JP4604374B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4604374B2
JP4604374B2 JP2001073906A JP2001073906A JP4604374B2 JP 4604374 B2 JP4604374 B2 JP 4604374B2 JP 2001073906 A JP2001073906 A JP 2001073906A JP 2001073906 A JP2001073906 A JP 2001073906A JP 4604374 B2 JP4604374 B2 JP 4604374B2
Authority
JP
Japan
Prior art keywords
catalyst
internal combustion
combustion engine
exhaust gas
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001073906A
Other languages
Japanese (ja)
Other versions
JP2002276337A (en
Inventor
弘 赤間
元久 上條
浩昭 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001073906A priority Critical patent/JP4604374B2/en
Publication of JP2002276337A publication Critical patent/JP2002276337A/en
Application granted granted Critical
Publication of JP4604374B2 publication Critical patent/JP4604374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気を浄化する技術に関し、特に、フィルタ及び触媒を用いて排気中のPMを高効率で浄化する技術に関する。
【0002】
【従来の技術】
従来、内燃機関、特にディーゼルエンジンでは、排気中のPM(カーボンC及び可溶性有機化合物SOF)を捕集し、捕集したPMを燃焼除去して浄化するとともに、再度PMを捕集できるようにフィルタを再生することが、一般的に行われている。
【0003】
前記フィルタを連続的に再生する技術として、ディーゼル・パーティキュレート・フィルタ(DPF)の上流に、NOをNO2に酸化する酸化触媒を配置することで、排温が低くともNO2によりDPFに捕集されたC及びSOFを燃焼させる技術がある(特許第3012249号)。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来技術では、DPFに捕集されたCをNO2で燃焼するとき(C+NO2)の反応速度は、SOFをNO2で燃焼するとき(SOF+NO2)の反応速度より遅いため、Cの燃焼に使われるNO2量がSOFの燃焼に使われるNO2より少なく、結果としてCが燃焼し難くなるといった問題があった。
【0005】
本発明は、このような状況に鑑みてなされたものであり、フィルタに捕集されたPMのうち、SOF分によるNO2消費を抑えてCの燃焼を促進することにより、フィルタの連続再生が良好に行われるようにした排気浄化装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため、請求項1に係る発明は、
内燃機関の排気通路に設置され、流入する排気中のパーティキュレート粒子(PM)に含まれる可溶性有機化合物(SOF)を吸着捕捉するとともに、気相酸素を利用してSOF成分を酸化除去するSOF浄化機能と、流入する排気中の一酸化窒素(NO)を酸化して二酸化窒素(NO2)を生成するNO酸化機能と、を有する触媒と、前記触媒の下流側に配置され、流入する排気中のPMを捕集し、そのPMに含まれるスートを前記NO酸化機能によって生成されたNO 2 によって燃焼するスート燃焼機能を有するフィルタと、を備えることを特徴とする。
また、請求項2に係る発明は、
内燃機関の排気通路に設置され、流入する排気中のパーティキュレート粒子(PM)に含まれる可溶性有機化合物(SOF)を吸着・浄化するSOF浄化機能と、流入する排気中の一酸化窒素(NO)を酸化して二酸化窒素(NO 2 )を生成するNO酸化機能と、を有する触媒容積1リットル当たり1.3g以上5g以下の量の貴金属を含有した触媒と、前記触媒の下流側に配置され、流入する排気中のPMを捕集し、そのPMに含まれるスートを前記NO酸化機能によって生成されたNO 2 によって燃焼するスート燃焼機能を有するフィルタと、を備えることを特徴とする。
【0007】
請求項1及び請求項2に係る発明によると、フィルタ上流側の触媒のSOF浄化機能により、排気中のSOFを燃焼除去でき、その結果、該触媒によって生成されたNO2が、フィルタに捕集されたC(ドライスート)の燃焼に集中的に消費されるので、C(ドライスート)も効率良く燃焼除去できる。
【0008】
また、請求項に係る発明は、
前記フィルタのPM捕集面上に、前記SOF浄化機能と前記NO酸化機能とを有する触媒の層が積層されて一体に形成されていることを特徴とする。
請求項に係る発明によると、
触媒が、PM捕集面上にコーティングなどによって積層することで、フィルタに一体化されるので、装置をコンパクト化できる。
【0009】
また、請求項に係る発明は、
前記SOF浄化機能と前記NO酸化機能とを有する触媒と、該触媒下流側の前記フィルタとの間に、排気温度が所定温度未満のとき流入する排気中のNO2を貯蔵し、所定温度以上のとき貯蔵したNO2を放出する機能を有するNOxトラップ触媒を備えることを特徴とする。
【0010】
請求項に係る発明によると、フィルタ上流の触媒で生成されたNO2を、排気温度の低温時にNOxトラップ触媒に貯蔵しておき、高温になったときに貯蔵したNO2を放出して、フィルタに供給することにより、フィルタに捕集されているPMを効率良く、燃焼除去できる。
【0011】
特に、ディーゼルエンジンでは排温が一般に低く、低温である頻度が高いため、触媒でNO2が生成されても低温時には、フィルタに捕集されたPM、特にC(ドライスート)との反応速度が遅く、大部分がドライスートの燃焼に供することなく排出されるのを、NOxトラップ触媒によって効果的に防止できる。すなわち、上記のようにNOxトラップ触媒にNO2を貯蔵しておくことで、該NO2が放出される上記所定温度が400°C程度の場合、NO2放出時にはドライスートとNO2との反応も早くなるので、効率よくPMを燃焼除去できる。
【0012】
特に、このような排気温度条件の場合には、特開平8−338229号公報に開示されるような従来提案では、フィルタ入口位置でNOxがN2にまで還元されるため、PMを燃焼除去できなくなる。本発明におけるNOxトラップ触媒ではNOx還元能を有さず、NO2の形態のままPM粒子と接触できるため、PMを燃焼除去できるのである。排気温度が300°C以上420°C以下、好ましくは350°C以上400°C以下の範囲に含まれる特性のNOxトラップ触媒を用いることで期待する上記効果はより一層有効に発揮できる。
【0013】
また、請求項に係る発明は、
前記フィルタのPM捕集面上に、前記NOxトラップ触媒の層を間に介して、前記SOF浄化機能と前記NO酸化機能とを有する触媒が、順次積層されて一体に形成されていることを特徴とする。
請求項に係る発明によると、
前記2種類の触媒が、フィルタのPM捕集面上に順次積層して、フィルタに一体化されるので、装置を極力コンパクト化できる。
【0014】
また、請求項に係る発明は、
前記SOF浄化機能と前記NO酸化機能とを有する触媒は、平均細孔径50nm以下のメソ孔を有し、かつ250m2/g以上の比表面積を有する多孔材を備えることを特徴とする。
請求項に係る発明によると、
上記のように、孔径および比表面積を設定することで、触媒のSOF吸着機能を高めることができる。
【0015】
また、請求項に係る発明は、
前記多孔材は、珪素(Si)、アルミニウム(A1)、ジルコニウム(Zr)、チタン(Ti)、マグネシウム(Mg)から選ばれた1種以上の元素の酸化物からなる多孔体であることを特徴とする。
請求項に係る発明によると、
排気中のSOFは、分子径が大きいため、その捕捉効率を高めるには、高比表面積、高細孔容積を有する多孔体が有効であり、該SOF成分の分子径に見合った大きな細孔径のメソ孔を有する材料として、上記酸化物が適する。
【0016】
また、請求項に係る発明は、
前記フィルタ上に、白金(Pt)、パラジウム(Pd)、銀(Ag)、コバルト(Co)、銅(Cu)、マンガン(Mn)、鉄(Fe)、アルカリ、アルカリ土類、希土類から選ばれた1種以上の元素を担持したことを特徴とする。
請求項に係る発明によると、
フィルタ上に担持された元素(触媒成分)により、フィルタ内部で排気中の気体状可燃成分を燃焼させ、その燃焼熱によりNO2とC(ドライスート)との反応を促進させることができる。ここで、気体状可燃成分とは、沸点の比較的低い通常の炭化水素成分であり、200°C以上の温度があれば、前記触媒成分により酸化することができる。
【0017】
また、請求項に係る発明は、
前記NOxトラップ触媒は、貴金属を含有せず、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)、ニッケル(Ni)、マンガン(Mn)から選ばれた1種以上の元素を含有することを特徴とする。
請求項に係る発明によると、
上記貴金属以外の元素をNOxトラップ触媒の触媒として含有することにより、貯蔵したNOxを放出できる温度が比較的低くなり(420°C以下)、排気温度が低いディーゼルエンジンなどでも高温条件で、NOxが放出されてフィルタに捕集されたCを燃焼除去することができる。
【0018】
また、請求項10に係る発明は、
前記NOxトラップ触媒は、Na,Mg,K,Ni,Mnから選ばれた1種以上の元素を、比表面積が180m2/g以上の耐火性無機酸化物に5wt%以上30wt%以下となるように担持、含有させて得られることを特徴とする。
請求項10に係る発明によると、
前記NOx貯蔵用の元素が、比表面積が180m2/g以上の耐火性無機酸化物に5wt%未満では、貯蔵サイトが少なくなるため十分な貯蔵効果が得られず、また、30wtを超えると比表面積が低下して、やはり、貯蔵サイトが少なくなって十分な貯蔵効果が得られなくなるので、上記の範囲に設定することで良好な貯蔵効果を得られる。
【0019】
また、請求項11に係る発明は、
排気温度を、前記NOxトラップ触媒に排気中のNO2を貯蔵する温度と、貯蔵したNO2を放出する温度とに、周期的に変化させる制御を行うことを特徴とする。
請求項11に係る発明によると、
上記排気温度制御によって、NOxトラップ触媒へのNOxの貯蔵と放出が繰り返され、PMの燃焼を効率良く行うことができる。また、フィルタのPM捕集量及びNOxトラップ触媒のNOx貯蔵量に応じて、排温制御を行えば、PM燃焼処理に最適なNO2利用量を設計できるため、NO2利用効率を格段に高めることができる。
【0020】
また、請求項12に係る発明は、
前記フィルタの下流側に、NOxを還元浄化する機能を有したNOx還元触媒を配置したことを特徴とする。
請求項12に係る発明によると、
PMを燃焼した後に排出されるNOxを、NOx還元触媒によって還元浄化処理することができる。
【0021】
また、請求項13に係る発明は、
前記フィルタの下流側に、NOxを還元浄化する機能を有したNOx還元触媒を配置すると共に、
前記排気温度を、前記NOxトラップ触媒に貯蔵したNO2を放出する温度としたときに、前記NOxを還元浄化する機能を有したNOx還元触媒の入口における排気空燃比をストイキまたはリッチに制御することを特徴とする。
【0022】
請求項13に係る発明によると、
NOxトラップ触媒に貯蔵したNO2を放出する温度を排気温度とすることで、PM特にCの燃焼浄化効率を高めつつ、フィルタから放出される余剰のNO2をNOx還元触媒に流入する前に、リッチ化された排気によってある程度還元浄化しておくことで、NOx還元触媒の負担を軽減し、NOx浄化効率をより高めることができる。
【0023】
また、請求項14に係る発明は、
前記NOx還元触媒の層が、前記フィルタの排気出口面上に積層されていることを特徴とする。
請求項14に係る発明によると、
前記NOx還元触媒が、フィルタに一体化されるので、装置をコンパクト化できる。
【0024】
【発明の実施の形態】
以下、本発明に係る排気浄化装置について説明する。本装置の基本的な構成は、内燃機関の排気通路の上流側から、SOF(可溶性有機化合物)を吸着・浄化するSOF浄化機能と、NOを酸化してNO2を生成するNO酸化機能とを有する触媒(以下、酸化触媒と称す)と、PMを捕集するためのフィルタとを順次配置したものである。
【0025】
上流側の酸化触媒には、触媒容積1リットル当たり1.3g以上5g以下の量の貴金属(例えばPt)を含有させる。すなわち、1.3g/L未満の貴金属量では200°Cあるいはそれ以下の低温域でのHC,CO,SOFの浄化率が不十分になるとともに、200〜250°Cの温度域ではNOxの還元反応が進み、NOxが消費されてしまう。一方、Pt含有量が5g/Lを超えるとSOFによるNOx還元反応も起こり、やはりNOxを消費してしまう。そこで、低温酸化活性とNO2生成を両立させるには1.3g/L以上5g/L以下の貴金属(Pt)担持量を選ぶのが好ましい。
【0026】
さらに、この酸化触媒には、平均細孔径が50nm以下のメソ孔を有し、かつ250m2/g以上の比表面積を有する多孔材を含有させる。具体例としては、いわゆる、メソポーラスシリカ、メソポーラスアルミナ、メソポーラスジルコニア、メソポーラスチタニア等と称せられる酸化物多孔体があげられ、例えば、界面活性剤を用いてゾルゲル法によって得ることができる。また、モルデナイト、MFI、フェリエライト、ゼオライトβ等のゼオライトや、ヘクトライト、モンモリロナイト等の層状粘土鉱物も用いることができる。これらの多孔体添加効果は、フィルタ前でSOFを効率よく、しかもできるだけ多く吸着捕捉するとともに、気相酸素を利用してSOF成分を酸化除去することにより、フィルタでのPM燃焼におけるNO2の有効利用率を高めることが狙いである。
【0027】
また、上記フィルタとしては、各種構造を有するものが有効であり、例えば、セラミック繊維の織布または不織布からなる深層濾過型のフィルタ、セラミックハニカムの通路を交互に目詰めしたウォールフロータイプのフィルタ等を用いることができる。
上記基本的な構成に加えて、前記酸化触媒とフィルタとの間に、排気温度が所定温度未満のとき流入する排気中のNO2を貯蔵し、所定温度以上のとき貯蔵したNO2を放出する機能を有するNOxトラップ触媒を配置することで、NO2の有効利用率をさらに高めることができる。この場合、上流側に配置された酸化触媒は、NOxトラップ触媒のNO2貯蔵能力を促進させることができるという相乗効果を有する。すなわち、前記酸化触媒は、SOFのみならず、低沸点のHC類を吸着、酸化することができる。該還元成分は、容易にNOx貯蔵材表面に吸着し、NOxの貯蔵を阻害する。そのため、NOx貯蔵の前段で該還元成分を除去することにより、NOxトラップ触媒へのNOx貯蔵効果を最大限発揮させることができ、同時に、還元成分の燃焼による排温上昇効果等も期待できる。
【0028】
また、フィルタ下流側にNOx還元触媒を配置することにより、NOx浄化性能を高めることができる。該NOx還元触媒はNOxを吸着及び還元する機能を有するが、例えば、Ptを含有させ、かつアルカリ、アルカリ土類及び希土類から選ばれた1種以上の元素を含有する触媒も有効である。これは、フィルタ上に貯まったPM分を浄化する際に多量に発生するNOxを浄化するために吸着及び還元能力を高めるためである。したがって、本NOx還元触媒は、フィルタの下流側に設置するが、フィルタの排気出口側にコーティングしても有効である。
【0029】
[実施例]
以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例1
本発明に係る排気浄化装置の実施例1を図1に示す。図において、エンジン1は、コモンレールシステムを備えた4気筒−2.5Lの直噴型ディーゼルエンジンである。エンジン1の吸気管2には吸気絞り弁3が設けられており、供給空気量を制御できるようになっている。エンジン1の排気管4には、容量1.5Lのハニカム型の酸化触媒5と、容量2.5Lのセラミック製ハニカム型のフィルタ6が直列に設定され、さらにその下流には容量1.7Lのハニカム型でNOxを吸着及び還元する機能を有するNOx還元触媒7が設置されている。
【0030】
前記酸化触媒5は、CO,HC及びSOF分を吸着、酸化する機能を有し、例えば以下のようにして得られる。Pt濃度が約4wt%のジニトロジアンミンPt水溶液を用い、含浸法によって比表面積220m2/gのγアルミナを主成分とする活性アルミナにPtを3.5wt%担持させる。このPt/γアルミナ粉末を、比表面積約830m2/g、平均細孔径約3.2nmのポーラスシリカ及び比表面積450m2/gのゼオライトβの重量比50/50の混合粉とベーマイト粉末とともに4:3:1の重量比で混合し、さらに硝酸酸性アルミナゾルを1wt%加え、水と混合し、直径7mmのアルミナボールを入れた磁性ボールミルポット中で60分間混合してスラリー液を得る。該スラリーを1平方インチ当たり400セルの通気孔を有するコージェライトハニカム1.5Lにコーティング、乾燥、焼成の過程を経て、CO,HC及びSOF分を吸着、酸化する機能を有するハニカム触媒を得る。
【0031】
また、前記フィルタ6は、例えば、SiCからなり、1平方インチ当たり約200セルの通気孔に対し、隣接するセルの通気孔の上流端と下流端とを交互に目詰めをして得られたフィルタであり、通気孔間を仕切る隔壁が、平均約10μmの気孔径を有し、下流端が目詰めされた通気孔内に流入した排気が、前記隔壁の気孔を介して隣接する通気孔に流出する際に、排気中のPMを隔壁表面に捕集する。
【0032】
また、前記NOx還元触媒7は、例えば以下のようにして得られる。上記酸化触媒と同様の製法を用いて1平方インチ当たり約400セルの通気孔を有する1.7LのコージェライトハニカムにPt及びRhを担持した活性アルミナ層を形成させる。次いで、含浸法により該ハニカム触媒にBa及びNaを担持させることにより、NOx還元触媒が得られる。
【0033】
実施例2
図2に示すように、上記実施例1の構成において、前記酸化触媒5とフィルタ6の間に、排気温度が所定温度未満のとき流入する排気中のNO2を貯蔵し、所定温度以上のとき貯蔵したNO2を放出する機能を有するNOxトラップ触媒8を設置して構成される。
【0034】
前記NOxトラップ触媒8は、例えば以下のようにして得られる。硝酸ナトリウム水溶液を用い、含浸法によって比表面積220m2/gのγアルミナを主成分とする活性アルミナにNaを約10wt%担持する。このNa/γアルミナ粉末に硝酸酸性アルミナゾルを1wt%加え、水と混合し、直径7mmのアルミナボールを入れた磁性ボールミルポット中で60分間混合してスラリー液を得る。該スラリーを1平方インチ当たり約400セルの通気孔を有するコージェライトハニカム0.5Lにコーティングし、乾燥、焼成の過程を経てNOxトラップ触媒が得られる。
【0035】
実施例3
実施例2において、酸化触媒5に用いたポーラスシリカを比表面積約680m2/g、平均細孔径約4.4nmのポーラスアルミナに換え、それ以外は同様にして、実施例3の装置を構成する。
実施例4
実施例2において、NOxトラップ触媒8のNaをKに換え、それ以外は同様にして、実施例4の装置を構成する。
【0036】
実施例5
実施例2において、NOxトラップ触媒8のNaをNa+Mgに換え、それ以外は同様にして、実施例5の装置を構成する。
実施例6
実施例2において、NOxトラップ触媒8のNaをK+Ni+Mnに換え、それ以外は同様にして、実施例6の装置を構成する。
【0037】
実施例7
実施例2において、酸化触媒5に用いたポーラスシリカとゼオライトβの混合粉を、比表面積約390m2/gのMFIゼオライト及び約360m2/gのモルデナイト混合粉に換え、それ以外は同様にして、実施例7の装置を構成する。
比較例
図3に示すように、実施例1において、フィルタ6とNOx還元触媒7の配置を逆にし、NOx還元触媒7をフィルタ6の上流に配置したものである。
【0038】
[試験例]
コモンレールシステムを備えた4気筒2.5Lの直噴型ディーゼルンジンを設置したエンジンダイナモ装置を用いて、前記各実施例及び比較例に係る装置(触媒−フィルタシステム)のPM、NOx、CO、HCの浄化性能及び圧力損失を測定した。本評価装置では、システム入口の排気温度は、エンジンの負荷、吸気絞り及びコモンレールシステムによるアフターインジェクションにより制御できるようになっている。
【0039】
かかるシステムの性能評価法は、フィルタ部の入口温度を150°Cで5分保持した後、400°Cで40秒間保持するパターンを繰り返す過渡性能評価法を用いた。このとき、400°Cで40秒間保持する間に5秒間の吸気絞りとコモンレールシステムによるアフターインジェクションで、NOx還元触媒入口における排気中のA/Fを13.2まで移行させた。本評価試験において用いた軽油はスウェーデンクラス1軽油である。
【0040】
以下、上記試験における性能評価(PM−NOx−CO−HCの平均低減率)と、フィルタの圧力損失評価を図4及び図5を参照して説明する。
実施例1のPM−NOx−CO−HCの平均低減率は、PM92%−NOx81%−CO95%−HC88%の低減率を得た。
また、本発明にかかるフィルタ再生機能の評価を表す圧力損失については、初期圧力に対する圧力損失上昇が、40時間運転後で40mmHgであった。従来に比較すると、酸化触媒5により酸化生成されるNO2により、下流側のフィルタ6に捕集されたC(ドライスート)を燃焼浄化できることにより、圧力損失上昇速度が減少している。ちなみに、NOx還元触媒7をフィルタ6上流側に配置した比較例では、運転20時間後で圧力損失上昇が40mHgを超えた。これは、既述の特開平8−338229号公報に開示されたものと同様、フィルタ6上流側のNOx還元触媒7でNO2をN2に還元してしまうと、PMを燃焼除去できなくなり、フィルタ6の目詰まりによる圧力損失上昇速度が増大することを示しており、この結果によっても、本発明ではNO2がPMの燃焼に有効利用されていることがわかる。
【0041】
上記実施例1に対してNOxトラップ触媒8を介在させた実施例2では、PM92%−NOx83%−CO97%−HC90%の低減率を得た。圧力損失については、初期圧力に対する圧力損失上昇が、100時間運転後で18mmHgであった。実施例1に比較すると、NOxトラップ触媒8に低温時に貯蔵した多量のNO2を高温時に放出してC(ドライスート)を燃焼浄化できる効果が大きく増大している。
【0042】
実施例3〜実施例7についても、高いPM、NOx、CO、HCの浄化性能を維持しつつ、圧力損失上昇についても100時間運転後で16mmHg〜25mmHgと良好な結果が得られた。
以上のように、本発明にかかる排気浄化装置によれば、200°C以下の低排温条件を含む排気を高効率で浄化でき、長時間にわたって安定して運転できることがわかる。
【0043】
また、図6に示すように、フィルタ6のPM捕集面上に、前記NOxトラップ触媒8の層を間に介して前記酸化触媒5を積層し、あるいは、図7に示すように、フィルタ6の排気出口面上に、前記NOx還元触媒7の層を積層して一体に形成してもよく、各触媒をフィルタに一体化されることで装置をコンパクト化できる。これらの構成を併用してもよく、全ての触媒とフィルタが一体化されて装置を最大限コンパクト化(特に排気流通方向長さを短縮化)できる。
【0044】
【発明の効果】
以上説明した本発明の効果をまとめると、PM捕集用フィルタの前段にSOF浄化機能を有する酸化触媒を設けることにより、NO2によるPM燃焼反応が進む条件で集中的にNO2を活用してNO2利用率を高めPMを効率良く浄化でき、NOxトラップ触媒を介在させることにより、さらに、NO2利用率を高めPMの浄化効率を大きく高めることができる。
【0045】
また、この時集中的に多く排出されるNOxに対しては、NOx吸着及び還元機能を有するNOx還元触媒を追加することによりNOxの高効率浄化も実現できる。
本発明では、上記NO2の有効利用率向上とNO2−PM反応が優勢的に進む条件、さらにはNOxを効率よく浄化できる条件を各機能材に与えることで、従来は困難であった200°C程度あるいはそれ以下の低排温を含む運転条件でもCO,HC,PM及びNOxの高効率浄化が可能になる。即ち、本発明によれば、ディーゼルンジンにおいて、クリーンな排気を実現することで、地球温暖化の問題を含めて環境汚染が少ない、経済性(燃費)に優れた自動車を提供することができる。
【図面の簡単な説明】
【図1】本発明にかかる内燃機関の排気浄化装置における実施例1のシステム構成を示す図。
【図2】同じく実施例2のシステム構成を示す図。
【図3】前記各実施例と比較される比較例のシステム構成を示す図。
【図4】前記各実施例のPM除去性能と圧力損失変化を示す図。
【図5】前記比較例のPM除去性能と圧力損失変化を示す図。
【図6】実施例の変形態様を示す図。
【図7】実施例の別の変形態様を示す図。
【符号の説明】
1 ディーゼルエンジン
4 排気管
5 酸化触媒
6 フィルタ
7 NOx還元触媒
8 NOxトラップ触媒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technology for purifying exhaust gas from an internal combustion engine, and more particularly to a technology for purifying PM in exhaust gas with high efficiency using a filter and a catalyst.
[0002]
[Prior art]
Conventionally, in an internal combustion engine, particularly a diesel engine, PM (carbon C and soluble organic compound SOF) in exhaust gas is collected, and the collected PM is burned and removed to be purified, and the filter can be collected again. Is generally done.
[0003]
As a technique for continuously regenerating the filter, an oxidation catalyst that oxidizes NO to NO 2 is disposed upstream of the diesel particulate filter (DPF), so that NO 2 captures the DPF even if the exhaust temperature is low. There is a technique for burning the collected C and SOF (Japanese Patent No. 3012249).
[0004]
[Problems to be solved by the invention]
However, in the above prior art, the reaction rate when C trapped in the DPF is burned with NO 2 (C + NO 2 ) is slower than the reaction rate when SOF is burned with NO 2 (SOF + NO 2 ). There is a problem that the amount of NO 2 used for the combustion of NO is less than the NO 2 used for the combustion of SOF, and as a result, C becomes difficult to burn.
[0005]
The present invention has been made in view of such circumstances, and among the PM collected by the filter, NO 2 consumption due to the SOF content is suppressed to promote the combustion of C, whereby the filter can be continuously regenerated. It is an object of the present invention to provide an exhaust emission control device that can be satisfactorily performed.
[0006]
[Means for Solving the Problems]
For this reason, the invention according to claim 1
SOF purification, which is installed in the exhaust passage of an internal combustion engine, adsorbs and captures soluble organic compounds (SOF) contained in particulate particles (PM) in inflowing exhaust gas, and oxidizes and removes SOF components using gas phase oxygen A catalyst having a function and a NO oxidation function that oxidizes nitric oxide (NO) in the inflowing exhaust gas to generate nitrogen dioxide (NO 2 ), and is disposed downstream of the catalyst and in the inflowing exhaust gas And a filter having a soot combustion function of burning soot contained in the PM by NO 2 generated by the NO oxidation function .
The invention according to claim 2
An SOF purification function for adsorbing and purifying soluble organic compounds (SOF) contained in particulate particles (PM) in inflowing exhaust gas installed in an exhaust passage of an internal combustion engine, and nitric oxide (NO) in inflowing exhaust gas A NO oxidation function for oxidizing nitrogen to generate nitrogen dioxide (NO 2 ), a catalyst containing a noble metal in an amount of 1.3 g to 5 g per liter of catalyst volume, and disposed downstream of the catalyst, And a filter having a soot combustion function of collecting PM in exhaust gas flowing in and burning soot contained in the PM by NO 2 generated by the NO oxidation function .
[0007]
According to the first and second aspects of the invention, the SOF purifying function of the catalyst on the upstream side of the filter allows the SOF in the exhaust gas to be burned and removed. As a result, NO 2 generated by the catalyst is collected in the filter. Since the concentrated C (dry soot) is consumed intensively, C (dry soot) can also be combusted and removed efficiently.
[0008]
The invention according to claim 3
A catalyst layer having the SOF purification function and the NO oxidation function is laminated and integrally formed on the PM collection surface of the filter.
According to the invention of claim 3 ,
Since the catalyst is laminated on the PM collection surface by coating or the like, the catalyst is integrated with the filter, so that the apparatus can be made compact.
[0009]
The invention according to claim 4
Between the catalyst having the SOF purification function and the NO oxidation function and the filter on the downstream side of the catalyst, NO 2 in the exhaust gas flowing in when the exhaust gas temperature is lower than a predetermined temperature is stored, A NOx trap catalyst having a function of releasing the stored NO 2 is provided.
[0010]
According to the invention of claim 4 , NO 2 produced by the catalyst upstream of the filter is stored in the NOx trap catalyst when the exhaust temperature is low, and the stored NO 2 is released when the temperature becomes high, By supplying to the filter, PM collected in the filter can be burned and removed efficiently.
[0011]
In particular, in diesel engines, the exhaust temperature is generally low and the frequency of low temperature is high, so even if NO 2 is generated by the catalyst, the reaction rate with PM, especially C (dry soot) collected by the filter is low at low temperatures. It is possible to effectively prevent the NOx trap catalyst from being exhausted without being subjected to the combustion of dry soot at a later time. That is, by storing NO 2 in the NOx trap catalyst as described above, when the predetermined temperature at which the NO 2 is released is about 400 ° C., the reaction between dry soot and NO 2 when NO 2 is released. As a result, the PM can be burned and removed efficiently.
[0012]
In particular, in the case of such an exhaust temperature condition, in the conventional proposal as disclosed in JP-A-8-338229, NOx is reduced to N 2 at the filter inlet position, so PM can be removed by combustion. Disappear. The NOx trap catalyst in the present invention does not have NOx reducing ability and can contact with PM particles in the form of NO 2 , so that PM can be removed by combustion. The above-mentioned effect expected by using a NOx trap catalyst having a characteristic that the exhaust temperature is in the range of 300 ° C. to 420 ° C., preferably 350 ° C. to 400 ° C. can be more effectively exhibited.
[0013]
The invention according to claim 5
A catalyst having the SOF purification function and the NO oxidation function is sequentially laminated and integrally formed on the PM collection surface of the filter with the NOx trap catalyst layer interposed therebetween. And
According to the invention of claim 5 ,
Since the two types of catalysts are sequentially stacked on the PM collection surface of the filter and integrated with the filter, the apparatus can be made compact as much as possible.
[0014]
The invention according to claim 6
The catalyst having the SOF purification function and the NO oxidation function includes a porous material having mesopores with an average pore diameter of 50 nm or less and a specific surface area of 250 m 2 / g or more.
According to the invention of claim 6 ,
As described above, the SOF adsorption function of the catalyst can be enhanced by setting the pore diameter and the specific surface area.
[0015]
The invention according to claim 7
The porous material is a porous body made of an oxide of one or more elements selected from silicon (Si), aluminum (A1), zirconium (Zr), titanium (Ti), and magnesium (Mg). And
According to the invention of claim 7 ,
Since the SOF in the exhaust gas has a large molecular diameter, a porous body having a high specific surface area and a high pore volume is effective for increasing its trapping efficiency. The SOF component has a large pore diameter corresponding to the molecular diameter of the SOF component. The above oxide is suitable as a material having mesopores.
[0016]
The invention according to claim 8 is
On the filter, platinum (Pt), palladium (Pd), silver (Ag), cobalt (Co), copper (Cu), manganese (Mn), iron (Fe), alkali, alkaline earth, and rare earth are selected. It is characterized in that one or more elements are supported.
According to the invention of claim 8 ,
The element (catalyst component) supported on the filter can burn the gaseous combustible component in the exhaust inside the filter, and the combustion heat can promote the reaction between NO 2 and C (dry soot). Here, the gaseous combustible component is a normal hydrocarbon component having a relatively low boiling point, and if it has a temperature of 200 ° C. or higher, it can be oxidized by the catalyst component.
[0017]
The invention according to claim 9 is
The NOx trap catalyst does not contain a noble metal and contains one or more elements selected from sodium (Na), magnesium (Mg), potassium (K), nickel (Ni), and manganese (Mn). Features.
According to the invention of claim 9 ,
By containing an element other than the noble metal as a catalyst for the NOx trap catalyst, the temperature at which the stored NOx can be released becomes relatively low (420 ° C. or lower), and even in diesel engines with low exhaust temperatures, C released and collected by the filter can be removed by combustion.
[0018]
The invention according to claim 10 provides
In the NOx trap catalyst, at least one element selected from Na, Mg, K, Ni, and Mn is added to a refractory inorganic oxide having a specific surface area of 180 m 2 / g or more so as to be 5 wt% or more and 30 wt% or less. It is obtained by being supported and contained in
According to the invention of claim 10 ,
If the element for storing NOx is less than 5 wt% in a refractory inorganic oxide having a specific surface area of 180 m 2 / g or more, the storage site is reduced, and a sufficient storage effect cannot be obtained. Since the surface area is reduced and the storage sites are decreased, a sufficient storage effect cannot be obtained. Therefore, a good storage effect can be obtained by setting the above range.
[0019]
The invention according to claim 11 is
The exhaust gas temperature, the temperature for storing the NO 2 in the exhaust gas to the NOx trap catalyst, to a temperature that releases a pooled NO 2, and performs a control for periodically changing.
According to the invention of claim 11 ,
By the exhaust gas temperature control, NOx is repeatedly stored and released in the NOx trap catalyst, and PM can be burned efficiently. Also, depending on the NOx storage amount of the PM collection amount and the NOx trap catalyst of a filter, by performing the exhaust temperature control, it is possible to design an optimal NO 2 usage in PM combustion process, increase remarkably the NO 2 utilization efficiency be able to.
[0020]
The invention according to claim 12
A NOx reduction catalyst having a function of reducing and purifying NOx is disposed downstream of the filter.
According to the invention of claim 12 ,
NOx discharged after burning PM can be reduced and purified by the NOx reduction catalyst.
[0021]
The invention according to claim 13 is
A NOx reduction catalyst having a function of reducing and purifying NOx is disposed downstream of the filter, and
When the exhaust temperature is set to a temperature at which NO 2 stored in the NOx trap catalyst is released, the exhaust air-fuel ratio at the inlet of the NOx reduction catalyst having a function of reducing and purifying the NOx is controlled to be stoichiometric or rich. It is characterized by.
[0022]
According to the invention of claim 13 ,
By making the exhaust temperature the temperature at which NO 2 stored in the NOx trap catalyst is released , the exhaust purification temperature of PM, particularly C, is increased, and before the excess NO 2 released from the filter flows into the NOx reduction catalyst, By reducing and purifying to some extent with the enriched exhaust gas, the burden on the NOx reduction catalyst can be reduced, and the NOx purification efficiency can be further increased.
[0023]
The invention according to claim 14 is
The NOx reduction catalyst layer is laminated on the exhaust outlet surface of the filter.
According to the invention of claim 14 ,
Since the NOx reduction catalyst is integrated with the filter, the apparatus can be made compact.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an exhaust emission control device according to the present invention will be described. The basic configuration of this device is that it has an SOF purification function that adsorbs and purifies SOF (soluble organic compounds) from the upstream side of the exhaust passage of the internal combustion engine, and an NO oxidation function that oxidizes NO to generate NO 2. A catalyst (hereinafter referred to as an oxidation catalyst) and a filter for collecting PM are sequentially arranged.
[0025]
The upstream oxidation catalyst contains a noble metal (eg, Pt) in an amount of 1.3 g to 5 g per liter of catalyst volume. That is, when the amount of precious metal is less than 1.3 g / L, the purification rate of HC, CO, and SOF at a low temperature range of 200 ° C. or lower is insufficient, and NOx is reduced at a temperature range of 200 to 250 ° C. The reaction proceeds and NOx is consumed. On the other hand, if the Pt content exceeds 5 g / L, a NOx reduction reaction by SOF also occurs, and NOx is consumed again. Therefore, in order to achieve both low-temperature oxidation activity and NO 2 production, it is preferable to select a noble metal (Pt) loading amount of 1.3 g / L or more and 5 g / L or less.
[0026]
Furthermore, this oxidation catalyst contains a porous material having mesopores with an average pore diameter of 50 nm or less and a specific surface area of 250 m 2 / g or more. Specific examples include so-called porous oxides called mesoporous silica, mesoporous alumina, mesoporous zirconia, mesoporous titania and the like, and can be obtained by a sol-gel method using a surfactant, for example. Also, zeolite such as mordenite, MFI, ferrierite and zeolite β, and layered clay minerals such as hectorite and montmorillonite can be used. These porous material addition effects are effective for NO 2 in PM combustion in the filter by efficiently absorbing and trapping SOF as much as possible in front of the filter and oxidizing and removing SOF components using gas phase oxygen. The aim is to increase utilization.
[0027]
Further, as the above-mentioned filter, those having various structures are effective, for example, a depth filtration type filter made of a woven or non-woven ceramic fiber, a wall flow type filter in which the passages of the ceramic honeycomb are alternately packed, etc. Can be used.
In addition to the above basic configuration, between the oxidation catalyst and the filter, NO 2 in the exhaust flowing in when the exhaust temperature is lower than a predetermined temperature is stored, and the stored NO 2 is released when the exhaust temperature is higher than the predetermined temperature. By arranging the NOx trap catalyst having a function, the effective utilization rate of NO 2 can be further increased. In this case, the oxidation catalyst arranged on the upstream side has a synergistic effect that the NO 2 storage capacity of the NOx trap catalyst can be promoted. That is, the oxidation catalyst can adsorb and oxidize not only SOF but also low-boiling HCs. The reducing component easily adsorbs on the surface of the NOx storage material and inhibits storage of NOx. Therefore, by removing the reducing component in the previous stage of NOx storage, the NOx storage effect on the NOx trap catalyst can be maximized, and at the same time, the exhaust temperature increase effect due to the combustion of the reducing component can be expected.
[0028]
Further, the NOx purification performance can be improved by arranging the NOx reduction catalyst on the downstream side of the filter. The NOx reduction catalyst has a function of adsorbing and reducing NOx. For example, a catalyst containing Pt and one or more elements selected from alkali, alkaline earth and rare earth is also effective. This is to increase the adsorption and reduction capability in order to purify NOx generated in large quantities when purifying the PM accumulated on the filter. Therefore, although the present NOx reduction catalyst is installed on the downstream side of the filter, it is effective to coat the exhaust outlet side of the filter.
[0029]
[Example]
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
Example 1
FIG. 1 shows a first embodiment of an exhaust emission control device according to the present invention. In the figure, the engine 1 is a 4-cylinder-2.5 L direct injection diesel engine equipped with a common rail system. An intake throttle valve 3 is provided in the intake pipe 2 of the engine 1 so that the amount of supplied air can be controlled. In the exhaust pipe 4 of the engine 1, a honeycomb type oxidation catalyst 5 having a capacity of 1.5 L and a ceramic honeycomb type filter 6 having a capacity of 2.5 L are set in series, and further, a capacity of 1.7 L is provided downstream thereof. A NOx reduction catalyst 7 having a function of adsorbing and reducing NOx in a honeycomb type is installed.
[0030]
The oxidation catalyst 5 has a function of adsorbing and oxidizing CO, HC and SOF and is obtained, for example, as follows. Using an aqueous solution of dinitrodiammine Pt having a Pt concentration of about 4 wt%, 3.5 wt% of Pt is supported on activated alumina mainly composed of γ alumina having a specific surface area of 220 m 2 / g by an impregnation method. This Pt / γ alumina powder was mixed with boehmite powder and a mixed powder of boehmite powder with a specific surface area of about 830 m 2 / g, a porous silica having an average pore diameter of about 3.2 nm and a zeolite β having a specific surface area of 450 m 2 / g and a weight ratio of 50/50. The mixture is mixed at a weight ratio of 3: 1, and 1 wt% of nitric acid acidic alumina sol is further added, mixed with water, and mixed for 60 minutes in a magnetic ball mill pot containing alumina balls having a diameter of 7 mm to obtain a slurry liquid. The slurry is coated on 1.5 L of cordierite honeycomb having 400 cells per square inch, dried, and fired to obtain a honeycomb catalyst having a function of adsorbing and oxidizing CO, HC and SOF.
[0031]
Further, the filter 6 is made of, for example, SiC, and is obtained by alternately clogging the upstream end and the downstream end of the vent holes of adjacent cells with respect to the vent holes of about 200 cells per square inch. A partition that partitions between the vent holes is a filter having an average pore diameter of about 10 μm, and exhaust gas that has flowed into the vent hole whose downstream end is clogged is introduced into the adjacent vent hole through the pores of the partition wall. When it flows out, PM in the exhaust is collected on the partition wall surface.
[0032]
The NOx reduction catalyst 7 is obtained as follows, for example. An activated alumina layer carrying Pt and Rh is formed on a 1.7 L cordierite honeycomb having about 400 cells per square inch using the same production method as the oxidation catalyst. Subsequently, Ba and Na are supported on the honeycomb catalyst by an impregnation method, whereby a NOx reduction catalyst is obtained.
[0033]
Example 2
As shown in FIG. 2, in the configuration of the first embodiment, between the oxidation catalyst 5 and the filter 6, NO 2 in the exhaust gas flowing in when the exhaust gas temperature is lower than a predetermined temperature is stored, and when it is higher than the predetermined temperature A NOx trap catalyst 8 having a function of releasing stored NO 2 is installed.
[0034]
The NOx trap catalyst 8 is obtained as follows, for example. Using an aqueous sodium nitrate solution, about 10 wt% of Na is supported on activated alumina mainly composed of γ-alumina having a specific surface area of 220 m 2 / g by an impregnation method. 1 wt% of nitric acid acidic alumina sol is added to this Na / γ alumina powder, mixed with water, and mixed for 60 minutes in a magnetic ball mill pot containing alumina balls having a diameter of 7 mm to obtain a slurry liquid. The slurry is coated on 0.5 L of cordierite honeycomb having about 400 cells per square inch and dried and fired to obtain a NOx trap catalyst.
[0035]
Example 3
In Example 2, the porous silica used for the oxidation catalyst 5 is replaced with porous alumina having a specific surface area of about 680 m 2 / g and an average pore diameter of about 4.4 nm, and the apparatus of Example 3 is configured in the same manner. .
Example 4
In the second embodiment, Na in the NOx trap catalyst 8 is changed to K, and the rest of the apparatus is configured in the same manner except for K.
[0036]
Example 5
In Example 2, Na of the NOx trap catalyst 8 is changed to Na + Mg, and the rest of the apparatus is configured in the same manner except that.
Example 6
In Example 2, Na of the NOx trap catalyst 8 is replaced with K + Ni + Mn, and the rest of the apparatus is configured in the same manner except that.
[0037]
Example 7
In Example 2, a mixed powder of porous silica and zeolite β using the oxidation catalyst 5, instead of the mordenite powder mixture MFI zeolite and about 360 m 2 / g of specific surface area of about 390m 2 / g, and otherwise in the same manner The apparatus of Example 7 is configured.
Comparative Example As shown in FIG. 3, in Example 1, the arrangement of the filter 6 and the NOx reduction catalyst 7 is reversed, and the NOx reduction catalyst 7 is arranged upstream of the filter 6.
[0038]
[Test example]
Using an engine dynamo device with a 4-cylinder 2.5-liter direct injection diesel engine equipped with a common rail system, PM, NOx, CO, and HC of the devices (catalyst-filter systems) according to each of the above examples and comparative examples The purification performance and pressure loss were measured. In this evaluation apparatus, the exhaust temperature at the system inlet can be controlled by the engine load, the intake throttle, and the after injection by the common rail system.
[0039]
As a performance evaluation method for such a system, a transient performance evaluation method was used in which a filter portion was held at a temperature of 150 ° C. for 5 minutes and then a pattern was maintained at 400 ° C. for 40 seconds. At this time, the A / F in the exhaust at the NOx reduction catalyst inlet was shifted to 13.2 by the intake throttle for 5 seconds and the after-injection by the common rail system for 5 seconds while being held at 400 ° C. for 40 seconds. The light oil used in this evaluation test is Swedish class 1 light oil.
[0040]
Hereinafter, performance evaluation (average reduction rate of PM-NOx-CO-HC) in the above test and pressure loss evaluation of the filter will be described with reference to FIGS.
The average reduction rate of PM-NOx-CO-HC in Example 1 was PM92% -NOx81% -CO95% -HC88%.
Moreover, about the pressure loss showing evaluation of the filter reproduction | regeneration function concerning this invention, the pressure loss raise with respect to an initial pressure was 40 mmHg after a 40-hour driving | operation. Compared to the conventional case, the NO 2 generated by oxidation by the oxidation catalyst 5 can combust and purify C (dry soot) collected in the downstream filter 6, thereby reducing the pressure loss increase rate. Incidentally, in the comparative example in which the NOx reduction catalyst 7 is arranged on the upstream side of the filter 6, the increase in pressure loss exceeded 40 mHg after 20 hours of operation. This is the same as that disclosed in the above-mentioned JP-A-8-338229, and if NO 2 is reduced to N 2 by the NOx reduction catalyst 7 on the upstream side of the filter 6, PM cannot be burned and removed. This shows that the rate of increase in pressure loss due to clogging of the filter 6 increases, and this result also shows that NO 2 is effectively used for PM combustion in the present invention.
[0041]
In Example 2 in which the NOx trap catalyst 8 was interposed with respect to Example 1, a reduction rate of PM92% -NOx83% -CO97% -HC90% was obtained. Regarding the pressure loss, the increase in pressure loss with respect to the initial pressure was 18 mmHg after 100 hours of operation. Compared with the first embodiment, the NOx trap catalyst 8 has a greatly increased effect of combustion-purifying C (dry soot) by releasing a large amount of NO 2 stored at a low temperature at a high temperature.
[0042]
In Examples 3 to 7, the high PM, NOx, CO, and HC purification performance was maintained, and the pressure loss increase was 16 mmHg to 25 mmHg after 100 hours of operation.
As described above, according to the exhaust gas purification apparatus of the present invention, it can be seen that exhaust gas including a low exhaust temperature condition of 200 ° C. or less can be purified with high efficiency and can be stably operated for a long time.
[0043]
Further, as shown in FIG. 6, the oxidation catalyst 5 is laminated on the PM collection surface of the filter 6 with the NOx trap catalyst 8 interposed therebetween, or as shown in FIG. A layer of the NOx reduction catalyst 7 may be laminated and formed integrally on the exhaust outlet surface, and the apparatus can be made compact by integrating each catalyst with a filter. These configurations may be used in combination, and all the catalysts and filters can be integrated to make the apparatus compact as much as possible (especially shortening the length in the exhaust circulation direction).
[0044]
【The invention's effect】
Summarizing the effects of the present invention described above, by providing the oxidation catalyst having the SOF purifying function in front of the PM trapping filter, by utilizing intensive NO 2 under the conditions PM combustion reaction by NO 2 proceeds The NO 2 utilization rate can be increased and PM can be efficiently purified. By interposing the NOx trap catalyst, the NO 2 utilization rate can be further increased and the PM purification efficiency can be greatly increased.
[0045]
Further, for NOx that is exhausted in a concentrated manner at this time, highly efficient purification of NOx can be realized by adding a NOx reduction catalyst having NOx adsorption and reduction functions.
In the present invention, conditions effective utilization rate improvement and NO 2 -PM reaction of the NO 2 proceeds predominantly, further by giving the condition for purifying efficiently NOx to each functional material, which has been conventionally difficult 200 CO, HC, PM and NOx can be purified with high efficiency even under operating conditions including low exhaust temperatures of about ° C or lower. That is, according to the present invention, by realizing clean exhaust in diesel engine, it is possible to provide an automobile that has less environmental pollution including the problem of global warming and excellent in economy (fuel consumption).
[Brief description of the drawings]
FIG. 1 is a diagram showing a system configuration of a first embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention.
FIG. 2 is a diagram showing a system configuration of a second embodiment.
FIG. 3 is a diagram showing a system configuration of a comparative example compared with the respective embodiments.
FIG. 4 is a diagram showing PM removal performance and pressure loss change in each of the examples.
FIG. 5 is a graph showing PM removal performance and pressure loss change of the comparative example.
FIG. 6 is a diagram showing a modification of the embodiment.
FIG. 7 is a diagram showing another modification of the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Diesel engine 4 Exhaust pipe 5 Oxidation catalyst 6 Filter 7 NOx reduction catalyst 8 NOx trap catalyst

Claims (14)

内燃機関の排気通路に設置され、流入する排気中のパーティキュレート粒子(PM)に含まれる可溶性有機化合物(SOF)を吸着捕捉するとともに、気相酸素を利用してSOF成分を酸化除去するSOF浄化機能と、流入する排気中の一酸化窒素(NO)を酸化して二酸化窒素(NO2)を生成するNO酸化機能と、を有する触媒と、
前記触媒の下流側に配置され、流入する排気中のPMを捕集し、そのPMに含まれるスートを前記NO酸化機能によって生成されたNO 2 によって燃焼するスート燃焼機能を有するフィルタと、
を備えたことを特徴とする内燃機関の排気浄化装置。
SOF purification, which is installed in the exhaust passage of an internal combustion engine, adsorbs and captures soluble organic compounds (SOF) contained in particulate particles (PM) in inflowing exhaust gas, and oxidizes and removes SOF components using gas phase oxygen A catalyst having a function and a NO oxidation function of oxidizing nitrogen monoxide (NO) in inflowing exhaust gas to generate nitrogen dioxide (NO 2 );
A filter having a soot combustion function that is disposed downstream of the catalyst, collects PM in exhaust gas flowing in, and burns soot contained in the PM by NO 2 generated by the NO oxidation function ;
An exhaust emission control device for an internal combustion engine, comprising:
内燃機関の排気通路に設置され、流入する排気中のパーティキュレート粒子(PM)に含まれる可溶性有機化合物(SOF)を吸着・浄化するSOF浄化機能と、流入する排気中の一酸化窒素(NO)を酸化して二酸化窒素(NO2)を生成するNO酸化機能と、を有する触媒容積1リットル当たり1.3g以上5g以下の量の貴金属を含有した触媒と、
前記触媒の下流側に配置され、流入する排気中のPMを捕集し、そのPMに含まれるスートを前記NO酸化機能によって生成されたNO 2 によって燃焼するスート燃焼機能を有するフィルタと、
を備えたことを特徴とする内燃機関の排気浄化装置。
An SOF purification function for adsorbing and purifying soluble organic compounds (SOF) contained in particulate particles (PM) in inflowing exhaust gas installed in an exhaust passage of an internal combustion engine, and nitric oxide (NO) in inflowing exhaust gas A catalyst containing a noble metal in an amount of 1.3 g or more and 5 g or less per liter of catalyst volume , having a NO oxidation function of oxidizing nitrogen to produce nitrogen dioxide (NO 2 );
A filter having a soot combustion function that is disposed downstream of the catalyst, collects PM in exhaust gas flowing in, and burns soot contained in the PM by NO 2 generated by the NO oxidation function ;
An exhaust emission control device for an internal combustion engine, comprising:
前記フィルタのPM捕集面上に、前記SOF浄化機能と前記NO酸化機能とを有する触媒の層が積層されて一体に形成されていることを特徴とする請求項1又は請求項2に記載の内燃機関の排気浄化装置。On PM collection surface of the filter, according to claim 1 or claim 2 layer of catalyst with said NO oxidation function and the SOF purifying function is characterized in that are stacked are formed integrally An exhaust purification device for an internal combustion engine. 前記SOF浄化機能と前記NO酸化機能とを有する触媒と、該触媒下流側の前記フィルタとの間に、排気温度が所定温度未満のとき流入する排気中のNO2を貯蔵し、所定温度以上のとき貯蔵したNO2を放出する機能を有するNOxトラップ触媒を備えることを特徴とする請求項1又は請求項2に記載の内燃機関の排気浄化装置。Between the catalyst having the SOF purification function and the NO oxidation function and the filter on the downstream side of the catalyst, NO 2 in the exhaust gas flowing in when the exhaust gas temperature is lower than a predetermined temperature is stored, The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2 , further comprising a NOx trap catalyst having a function of releasing the stored NO 2 . 前記フィルタのPM捕集面上に、前記NOxトラップ触媒の層を間に介して、前記SOF浄化機能と前記NO酸化機能とを有する触媒が、順次積層されて一体に形成されていることを特徴とする請求項に記載の内燃機関の排気浄化装置。A catalyst having the SOF purification function and the NO oxidation function is sequentially laminated and integrally formed on the PM collection surface of the filter with the NOx trap catalyst layer interposed therebetween. An exhaust emission control device for an internal combustion engine according to claim 4 . 前記SOF浄化機能と前記NO酸化機能とを有する触媒は、平均細孔径50nm以下のメソ孔を有し、かつ250m2/g以上の比表面積を有する多孔材を備えることを特徴とする請求項1〜請求項のいずれか1つに記載の内燃機関の排気浄化装置。2. The catalyst having the SOF purification function and the NO oxidation function includes a porous material having mesopores with an average pore diameter of 50 nm or less and a specific surface area of 250 m 2 / g or more. The exhaust emission control device for an internal combustion engine according to any one of claims 5 to 6. 前記多孔材は、珪素(Si)、アルミニウム(A1)、ジルコニウム(Zr)、チタン(Ti)、マグネシウム(Mg)から選ばれた1種以上の元素の酸化物からなる多孔体であることを特徴とする請求項に記載の内燃機関の排気浄化装置。The porous material is a porous body made of an oxide of one or more elements selected from silicon (Si), aluminum (A1), zirconium (Zr), titanium (Ti), and magnesium (Mg). An exhaust emission control device for an internal combustion engine according to claim 6 . 前記フィルタ上に、白金(Pt)、パラジウム(Pd)、銀(Ag)、コバルト(Co)、銅(Cu)、マンガン(Mn)、鉄(Fe)、アルカリ、アルカリ土類、希土類から選ばれた1種以上の元素を担持したことを特徴とする請求項1〜請求項のいずれか1つに記載の内燃機関の排気浄化装置。On the filter, platinum (Pt), palladium (Pd), silver (Ag), cobalt (Co), copper (Cu), manganese (Mn), iron (Fe), alkali, alkaline earth, and rare earth are selected. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 7 , wherein one or more elements are supported. 前記NOxトラップ触媒は、貴金属を含有せず、ナトリウム(Na)、マグネシウム(Mg)、カリウム(K)、ニッケル(Ni)、マンガン(Mn)から選ばれた1種以上の元素を含有することを特徴とする請求項〜請求項のいずれか1つに記載の内燃機関の排気浄化装置。The NOx trap catalyst does not contain a noble metal and contains one or more elements selected from sodium (Na), magnesium (Mg), potassium (K), nickel (Ni), and manganese (Mn). The exhaust emission control device for an internal combustion engine according to any one of claims 4 to 8 , wherein the exhaust gas purification device is an internal combustion engine. 前記NOxトラップ触媒は、Na,Mg,K,Ni,Mnから選ばれた1種以上の元素を、比表面積が180m2/g以上の耐火性無機酸化物に5wt%以上30wt%以下となるように担持、含有させて得られることを特徴とする請求項に記載の内燃機関の排気浄化装置。In the NOx trap catalyst, at least one element selected from Na, Mg, K, Ni, and Mn is added to a refractory inorganic oxide having a specific surface area of 180 m 2 / g or more so as to be 5 wt% or more and 30 wt% or less. The exhaust purification device for an internal combustion engine according to claim 9 , wherein the exhaust gas purification device is obtained by being supported and contained in the internal combustion engine. 排気温度を、前記NOxトラップ触媒に排気中のNO2を貯蔵する温度と、貯蔵したNO2を放出する温度とに、周期的に変化させる制御を行うことを特徴とする請求項〜請求項10のいずれか1つに記載の内燃機関の浄化装置。The exhaust gas temperature, the temperature for storing the NO 2 in the exhaust gas to the NOx trap catalyst, to a temperature that releases a pooled NO 2, claim 4 to claim, characterized in that for controlling of periodically changing The internal combustion engine purification device according to any one of 10 . 前記フィルタの下流側に、NOxを還元浄化する機能を有したNOx還元触媒を配置したことを特徴とする請求項1〜請求項11のいずれか1つに記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 11 , wherein a NOx reduction catalyst having a function of reducing and purifying NOx is disposed downstream of the filter. 前記フィルタの下流側に、NOxを還元浄化する機能を有したNOx還元触媒を配置すると共に、前記排気温度を、前記NOxトラップ触媒に貯蔵したNO2を放出する温度としたときに、前記NOxを還元浄化する機能を有したNOx還元触媒の入口における排気空燃比をストイキまたはリッチに制御することを特徴とする請求項11に記載の内燃機関の排気浄化装置。A NOx reduction catalyst having a function of reducing and purifying NOx is disposed downstream of the filter, and the NOx is reduced when the exhaust temperature is set to a temperature at which NO 2 stored in the NOx trap catalyst is released. 12. The exhaust gas purification apparatus for an internal combustion engine according to claim 11 , wherein the exhaust air-fuel ratio at the inlet of the NOx reduction catalyst having the function of reducing and purifying is controlled to be stoichiometric or rich. 前記NOx還元触媒の層が、前記フィルタの排気出口面上に積層されていることを特徴とする請求項12または請求項13に記載の内燃機関の排気浄化装置。The exhaust purification device for an internal combustion engine according to claim 12 or 13 , wherein the NOx reduction catalyst layer is stacked on an exhaust outlet surface of the filter.
JP2001073906A 2001-03-15 2001-03-15 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4604374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001073906A JP4604374B2 (en) 2001-03-15 2001-03-15 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001073906A JP4604374B2 (en) 2001-03-15 2001-03-15 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002276337A JP2002276337A (en) 2002-09-25
JP4604374B2 true JP4604374B2 (en) 2011-01-05

Family

ID=18931267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001073906A Expired - Fee Related JP4604374B2 (en) 2001-03-15 2001-03-15 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4604374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130008881A (en) * 2011-07-13 2013-01-23 현대자동차주식회사 System for purifying exhaust gas and method for controlling the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0203538L (en) * 2002-11-27 2004-05-28 Volvo Technology Corp Catalyst unit for reducing NOx compounds
DE10300298A1 (en) 2003-01-02 2004-07-15 Daimlerchrysler Ag Exhaust gas aftertreatment device and method
GB0305415D0 (en) * 2003-03-08 2003-04-16 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter and NOx absorbent
US7225613B2 (en) 2005-01-26 2007-06-05 Ford Global Technologies, Llc Diesel engine after treatment device for conversion of nitrogen oxide and particulate matter
JP4853816B2 (en) * 2005-06-16 2012-01-11 株式会社豊田中央研究所 Exhaust gas purification filter and manufacturing method thereof
JP4687330B2 (en) * 2005-08-23 2011-05-25 マツダ株式会社 Diesel particulate filter
JP4270224B2 (en) 2005-11-09 2009-05-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2008127997A (en) * 2006-11-16 2008-06-05 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
US8800268B2 (en) * 2006-12-01 2014-08-12 Basf Corporation Zone coated filter, emission treatment systems and methods
JP2010001883A (en) * 2008-05-19 2010-01-07 Toyota Motor Corp Exhaust emission control device of internal combustion engine
CN105358249B (en) * 2013-07-08 2018-04-10 优美科触媒日本有限公司 Nitrogen oxides removal catalyst

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168311A (en) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc Filter for combustible fine particles and nitrogen oxides
JPH08338229A (en) * 1995-06-15 1996-12-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JPH0988727A (en) * 1995-09-22 1997-03-31 Hino Motors Ltd Exhaust gas purifying device of engine with turbo charger
JPH09125944A (en) * 1995-11-08 1997-05-13 Toyota Motor Corp Method and device for controlling emission of diesel engine
JPH10141051A (en) * 1996-11-01 1998-05-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000045755A (en) * 1998-07-28 2000-02-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000282852A (en) * 1999-03-30 2000-10-10 Nissan Diesel Motor Co Ltd Exhaust emission control device
WO2000061289A1 (en) * 1999-04-12 2000-10-19 Rhodia Services Compositions used as nox trap, based on manganese and an alkaline or alkaline-earth and use for treating exhaust gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168311A (en) * 1987-12-22 1989-07-03 Toyota Central Res & Dev Lab Inc Filter for combustible fine particles and nitrogen oxides
JPH08338229A (en) * 1995-06-15 1996-12-24 Toyota Motor Corp Exhaust emission control device for diesel engine
JPH0988727A (en) * 1995-09-22 1997-03-31 Hino Motors Ltd Exhaust gas purifying device of engine with turbo charger
JPH09125944A (en) * 1995-11-08 1997-05-13 Toyota Motor Corp Method and device for controlling emission of diesel engine
JPH10141051A (en) * 1996-11-01 1998-05-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000045755A (en) * 1998-07-28 2000-02-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2000282852A (en) * 1999-03-30 2000-10-10 Nissan Diesel Motor Co Ltd Exhaust emission control device
WO2000061289A1 (en) * 1999-04-12 2000-10-19 Rhodia Services Compositions used as nox trap, based on manganese and an alkaline or alkaline-earth and use for treating exhaust gases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130008881A (en) * 2011-07-13 2013-01-23 현대자동차주식회사 System for purifying exhaust gas and method for controlling the same
KR101724453B1 (en) 2011-07-13 2017-04-10 현대자동차 주식회사 System for purifying exhaust gas and method for controlling the same

Also Published As

Publication number Publication date
JP2002276337A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP4889873B2 (en) Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method
JP6629269B2 (en) Emission treatment system equipped with ammonia generation catalyst and SCR catalyst
JP5651589B2 (en) NOx adsorption catalyst with excellent low-temperature performance
JP5230199B2 (en) Pressure equilibrated soot filter with catalyst
KR100605005B1 (en) Catalytic soot filter and use thereof in treatment of lean exhaust gases
US7673448B2 (en) Diesel exhaust article and catalyst compositions therefor
WO2010041741A1 (en) Exhaust gas purifying device
WO2009087998A1 (en) Exhaust gas purification catalyst
JP3900421B2 (en) Wall flow type diesel exhaust gas purification filter type catalyst and diesel exhaust gas purification device
KR20080057336A (en) Exhaust gas purifying apparatus
JP4604374B2 (en) Exhaust gas purification device for internal combustion engine
JP4251764B2 (en) Exhaust gas purification device and exhaust gas purification method using the same
JP4174976B2 (en) Exhaust purification device and method for manufacturing the same
JP2008151100A (en) Exhaust emission control device
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
JP3633396B2 (en) Diesel engine exhaust purification system
JP2009138667A (en) Catalyst device for purifying exhaust gas
JP2005016470A (en) Emission control device and emission control method
KR20080001515U (en) An aftertreatment apparatus with an absorbing module for sulfuric acid to inhibit exhaust thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080125

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees