気孔径などを変更して制御できる。その結果、P
M捕集率も変更できる。
Further, in the catalyst-equipped filter having the divided arrangement, it is preferable that the pressure loss of the filter on the upstream side of the exhaust gas is larger than the pressure loss of the filter on the downstream side of the exhaust gas. Usually, the divided arrangement increases the pressure loss, but in this case, the influence can be suppressed. This is also important in increasing the probability of contact between the PM particles and the catalyst component,
When most of the PM particles are captured by the filter on the upstream side, the deposition rate becomes dominant over the reaction rate, and the filter is likely to be clogged. The pressure loss of the filter can be controlled by changing the porosity and the average pore diameter of the filter. As a result, P
The M collection rate can also be changed.

【0035】更にまた、PM捕集率の面から、排気上流
側には比較的捕集率の低いフィルタを配置し、排気下流
側には捕集率の高いフィルタを配置することが好まし
い。言い換えれば、排気上流側のフィルタの平均気孔径
や気孔率を、排気下流側のフィルタの平均気孔径や気孔
率より大きくすることがよい。この場合は、HC生成に
対するC粒子の有効利用率が高められ、NOx浄化率が
向上し得る。
Further, from the viewpoint of the PM trapping rate, it is preferable to arrange a filter having a relatively low trapping rate upstream of the exhaust gas and a filter having a high trapping rate downstream of the exhaust gas. In other words, it is preferable that the average pore diameter and the porosity of the filter on the exhaust upstream side be larger than the average pore diameter and the porosity of the filter on the exhaust downstream side. In this case, the effective utilization rate of C particles for HC generation can be increased, and the NOx purification rate can be improved.

【0036】このとき、排気上流側のフィルタには、比
較的大きな粒径のPM粒子が捕捉されるが、フィルタ内
で触媒成分と接触する度に粒子表面がHCに変換され、
粒径を減らしながら気孔内を移動する。しかし、フィル
タ内で触媒成分が存在しない部分があると、PM粒子は
そこに固定され閉塞の核となってしまうことがある。こ
のため、排気上流側に設置するフィルタは、PM捕集率
がむしろ低く、閉塞を起こし難いタイプが有効であり、
いわゆる衝突濾過方式の構造を有するフィルタであるこ
とが好ましい。例えば、3次元網目ランダム構造を有す
るフオーム型、ファイバ型などが挙げられる。特に、上
記ファイバ型のフィルタは、触媒成分がコートされた部
位がフレキシブルに伸縮可能であるため、ファイバ間に
捕捉されたPM粒子は排気圧力によってファイバ粒子を
押しのけながら移動できるので、フィルタ気孔が閉塞し
難く、また、触媒成分とPM粒子との接触確率が稼げる
ため、反応が促進され易い。一方、排気下流側には、高
捕集率、高捕集量及び低圧損のフィルタを配置すること
が好適である。排気下流側のPM粒子は、上流側である
程度反応して低サイズ化しているので、確実に捉えて完
全に反応させる特性が必要だからである。例えば、表面
濾過機能を有するフィルタを用いることができる。
At this time, the PM particles having a relatively large particle diameter are captured by the filter on the exhaust upstream side, but each time the PM particles come into contact with the catalyst component in the filter, the particle surface is converted into HC,
Move in pores while reducing particle size. However, if there is a portion in the filter where no catalyst component is present, the PM particles may be fixed there and become a nucleus of blockage. For this reason, the filter installed on the upstream side of the exhaust gas has a rather low PM trapping rate, and a type that does not easily cause blockage is effective.
It is preferable that the filter has a so-called collision filtration type structure. For example, a foam type or a fiber type having a three-dimensional network random structure may be used. In particular, in the above-mentioned fiber type filter, since the portion coated with the catalyst component can flexibly expand and contract, the PM particles captured between the fibers can move while pushing the fiber particles by the exhaust pressure, so that the filter pores are closed. In addition, the reaction is easily promoted because the contact probability between the catalyst component and the PM particles can be increased. On the other hand, it is preferable to arrange a filter having a high collection rate, a high collection amount, and a low pressure loss on the downstream side of the exhaust gas. This is because PM particles on the downstream side of the exhaust react to some extent on the upstream side and are reduced in size, so that it is necessary to have a characteristic of reliably capturing and completely reacting. For example, a filter having a surface filtration function can be used.

【0037】また、排気中に含まれているHCやSOF
は、触媒を用いて吸着機能と酸化機能を強化することに
より、浄化効率を高めることができるが、フィルタまで
到達すると気孔内壁の触媒成分上でNOxと反応した
り、気孔内壁、即ち触媒表面を覆ったりして、触媒作用
を妨げるなどの悪影響を及ぼす可能性がある。そこで、
HCやSOF分は、予めフィルタの上流でトラップして
おき、フィルタ内でCから生成したHCとNOxとの選
択的反応を促進することが排気浄化作用を発揮させる上
で有効である。具体的には、フィルタの排気上流側に、
炭化水素及び可溶性有機成分を除去する機能を有するH
C・SOF除去材料を配設することが好ましい。これよ
り、350℃以下の比較的低排温条件でもPMとNOx
の高効率浄化が可能になる。HC・SOF除去材料は、
例えば、図3又は図4に示すように配設できる。また、
HC・SOF除去材料としては、モルデナイト、MF
I、β型ゼオライト、平均細孔径が1〜5nmであるシ
リカ又は層状粘土鉱物、及びこれらの任意の組合せに係
るゼオライト及び/又はシリカ含有無機物を好適に使用
できる。なお、上記シリカとしては、いわゆるメソポー
ラスシリカと称せられる酸化物の多孔体が挙げられ、例
えば、界面活性剤を鋳型として用いて得ることができ
る。平均細孔径が1nm未満では細孔径が小さすぎてH
C、SOF分の十分な吸着捕捉ができず、5nmを超え
ると細孔径が大きすぎてHC、SOF分の吸着効率が低
下することがある。また、上記層状粘土鉱物としては、
ヘクトライト、モンモリロナイト等が挙げられる。これ
らの多孔体材料は、フィルタの上流側でHCやSOFを
高効率で吸着捕捉するとともに、更にPtやPd等の触
媒成分を添加することにより、気相酸素を利用した酸化
除去が可能となり、フィルタ気孔内壁における生成HC
の有効利用率が高められる。上記多孔体材料は、例え
ば、1平方インチ当たり400個程度の孔を有する、い
わゆるフロースルー型のコージェライト製のハニカム担
体にコーティングして用いることができる。該多孔体の
粉末をハニカム体にコーティングしてハニカム面に接着
・固定させるためには、アルミナゾル、シリカゾルなど
の焼結剤(バインダー)を用いるのが一般的である。ま
た、PtやPd等の触媒成分を添加することにより、多
孔体材料に吸着したHCやSOFの酸化除去を促進する
ことができる。この場合、該多孔体材料に直接触媒成分
を担持させても良いし、アルミナやチタニア等の担体に
触媒成分を予め担持させた粉末を多孔材料粉に混合して
用いても良い。
Further, HC and SOF contained in exhaust gas
Can enhance the purification efficiency by using a catalyst to enhance the adsorption function and oxidation function, but when it reaches the filter, it reacts with NOx on the catalyst component on the inner wall of the pores, It may have adverse effects such as covering up and hindering the catalytic action. Therefore,
It is effective to trap HC and SOF in advance upstream of the filter and to promote a selective reaction between HC and NOx generated from C in the filter in order to exert an exhaust gas purifying action. Specifically, on the exhaust upstream side of the filter,
H having a function of removing hydrocarbons and soluble organic components
It is preferable to provide a C / SOF removing material. Thus, even under relatively low exhaust temperature conditions of 350 ° C. or less, PM and NOx
High-efficiency purification. HC / SOF removal material
For example, they can be arranged as shown in FIG. 3 or FIG. Also,
Mordenite, MF
I, β-type zeolites, silica or layered clay minerals having an average pore diameter of 1 to 5 nm, and zeolites and / or silica-containing inorganic substances according to any combination thereof can be suitably used. In addition, as said silica, the porous body of the oxide called what is called a so-called mesoporous silica is mentioned, For example, it can obtain using a surfactant as a template. If the average pore diameter is less than 1 nm, the pore diameter is too small and H
If C and SOF are not sufficiently adsorbed and trapped, if it exceeds 5 nm, the pore size is too large and the adsorption efficiency of HC and SOF may decrease. Further, as the layered clay mineral,
Hectorite, montmorillonite and the like can be mentioned. These porous materials adsorb and capture HC and SOF with high efficiency on the upstream side of the filter, and by adding a catalyst component such as Pt or Pd, can be oxidized and removed using gas phase oxygen. HC generated on the inner wall of filter pore
The effective utilization rate of is increased. The porous material can be used by coating a so-called flow-through type cordierite honeycomb carrier having about 400 holes per square inch, for example. In order to coat the porous body powder on the honeycomb body and adhere and fix it on the honeycomb surface, a sintering agent (binder) such as alumina sol or silica sol is generally used. Further, by adding a catalyst component such as Pt or Pd, the oxidative removal of HC and SOF adsorbed on the porous material can be promoted. In this case, the catalyst component may be directly supported on the porous material, or a powder in which the catalyst component is previously supported on a carrier such as alumina or titania may be mixed with the porous material powder and used.

【0038】上述した排気浄化装置は、上記モノリス型
フィルタの気孔内壁に上記酸化物微粒子を分散担持させ
た後に、上記貴金属成分を含浸法及び/又はメッキ法に
よって担持させて得られる。なお、通常の触媒調製法で
常用される含浸法も有効であるが、フィルタ気孔内壁を
被覆できるメッキ法を用いるのがより効果的であり、更
にメッキ法と含浸法とを併用することも有効である。メ
ッキ法としては、各種の方法が有効であり、代表的には
電解法や無電解法などを適宜適用できる。
The above-mentioned exhaust gas purifying device is obtained by dispersing and supporting the above-mentioned oxide fine particles on the inner wall of the pores of the above-mentioned monolithic filter, and then supporting the above-mentioned noble metal component by an impregnation method and / or a plating method. Although the impregnation method commonly used in ordinary catalyst preparation methods is also effective, it is more effective to use a plating method capable of covering the inner wall of the pores of the filter, and it is also effective to use a combination of the plating method and the impregnation method. It is. Various methods are effective as a plating method, and typically, an electrolytic method, an electroless method, or the like can be appropriately applied.

【0039】以上のように、本発明の排気浄化装置は、
フィルタに堆積したPMを燃焼させるための各種排気昇
温制御、NOxを除去するための排気A/F変動制御、
更にはNOx吸着機能を使わないため、NOx吸着触媒
からのS脱離制御等の特定の制御を必要とせず、燃費の
悪化を抑制できる。また、低温でCを浄化できるため、
フィルタの熱による破損の恐れがなく、長期間の使用に
耐えられる。例えば、ディーゼルエンジンにおいて、ク
リーンな排気を実現することができ、地球温暖化の問題
を含めて環境汚染が少ない、経済性(燃費)に優れた自
動車を提供することができる。
As described above, the exhaust gas purifying apparatus of the present invention
Various exhaust gas temperature raising controls for burning PM deposited on the filter, exhaust A / F fluctuation control for removing NOx,
Further, since the NOx adsorption function is not used, specific control such as S desorption control from the NOx adsorption catalyst is not required, and deterioration of fuel efficiency can be suppressed. Also, since C can be purified at low temperatures,
There is no risk of damage due to heat of the filter, and it can be used for a long time. For example, in a diesel engine, a clean exhaust gas can be realized, and an automobile excellent in economic efficiency (fuel efficiency) with little environmental pollution including the problem of global warming can be provided.

【0040】次に、本発明の他の排気浄化方法、排気浄
化触媒及び排気浄化装置について詳細に説明する。かか
る排気浄化方法は、触媒に付着した煤(PM粒子)から
水素を生成し、その水素を用いてNOxを浄化する。即
ち、内燃機関から排出される排気の温度が500℃以下
のときに、次の反応式3及び/又は4 C+HO→H+CO …(3) C+2HO→2H+CO …(4) で表される水素生成反応を行う。これより、500℃以
下の温度でもPM粒子より水素が生成され、この水素を
用いてNOxを浄化し得る。
Next, another exhaust gas purifying method, exhaust gas purifying catalyst and exhaust gas purifying apparatus of the present invention will be described in detail. In this exhaust gas purification method, hydrogen is generated from soot (PM particles) attached to the catalyst, and NOx is purified using the hydrogen. That is, when the temperature of the exhaust gas discharged from the internal combustion engine is 500 ° C. or lower, the following reaction formulas 3 and / or 4 C + H 2 O → H 2 + CO (3) C + 2H 2 O → 2H 2 + CO 2 (4) The hydrogen generation reaction represented by) is performed. As a result, hydrogen is generated from the PM particles even at a temperature of 500 ° C. or less, and NOx can be purified using the hydrogen.

【0041】ここで、通常、NOxの還元剤として排気
中のHCやCO、更にHを使用する場合、リーン雰囲
気では酸素が多く存在するため、これら還元剤はH
やCOになってしまう。そのため、リーン雰囲気が大
部分の運転条件(リーンバーンエンジンなど)の排気を
浄化する場合においては、上記水素生成反応(式3及び
4)が有効に利用できないという不具合があった。ま
た、酸素過剰のリーン雰囲気では、触媒に付着したPM
は水蒸気と水素生成反応(式3及び4)をほとんど行わ
ない。
[0041] Here, normally, HC and CO in the exhaust as NOx reducing agent, further when using the H 2, due to the presence of oxygen are many in a lean atmosphere, these reducing agents are H 2 O
Or CO 2 . Therefore, when the lean atmosphere purifies the exhaust gas under most operating conditions (such as lean burn engine), the hydrogen generation reaction (Equations 3 and 4) cannot be used effectively. In a lean atmosphere with excess oxygen, PM adhering to the catalyst
Hardly reacts with water vapor to produce hydrogen (Equations 3 and 4).

【0042】本発明の排気浄化触媒は、リッチ又はリー
ンの雰囲気に関係なく排気中に存在するPMを触媒表面
に付着させる。そして、このPMは、リッチ雰囲気のみ
ならずリーン雰囲気でも、主にRhの作用により水素生
成反応(式3及び4)に用いられ、水素が生成する。従
って、リーン雰囲気でも生成した水素でNOxを還元で
き、NOx浄化性能を向上できる。また、硫黄被毒され
たNOx吸着サイトのSOxも水素によって還元できる
ため、NOx吸着能を回復できるとともに新たな硫黄被
毒を防止できる。これによってもNOx浄化性能を向上
できる。
The exhaust gas purifying catalyst of the present invention causes the PM present in the exhaust gas to adhere to the catalyst surface regardless of the rich or lean atmosphere. This PM is used in the hydrogen generation reaction (Equations 3 and 4) mainly by the action of Rh to generate hydrogen in not only the rich atmosphere but also the lean atmosphere. Therefore, NOx can be reduced by the generated hydrogen even in a lean atmosphere, and the NOx purification performance can be improved. Further, SOx at the sulfur-poisoned NOx adsorption site can also be reduced by hydrogen, so that the NOx adsorption ability can be restored and new sulfur poisoning can be prevented. This also improves the NOx purification performance.

【0043】具体的には、上記H生成触媒としては、
少なくともロジウム(Rh)を担持した多孔質粒子の粉
末と、鉄(Fe)、コバルト(Co)、マンガン(M
n)又はニッケル(Ni)、及びこれらの任意の組合せ
に係る金属とを含むものを用いる。このとき、上記F
e、Co、Mn及びNiなどの金属は上記多孔質粒子に
担持されていることがよい。かかるH生成触媒を用い
ることにより、500℃以下の温度でPMとHOから
生成させたHにより高いNOx浄化性能を発現でき
る。また、後述するように、更にNOx吸着材を用いる
と、リーンでNOxを吸着するため、PMとHOから
生成したHとNOxとの反応性が向上するので、NO
xの浄化反応を促進できる。更に、排気中のSOxがN
Ox吸着サイトと反応して触媒表面にSOx吸着種やS
Ox塩を形成することによりNOx吸着能が消失してし
まう(いわゆる硫黄被毒)場合があるが、上記生成させ
たHによりSOxが還元されるため硫黄被毒を防止で
きる。更にまた、硫黄被毒を受けたNOx吸着サイトも
により還元され、NOx吸着能が復活し易い。
Specifically, as the H 2 generation catalyst,
Powder of porous particles supporting at least rhodium (Rh), iron (Fe), cobalt (Co), manganese (M
n) or nickel (Ni), and a metal containing any combination thereof are used. At this time, F
Metals such as e, Co, Mn and Ni are preferably supported on the porous particles. By using such an H 2 generation catalyst, high NOx purification performance can be exhibited by H 2 generated from PM and H 2 O at a temperature of 500 ° C. or lower. As will be described later, further use of the NOx adsorbent, for adsorbing NOx in the lean, the reactivity of H 2 and NOx generated from the PM and H 2 O is increased, NO
x can promote the purification reaction. Further, the SOx in the exhaust gas becomes N
Reacts with the Ox adsorption site and causes SOx adsorbed species and S
It may NOx adsorption capability is lost (so-called sulfur poisoning) which by forming a Ox salts, but can prevent sulfur poisoning because SOx is reduced with H 2 obtained by the generated. Furthermore, NOx adsorption sites that received sulfur poisoning is reduced by H 2, easily revived NOx adsorbing capability.

【0044】また、上記H生成触媒には、上記Fe、
Co、Mn及びNiなどの金属が、Rhを1としたとき
に0.1〜10の比率で含まれる。特に1〜5であるこ
とがより好ましい。0.1より小さいとこれら金属によ
る効果が現れず、Rhのみの場合と変わらない。一方、
10を超えるとRhの活性が低下し、PMとRhの反応
性が悪化してしまう。更に、上記Rhは、多孔質粒子1
20g当たり0.05〜20gの範囲で担持されること
が望ましい。Rhの担持量が0.05g/120gより
少ないと耐久性が低下し易く、20g/120gより多
いと上記効果が飽和するとともにコストの増大を招き易
い。更に、Rhとともに白金(Pt)、パラジウム(P
d)及びイリジウム(Ir)などを担持することもで
き、このときの担持量は、Rhとこれら金属との合計を
上記範囲とすればよい。なお、上記多孔質粒子に担持さ
れるPtは、多孔質粒子120g当たり0.1〜10g
の範囲であることが望ましい。Ptの担持量が0.1g
/120gより少ないとHC、CO及びNOxの浄化率
が低下し易く、10g/120gより多くても効果が飽
和するとともにコストの増大を招き易い。
Further, the above-mentioned H 2 generation catalyst includes the above-mentioned Fe,
Metals such as Co, Mn and Ni are contained in a ratio of 0.1 to 10 when Rh is 1. In particular, it is more preferably 1 to 5. If it is smaller than 0.1, the effect of these metals does not appear, and it is not different from the case of only Rh. on the other hand,
If it exceeds 10, the activity of Rh decreases and the reactivity between PM and Rh deteriorates. Further, the above Rh is the value of the porous particles 1
It is desirable that the amount is carried in the range of 0.05 to 20 g per 20 g. If the supported amount of Rh is less than 0.05 g / 120 g, the durability tends to decrease, and if it is more than 20 g / 120 g, the above effects are saturated and the cost tends to increase. Furthermore, platinum (Pt), palladium (P
d) and iridium (Ir) can also be supported, and the amount of support at this time may be the total of Rh and these metals within the above range. The Pt supported on the porous particles is 0.1 to 10 g per 120 g of the porous particles.
Is desirably within the range. 0.1 g of Pt carried
If it is less than / 120 g, the purification rate of HC, CO and NOx tends to decrease, and if it is more than 10 g / 120 g, the effect is saturated and the cost tends to increase.

【0045】また、上記多孔質粒子としては、例えば、
アルミナ、シリカ、チタニア、ジルコニア、シリカ−ア
ルミナ及びゼオライトなどから適宜選択でき、1種を単
独で使用したり、複数の種類を混合又は複合化して使用
できる。但し、耐熱性が悪い、ZrはRhと相性が良い
などの理由から、Rh担持粉末にはアルミナ、ジルコニ
ア又はジルコニア−アルミナを用いることが望ましい。
更に、上記多孔質粒子の粒径は、0.1〜20μmの範
囲であることが好ましい。粒径が0.1μmより小さい
とRhの分散度が低下し、PMとHOからのH生成
効果が十分に得られにくく、20μmより大きいとRh
粉末同士が近接する確率が高くなり、結果としてRhの
分散度が低下し、PMとHOによるH 生成効果が十
分に得られないことがある。
The porous particles include, for example,
Alumina, silica, titania, zirconia, silica-a
Lumina, zeolite, etc. can be appropriately selected, and one type may be used alone.
Used alone or by mixing or compounding multiple types
it can. However, heat resistance is poor, Zr is compatible with Rh
For this reason, alumina, zirconium
It is desirable to use zirconia-alumina.
Further, the particle diameter of the porous particles is in the range of 0.1 to 20 μm.
It is preferred that it is an enclosure. Particle size smaller than 0.1 μm
And Rh dispersibility decreases, PM and H2H from O2Generate
It is difficult to obtain sufficient effect, and if it is larger than 20 μm, Rh
The probability that the powders are close to each other increases, and as a result, the Rh
Dispersion decreases, PM and H2H by O 2Generating effect is sufficient
May not be available in minutes.

【0046】なお、上記多孔質粒子に更にNOx吸着材
を担持させることもでき、この場合は、NOx吸着能を
更に向上できる。かかるNOx吸着剤としては、アルカ
リ金属、アルカリ土類金属又は希土類金属、及びこれら
の任意の組合せに係る金属などを使用できる。具体的に
は、アルカリ金属としては、リチウム(Li)、ナトリ
ウム(Na)、カリウム(K)及びセシウム(Cs)な
どが挙げられる。アルカリ土類金属としては、周期表2
A族元素であるマグネシウム(Mg)、カルシウム(C
a)、ストロンチウム(Sr)、バリウム(Ba)など
が挙げられる。希土類金属としては、ランタン(L
a)、セリウム(Ce)及びプラセオジム(Pr)など
が挙げられる。また、このNOx吸着材は、多孔質粒子
120g当たり0.05〜3.0モルの範囲で担持させ
ることが望ましい。担持量が0.05モル/120gよ
り少ないとNOx浄化率が低下し易く、3.0モル/1
20gより多く担持しても効果が飽和し易い。更に、上
記多孔質粒子にRh及びPtを担持させたときは、Rh
と、Ni、Fe、Co、Mnなどの金属等の作用を充分
引き出すために、Rh担持多孔質粒子(第1粉末)とP
t担持多孔質粒子(第2粉末)を別々に製造し、その後
これらを混合することがよい。この場合、第1粉末と第
2粉末の混合比は、RhとPtの重量比換算で第1粉
末:第2粉末=0.05:1〜1:1の範囲が望まし
い。また、第1粉末及び第2粉末がともに多孔質粒子と
してアルミナを用いた場合は、アルミナの重量比換算で
第1粉末:第2粉末=0.1:1〜2:1の範囲が望ま
しい。これらの範囲から外れると、上記したRh及びP
tの過不足の場合と同様の不具合が発生する場合があ
る。また、上記多孔質粒子に遷移金属を担持させたとき
は、更にMgを担持させることが望ましい。この助触媒
を使用することにより、水素生成反応が促進され易いの
で有効である。
It should be noted that a NOx adsorbent can be further supported on the porous particles, and in this case, the NOx adsorbing ability can be further improved. As the NOx adsorbent, an alkali metal, an alkaline earth metal or a rare earth metal, and a metal according to any combination thereof can be used. Specifically, examples of the alkali metal include lithium (Li), sodium (Na), potassium (K), and cesium (Cs). As alkaline earth metals, Periodic Table 2
Group A element magnesium (Mg), calcium (C
a), strontium (Sr), barium (Ba) and the like. As rare earth metals, lanthanum (L
a), cerium (Ce) and praseodymium (Pr). It is desirable that the NOx adsorbent is supported in a range of 0.05 to 3.0 mol per 120 g of the porous particles. If the supported amount is less than 0.05 mol / 120 g, the NOx purification rate is liable to decrease, and it is 3.0 mol / l.
Even if more than 20 g is supported, the effect is likely to be saturated. Further, when Rh and Pt are supported on the porous particles, Rh
And Rh-supporting porous particles (first powder) and P in order to fully extract the action of metals such as Ni, Fe, Co, and Mn.
It is preferable to separately produce the t-supported porous particles (second powder) and then mix them. In this case, the mixing ratio of the first powder and the second powder is desirably in the range of 0.05: 1 to 1: 1 of the first powder: the second powder in terms of the weight ratio of Rh and Pt. When alumina is used as the porous particles for both the first powder and the second powder, it is desirable that the first powder: second powder = 0.1: 1 to 2: 1 in terms of the weight ratio of alumina. Outside these ranges, Rh and P
In some cases, the same problem as in the case where t is excessive or insufficient may occur. When a transition metal is supported on the porous particles, it is desirable to further support Mg. Use of this cocatalyst is effective because the hydrogen generation reaction is easily promoted.

【0047】本発明では、上述の排気浄化触媒を用い
て、排気中のパーティキュレート粒子及び窒素酸化物を
浄化する排気浄化装置とすることができる。即ち、本発
明の排気浄化装置は、内燃機関の排気煙道の上流側に上
記水素生成触媒を配設し、その下流側に上記窒素酸化物
浄化触媒を配設して成る。このような構成とすること
で、上記水素生成反応(式3及び4)を促進させる排気
浄化装置となる。また、本発明の他の排気浄化装置は、
内燃機関の排気煙道上に上記窒素酸化物浄化触媒の積層
体を配設し、その上に上記水素生成触媒を被覆して成
る。例えば、NOx触媒を多層化し、その最上層にF
e、Co、Mn又はNi、及びこれらの任意の組合せか
ら成る金属を含むRh粉末を被覆することができる。
According to the present invention, there can be provided an exhaust gas purifying apparatus for purifying particulate particles and nitrogen oxides in exhaust gas using the above-mentioned exhaust gas purifying catalyst. That is, the exhaust gas purifying apparatus of the present invention includes the above-mentioned hydrogen generation catalyst disposed upstream of an exhaust flue of an internal combustion engine, and the above-mentioned nitrogen oxide purification catalyst disposed downstream thereof. With such a configuration, an exhaust gas purification device that promotes the hydrogen generation reaction (Equations 3 and 4) is provided. Further, another exhaust gas purifying apparatus of the present invention includes:
A stack of the nitrogen oxide purification catalyst is disposed on an exhaust flue of an internal combustion engine, and the stack is coated with the hydrogen generation catalyst. For example, the NOx catalyst is multi-layered, and F
Rh powder can be coated comprising a metal consisting of e, Co, Mn or Ni, and any combination thereof.

【0048】[0048]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0049】以下の実施例1〜3及び比較例1〜3で
は、本発明の排気浄化装置、即ち、炭化水素(HC)生
成触媒を用いた排気浄化装置について、性能評価試験を
行った。
In the following Examples 1 to 3 and Comparative Examples 1 to 3, performance evaluation tests were performed on the exhaust gas purifying apparatus of the present invention, that is, an exhaust gas purifying apparatus using a hydrocarbon (HC) generating catalyst.

【0050】(実施例1)硝酸アルミニウムの水溶液に
平均粒径0.5μmの超微粒アルミナを分散させて得た
硝酸酸性水溶液に、気孔率60%、平均気孔径18μm
であり、1平方インチ当たり約200セルの通気孔を有
するコージェライト製ハニカム型交互目詰めフィルタ
2.5Lを浸した後、熱風乾燥−焼成工程を3回繰り返
し、フィルタの気孔内壁にアルミナを分散担持させた。
このときのアルミナの担持量は、フィルタ容積1L当た
り約85gであった。また、このフィルタを、Pt濃度
が約2.5%のジニトロジアンミンPt水溶液に浸し、
熱風乾燥−焼成工程を2回繰り返し、フィルタの気孔内
壁に分散担持させたアルミナにPtを担持させた。更
に、このフィルタに無電解メッキを施し、フィルタ触媒
1Aを得た。メッキ法は、Ptと還元剤を含むメッキ浴
水溶液に上記ハニカムフィルタを浸し、Ptを析出させ
て得た。このときのPtの担持量は、フィルタ容積1L
当たり約10gであった。
Example 1 An aqueous nitric acid solution obtained by dispersing ultrafine alumina having an average particle size of 0.5 μm in an aqueous solution of aluminum nitrate was mixed with a porosity of 60% and an average pore diameter of 18 μm.
After immersing 2.5 L of cordierite honeycomb type alternating clogging filter having vent holes of about 200 cells per square inch, the hot air drying-firing step is repeated three times to disperse alumina on the inner wall of the pores of the filter. Supported.
The amount of alumina carried at this time was about 85 g per liter of filter volume. Further, this filter is immersed in an aqueous solution of dinitrodiammine Pt having a Pt concentration of about 2.5%,
The hot-air drying-firing step was repeated twice, and Pt was carried on alumina dispersedly carried on the pore inner wall of the filter. Further, this filter was subjected to electroless plating to obtain a filter catalyst 1A. The plating method was obtained by immersing the honeycomb filter in an aqueous plating bath solution containing Pt and a reducing agent to precipitate Pt. At this time, the supported amount of Pt is 1 L of filter volume.
The weight was about 10 g.

【0051】このフィルタ触媒1Aの前段に配置するH
C及びSOFを吸着除去する機能を有するハニカム状モ
ノリス材(ハニカム触媒1B)を次のようにして得た。
含浸法によって比表面積約220m/gのγアルミナ
を主成分とする活性アルミナにPtを2.5%担持させ
て得たPt/γアルミナ粉末を、比表面積約830m
/g、平均細孔径約3.2nmのポーラスシリカと、比
表面積450m/gでシリカアルミナ比約90のゼオ
ライトβ、更に比表面積350m/gでシリカアルミ
ナ比約70のMFIゼオライトを重量比1:4:1で混
合し、ベーマイト粉末とともに5:6:1の重量比で混
合し、更に硝酸酸性アルミナゾルを1%加え、水と混合
してスラリー液を得た。該スラリーを1平方インチ当た
り400セルの通気孔を有するコージェライトハニカム
1.5Lにコーティングし、乾燥、焼成の過程を経て、
HC、SOFを吸着・分解する機能を有するハニカム触
媒1Bを得た。上記、ハニカム触媒1Bとフィルタ触媒
1Aとを、それぞれ前段、後段に組み合せて、一つのコ
ンバーターに組み込むことにより、排気浄化装置1を得
た。
H arranged before the filter catalyst 1A
Honeycomb-type module having a function of adsorbing and removing C and SOF
A Norris material (honeycomb catalyst 1B) was obtained as follows.
Approximately 220m specific surface area by impregnation method2/ G of gamma alumina
2.5% Pt supported on activated alumina mainly composed of
Of the obtained Pt / γ alumina powder is about 830 m 2
/ G, porous silica having an average pore diameter of about 3.2 nm, and a ratio of
Surface area 450m2/ G zeo with a silica-alumina ratio of about 90
Light β, 350m specific surface area2/ G in silica aluminum
MFI zeolite having a weight ratio of about 70 was mixed at a weight ratio of 1: 4: 1.
And mixed with boehmite powder in a weight ratio of 5: 6: 1.
Add 1% nitric acid acidic alumina sol and mix with water
Thus, a slurry liquid was obtained. The slurry was applied per square inch.
Cordierite honeycomb having 400 cell vents
1.5L coated, dried and fired,
Honeycomb touch with a function to adsorb and decompose HC and SOF
Medium 1B was obtained. The above-mentioned honeycomb catalyst 1B and filter catalyst
1A and the first and second stages, respectively,
By incorporating it into an inverter, the exhaust gas purification device 1 is obtained.
Was.

【0052】(実施例2)前段にハニカム触媒を設置せ
ず、フィルタ触媒2Aのみとした以外は、実施例1と同
様の操作を繰り返して、排気浄化装置2を得た。
(Example 2) An exhaust gas purifying apparatus 2 was obtained by repeating the same operation as in Example 1 except that no honeycomb catalyst was provided in the previous stage and only the filter catalyst 2A was used.

【0053】(実施例3)気孔率60%、平均気孔径1
8μmであり、1平方インチ当たり約200セルの通気
孔を有するコージェライト製ハニカム型交互目詰めフィ
ルタ1.25Lと、気孔率65%、平均気孔径32μm
であり、1平方インチ当たり約200セルの通気孔を有
するコージェライト製ハニカム型交互目詰めフィルタ
1.25Lとを用意し、実施例1とほぼ同様の操作を繰
り返して、2つのフィルタ触媒3A及び3Aを得
た。これらのフィルタ触媒3A及び3Aとハニカム
触媒3Bを直列に配置して、排気浄化装置3を得た。即
ち、これら触媒は、排気上流側から、ハニカム触媒3B
−フィルタ触媒3A−フィルタ触媒3Aの順に配置
した。
Example 3 Porosity 60%, Average Porosity 1
1.25 L of cordierite honeycomb type alternating plugging filter having a pore size of 8 μm and having about 200 cells per square inch, a porosity of 65%, and an average pore diameter of 32 μm.
1.25 L of a cordierite honeycomb type alternately plugged filter having a vent of about 200 cells per square inch was prepared, and the same operation as in Example 1 was repeated to obtain two filter catalysts 3A 1. and it was obtained 3A 2. These filter catalyst 3A 1 and 3A 2 and honeycomb catalyst 3B arranged in series to obtain an exhaust gas purifying device 3. That is, these catalysts are supplied from the upstream side of the exhaust gas to the honeycomb catalyst 3B.
- were placed in the order of the filter catalyst 3A 1 - filter catalyst 3A 2.

【0054】(比較例1)含浸法によって比表面積約2
20m/gのγアルミナを主成分とする活性アルミナ
にPtを2.5%担持させて得たPt/γアルミナ粉末
を、ベーマイト粉末と10:2の重量比で混合し、更に
硝酸酸性アルミナゾルを1%加え、水と混合してスラリ
ー液を得た。該スラリーを1平方インチ当たり400セ
ルの通気孔を有するコージェライトハニカム1.5Lに
100g/Lコーティングし、乾燥、焼成の過程を経
て、ハニカム状酸化触媒R1Bを得た。このハニカム状
酸化触媒R1Bと、気孔率60%、平均気孔径18μm
で、1平方インチ当たり約200セルの通気孔を有する
コージェライト製ハニカム型交互目詰めフィルタ2.5
Lを直列に配置し、一つのコンバーターに組み込むこと
により、比較例1になる排気浄化装置R1を得た。な
お、この装置R1は、いわゆる従来の連続再生式トラッ
プと類似の構成を有する。
Comparative Example 1 A specific surface area of about 2 was obtained by the impregnation method.
Pt / γ alumina powder obtained by supporting 2.5% of Pt on activated alumina containing 20 m 2 / g of γ alumina as a main component was mixed with boehmite powder at a weight ratio of 10: 2, and further nitric acid acidic alumina sol was mixed. Was added and mixed with water to obtain a slurry liquid. The slurry was coated at a rate of 100 g / L on 1.5 L of cordierite honeycomb having vent holes of 400 cells per square inch, dried, and fired to obtain a honeycomb-shaped oxidation catalyst R1B. This honeycomb-shaped oxidation catalyst R1B, a porosity of 60%, and an average pore diameter of 18 μm
And a cordierite honeycomb type alternating plugging filter 2.5 having a vent of about 200 cells per square inch.
By arranging L in series and incorporating it into one converter, an exhaust gas purification apparatus R1 of Comparative Example 1 was obtained. The device R1 has a configuration similar to that of a conventional continuous regeneration trap.

【0055】(比較例2)比較例1と同じPt/γアル
ミナ触媒のスラリーを、実施例1と同じコージェライト
製ハニカム型交互目詰めフィルタ2.5Lにコーティン
グし、熱風乾燥−焼成工程を4回繰り返すことによりフ
ィルタの片側にPt/アルミナ触媒を担持させて、フィ
ルタ触媒R2Aを得た。このときのPt/アルミナ触媒
の担持量は、フィルタ容積1L当たり約100gであっ
た。このフィルタ触媒R2Aのみで、排気浄化装置R2
を得た。なお、この排気浄化装置R2は、実施例2の排
気浄化装置2と比較して、フィルタ触媒の製法を変えた
もの、即ち、フィルタ内壁表面にはPt/アルミナ触媒
を担持させず、フィルタ外壁に触媒層を形成したもので
ある。
(Comparative Example 2) The same Pt / γ alumina catalyst slurry as in Comparative Example 1 was coated on the same cordierite honeycomb type alternating plugging filter (2.5 L) as in Example 1, and the hot air drying-firing step was carried out in 4 hours. By repeating the process twice, the Pt / alumina catalyst was supported on one side of the filter to obtain a filter catalyst R2A. At this time, the carried amount of the Pt / alumina catalyst was about 100 g per liter of the filter volume. The exhaust gas purifying device R2 is formed only by the filter catalyst R2A.
I got The exhaust gas purification device R2 is different from the exhaust gas purification device 2 of the second embodiment in that the manufacturing method of the filter catalyst is changed, that is, the Pt / alumina catalyst is not supported on the inner wall surface of the filter, and A catalyst layer was formed.

【0056】(比較例3)比較例2と同じフィルタ触媒
R2Aの前段に実施例1と同じハニカム触媒1Bを配置
させて、一つのコンバーターに組み込むことにより、排
気浄化装置R3を得た。
COMPARATIVE EXAMPLE 3 The same honeycomb catalyst 1B as in Example 1 was arranged in front of the same filter catalyst R2A as in Comparative Example 2, and was incorporated into one converter to obtain an exhaust gas purification device R3.

【0057】<評価試験例>コモンレールシステムを備
えた4気筒2.5Lの直噴型ディーゼルエンジンを設置
したエンジンダイナモ装置を用いて、実施例及び比較例
の排気浄化装置の性能評価試験を行った。なお、本評価
装置は、触媒システム入口の排気温度を、エンジンの負
荷、吸気絞り及びコモンレールシステムによるポスト噴
射により制御できるものを用いた。また、排気浄化装置
の性能評価法は、装置の入口温度を250℃で2分保持
し、次いで300℃で3分保持し、更に350℃で1分
間保持するパターンを5時間繰り返す過渡性能評価法を
用いた。なお、本評価試験では、スウェーデンクラス1
軽油を用いた。
<Evaluation Test Example> A performance evaluation test was performed on the exhaust gas purifying apparatus of the example and the comparative example using an engine dynamo device equipped with a 2.5-liter 4-cylinder direct-injection diesel engine equipped with a common rail system. . The evaluation apparatus used was one capable of controlling the exhaust gas temperature at the catalyst system inlet by engine load, intake throttle, and post injection by a common rail system. The performance evaluation method of the exhaust gas purification apparatus is a transient performance evaluation method in which the inlet temperature of the apparatus is maintained at 250 ° C. for 2 minutes, then maintained at 300 ° C. for 3 minutes, and further maintained at 350 ° C. for 1 minute for 5 hours. Was used. In this evaluation test, Swedish class 1
Light oil was used.

【0058】上記評価試験において、排気浄化装置1
(実施例1)について、PM及びNOxの平均低減率を
算出したところ、PM除去率は93%、NOx除去率は
46%であった。また、初期に対する5時間運転後の圧
力損失上昇は、25mmHgであった。同様に、排気浄
化装置2(実施例2)に関しては、運転2時間における
低減率は、PM除去率が90%、NOxが除去率55%
であった。また、初期に対する4時間運転後の圧力損失
上昇は、32mmHgであり、PM中のSOFによる触
媒成分の被覆が起こり酸化性能が経時的に低下したもの
と思われる。これより、排気浄化装置1のように、前段
側でSOF分を除去することにより触媒の被覆を防止
し、耐久性が高まることがわかる。また、排気浄化装置
3(実施例3)に関しては、PM除去率が95%、NO
x除去率が57%であった。また、初期に対する5時間
運転後の圧力損失上昇は、18mmHgであった。これ
より、フィルタを分割した効果が発揮されていることが
わかる。
In the above evaluation test, the exhaust gas purification device 1
When the average reduction rates of PM and NOx were calculated for (Example 1), the PM removal rate was 93% and the NOx removal rate was 46%. The increase in pressure loss after 5 hours of operation from the initial stage was 25 mmHg. Similarly, for the exhaust gas purification device 2 (Example 2), the reduction rate in the two hours of operation is 90% for the PM removal rate and 55% for the NOx removal rate.
Met. Further, the pressure loss rise after 4 hours of operation from the initial stage was 32 mmHg, and it is considered that the catalyst component was covered with SOF in PM and the oxidation performance decreased with time. From this, it can be seen that, as in the exhaust gas purification apparatus 1, removing the SOF on the upstream side prevents coating of the catalyst and increases the durability. Further, with respect to the exhaust gas purification device 3 (Example 3), the PM removal rate was 95% and NO
The x removal rate was 57%. The increase in pressure loss after 5 hours of operation from the initial stage was 18 mmHg. From this, it can be seen that the effect of dividing the filter is exhibited.

【0059】一方、排気浄化装置R1(比較例1)に関
しては、PM除去率が95%、NOx除去率が2%であ
り、NOx低減率が実施例に比べて低く、また、運転3
時間後の圧力損失上昇が40mmHgを超えてしまいエ
ンジン負荷が大きくなったために、その時点で運転を取
りやめた。また、排気浄化装置R2(比較例2)に関し
ては、PM除去率が92%、NOx除去率が8%であ
り、また、初期に対する運転3時間後の圧力損失上昇が
40mmHgを超えてしまいエンジン負荷が大きくなっ
たために、その時点で運転を取りやめた。更に、排気浄
化装置R3(比較例3)に関しては、PM除去率が92
%、NOx除去率が11%であり、また、初期に対する
4時間運転後の圧力損失上昇が40mmHgを超えてし
まいエンジン負荷が大きくなったために、その時点で運
転を取りやめた。
On the other hand, with respect to the exhaust gas purification apparatus R1 (Comparative Example 1), the PM removal rate is 95%, the NOx removal rate is 2%, the NOx reduction rate is lower than that of the embodiment, and the operation 3
The operation was stopped at that point because the pressure loss rise after time exceeded 40 mmHg and the engine load increased. Further, with respect to the exhaust gas purification apparatus R2 (Comparative Example 2), the PM removal rate was 92% and the NOx removal rate was 8%, and the rise in pressure loss after 3 hours of operation from the initial stage exceeded 40 mmHg, and the engine load At that point, I stopped driving because of the increase in size. Further, for the exhaust gas purification device R3 (Comparative Example 3), the PM removal rate was 92%.
%, The NOx removal rate was 11%, and the increase in pressure loss after 4 hours of operation over the initial period exceeded 40 mmHg, resulting in an increase in engine load. Therefore, the operation was stopped at that point.

【0060】また、排気浄化装置の性能評価条件を、入
口温度を300℃で5分保持し、更に400℃で2分間
保持するパターンにかえた場合、5時間運転後の排気浄
化装置1によるPM及びNOxの平均低減率は、PM除
去率が91%、NOx除去率が16%となり、これよ
り、高温排気条件では特にNOxの低減率が悪化するこ
とがわかる。本発明の排気浄化装置は、排気温度が35
0℃以下の条件で使用して効果が大きいので、排気温度
の低い高効率の内燃機関の排気浄化に好適であることは
明らかであるが、排気温度の高い内燃機関に対しても、
配置位置を適宜選択することなどで温度条件を調整すれ
ば対応可能となる。
When the performance evaluation condition of the exhaust gas purification apparatus is changed to a pattern in which the inlet temperature is maintained at 300 ° C. for 5 minutes and further maintained at 400 ° C. for 2 minutes, the PM by the exhaust gas purification apparatus 1 after the operation for 5 hours is changed. The average reduction rates of NOx and NOx are 91% for the PM removal rate and 16% for the NOx removal rate, which indicates that the NOx reduction rate particularly deteriorates under high-temperature exhaust conditions. The exhaust gas purification apparatus of the present invention has an exhaust gas temperature of 35.
It is clear that it is suitable for exhaust gas purification of a high-efficiency internal combustion engine with a low exhaust gas temperature because it is highly effective when used at 0 ° C. or lower.
This can be achieved by adjusting the temperature condition by appropriately selecting the arrangement position.

【0061】以上のように、本発明の排気浄化装置を用
いれば、200〜350℃程度の比較的低排温条件の排
気を高効率で浄化できるため、特別のエンジン制御法を
用いなくても、容易にクリーン排気を実現できる。
As described above, since the exhaust gas purifying apparatus of the present invention can purify exhaust gas under relatively low exhaust temperature conditions of about 200 to 350 ° C. with high efficiency, it is possible to use a special engine control method. Clean exhaust can be easily realized.

【0062】次に、以下の実施例4〜9及び比較例4〜
7では、本発明の排気浄化触媒、即ち、水素(H)生
成触媒及び窒素酸化物(NOx)浄化触媒を含んで成る
排気浄化触媒について、性能評価試験を行った。
Next, the following Examples 4 to 9 and Comparative Examples 4 to
In No. 7, a performance evaluation test was performed on the exhaust purification catalyst of the present invention, that is, an exhaust purification catalyst including a hydrogen (H 2 ) generation catalyst and a nitrogen oxide (NOx) purification catalyst.

【0063】(実施例4)硝酸Fe水溶液を活性アルミ
ナ粉末(平均粒子径1μm)に含浸し、乾燥後空気中4
00℃で1時間焼成して、Fe担持アルミナ粉末(粉末
1)を得た。この粉末のFe濃度は2%であった。硝酸
Rh水溶液を粉末1に含浸し、乾燥後、N中400℃
で1時間焼成して、Rh及びFe担持アルミナ粉末(粉
末2)を得た。この粉末のRh濃度は2%であった(F
e/Rhはモル比で0.54)。ジアトロジアミンPt
水溶液を活性アルミナ粉末に含浸し、乾燥後空気中40
0℃で1時間焼成して、Pt担持アルミナ粉末(粉末
3)を得た。この粉末のPt濃度は2%であった。
Example 4 An aqueous solution of Fe nitrate was impregnated into activated alumina powder (average particle size: 1 μm), dried and dried in air.
The mixture was calcined at 00 ° C. for 1 hour to obtain Fe-supported alumina powder (powder 1). The Fe concentration of this powder was 2%. It was impregnated with Rh nitrate aqueous solution powder 1, dried in N 2 400 ° C.
For 1 hour to obtain Rh and Fe-supported alumina powder (powder 2). The Rh concentration of this powder was 2% (F
e / Rh is a molar ratio of 0.54). Diatrodiamine Pt
The aqueous solution is impregnated with activated alumina powder, dried and then dried in air.
It was calcined at 0 ° C. for 1 hour to obtain Pt-supported alumina powder (powder 3). The Pt concentration of this powder was 2%.

【0064】粉末3を70g、アルミナを70g、水1
40gを磁性ボールミルに投入し、混合粉砕してスラリ
液を得た。このスラリ液をコーディライト質モノリス担
体(1.3L、400セル)に付着して、空気流にてセ
ル内の余剰のスラリを取り除き130℃で乾燥した後、
400℃で1時間焼成し、コート層重量140g/L触
媒担体(A)を得た。粉末2を70g、粉末3を70
g、水140gを磁性ボールミルに投入し、混合粉砕し
てスラリ液を得た。このスラリ液を触媒担体(A)に付
着して、空気流にてセル内の余剰のスラリを取り除き1
30℃で乾燥した後、400℃で1時間焼成し、総コー
ト層重量280g/L触媒担体(B)を得た。触媒担体
(B)に、酢酸Ba水溶液を酸化物換算で触媒1L当た
り15g含浸担持させ、排気浄化触媒(C)を得た。
Powder 3 70 g, alumina 70 g, water 1
40 g was charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was attached to a cordierite-based monolithic carrier (1.3 L, 400 cells), and excess slurry in the cells was removed by an air stream and dried at 130 ° C.
It was baked at 400 ° C. for 1 hour to obtain a catalyst support (A) having a coat layer weight of 140 g / L. 70 g of powder 2 and 70 of powder 3
g and 140 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid is attached to the catalyst carrier (A), and the excess slurry in the cell is removed by an air stream to remove the slurry.
After drying at 30 ° C., it was baked at 400 ° C. for 1 hour to obtain a catalyst carrier (B) having a total coat layer weight of 280 g / L. The catalyst carrier (B) was impregnated with an aqueous solution of Ba acetate in an amount of 15 g per liter of catalyst in terms of oxide to obtain an exhaust purification catalyst (C).

【0065】(実施例5)硝酸Feの代わりに硝酸Co
を使用した以外は、実施例1と同様な操作を繰り返し、
排気浄化触媒を得た(CO/Rhはモル比で0.5
7)。
(Example 5) Instead of Fe nitrate, Co nitrate was used.
The same operation as in Example 1 was repeated, except that
An exhaust purification catalyst was obtained (CO / Rh was 0.5
7).

【0066】(実施例6)硝酸Feの代わりにに硝酸N
iを使用した以外は、実施例1と同様な操作を繰り返
し、排気浄化触媒を得た(Ni/Rhはモル比で0.5
7)。
(Example 6) Nitrate N instead of Fe nitrate
Except for using i, the same operation as in Example 1 was repeated to obtain an exhaust purification catalyst (Ni / Rh was 0.5
7).

【0067】(実施例7)硝酸Feの代わりに硝酸Mn
を使用した以外は、実施例1と同様な操作を繰り返し、
排気浄化触媒を得た(Mn/Rhはモル比で0.5
3)。
Example 7 Instead of Fe nitrate, Mn nitrate was used.
The same operation as in Example 1 was repeated, except that
An exhaust purification catalyst was obtained (Mn / Rh was 0.5 in molar ratio).
3).

【0068】(実施例8)実施例1とほぼ同様な操作、
即ち、粉末2を70g、粉末3を140g、アルミナを
70g、水280gを磁性ボールミルに投入し、混合粉
砕してスラリ液を得た。このスラリ液をコーディライト
質モノリス担体(1.3L、400セル)に付着して、
空気流にてセル内の余剰のスラリを取り除き130℃で
乾燥した後、400℃で1時間焼成し、コート層重量2
80g/L触媒担体(B)を得た。触媒担体(B)に、
酢酸Ba水溶液を酸化物換算で触媒1L当たり15g含
浸担持させ、排気浄化触媒(C)を得た。
(Embodiment 8) The operation is substantially the same as that of Embodiment 1,
That is, 70 g of powder 2, 140 g of powder 3, 70 g of alumina, and 280 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was attached to a cordierite monolithic carrier (1.3 L, 400 cells),
Excess slurry in the cell was removed by an air stream, dried at 130 ° C., and baked at 400 ° C. for 1 hour to obtain a coat layer weight of 2
80 g / L catalyst carrier (B) was obtained. On the catalyst carrier (B),
An aqueous Ba acetate solution was impregnated and supported in an amount of 15 g per 1 L of the catalyst in terms of oxide to obtain an exhaust purification catalyst (C).

【0069】(実施例9)活性アルミナの代わりに酸化
ジルコニウムを使用した以外は、実施例1と同様な操作
を繰り返し、排気浄化触媒を得た。
Example 9 The same operation as in Example 1 was repeated, except that zirconium oxide was used instead of activated alumina, to obtain an exhaust purification catalyst.

【0070】(比較例4)硝酸Rh水溶液を活性アルミ
ナ粉末(平均粒子径1μm)に含浸し、乾燥後、N
400℃で1時間焼成して、Rh担持アルミナ粉末(粉
末4)を得た。この粉末のRh濃度は2%であった。ジ
アトロジアミンPt水溶液を活性アルミナ粉末に含浸
し、乾燥後空気中400℃で1時間焼成して、Pt担持
アルミナ粉末(粉末3)を得た。この粉末のPt濃度は
2%であった。粉末3を70g、アルミナを70g、水
140gを磁性ボールミルに投入し、混合粉砕してスラ
リ液を得た。このスラリ液をコーディライト質モノリス
担体(1.3L、400セル)に付着して、空気流にて
セル内の余剰のスラリを取り除き130℃で乾燥した
後、400℃で1時間焼成し、コート層重量140g/
L触媒担体(A)を得た。粉末2を70g、粉末3を7
0g、水140gを磁性ボールミルに投入し、混合粉砕
してスラリ液を得た。このスラリ液を触媒担体(A)に
付着して、空気流にてセル内の余剰のスラリを取り除き
130℃で乾燥した後、400℃で1時間焼成し、総コ
ート層重量280g/L触媒担体(B)を得た。触媒担
体(B)に、酢酸Ba水溶液を酸化物換算で触媒1L当
たり15g含浸担持させ、排気浄化触媒(C)を得た。
Comparative Example 4 A Rh aqueous nitrate solution was impregnated with activated alumina powder (average particle diameter: 1 μm), dried, and calcined at 400 ° C. for 1 hour in N 2 to obtain Rh-supported alumina powder (powder 4). Was. The Rh concentration of this powder was 2%. An activated alumina powder was impregnated with an aqueous solution of ditrodiamine Pt, dried and calcined at 400 ° C. for 1 hour in the air to obtain a Pt-supported alumina powder (powder 3). The Pt concentration of this powder was 2%. 70 g of powder 3, 70 g of alumina, and 140 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was attached to a cordierite type monolith carrier (1.3 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. Layer weight 140g /
An L catalyst carrier (A) was obtained. 70 g of powder 2 and 7 of powder 3
0 g and 140 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution is attached to the catalyst carrier (A), excess slurry in the cell is removed by an air stream, dried at 130 ° C., and then calcined at 400 ° C. for 1 hour to obtain a total coat layer weight of 280 g / L catalyst carrier. (B) was obtained. The catalyst carrier (B) was impregnated with an aqueous solution of Ba acetate in an amount of 15 g per liter of catalyst in terms of oxide to obtain an exhaust purification catalyst (C).

【0071】(比較例5)粉末1で、硝酸Feの濃度を
0.2%にした以外は、実施例1と同様な操作を繰り返
し、排気浄化触媒を得た。
Comparative Example 5 The same operation as in Example 1 was repeated except that the concentration of Fe nitrate in Powder 1 was changed to 0.2%, to obtain an exhaust gas purifying catalyst.

【0072】(比較例6)粉末1で、硝酸Feの濃度を
40%にした以外は、実施例1と同様な操作を繰り返
し、排気浄化触媒を得た。
(Comparative Example 6) The same operation as in Example 1 was repeated except that the concentration of Fe nitrate in Powder 1 was changed to 40%, to obtain an exhaust gas purifying catalyst.

【0073】(比較例7)粉末1で、活性アルミナの粉
末の平均粒子径を50μmにした以外は、実施例1と同
様な操作を繰り返し、排気浄化触媒を得た。
Comparative Example 7 The same operation as in Example 1 was repeated, except that the average particle size of the activated alumina powder in Powder 1 was changed to 50 μm, to obtain an exhaust purification catalyst.

【0074】<評価試験例> ・耐久方法 排気量4400ccのエンジンの排気系に排気浄化触媒
を装着し、前段の触媒入口温度を700℃とし、30時
間運転した。 ・評価方法 ディーゼルエンジンのエンジンの排気系に排気浄化触媒
を装着し、触媒入口温度を300℃とし、15分間運転
した。ガソリンエンジンの排気系に排気浄化触媒を取り
付け、A/F=50、入口温度300℃とし、10分間
運転した。なお、NOx転化率は次の式 NOx転化率=(1−触媒出口NOx量/触媒入口NO
x量 )×100% により求めた。
<Evaluation Test Example> Endurance Method An exhaust purification catalyst was installed in the exhaust system of an engine with a displacement of 4400 cc, and the catalyst inlet temperature at the preceding stage was set to 700 ° C., and the system was operated for 30 hours. Evaluation method An exhaust purification catalyst was attached to the exhaust system of a diesel engine, the catalyst inlet temperature was set to 300 ° C, and the system was operated for 15 minutes. An exhaust gas purifying catalyst was attached to the exhaust system of the gasoline engine, and the operation was performed for 10 minutes at an A / F of 50 and an inlet temperature of 300 ° C. The NOx conversion rate is given by the following equation: NOx conversion rate = (1−NOx amount at catalyst outlet / NO at catalyst inlet)
x amount) × 100%.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【表2】 [Table 2]

【0077】表1及び表2に示すように、上記評価試験
の結果、実施例4〜9では、比較的低温な排気であって
もNOx転化率が良好であることがわかる。一方、比較
例4〜7では、NOx転化率が悪いことがわかる。
As shown in Tables 1 and 2, as a result of the above evaluation tests, it can be seen that in Examples 4 to 9, the NOx conversion rate is good even with relatively low-temperature exhaust gas. On the other hand, in Comparative Examples 4 to 7, it is found that the NOx conversion rate is poor.

【0078】以上、本発明を好適実施例及び比較例によ
り詳細に説明したが、本発明はこれら実施例に限定され
るものではなく、本発明の要旨の範囲内において種々の
変形が可能である。例えば、本発明の触媒は、一体構造
型担体に担持させて用いるのが望ましい。一体構造型担
体としては、耐熱性材料からなるモノリス担体が望まし
く、例えばコーディライトなどのセラミック製や、フェ
ライト系ステンレスなどの金属製の担体を使用できる。
また、触媒を担体上に塗り分けることで、NOxとPM
の排気浄化率を高めることができる。
Although the present invention has been described in detail with reference to preferred embodiments and comparative examples, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the present invention. . For example, the catalyst of the present invention is desirably used by being supported on a monolithic carrier. As the monolithic carrier, a monolith carrier made of a heat-resistant material is desirable. For example, a ceramic carrier such as cordierite or a metal carrier such as ferrite stainless steel can be used.
Also, NOx and PM can be separated by coating the catalyst on the carrier separately.
Exhaust purification rate can be increased.

【0079】[0079]

【発明の効果】以上説明してきたように、本発明によれ
ば、PM中のC固体粒子(パーティキュレート粒子)を
一旦炭化水素や水素に変換すること、触媒成分とPM粒
子との接触(衝突)率を高めて該変換反応を促進させる
こととしたため、通常の燃焼条件の下で、特定の制御を
必要とせずにNOxとPMを連続的に自己浄化すること
が可能な排気浄化方法、排気浄化触媒及び排気浄化装置
を提供することができる。
As described above, according to the present invention, the C solid particles (particulate particles) in PM are temporarily converted into hydrocarbons and hydrogen, and the contact between the catalyst component and the PM particles (collision). A) an exhaust purification method capable of continuously purifying NOx and PM under normal combustion conditions without the need for specific control because the conversion reaction is promoted by increasing the rate. A purification catalyst and an exhaust purification device can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】モデルガス評価試験によるCからのHC生成挙
動を示すグラフである。
FIG. 1 is a graph showing the behavior of generating HC from C in a model gas evaluation test.

【図2】モデルガス評価試験によるNOx還元浄化特性
を示すグラフである。
FIG. 2 is a graph showing NOx reduction purification characteristics by a model gas evaluation test.

【図3】排気浄化装置の構成例を示す概略図である。FIG. 3 is a schematic diagram illustrating a configuration example of an exhaust gas purification device.

【図4】排気浄化装置の他の構成例を示す概略図であ
る。
FIG. 4 is a schematic diagram showing another configuration example of the exhaust gas purification device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 23/89 B01J 35/06 A 4G069 29/74 F01N 3/02 301E 35/06 3/08 A F01N 3/02 301 3/10 3/08 3/24 C 3/10 E 3/24 3/28 301C B01D 46/00 302 3/28 301 46/42 B // B01D 46/00 302 53/36 104A 46/42 ZAB 104B (72)発明者 上條 元久 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3G090 AA02 AA04 3G091 AA02 AA18 AB05 AB13 BA11 BA13 BA14 CA19 GA17 GA19 GA20 GB02Y GB03Y GB04Y GB05W GB06W GB07W GB09Y GB17X GB17Y HA08 HA18 4D019 AA01 BA05 BB03 BB06 BC07 BD01 CA01 CB04 4D048 AA06 AA14 AA17 AA18 BA03X BA06Y BA07Y BA08X BA11X BA12X BA28X BA30X BA31Y BA33X BA36X BA37X BA38X BA41X BB02 BB08 CC32 CC36 CC41 CC46 DA03 DA06 EA04 4D058 JA32 JB06 JB22 JB25 MA44 QA01 QA07 SA08 TA06 4G069 AA02 AA06 BA01A BA01B BA02A BA04A BA06A BA06B BA07A BA10A BC13B BC62A BC62B BC66A BC66B BC67A BC67B BC68A BC68B BC71A BC71B BC72A BC75A BC75B CA03 CA13 CA15 CA18 CC21 DA06 EA09 EA19 EB18X EB18Y EC13X EC22Y EE06 FA01 FA02 FA03 FB13 FB21 FB23 FB30 FC08 ZA06A ZA10A ZA10B ZA19A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 23/89 B01J 35/06 A 4G069 29/74 F01N 3/02 301E 35/06 3/08 A F01N 3 / 02 301 3/10 3/08 3/24 C 3/10 E 3/24 3/28 301C B01D 46/00 302 3/28 301 46/42 B // B01D 46/00 302 53/36 104A 46 / 42 ZAB 104B (72) Inventor Motohisa Kamijo 2 Takara-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 3G090 AA02 AA04 3G091 AA02 AA18 AB05 AB13 BA11 BA13 BA14 CA19 GA17 GA19 GA20 GB02Y GB03Y GB04Y GB05W GB06W07 GB09Y GB17X GB17Y HA08 HA18 4D019 AA01 BA05 BB03 BB06 BC07 BD01 CA01 CB04 4D048 AA06 AA14 AA17 AA18 BA03X BA06Y BA07Y BA08X BA11X BA12X BA28X BA30X BA31Y BA33X BA36X BA37X BA38 X BA41X BB02 BB08 CC32 CC36 CC41 CC46 DA03 DA06 EA04 4D058 JA32 JB06 JB22 JB25 MA44 QA01 QA07 SA08 TA06 4G069 AA02 AA06 BA01A BA01B BA02A BA04A BA06A BA06B BA07A BA10A BC13B BCBC BCA BCBC BCA BC66A BC66B BC CC21 DA06 EA09 EA19 EB18X EB18Y EC13X EC22Y EE06 FA01 FA02 FA03 FB13 FB21 FB23 FB30 FC08 ZA06A ZA10A ZA10B ZA19A

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 排気中のパーティキュレート粒子及び窒
素酸化物を浄化する方法であって、次の反応式1 mC+nHO→H2n+n/2・O …(1) で表される反応によりパーティキュレート粒子を炭化水
素に変換する過程を含むことを特徴とする排気浄化方
法。
1. A method for purifying particulate particles and nitrogen oxides in exhaust gas, which is represented by the following reaction formula: 1 mC + nH 2 O → H 2n C m + n / 2 · O 2 (1) An exhaust gas purification method comprising a step of converting particulate particles into a hydrocarbon by a reaction.
【請求項2】 上記炭化水素を窒素酸化物と反応させ、
次の反応式2 H2n+4NO→2N+mCO+nHO …(2) で表される反応により窒素、二酸化炭素及び水に変換す
る過程を含むことを特徴とする請求項1に記載の排気浄
化方法。
2. Reacting the hydrocarbon with nitrogen oxides;
2. The process according to claim 1, further comprising a step of converting into nitrogen, carbon dioxide, and water by a reaction represented by the following reaction formula: 2 H 2n C m + 4NO → 2N 2 + mCO 2 + nH 2 O (2) Exhaust purification method.
【請求項3】 上記反応式1で表される反応を、350
℃以下の温度で行うことを特徴とする請求項1又は2に
記載の排気浄化方法。
3. The reaction represented by the above reaction formula 1 is carried out at 350
The exhaust gas purification method according to claim 1 or 2, wherein the method is performed at a temperature of not more than ℃.
【請求項4】 上記反応式1で表される反応を、280
℃以下の温度で行うことを特徴とする請求項3に記載の
排気浄化方法。
4. The reaction represented by the above reaction formula 1 is performed at 280
The exhaust gas purification method according to claim 3, wherein the method is performed at a temperature of not more than ° C. 5.
【請求項5】 上記反応式2で表される反応を、350
℃以下の温度で行うことを特徴とする請求項1〜4のい
ずれか1つの項に記載の排気浄化方法。
5. The reaction represented by the above reaction formula 2 is carried out at 350
The exhaust gas purification method according to any one of claims 1 to 4, wherein the method is performed at a temperature of not more than ° C.
【請求項6】 上記反応式2で表される反応を、280
℃以下の温度で行うことを特徴とする請求項5に記載の
排気浄化方法。
6. The reaction represented by the above reaction formula 2 is performed at 280
The exhaust gas purification method according to claim 5, wherein the method is performed at a temperature of not more than 属 C.
【請求項7】 請求項1〜6のいずれか1つの項に記載
の排気浄化方法を用いて排気中のパーティキュレート粒
子及び窒素酸化物を浄化する装置であって、 モノリス型フィルタの気孔内壁に、白金、パラジウム及
びロジウムから成る群より選ばれた少なくとも1種の貴
金属成分と、平均粒径が1μm以下であるアルミナ、チ
タニア、ジルコニア及びシリカから成る群より選ばれた
少なくとも1種の酸化物微粒子と、を担持して成る触媒
機能付きフィルタを内燃機関の排気煙道に配設したこと
を特徴とする排気浄化装置。
7. An apparatus for purifying particulate particles and nitrogen oxides in exhaust gas by using the exhaust gas purification method according to claim 1, wherein the monolithic filter has a pore inner wall. , At least one noble metal component selected from the group consisting of platinum, palladium and rhodium, and at least one oxide fine particle selected from the group consisting of alumina, titania, zirconia and silica having an average particle size of 1 μm or less And a filter having a catalytic function carrying the filter is disposed in an exhaust flue of an internal combustion engine.
【請求項8】 上記酸化物微粒子の平均粒径が0.6μ
m以下であることを特徴とする請求項7に記載の排気浄
化装置。
8. An oxide fine particle having an average particle diameter of 0.6 μm.
The exhaust gas purification apparatus according to claim 7, wherein m is equal to or less than m.
【請求項9】 上記モノリス型フィルタの気孔率が30
〜80%であり、平均気孔径が5〜40μmであること
を特徴とする請求項7又は8に記載の排気浄化装置。
9. The porosity of the monolithic filter is 30.
The exhaust gas purification apparatus according to claim 7, wherein the exhaust gas purification apparatus has an average pore diameter of 5 to 40 μm.
【請求項10】 上記触媒機能付きフィルタが、2段以
上に分割され直列に配置されて成ることを特徴とする請
求項7〜9のいずれか1つの項に記載の排気浄化装置。
10. The exhaust gas purifying apparatus according to claim 7, wherein the filter having a catalytic function is divided into two or more stages and arranged in series.
【請求項11】 排気上流側の触媒機能付きフィルタの
圧力損失が、排気下流側の触媒機能付きフィルタの圧力
損失より大きいことを特徴とする請求項10に記載の排
気浄化装置。
11. The exhaust gas purifying apparatus according to claim 10, wherein a pressure loss of the filter with a catalytic function on the exhaust upstream side is larger than a pressure loss of the filter with a catalytic function on the exhaust downstream side.
【請求項12】 排気上流側の触媒機能付きフィルタの
平均気孔径が、排気下流側の触媒機能付きフィルタの平
均気孔径より大きいことを特徴とする請求項10又は1
1に記載の排気浄化装置。
12. The filter according to claim 10, wherein the average pore diameter of the filter with a catalytic function on the exhaust upstream side is larger than the average pore diameter of the filter with a catalytic function on the exhaust downstream side.
2. The exhaust gas purification device according to 1.
【請求項13】 排気上流側の触媒機能付きフィルタの
気孔率が、排気下流側の触媒機能付きフィルタの気孔率
より大きいことを特徴とする請求項10〜12のいずれ
か1つの項に記載の排気浄化装置。
13. The filter according to claim 10, wherein the porosity of the filter with a catalytic function on the exhaust upstream side is larger than the porosity of the filter with a catalytic function on the exhaust downstream side. Exhaust gas purification device.
【請求項14】 上記排気上流側の触媒機能付きフィル
タが、衝突濾過機能を有することを特徴とする請求項1
0〜13のいずれか1つの項に記載の排気浄化装置。
14. The exhaust gas-equipped filter with a catalytic function has a collision filtration function.
An exhaust gas purification apparatus according to any one of items 0 to 13.
【請求項15】 上記排気下流側の触媒機能付きフィル
タが、表面濾過機能を有することを特徴とする請求項1
0〜14のいずれか1つの項に記載の排気浄化装置。
15. The filter with a catalytic function downstream of the exhaust gas has a surface filtering function.
An exhaust gas purification apparatus according to any one of items 0 to 14.
【請求項16】 上記排気上流側の触媒機能付きフィル
タが、セラミック繊維の織布及び/又は不織布を用いて
成ることを特徴とする請求項10〜15のいずれか1つ
の項に記載の排気浄化装置。
16. The exhaust gas purifying apparatus according to claim 10, wherein the filter having a catalytic function on the upstream side of the exhaust gas is made of a woven and / or non-woven fabric of ceramic fibers. apparatus.
【請求項17】 上記排気下流側の触媒機能付きフィル
タが、セラミック焼結体を用いて成ることを特徴とする
請求項10〜16のいずれか1つの項に記載の排気浄化
装置。
17. The exhaust gas purifying apparatus according to claim 10, wherein the filter having a catalytic function on the exhaust downstream side is formed using a ceramic sintered body.
【請求項18】 上記触媒機能付きフィルタの排気上流
側に、炭化水素及び可溶性有機成分を除去する機能を有
するHC・SOF除去材料を配設して成ることを特徴と
する請求項10〜17のいずれか1つの項に記載の排気
浄化装置。
18. An HC / SOF removing material having a function of removing hydrocarbons and soluble organic components is disposed on the exhaust gas upstream side of the filter with a catalytic function. An exhaust purification device according to any one of the preceding items.
【請求項19】 上記HC・SOF除去材料が、モルデ
ナイト、MFI、β型ゼオライト、平均細孔径が1〜5
nmであるシリカ、及び層状粘土鉱物から成る群より選
ばれた少なくとも1種のゼオライト及び/又はシリカ含
有無機物であることを特徴とする請求項18に記載の排
気浄化装置。
19. The HC / SOF-removing material is mordenite, MFI, β-zeolite, and has an average pore diameter of 1 to 5
19. The exhaust gas purifying apparatus according to claim 18, wherein the exhaust gas purifying apparatus is at least one zeolite and / or a silica-containing inorganic substance selected from the group consisting of silica having a thickness of nm and a layered clay mineral.
【請求項20】 請求項7〜19のいずれか1つの項に
記載の排気浄化装置を製造する方法であって、 上記モノリス型フィルタの気孔内壁に上記酸化物微粒子
を分散担持させた後に、上記貴金属成分を含浸法及び/
又はメッキ法によって担持させることを特徴とする排気
浄化装置の製造方法。
20. The method for manufacturing an exhaust gas purifying apparatus according to claim 7, wherein the oxide fine particles are dispersed and supported on the pore inner wall of the monolithic filter. Noble metal component impregnation method and / or
Alternatively, a method for manufacturing an exhaust gas purification apparatus, wherein the method is carried by plating.
【請求項21】 排気中のパーティキュレート粒子及び
窒素酸化物を浄化する方法であって、 内燃機関から排出される排気の温度が500℃以下のと
きに、次の反応式3及び/又は4 C+HO→H+CO …(3) C+2HO→2H+CO …(4) で表される水素生成反応を行う過程を含むことを特徴と
する排気浄化方法。
21. A method for purifying particulate particles and nitrogen oxides in exhaust gas, wherein when the temperature of exhaust gas discharged from the internal combustion engine is 500 ° C. or less, the following reaction formula 3 and / or 4 C + H 2 O → H 2 + CO ... (3) C + 2H 2 O → 2H 2 + CO 2 ... exhaust purification method characterized by comprising the step of performing the hydrogen generation reaction represented by (4).
【請求項22】 請求項21に記載の排気浄化方法に用
いられる水素生成触媒及び窒素酸化物浄化触媒を含む排
気浄化触媒であって、 上記水素生成触媒が、少なくともロジウムを担持した多
孔質粒子の粉末と、鉄、コバルト、マンガン及びニッケ
ルから成る群より選ばれた少なくとも1種の金属とを含
み、これら金属はロジウムを1としたときに0.1〜1
0の比率で含まれることを特徴とする排気浄化触媒。
22. An exhaust gas purifying catalyst comprising a hydrogen generating catalyst and a nitrogen oxide purifying catalyst used in the exhaust gas purifying method according to claim 21, wherein the hydrogen generating catalyst is a porous particle carrying at least rhodium. Powder, and at least one metal selected from the group consisting of iron, cobalt, manganese, and nickel, wherein the metal is 0.1 to 1 when rhodium is defined as 1.
An exhaust gas purifying catalyst characterized by being contained at a ratio of 0.
【請求項23】 上記多孔質粒子の平均粒子径が、0.
1〜20μmであることを特徴とする請求項22に記載
の排気浄化触媒。
23. The porous particles having an average particle size of 0.1.
The exhaust purification catalyst according to claim 22, wherein the thickness is 1 to 20 m.
【請求項24】 請求項22又は23に記載の排気浄化
触媒を用いて排気中のパーティキュレート粒子及び窒素
酸化物を浄化する装置であって、 内燃機関の排気煙道の上流側に上記水素生成触媒を配設
し、その下流側に上記窒素酸化物浄化触媒を配設して成
ることを特徴とする排気浄化装置。
24. An apparatus for purifying particulate particles and nitrogen oxides in exhaust gas using the exhaust gas purification catalyst according to claim 22 or 23, wherein the hydrogen generation is provided upstream of an exhaust flue of an internal combustion engine. An exhaust gas purification apparatus comprising a catalyst and a nitrogen oxide purification catalyst disposed downstream of the catalyst.
【請求項25】 請求項22又は23に記載の排気浄化
触媒を用いて排気中のパーティキュレート粒子及び窒素
酸化物を浄化する装置であって、内燃機関の排気煙道上
に上記窒素酸化物浄化触媒の積層体を配設し、その上に
上記水素生成触媒を被覆して成ることを特徴とする排気
浄化装置。
25. An apparatus for purifying particulate particles and nitrogen oxides in exhaust gas using the exhaust gas purification catalyst according to claim 22 or 23, wherein the nitrogen oxide purification catalyst is provided on an exhaust flue of an internal combustion engine. An exhaust gas purification apparatus comprising: a stacked body of the above (1), and the above-mentioned hydrogen generation catalyst coated thereon.
JP2001167506A 2001-06-01 2001-06-01 Exhaust purification device and method for manufacturing the same Expired - Fee Related JP4174976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001167506A JP4174976B2 (en) 2001-06-01 2001-06-01 Exhaust purification device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001167506A JP4174976B2 (en) 2001-06-01 2001-06-01 Exhaust purification device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2002361047A true JP2002361047A (en) 2002-12-17
JP4174976B2 JP4174976B2 (en) 2008-11-05

Family

ID=19009882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001167506A Expired - Fee Related JP4174976B2 (en) 2001-06-01 2001-06-01 Exhaust purification device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4174976B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005075053A1 (en) 2004-02-10 2005-08-18 Cataler Corporation Filter catalyst
EP1666117A1 (en) * 2004-02-10 2006-06-07 Cataler Corporation Filter catalyst and analyzing method for its catalyst layer
JP2008516756A (en) * 2004-10-14 2008-05-22 カタリティック ソリューションズ,インコーポレイテッド Platinum group metal-free catalyst for reducing particulate combustion temperature on diesel particulate filter
WO2008129670A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
JP2008284538A (en) * 2007-04-17 2008-11-27 Ibiden Co Ltd Catalyst-carrying honeycomb and its manufacturing method
JP2009515680A (en) * 2005-11-10 2009-04-16 ビーエーエスエフ、カタリスツ、エルエルシー Diesel dust filter with ultra-thin catalytic oxidation coating
JP2009221913A (en) * 2008-03-14 2009-10-01 Honda Motor Co Ltd Exhaust emission control device
JP2011194346A (en) * 2010-03-23 2011-10-06 Ngk Insulators Ltd Filter and method for manufacturing the same
JP2012035182A (en) * 2010-08-05 2012-02-23 Daihatsu Motor Co Ltd Catalyst composition
US8122603B2 (en) 2003-08-05 2012-02-28 Basf Corporation Method of forming a catalyzed selective catalytic reduction (SCR) filter
JP2012507402A (en) * 2008-11-04 2012-03-29 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Diesel particle filter with improved back pressure characteristics
JP2015509824A (en) * 2012-03-14 2015-04-02 日本碍子株式会社 Membrane separation pretreatment apparatus, membrane separation system, and membrane separation method
CN107313839A (en) * 2017-08-30 2017-11-03 烟台真谛节能科技有限公司 A kind of exhaust gases of internal combustion engines processing method and its high-temperature reactor and processing unit
CN115555044A (en) * 2022-10-10 2023-01-03 无锡威孚环保催化剂有限公司 Preparation method of catalyst for NOx pollutants of hydrogen internal combustion engine

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517455B2 (en) 2003-08-05 2016-12-13 Basf Corporation Catalyzed SCR filter and emission treatment system
US10518254B2 (en) 2003-08-05 2019-12-31 Basf Corporation Catalyzed SCR filter and emission treatment system
US9757717B2 (en) 2003-08-05 2017-09-12 Basf Corporation Method for disposing SCR composition on a wall flow monolith
US8899023B2 (en) 2003-08-05 2014-12-02 Basf Corporation Catalyzed SCR filter and emission treatment system
US9517456B2 (en) 2003-08-05 2016-12-13 Basf Corporation Catalyzed SCR filter and emission treatment system
US9144795B2 (en) 2003-08-05 2015-09-29 Basf Corporation Catalyzed SCR filter and emission treatment system
US9121327B2 (en) 2003-08-05 2015-09-01 Basf Corporation Catalyzed SCR filter and emission treatment system
US9039984B1 (en) 2003-08-05 2015-05-26 Basf Corporation Catalyzed SCR filter and emission treatment system
US10258972B2 (en) 2003-08-05 2019-04-16 Basf Corporation Catalyzed SCR filter and emission treatment system
US9039983B1 (en) 2003-08-05 2015-05-26 Basf Corporation Catalyzed SCR filter and emission treatment system
US9040006B1 (en) 2003-08-05 2015-05-26 Basf Corporation Catalyzed SCR filter and emission treatment method
US9032709B2 (en) 2003-08-05 2015-05-19 Basf Corporation Method of forming a catalyzed selective catalytic reduction filter
US10857529B2 (en) 2003-08-05 2020-12-08 Basf Corporation Catalyzed SCR filter and emission treatment system
US8122603B2 (en) 2003-08-05 2012-02-28 Basf Corporation Method of forming a catalyzed selective catalytic reduction (SCR) filter
US9039982B2 (en) 2003-08-05 2015-05-26 Basf Corporation Catalyzed SCR filter and emission treatment system
US7622419B2 (en) 2004-02-10 2009-11-24 Cataler Corporation Filter catalyst
EP1666117A1 (en) * 2004-02-10 2006-06-07 Cataler Corporation Filter catalyst and analyzing method for its catalyst layer
EP1723998A1 (en) * 2004-02-10 2006-11-22 Cataler Corporation Filter catalyst
WO2005075053A1 (en) 2004-02-10 2005-08-18 Cataler Corporation Filter catalyst
EP1723998B1 (en) * 2004-02-10 2012-04-18 Cataler Corporation Filter catalyst
EP1666117B1 (en) * 2004-02-10 2011-09-14 Cataler Corporation Method of analyzing a catalytic layer
US8465703B2 (en) 2004-02-10 2013-06-18 Cataler Corporation Filter catalyst and method of analyzing a catalytic layer thereof
JP2008516756A (en) * 2004-10-14 2008-05-22 カタリティック ソリューションズ,インコーポレイテッド Platinum group metal-free catalyst for reducing particulate combustion temperature on diesel particulate filter
JP2009515680A (en) * 2005-11-10 2009-04-16 ビーエーエスエフ、カタリスツ、エルエルシー Diesel dust filter with ultra-thin catalytic oxidation coating
JP2014140844A (en) * 2005-11-10 2014-08-07 Basf Corp Diesel particulate filter having ultra-thin catalyzed oxidation coating
US8038955B2 (en) 2007-04-17 2011-10-18 Ibiden Co., Ltd. Catalyst supporting honeycomb and method of manufacturing the same
JP2008284538A (en) * 2007-04-17 2008-11-27 Ibiden Co Ltd Catalyst-carrying honeycomb and its manufacturing method
WO2008129670A1 (en) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. Catalyst-carrying honeycomb and process for producing the same
JP2009221913A (en) * 2008-03-14 2009-10-01 Honda Motor Co Ltd Exhaust emission control device
JP2012507402A (en) * 2008-11-04 2012-03-29 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Diesel particle filter with improved back pressure characteristics
JP2011194346A (en) * 2010-03-23 2011-10-06 Ngk Insulators Ltd Filter and method for manufacturing the same
JP2012035182A (en) * 2010-08-05 2012-02-23 Daihatsu Motor Co Ltd Catalyst composition
JP2015509824A (en) * 2012-03-14 2015-04-02 日本碍子株式会社 Membrane separation pretreatment apparatus, membrane separation system, and membrane separation method
CN107313839A (en) * 2017-08-30 2017-11-03 烟台真谛节能科技有限公司 A kind of exhaust gases of internal combustion engines processing method and its high-temperature reactor and processing unit
CN107313839B (en) * 2017-08-30 2023-05-16 烟台真谛节能科技有限公司 Internal combustion engine tail gas treatment method, high-temperature reactor and treatment device thereof
CN115555044A (en) * 2022-10-10 2023-01-03 无锡威孚环保催化剂有限公司 Preparation method of catalyst for NOx pollutants of hydrogen internal combustion engine
CN115555044B (en) * 2022-10-10 2024-02-09 无锡威孚环保催化剂有限公司 Application of catalyst in removing NOx pollutants of hydrogen internal combustion engine

Also Published As

Publication number Publication date
JP4174976B2 (en) 2008-11-05

Similar Documents

Publication Publication Date Title
JP6687666B2 (en) Exhaust system for vehicle positive ignition internal combustion engine
JP6629269B2 (en) Emission treatment system equipped with ammonia generation catalyst and SCR catalyst
JP4889873B2 (en) Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method
JP5769732B2 (en) Selective reduction catalyst, exhaust gas purification apparatus and exhaust gas purification method using the same
JP5652848B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using the same
JP5110954B2 (en) Exhaust gas purification catalyst apparatus using selective reduction catalyst and exhaust gas purification method
CN100482325C (en) Catalyst arrangement and method of purifying the exhaust gas of internal combustion engines operated under lean conditions
JP5746720B2 (en) Exhaust article with pressure balanced catalyst
KR20110025848A (en) Nox adsorber catalyst with superior low temperature performance
WO2010041741A1 (en) Exhaust gas purifying device
JP2017006904A (en) Exhaust system for vehicular positive ignition internal combustion engine
JP2017502839A (en) Selective catalytic reduction method using doped ceria
EP3607180B1 (en) On-board vehicle hydrogen generation and use in exhaust streams
JP4174976B2 (en) Exhaust purification device and method for manufacturing the same
CA2626964A1 (en) Exhaust gas purifying apparatus
CN110785546A (en) Exhaust gas purification system
CN114728234A (en) Particulate filter
JP2023539494A (en) particulate filter
JP2002089240A (en) Exhaust emission control device and exhaust emission control method using this
JP4604374B2 (en) Exhaust gas purification device for internal combustion engine
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
JP2009226327A (en) CATALYST FOR SELECTIVELY REDUCING NOx
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
JP2006346605A (en) Exhaust gas cleaning filter and exhaust gas cleaning device for internal engine
JP2024505898A (en) Particulate filter with concentrated distributed PGM and method for preparing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees